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Uvod

Nedavni razvoj tehnologija za sekvenciranje genoma, tzv. “metoda sekvenciranja sljedeće 

generacije” omogućio je prikupljanje velike količine podataka o nukleotidnim sljedovima u 

ljudskom genomu. Ti su podatci uspješno iskorišteni za brojna medicinska i znanstvena 

istraživanja što je dodatno potaknulo razvoj ovih tehnologija, ovaj put s istančanim 

zahtjevima o kvaliteti i dužini fragmenata koje je potrebno generirati. Danas se istražuje tzv. 

“treća generacija tehnologija sekvenciranja” koja kao cilj imaju drastično pojednostaviti cijeli 

postupak i dodatno skratiti vrijeme potrebno za sekvenciranje. Ovakav uzročno-posljedični 

proces eksponencijalno je povećao broj nukleotidnih baza spremljenih u online 

repozitorijima te obećava i dalje nastaviti dosadašnji trend. Međutim, ova stopa generiranja 

podataka postavila je njihovu bioinformatičku analiza kao limitirajući faktor mnogih 

istraživanja.

Jedan od nedavno završenih globalnih projekata sekvenciranja je projekt 1000 

genoma čiji su konačni rezultati objavljeni prošli listopad, a koji je uključivao određivanje 

kompletne genomske sekvence i svih strukturnih varijacija 2504 osobe iz 5 populacijskih 

grupa. Kao i kod mnogih drugih projekata, rezultati su pohranjeni u javno dostupnom 

repozitoriju. Velika većina otkrivenih varijacija posljedica je SNP-ova, promjena individualnih 

nukleotida u genetskoj sekvenci. Ako SNP pogađa protein-kodirajuću regiju genoma, on 

neizravno utječe i na promjenu aminokiseline u primarnoj strukturi proteina translatiranog 

iz ove sekvence.

Cilj ovog rada je istražiti aminokiselinske supstitucije uzrokovane SNP-ovima u 

protein-kodirajućim regijama genoma (slika 0.1). U tu svrhu, bioinformatičke metode i alati 

iskorišteni su za konstrukciju supstitucijskih mapa s obzirom na učestalost i patogenost. 

Dobivene mape analizirane su prema tablici genetskog koda u kojoj je prikazana distribucija 

kodona, 3-nukleotidnih sljedova koji kodiraju pojedine aminokiseline. Mapa su također 

analizirane prema biokemijskoj klasifikaciji aminokiselina s obzirom na njihove strukturne 

elemente. Varijacije otkrivene u projektu 1000 genoma, kao i u drugim sličnim projektima, 

analizirane su i na razini pojedinih aminokiselina u referentnim i alternativnim proteinskim 

sekvencama te su konstruirani odgovarajući grafikoni njihovih učestalosti i patogenosti.

Nadalje, neki od rezultata samog projekta 1000 genoma zasebno su analizirani. Tako 

je određen postotak sinonimnih SNP-ovi, nukleotidnih supstitucija koje ne uzrokuju 
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promjenu u primarnoj proteinskoj strukturi, analizirani su rezultati 2 bioinformatička alata 

za predviđanje patogenosti aminokiselinskih supstitucija te su konstruirane frekvencijski 

razriješene supstitucijske mape za svaku od pet populacijskih grupa definiranih u projektu.

Konačno, započeto je detaljnije istraživanje aminokiselinske supstitucije Trp  Ser, 

koja je u više analiza pokazala značajan signal patogenosti, i to kroz seriju simulacija 

molekulske dinamike provedenih u programu GROMACS. Simulirani su svi proteini kod kojih 

je ova supstitucija imala pouzdanu klasifikaciju patogenosti i za koje je pronađena riješena 

kristalna struktura zadovoljavajuće kvalitete. Kod svih proteina simuliran je divlji tip te 

njeogova mutirana varijanta kod koje je triptofan zamijenjen serinom. Sve simulacije 

provedene su u trajanju od najmanje 30 ns, a pretraživane su konformacijske promjene 

između divljeg i mutiranog proteina do kojih dolazi u patogenim, a ne dolazi u benignim 

varijantama ove supstitucije.

Slika 0.1: Shema analiza provedenih u sklopu ovog rada.

