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We present high precision measurements of elliptic flow near midrapidity (jyj < 1.0) for multistrange
hadrons and ϕ meson as a function of centrality and transverse momentum in Auþ Au collisions at center
of mass energy

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV. We observe that the transverse momentum dependence of ϕ andΩ v2 is

similar to that of π and p, respectively, which may indicate that the heavier strange quark flows as strongly
as the lighter up and down quarks. This observation constitutes a clear piece of evidence for the
development of partonic collectivity in heavy-ion collisions at the top RHIC energy. Number of constituent
quark scaling is found to hold within statistical uncertainty for both 0%–30% and 30%–80% collision
centrality. There is an indication of the breakdown of previously observed mass ordering between ϕ and
proton v2 at low transverse momentum in the 0%–30% centrality range, possibly indicating late hadronic
interactions affecting the proton v2.
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At sufficiently high temperature and/or high density,
quantum chromodynamics (QCD) predicts a transition
form hadronic matter to deconfined partonic matter [1].
The main goal of the STAR (Solenoid Tracker at RHIC)
experiment at the Relativistic Heavy Ion Collider (RHIC) is
to study the properties of QCD matter at extremely high
energy and parton densities, created in the heavy-ion
collision. In high energy heavy-ion collisions, particles
are produced with an azimuthally anisotropic momentum
distribution, which is a result of hydrodynamical flow of
the quark-gluon plasma (in the soft regime). One way to
examine this anisotropy is to measure elliptic flow (v2),
which plays a crucial role in the study of the QCD matter
formed during the collision. The elliptic flow, defined as
v2 ¼ hcos 2ðφ −ΨÞi, is the second Fourier coefficient of
the azimuthal distribution of the emitted particle with
respect to the reaction plane (defined by the beam axis
and a vector between the centers of the colliding ions).
Here, φ is the azimuthal angle of the emitted particle and Ψ
is the azimuthal angle of the reaction plane. Over the past
decade, experimental measurements have shown elliptic
flow to be especially sensitive to the initial phase and
equation of state of the system formed in heavy-ion
collisions [2–6]. However, information about the early
dynamics of the system may be modified by hadronic
rescattering in the later stage of the collision [7,8]. The
hadronic interaction cross sections of ϕ, Ξ, and Ω are
expected to be small [9] and their freeze-out temperatures
are close to the quark-hadron transition temperature pre-
dicted by lattice QCD [10,11]. Hence, these hadrons are
expected to provide information primarily from the par-
tonic stage of the collision [12–16]. Previous measurements
of ϕ and Ω v2 from STAR [17] were statistically limited
and little is known about the centrality dependence ofΩ v2.
The measurements of ϕ and Ω v2 presented here as a
function of both transverse momentum (pT) and centrality
help to alleviate these limitations. Moreover, high precision
measurements of ϕ-meson v2 relative to proton v2 at low
pT may provide information on the effect of hadronic
rescattering [7,8] in the late stages of the collision.
We present the collision centrality and pT dependence

of the elliptic flow of πþ þ π−, Kþ þ K−, K0
S, pþ p̄, ϕ,

Λþ Λ̄, Ξ− þ Ξ̄þ, and Ω− þ Ω̄þ. For this study we used
730 × 106 Auþ Au events at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV recorded

by STAR in 2010 and 2011 with a minimum-bias trigger
[18]. The collision centrality is determined by comparing
the measured raw charged hadron multiplicity from the
time projection chamber (TPC) within a pseudorapidity
window jηj < 0.5 with Glauber Monte Carlo simulations
[19,20]. The TPC and time of flight (TOF) detectors with
full azimuthal coverage are used for particle identification
in the central rapidity region (jηj < 1.0 for TPC and
jηj < 0.9 for TOF). Charged particles are identified using
specific ionization energy loss as a function of momentum
(in the TPC) and square of the particle mass as a function of

momentum (for the TOF). We reconstruct short-lived K0
S,

Λ, Ξ, Ω, and ϕ through the following decay channels:
K0

S → πþ þ π−, Λ → pþ π, Ξ → Λþ π, Ω → Λþ K, and
ϕ → Kþ þ K−. Topological and kinematic cuts are applied
to reduce the combinatorial background for K0

S, Λ, Ξ,
and Ω. The detailed description of the procedures can be
found in Refs. [17,21,22].
The η subevent plane method [23] is used for the elliptic

flow analysis. An η gap of jΔηj > 0.1 between positive and
negative pseudorapidity subevents is introduced to suppress
nonflow effects. The v2 for short-lived hadrons (K0