Rezultati i diskusija

Za odgovarajuće aminokiselinske varijante pronađene su i analizirane 3 baze podataka 

nazvane Uniprot1, Uniprot2 i 1000G. Uniprot1 je ručno pregledana baza poznatih 
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aminokiselinskih supstitucija iz raznih izvora. Bitno je napomenuti da ova baza sadrži i 

supstitucije koje nisu mogle nastati kao posljedica SNP-ova, jer zahtijevaju promjenu više od 

jednog nukleotida u kodonu referentne aminokiseline. Također, ova baza obogaćena je 

patogenim varijantama jer us one zanimljivije za daljnja istraživanja zbog čega su češće 

ručno pregledavane. Uniprot2 baza aminokiselinskih supstitucija nastala je mapiranje i in 

silico translacijom SNP-ova iz protein kodirajućih regija ljudskog genoma. Ova baza sadrži 

znatno veći broj supstitucija, ali njihove su klasifikacije patogenosti manje pouzdane jer 

unosi u bazi nisu ručno pregledani. 1000G set podataka su zapravo neprocesirani rezultati 

projekta 1000 genoma. Ovaj set sadrži neke dodatne podatke koji su izbačeni iz drugih baza, 

ali zato nema klasifikaciju patogenosti koja je za potrebe analize mapirana iz Uniprot1 baze.

Mapa supstitucijskih učestalosti konstruirana je za Uniprot1 i Uniprot2 baze. Iz 

njihovih sličnosti vidljivo je da Uniprot1, unatoč svojoj veličini, dobro opisuje ukupnu 

distribuciju varijanti. Prikazana je mapa dobivena iz Uniprot2 baze (slika 0.2). Treba imati na 

umu da apsolutne vrijednosti supstitucijskih učestalosti u ovim mapama nisu relevantne jer 

baze ne sadrže podatke o frekvencijama pojedinih varijanti, zbog čega možemo uspoređivati 

samo relativne vrijednosti između njih.

Slika 0.2: Mapa učestalosti aminokiselinskih supstitucija.

χ2 test korišten je za usporedbu dobivenih mapa s mapom konstruiranom iz tablice 

genetskog koda. Nul hipoteza da dobivene učestalosti proizlaze iz distribucije koju predviđa 



PROŠIRENI SAŽETAK

XIV

raspodjela kodona odbačena je s velikom pouzdanošću (p-vrijednost < 10-323). Ovakav ishod 

je očekivan jer su biokemijski procesi transkripcije i translacije, kao i njihove evolucijske 

promjene, znatno kompleksniji od onoga što predviđa osnovni genetski kod.

S obzirom na patogenost pojedinih supstitucija, mape postotka patogenih 

supstitucija konstruirane su za oba seta podataka. Prikazana je mapa dobivena iz Uniprot2 

baze (slika 0.3) iz koje su supstitucije Trp  Ser, Arg  Pro i Cys  Phe detektirane kao 

najopasnije. Ovi su signali, kao i većina drugih, konzistentni s rezultatima iz Uniprot1. Bitno 

je uočiti da niti ovdje apsolutne vrijednosti signala nisu pouzdane. Za Uniprot1 one su 

prevelike jer je cijela baza obogaćena patogenim varijantama, dok su za Uniprot2 premale 

jer velikom postotku varijanti nedostaje klasifikacija te je određeni postotak ovih 

nedefiniranih varijanti također patogen. Relativne vrijednosti između supstitucija mogu se 

uspoređivati i konsistentne su između ove dvije baze što se posebno dobro vidi nakon 

normalizacije rezultata.

Slika 0.3: Mapa patogenosti supstitucija konstruirana iz Uniprot2 baze.

Zeleno ograđeno područje prikazane mape predstavlja supstitucije koje ne mijenjaju 

strukturni tip aminokiseline. Evidentno je da ove supstitucije imaju manji postotak 
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patogenosti što je očekivano s biokemijskog stajališta. Ovaj efekt detaljnije je analiziran na 

mapama strukturnih supstitucija u kojima su aminokiseline koje pripadaju istom tipu 

grupirane, a njihove učestalosti normalizirane prema broju aminokiselina unutar grupe kao i 

broju načina na koje do pojedinih supstitucija može doći. Ponovno su konstruirane mape 

učestalosti i patogenosti uz ovakvu klasifikaciju (slika 0.4). Dvije interesantne stvari vidljive 

su s mapa. Na mapi patogenosti, dijagonala ima najmanje vrijednosti što potvrđuje da se 

ove supstitucije najčešće toleriraju. Također, vidi se obrnuto proporcionalna korelaciju 

između dviju mapa. Ovo je najočitije kod pho  pos, pos  pho i pho  neg supstitucija 

koje imaju najveći postotak patogenosti te su istovremeno najrjeđe po učestalosti, što se 

može objasniti evolucijskom negativnom selekcijom ovih tipova supstitucija.

Slika 0.4: Supstitucijske mape bazirane na strukturnoj klasifikaciji aminokiselina. a) 

učestalosti, b) patogenosti.

Analiza je nastavljena promatranjem odnosa genetskog koda i dobivenih mapa pri 

čemu je uočena povećana patogenost supstitucija uzrokovanih SNP-om na 2. nukleotidu 

kodona te smanjena patogenost supstitucija kod kojih je SNP na 3. nukleotidu.

Set podataka 1000G iskorišten je za analizu dodatnih rezultata projekta 1000 

genoma. Uočena je neravnomjernost broja sinonimnih supstitucija koja je također 

konsistenta s evolucijskom perspektivom, budući da su njihove učestalost znatno veće od 

očekivanih. Nadalje, analizirani su rezultati 2 bioinformatička alata za predviđanje 

patogenosti aminokiselinskih supstitucija te se alat PolyPhen pokazao nešto boljim od SIFT-a 

a) b)
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u detekciji patogenih supstitucija. Također, konstruirane su i analizirane frekvencijski 

razriješene supstitucijske mape 5 populacijskih grupa definiranih u tom projektu. Kod ove 

analize uočena je povećana učestalost skoro svih varijacija u afričkoj populacijskoj grupi što 

je konzistentno s rezultatima projekta koji su uočili isti efekt u analizi broja strukturnih 

varijacija na razini cijelog genoma. Također je uočen zanimljiv odnos između povećane i 

smanjene učestalosti nekoliko supstitucija kod određenih populacijskih grupa (slika 0.5). 

Tako Lys  Met supstitucija ima povećanu učestalost u afričkoj, a smanjenu u američkoj 

populacijskoj grupi dok je Trp  Ser znatno učestalija u europskim genomima u odnosu na 

afričke. Ove razlike mogle bi biti posljedica nekih biokemijskih promjena između 

populacijskih grupa do kojih je došlo tijekom evolucije. 

Slika 0.5: Distribucije postotka supstitucija u pojedinim populacijskim grupama.

Konačno, supstitucija Trp  Ser, koja je u više analiza pokazala značajan signal 

patogenosti, detaljnije je strukturno analizirana kroz seriju molekulsko dinamičkih 

simulacija. Simulirano je ukupno 20 proteina u kojima je dotična supstitucija detektirana i to 

uz pouzdanu klasifikaciju patogenosti. Za svaki protein simuliran je divlji tip i njegova 
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mutirana varijanta u kojoj je triptofan zamijenjen serinom te je započeta analiza dobivenih 

trajektorija pretragom konformacijskih promjena do kojih dolazi kod patogenih parova 

simulacija, a ne dolazi kod benignih.

Zaključak

U ovom radu detaljno su istražene aminokiselinske supstitucije koje se pojavljuju u ljudskom 

proteomu, a posljedica su SNP-ova u protein-kodirajućim regijama genoma. Analizirani su 

rezultati projekta 1000 genoma, koji su bili glavna motivacija za istraživanje, te rezultati 

nekolicine sličnih projekata. Aminokiselinska supstitucija Trp  Ser odabrana je za daljnju 

strukturnu analizu kod koje će trajektorije dobivene molekulsko dinamičkim simulacijama 

biti uspoređivane između patogenih i benignih varijanti ovih supstitucija.
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Kristijan Vuković § 1. Introduction
                                                                                                                                     

1

§ 1. Introduction

Genome sequencing technologies provide immense potential for understanding scientific 

and medical underpinnings of human genetic code. The rate at which current technologies 

generate sequencing data and the rate at which they are being improved promise to 

continue this trend. However, this progress also makes it hard for bioinformatical analysis to 

keep pace. Several large-scale sequencing projects have provided extensive data that has 

been either just partially analyzed or simply filtered and uploaded to one of the numerous 

online repositories. An example of most recently completed one is the 1000 Genomes 

Project. The aim of this thesis is to explore some of the results of this and several other 

sequencing projects. Primary objective is analyzing amino acid substitutions that arise as 

consequences of single-nucleotide polymorphisms (SNPs, pronounced: snips) in the protein-

coding regions of the human genome.