S, ϕ, Λ,
Ξ, and Ω) is calculated as a function of invariant mass for
each pT and centrality bin in order to take into account the
invariant mass dependence of the signal to background
ratio. Details of this method can be found in Ref. [24]. The
observed v2 values are corrected for finite event plane
resolution, which is determined by comparing the two
η-subevent plane angles. A resolution correction is done
by dividing the term cos 2ðφ −Ψ2Þ by the event plane
resolution for the corresponding centrality for each event
following the method described in Refs. [25,26]. The
change in v2 between the present method of resolution
correction and the previous method used in earlier STAR
publications [4–6] is ≤ 5% at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV. Here,

Ψ2 is the second order event plane which is used for v2
measurements.
For all particle species, the cuts used for particle

identification (PID) and background subtraction are varied
to estimate the systematic errors. Furthermore, different
techniques (e.g., by counting entries in each bin of the
invariant mass histogram or by fitting the shape of the
invariant mass distribution using a function) for yield
extraction are used. For π�, K�, and pðp̄Þ, six different
combinations of track cuts and three different sets of PID
cuts which finally yield 18 combinations have been used.
For other strange hadrons (K0

S, ϕ, Λ, Ξ, and Ω) 20 different
cut combination are used. The root-mean-square value of
point-by-point difference from the default value (v2 from
the default set of cuts) is used as the systematic error on
each data point. The total systematic error depends on pT ,
centrality, and particle species. We observed 3%–5%
systematic error for pT < 1.5 GeV=c and 0%–30% central-
ity for ϕ, K0

S, Λ, whereas for Ξ and Ω the systematic error
varies from 8% to 14%. Total systematic errors are less than
1% for π�, K�, and pðp̄Þ for all pT’s and centralities.
We investigated the effect of track reconstruction

efficiency on the measured v2 of identified hadrons for
wide centrality bins, such as a 0%–80% centrality bin.
The centrality dependence of track reconstruction effi-
ciency biases the measured v2 toward events with higher
reconstruction efficiency, an effect we will refer to as an
“efficiency bias.” Because of the efficiency bias, the v2 of Ξ
and Ω, each having three daughters, changes by no more
than 5% in 0%–80% centrality. For the other measured
particles, the effect is less than 3% for 0%–80% centrality.

PRL 116, 062301 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

12 FEBRUARY 2016

062301-3



The v2ðpTÞ’s of all particles presented here have been
corrected for the efficiency bias by using the inverse of
efficiency as a weight for the v2 as a function of pT and
centrality.
An additional correction is needed for ϕ, Ξ, andΩ v2. An

event bias is naturally introduced when one measures v2’s
in wide centrality bins, especially for the rare particles.
As the measured v2 is an average over all events weighted
by the particle yield, the average event shape depends on
the particle type. AGlauber model [19] study of the average
initial participant eccentricity indicates that the multi-
strange hadron v2 is more biased toward central events
than that of the light and strange hadrons. Specifically, the
average eccentricity for multistrange hadrons in wide
centrality bins is smaller than the eccentricity determined
by the particle yield of all charged hadrons. One should
take this effect into consideration if any conclusion on
number of constituent quark scaling is drawn. This bias can
be corrected by normalizing the measured v2 by the ratio of
eccentricity to that weighted by the yield of the particle of
interest. We find the event bias correction factors for the
0%–30%, 30%–80%, and 0%–80% centralities are 1.002,
1.053, and 1.028 for ϕ, 1.019, 1.054, and 1.091 for Ξ, and
1.068, 1.067, and 1.177 forΩ. The event bias correction for
light and strange hadrons is small (< 0.03), perhaps due to
their copious production. Therefore, in the later discussion
of number of constituent quark (NCQ) scaling, the event
bias correction is applied only to the v2’s of multistrange
hadrons and ϕ meson. The above correction factors remain
almost unchanged if we use a color-glass condensate [27]
based model to calculate eccentricity.
In Fig. 1 we present the elliptic flow parameter v2ðpTÞ at

midrapidity (jyj < 1.0) for (a) Ξ− þ Ξ̄þ, (b) Ω− þ Ω̄þ, and
(c) ϕ in Auþ Au collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV for

0%–30% and 30%–80% centrality. Event bias correction
factors have been applied to the results shown in Fig. 1. A
clear centrality dependence of v2ðpTÞ is observed for ϕ, Ξ,

andΩ, similar to that of identified light and strange hadrons
previously measured by the STAR experiment [28]. The
values of v2 are found to be larger in peripheral collisions
(30%–80% centrality) compared to those in central colli-
sions (0%–30% centrality). This observation is consistent
with an interpretation in which the final momentum
anisotropy is driven by the initial spatial anisotropy.
The NCQ scaling in v2 for different identified hadrons is

considered to be a good probe for studying the strongly
interacting partonic matter. The observed NCQ scaling of
identified hadrons in experimental data [29] indicates the
importance of parton recombination in forming hadrons in
the intermediate pT range (2.0 GeV=c < pT < 4.0 GeV=c)
[30–33]. Such scaling may indicate that collective elliptic
flow develops during the partonic phase. Previous measure-
ments have found that v2’s of π, K, p, K0