To accomplish this, bioinformatical tools and methods are applied on amino acid 

structural classification from biochemical models and on other relevant chemical and 

biological parameters such as molecular mass and underlying genetic code of amino acids. 

Statistical tests are used to assess the significance of the results. Similar analysis with a 

smaller dataset was published in 2003.,[1] but only these recent sequencing projects enable 

completely unbiased and genome-wide exploration of amino acid variants.

First part of this thesis provides a review of relevant biochemical concepts used 

during the analysis as well as a short summary of the 1000 genomes project whose results 

were the main motivation for this research (although not the only ones used). Then, the 

mathematical background for the statistical hypothesis testing and few other theoretical 

topics is provided. This is followed by the main section in which research results are 

discussed. Some more complicated calculations and procedure descriptions from this part 

are given separately in the Materials and methods section. Also, some overly detailed and 

less revealing figures are provided separately in the Extended data section. Finally, short 

conclusion of the research objectives and computational code for the analysis are given.  

The main section, in which research results are discussed, consists of the analysis 

conducted on three datasets: Uniprot1, Uniprot2 and 1000G (figure 1.1.) First research 

objective was constructing a map of all known amino acid substitutions. Then, the amino 

acid substitutions were explored with respect to their disease association: Uniprot1 and 



Kristijan Vuković § 1. Introduction                                                                                      

2

Uniprot2 datasets provide these classifications, but they are incomplete in both. In Uniprot1 

the classification is biased towards pathogenic variants and in Uniprot2 it’s incomplete 

because for the majority of variants the classification is unknown. Regardless of this 

shortcoming, the unbiased Uniprot2 dataset is preferred for most analysis, as will be 

discussed further (Materials and methods). Then, the two previous results were analyzed 

with respect to the individual amino acids, their structural classification and their underlying 

genetic code. These research topics were supplemented with analysis of the unprocessed 

1000 Genomes Project results in the 1000G dataset. Pathogenicity predictions of two 

bioinformatical tools were assessed and amino acid substitution maps constructed for five 

population groups whose genomes were sequenced in this project. Finally, by taking several 

interesting results into account, disease ranking table of amino acid substitutions was 

constructed.

Last research objective of this thesis was structural analysis of Trp  Ser mutation. 

Structural analysis was carried out through a series of molecular dynamics (MD) simulations 

in program package GROMACS.[2] The setup of MD simulations and the analysis procedures 

are described. This part of the research is still in progress and only preliminary results are 

shown in the thesis. 

Figure 1.1: Flowchart of the analysis presented in this thesis.
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§ 2. Literature review

2.1. Amino acids and proteins

Amino acids are organic compounds that contain amine (NH2) and carboxylic acid (COOH) 

functional groups. All amino acids share fundamental structural elements and differ in 

chemistry of their respective side-chains. There are about 500 naturally occurring amino 

acids[3] and they can be classified in various ways. Chemical structure guides classification in 

accordance to the location of core structural group and defines them as alpha (α-), beta (β-), 

gamma (γ-) or delta (δ-). In terms of physicochemical properties, they can be classified 

based on their side-chain structure. This also, to large extent, influences their biochemical 

characteristics. Additionally, they can be classified in relation to their occurrence frequency, 

metabolic production and finally, protein building capacity, which is their most important 

biological property.

Twenty-two amino acids occur naturally as structural units of proteins and are 

therefore called proteinogenic or natural amino acids. Twenty of these are also encoded by 

the universal genetic code (see chapter 2.2.) Selenocysteine and pyrrolysine are in the first 

group but not in the second and they have separate synthetic mechanisms for protein 

incorporation.[4][5] For this reason, they occur less frequently in the human proteome. To 

function as monomer units, amino acids form polymer chains through the peptide bond 

formation process (figure 2.1). In this condensation reaction, C-terminus of first, and N-

terminus of second amino form the peptide bond and the water molecule is released. This 

type of chemical reaction occurs continuously in all living systems thus synthesizing 

polypeptides or proteins.

2.1.1. Human proteome

Proteome is a term that refers to the complete set of proteins expressed by a genome, cell, 

tissue, or organism at a certain time. The term was coined by Marc Wilkins[6] as an analogy 

to the term genome which refers to the complete genetic sequence of an organism. The 

human proteome consists of approximately 70,600 proteins.[7] There is an ongoing effort to 

determine this precise number and map all of them.[8] As there are about 20,500 genes in 

the human genome, depending on the exact definition of the gene[9], it follows that a 
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significant part of our proteome arises from alternative splicing events. The number of 

protein coding genes was estimated a lot higher. It was argued that explaining the human 

complexity, compared to that of other organisms, requires larger protein diversity.[10] Now 

we know there are other functional elements that account for this.[11] Over the whole 

protein coding sequence of the human genome, mean exon size is 145 bp (median 122 bp) 

with a mean of 8.8 per gene (median 7), corresponding to a mean protein size of 447 amino 

acids (median 367). [12]

Figure 2.1: α- amino acid structure and peptide bond formation.[13]

There are 4 layers of information that define each protein. Primary structure refers 

to the sequence of amino acids in the polypeptide chain. In this notation, residues are 

always counted from N- to C- terminus. Any post-translational modifications that amino 

acids undergo (e.g. acetylation, formylation, glycosylation etc.) are also considered a part of 

the primary structure, as are any disulfide bonds between cysteine residues. In general, 

primary structure corresponds to the information about protein elements that are held 

together by covalent bonds. Secondary structure is the local, three-dimensional sub-

structure of polypeptide segments. For the most part, it is defined by patterns of hydrogen 

bonds between amino hydrogen and carbonyl oxygen atoms in the protein backbone. The 

most frequent elements of the secondary structure are alpha-helices, beta-sheets and 
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various turns and the easiest ways to determine and visualize them is on the Ramachandran 

plot. Ramachandran plot is a diagram of backbone dihedral angles between C-α and C (ψ) 

and N and C-α (φ) atoms. Plotted structural elements can be compared with the 

theoretically defined outline of their corresponding regions. This can be used to predict the 

secondary structure of a protein segment or to assess the quality of the experiment used to 

obtain it (e.g. homology modeling or X-ray crystallography, figure 2.2). Tertiary structure is 

the overall shape of a single protein molecule. It arises from the spatial relationship of 

secondary structures and is largely determined by non-local, Van der Waals interactions. 

Among these, hydrophobic effects were shown to have a predominant influence.[14] Finally, 

for oligomeric proteins, quaternary structure becomes relevant. This is a three-dimensional 

arrangement of multiple subunits that form the protein complex. Thus, it determines the 

spatial relationship of individual polypeptide molecules. Monomeric proteins don’t have the 

quaternary structure.

         
Figure 2.2: Ramachandran plot for a) low resolution (2.9 Å) crystal structure and b) high 

resolution (1.8 Å) crystal structure.[15]

Various experimental methods can be used to determine different layers of the 

protein structure. For the primary structure, Edman degradation is applicable.[16] This is, 

effectively, a peptide sequencing method in which chemical degradation is used to cleave a 

single residue from the N-terminus of the protein in each step of the procedure. 

Alternatively, protease enzymes can be used to cut the amino acid sequence at specific 

cleavage sites and mass spectroscopy, followed by database fingerprinting, to identify the 

obtained polypeptide segments. However, with the intense development of genome 

sequencing technologies (see chapter 2.3.), the simplest way to determine primary protein 

structure became mapping and in silico translation of the genomic region corresponding to 
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the protein of interest. This approach can be further extended to determine the variants in 

the primary structure by comparison with the reference amino acid sequence. The 

secondary structure of a protein can be easily assessed with circular dichroism. Although 

this method doesn’t assign structural elements to the amino acid sequence unambiguously, 

it is a simple procedure that gives their overall content (e.g. 30 % alpha-helicies, 40 % beta-

sheets, 30 % the rest). Precise determination of the secondary, as well as tertiary and 

quaternary structure, requires X-ray crystallography or NMR spectroscopy. These methods 

provide full three-dimensional protein conformation. NMR is simpler to perform but 

produces lower resolution of the protein structure. X-ray is the most common method and 

can produce resolution on the atomic level. However, it requires crystallized protein 

molecules, which can be very hard to obtain for many (especially transmembrane) proteins. 