S, Λ, Ξ, and ϕ
follow NCQ scaling well at the top of the RHIC energy
(

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV) [29]. The large statistics data sets
collected by STAR detectors allow us to measure elliptic
flow of multistrange hadrons, specifically that of the Ω
baryon which is made of pure strange (s) or antistrange (s̄)
constituent quarks and of the ϕ meson, consisting of one s
and one s̄ constituent quark.
Figure 2 shows the v2 as a function of pT for π, p, ϕ,

and Ω for 0%–80% centrality in Auþ Au collisions at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV. Here, ϕ and Ω v2 are corrected for the
event bias mentioned earlier. Figure 2(a) shows a com-
parison between the v2’s of π and p, consisting of up (u)
and down (d) light quarks, and Fig. 2(b) shows a com-
parison of the v2’s of ϕ and Ω containing heavier s quarks.
The v2’s of ϕ and Ω are mass ordered at low pT and a
baryon-meson separation is observed at intermediate pT . It
is clear from Fig. 2 that the v2ðpTÞ of hadrons consisting
only of strange quarks (ϕ and Ω) is similar to that of π and
p. However, unlike π and p, the ϕ and Ω do not participate
strongly in the hadronic interactions, which suggests that
the major part of collectivity is developed during the
partonic phase in Auþ Au collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV.

We now compare our results for NCQ scaling for
different collision centrality classes to see how the partonic
collectivity changes with system size. Figure 3 shows the2v

0

0.1

0.2

0.3 Ξ(a)

0 2 4 6

2v

0

0.1

0.2 φ(c)

Ω(b)

0 2 4 6

 = 200 GeVNNsAu+Au,

0–30%

30–80%

2v

 (GeV/c)
T

 Transverse momentum p

FIG. 1. The v2 as a function of pT near midrapidity (jyj < 1.0)
for (a) Ξ− þ Ξ̄þ, (b) Ω− þ Ω̄þ, and (c) ϕ from Auþ Au
collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV for 0%–30% and 30%–80%

centrality. The systematic uncertainties are shown with shaded
boxes and the statistical uncertainties by vertical lines.
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FIG. 2. The v2 as a function of pT for (a) π, p and (b) ϕ,
Ω from minimum-bias Auþ Au collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV

for 0%–80% centrality. The systematic uncertainties are shown
with the shaded boxes, while vertical lines represent the statistical
uncertainties.
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v2 scaled by number of constituent quarks (nq) as a
function of pT=nq and ðmT −m0Þ=nq for identified
hadrons from Auþ Au collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV

for 0%–30% and 30%–80% centrality, where mT and m0

are the transverse mass and the rest mass of the hadron,
respectively. Here, ϕ, Ξ, and Ω v2 are corrected for the
event bias mentioned above. To quantify the deviation from
NCQ scaling, we fit the K0

S v2 with a third-order poly-
nomial function. We then take the ratio of v2 for the other
measured hadrons to the K0

S fit. The ratios are shown in
the lower panels of Fig. 3. Table I shows the deviations of
the ϕ, Λ, Ξ, and Ω v2’s from the K0

S fit line in the
range ðmT −m0Þ=nq > 0.8 GeV=c2.
For both the 0%–30% and 30%–80% centralities, the

scaling holds within approximately 10%, excluding the
pions. The deviation of the pions could be due to the effect
of resonance decay and nonflow correlations [34]. We have
seen a similar order (∼10%) of deviation when using pT=nq
scaling as a reference. The maximum deviation from NCQ
scaling is ∼20% at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 2.76 TeV, as observed by the

ALICE experiment [35]. Therefore, at top RHIC energy,
NCQ scaling holds better than LHC energy. The observed
difference between the charged kaon and K0

S v2 at low pT is
due to differences in the pileup protection conditions used in
collecting the different data sets. The difference is taken to be
an additional contribution to the systematic error on K0