Since this is often the best tool for structural research, a lot of effort has been invested into 

protein crystallization, even attempting crystal growth in the micro-gravitational 

environment.[17][18] Another method for determining protein structure, which emerged 

recently and is becoming increasingly popular is cryo-electron microscopy (cryo-EM).[19] Its 

application for structural biology was enabled by improvement of the resolution of cryo-EM 

maps. Main advantages of this method are that it doesn’t require crystallized protein, since 

it can be applied on the highly purified protein solution, and that the structure it provides is 

the closest we can currently get to the conformation which protein has in its active state. 

This conformation always gets slightly distorted due to sample preparation steps and cryo-

EM has least of those. 

2.1.2. Structure and Classification

Amino acid classification that will be considered hereafter is the one based on their 

physicochemical properties and it will now be explored in greater detail. There are several 

ways in which residues* can be grouped together, but all methods focus on characteristics 

which can influence secondary and tertiary protein structure, e.g., charge, size, 

hydrophobicity etc. Overall, classifications are pretty similar. Two structural groups that are 

consistent throughout all of them are acidic and basic amino acids (or negatively and 

* In biochemistry the term residue refers to a specific monomer within the peptide or nucleic acid polymer and 
it will be used in this way.
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positively charged, based on their charge in neutral pH environment). Aspartate and 

glutamate are acidic residues and lysine, arginine and histidine belong to the basic group. 

Furthermore, all classifications introduce polar and nonpolar (or hydrophobic) amino acids. 

Serine, threonine, cysteine, asparagine and glutamine are always considered polar while 

glycine, alanine, valine, leucine, isoleucine and methionine belong to hydrophobic group. 

After this, classification becomes more ambiguous. Some methods introduce additional 

group for residues with aromatic side-chains.[20] These residues are tryptophan, tyrosine and 

phenylalanine. Alternatively, tryptophan and phenylalanine may be added to the 

hydrophobic, and tyrosine to the polar amino acid group.[21] Finally, amino acids that don’t 

strictly belong to their corresponding class (due to their specific characteristics or function) 

might be merged together into separate group of unclassified residues.[22] These are 

histidine, due to its small acidity relative to other acidic amino acids, cysteine, due to 

disulfide bond formation and proline, due to its unconventional structure. Classification 

chosen for subsequent analysis is the one based on 4 primary classes - positive, negative, 

hydrophobic and polar (figure 2.3). This classification introduces the smallest number of 

groups, which increases robustness of applied statistical methods (in a sense that statistical 

power of any potential signal won’t be reduced by a small number of corresponding amino 

acids, see chapter 3.2.)

One more relevant partition of twenty proteinogenic amino acids is the one based 

on their metabolic production capacity. In this sense, 11 amino acids are considered non-

essential since they can be synthesized by the organism, while the remaining 9 are called 

essential and they have to be obtained through nutrition. Histidine is, for the most part, a 

non-essential amino acid, but increased requirements during accelerated growth periods 

make it essential. The other 8 essential amino acids are: isoleucine, leucine, lysine, 

methionine, phenylalanine, threonine, tryptophan, and valine.[23]
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Figure 2.3: Amino acid classification used for the analysis.[21]

2.2. Genetic code

The genetic code is the set of rules by which information encoded within genetic material 

(DNA or mRNA sequence) is translated into proteins. The code defines how nucleotide 

triplets, called codons, specify amino acids that are incorporated during protein synthesis. 

Nucleotides are organic molecules that serve as monomers of nucleic acid chains. They 

consist of D-2-deoxyribose or D-ribose monosaccharide in DNA or RNA respectively, one of 

five nitrogenous bases and a phosphate group. Three out of five bases - adenine (A), 

guanine (G) and cytosine (C) occur in both DNA and RNA. Thymine (T) occurs in DNA and is 

unambiguously replaced by uracil (U) in RNA. Nitrogenous bases are the defining element of 

each nucleotide, which is why we often abbreviated the nucleotide monomers in DNA or 

RNA chain with starting letter of their corresponding base. 

Four different nucleotides constitute both DNA (ACGT) and RNA (ACGU) and 

therefore allow for 64 different codons in each of them. In DNA molecule, nucleotides are 
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paired: A with T and C with G, forming two strands. During transcription, RNA polymerase 

adds complementary RNA nucleotides to a template DNA strand (with U unambiguously 

replacing T). The formed RNA strand is therefore identical to the second, coding DNA strand 

(again, with U replacing T, figure 2.4). It follows that codons defined from coding DNA strand 

are equivalent to the ones defined from RNA molecules, with every T replaced by U. The 

genetic code table, which lists amino acids corresponding to each codon, can therefore be 

represented in two equivalent ways, with RNA or DNA nucleotides. An RNA codon table is 

shown below and will be used for future reference (figure 2.5).

Figure 2.4: RNA transcription.[24]

Figure 2.5: Genetic code table.
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2.2.1. Degeneracy

Degeneracy of codons is the redundancy of the genetic code. There are 20 standard amino 

acids that build human proteome, but at the same time there are 64 codons that define 

them. Consequently, some amino acids must be defined by multiple codons (figure 2.5). A 

position of a codon is said to be an n-fold degenerate site if n (out of four) possible 

nucleotides at this position specify the same amino acid. If any mutation at this position 

results in amino acid substitution, a position of a codon is said to be a non-degenerate site. 

Degeneracy contributes to the robustness of the genetic code - if an error occurs in the 

protein-coding region of the genome or is introduced into mRNA during transcription, it can 

end up having no effect on the primary protein structure after translation.

During translation, tRNA molecules are required to pair mRNA codons with their 

corresponding amino acids. This is achieved through the anticodon-codon interaction. Each 

tRNA molecule contains anticodon - three nucleotides long sequence that is complementary 

to its corresponding mRNA codon and can therefore recognize it. Since there are 64 

different codons, this would require 64 different tRNA molecules to be maintained in cells at 

all times. This is not energetically favorable and therefore, most organisms have fewer than 

45 species of tRNA.[25] Evidently, each tRNA must be able to recognize more than one 

codon, which means that the original Watson-Crick pairing must be modified or additional 

rules introduced to account for these interactions. Alternative pairing, “Wobble 

hypothesis”, was purposed already in 1966 by Francis Crick.[26] It was based on the 

observation that third codon base consistently has the highest degeneracy and suggested 

that some tRNA 5’ anticodon bases recognize multiple mRNA 3’ codon bases. Although 

Crick’s wobble base pair rules subsequently got revised, their initial premise was upheld.[27] 

It is interesting to note how degeneracy of the genetic code, which at first seemed like a 

curios coincidence, turned out to be the consequence of evolutionary fine-tuning required 

to balance the robustness of the code with the optimization of cellular content.

2.2.2. Mutations

Mutations are permanent alterations of the nucleotide sequence of the genome. They can 

be roughly classified in two groups: small-scale and large scale. Small-scale mutations affect 

genome in only one or a few nucleotides while large-scale mutations spread across larger 
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genomic regions. Point mutations are subgroup of small-scale mutations that cause 

substitution of a single nucleotide. These are also called single-nucleotide polymorphisms 

and can be further classified as:

 Silent mutations: they occur outside of the protein-coding regions or within them 

but with no effect on amino acid sequence (due to degeneracy of the genetic code)

 Missense mutations: they occur in protein-coding region and cause amino acid 

substitution

 Nonsense mutations: they occur in protein-coding region and cause premature stop 

codon

Terminology for SNPs is somewhat different and they are classified as:

 Noncoding SNPs: they occur outside protein-coding regions

 Synonymous SNPs: they occur in protein-coding region but don’t cause amino acid 

change

 Nonsynonymous SNPs (nsSNPs): they occur in protein-coding region and change the 

affected amino acid (into a different one or into a stop codon)

Mutations can have various effects on the fitness of the organism. Harmful 

mutations, also called deleterious, decrease the fitness of the organism and are under 

negative selection. Beneficial, or advantageous mutations increase the fitness and are 

consequently under positive selection. Neutral mutations have no harmful nor beneficial 

effect on the organism but are important in the neutral theory of molecular evolution as 

they provide basis for the genetic drift.[28]