S v2.
Hydrodynamical model calculations predict that v2 as

a function of pT follows mass ordering, where the v2 of

heavier hadrons is lower than that of lighter hadrons and
vice versa [3,36,37]. Mass ordering is indeed observed in
the identified hadron v2 measured in the low pT region
(pT ≤ 1.5 GeV=c) [28]. Recent phenomenological calcu-
lations, based on ideal hydrodynamics together with a
hadron cascade (JAM), show that the mass ordering of v2
could be broken between ϕ mesons and protons at low pT
(pT < 1.5 GeV=c) [7,8]. The broken mass ordering is
thought to be due to late-stage hadronic rescattering effects
on the proton v2 since the model calculations assume a low
hadronic cross section for the ϕ but a large hadronic cross
section for the proton.
The ratios of ϕ v2 and proton v2 are shown in Fig. 4. The

ratios are larger than unity at pT ∼ 0.5 GeV=c for 0%–30%
centrality showing an indication of breakdown of the
expected mass ordering in that momentum range. This
could be due to a large effect of hadronic rescattering on the
proton v2, indicated by the shaded red band in Fig. 4(a). We
have also considered the effect of the momentum resolution
and energy loss of the TPC as well as the decay (feed-
down) effects on the proton v2. Our study, based on the
UrQMD framework, indicates that the momentum reso-
lution and decay effects on the ratio of v2ðϕÞ to v2ðpÞ in the
measured momentum region are negligible. The breakdown
of mass ordering of v2 is more pronounced in the 0%–30%
than the 30%–80% centrality. For example, the ratio
v2ðϕÞ=v2ðpÞ is 4.35� 0.98�0.66

0.45 at pT ¼ 0.52 GeV=c in
0%–30%, while it is 1.12� 0.10�0.047

0.053 in 30%–80%. In the
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FIG. 3. Panel (a) and (b) show v2 scaled by number of constituent quarks (nq) as a function of pT=nq for 0–30% and 30–80% collision
centrality, respectively. Panel (c) and (d) show v2 scaled by number of constituent quarks (nq) as a function of (ðmT −m0Þ=nq for 0–30%
and 30–80% collision centrality, respectively. Ratios with respect to a polynomial fit to the K0

S v2 are shown in the corresponding lower
panels. Vertical lines are statistical uncertainties and shaded boxes are systematic uncertainties.

TABLE I. Deviation from the K0
S fit line in the range ðmT −m0Þ=nq > 0.8 GeV=c2 for 0%–30% and 30%–80%

centrality.

Deviation

Particle 0%–30% centrality 30%–80% centrality

ϕ 2.7� 2.6ðstatÞ � 1.8ðsystÞ% 1.2� 1.3ðstatÞ � 0.6ðsystÞ%
Λ 4.3� 0.8ðstatÞ � 0.2ðsystÞ% 1.5� 0.7ðstatÞ � 0.2ðsystÞ%
Ξ 11.3� 2.3ðstatÞ � 1.4ðsystÞ% 8.5� 2.0ðstatÞ � 0.5ðsystÞ%
Ω 10.1� 8.4ðstatÞ � 5.3ðsystÞ% 7.0� 6.0ðstatÞ � 1.5ðsystÞ%
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central events, both hadronic and partonic interactions are
larger than in peripheral events. Therefore, the combined
effects of large partonic collectivity on the ϕ v2 and
significant late-stage hadronic interactions on the proton
v2 produce a greater breakdown of mass ordering in the
0%–30% centrality data than in the 30%–80% [15]. This
observation indirectly supports the idea of a small hadronic
interaction cross section for the ϕ meson. We have also
studied the ratio of ϕ v2 to proton v2 using the transport
models AMPT [38] and UrQMD [39]. The v2ðϕÞ=v2ðpÞ
ratios for 0%–30% centrality from the AMPT and UrQMD
models are shown in Fig. 4(b). The black shaded band is
from AMPT with a hadronic cascade time of 0.6 fm=c,
while the yellow band is for a hadronic cascade time of
30 fm=c. It is clear from Fig. 4(b) that with increasing
hadronic cascade time (and therefore more hadronic
rescattering), the v2ðϕÞ=v2ðpÞ ratio increases. This is
attributed to a decrease in the proton v2 due to an increase
in hadronic rescattering, while the ϕ-meson v2 remains
unaffected [15]. The ratios from UrQMD are shown as
a red shaded band which is much smaller than unity. The
UrQMD model lacks partonic collectivity and therefore
does not fully develop the ϕ-meson v2.
In summary, we have reported high-statistics elliptic

flow measurements for multistrange hadrons (Ξ and Ω) and
ϕ meson with other light and strange hadrons (π, K, K0

S,
p, and Λ) in Auþ Au collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV for

different centralities. The pT dependence of ϕ and Ω v2 is
observed to be similar to that of π and p, indicating that a
large amount of collectivity is developed in the initial
partonic phase for light and strange hadrons. NCQ scaling
holds within the statistical uncertainty for both 0%–30%
and 30%–80% centralities, suggesting collective motion
of quarks prior to hadronization. The comparison
between the ϕ and p v2 shows that, at low pT, there is
a possible violation of hydrodynamics-inspired mass order-
ing between ϕ and p. Model calculations suggest that
the pT dependence of v2ðϕÞ=v2ðpÞ can be qualitatively
explained by the effect of late-stage hadronic rescattering
on the proton v2 [7,8].
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