Mutation rate is a measure of the rate at which various types of mutations occur 

over time. It’s typically given for a specific class of mutations. Different genetic variants 

within a species are called alleles and so mutations are said to create new alleles. Point 

mutation rate for human genomic DNA has been estimated in the range from 1.1×10-8[29] 

to 2.5×10-8[30] per site per generation. However, there is a significant difference between 

rates for transitions and transversions (figure 2.6). Overall, two average human genomes 

currently differ at ~0.15 % positions of the 3 billion bp long genome sequence[31], but the 

nucleotide discrepancy is somewhat greater, since not all of these sites correspond to point-

mutations (see chapter 2.4.)
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Figure 2.6: Transitions and transversions of nucleotides.[32]

2.2.3. Disease association

Phenotype is the composite of an organism’s characteristics and traits. It’s the result of 

information stored in the organism’s genome combined with the environmental factors. 

Some traits are more influenced by one aspect, some by the other. This is often called 

nature (genome) vs nurture (environment) contribution. Mutations in the genome can 

therefore have a significant influence on the phenotype. If this effect is negative and 

contributes to a disease, the mutation is said to be disease causing or disease associated. 

There are many types of disease causing mutations and they affect the phenotype in 

different ways and with various degrees of disease association.

Mendelian diseases are, from a genetic perspective, the simplest type of a disease. 

They are caused by mutations on a single locus (genomic coordinate) and their inheritance 

follows Mendel’s laws. Therefore, they are relatively easy to detect and confirm. Most of 

them are caused by SNPs for which one allele is disease associated and the other isn’t. The 

best known example of a Mendelian disease is sickle-cell anemia.[33] Detecting them is 

usually done by PCR or SNP array. SNP array is the DNA microarray that uses DNA 

hybridization and fluorescence microscopy to detect polymorphisms in a sample of genetic 

material. 

Large-scale sequencing projects uncovered many SNPs in the human genome. At the 

same time, advancements of chip technology enabled multiplexing of the DNA hybridization 
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procedure through the ever-decreasing size required for of a single hybridization event. This 

has enabled relatively cheap assessment of large number of SNPs and launched a new area 

of research called Genome Wide Association Studies (GWAS). These studies try to uncover 

another level of genomic influence on phenotype. Mendelian diseases and, in general, 

phenotypic traits that are affected by a single locus are rare. Most diseases and traits have a 

complicated network of underlying interactions and many loci of low to moderate effect 

contribute to their signal. GWAS studies try to analyze these and find SNPs that are 

associated with different phenotypic traits. Many new insights into the “nature” part of our 

phenotype were gained through these studies, but some expected associations were either 

not detected, or had insufficient explanatory capacity. A reason for this is that GWAS looks 

at only one type of genomic variation. Although SNPs are the most numerous of these, and 

span the entire genome, overall, more diversity (in terms of the number of different 

nucleotides) is achieved through other structural variants.[31]

To uncover the effect that larger variants have on the phenotype, DNA microarrays 

are not sufficient. Instead, the whole-genome sequencing is required. Current sequencing 

technologies have only recently advanced to the stage where enough individuals can be 

sequenced at appropriate depth to make association studies feasible. This type of whole-

genome analysis would enable associating larger structural variants with phenotypic traits in 

a similar way that GWAS did with SNPs. Additional problem is the read length that current 

sequencing technologies produce (see chepter 2.3.) Whole-genome sequencing requires 

mapping of the obtained reads onto the reference sequence, which reduces the 

bioinformatical capacity to detect larger structural variants. Complete de novo assembly of 

each sequenced genome is the only way to capture our full genomic diversity and achieving 

this would enable the final stage in associating genomic variation to phenotypic traits and 

diseases.[34]

2.3. Sequencing methods

The first widely used DNA sequencing method is accredit to Frederick Sanger.[35] It modified 

the existing primer-extension strategy[36] enabling more rapid DNA sequence determination 

and thus making it applicable to larger genomic regions. In 1977, first fully sequenced 
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genome, 172,282 long bacteriophage φX174 nucleotide sequence was reported.[37] Many 

more genomes were sequenced after this and the use of Sanger sequencing method 

expanded, earning him his second Noble Prize for Chemistry in 1980. This process 

culminated with the Human Genome Project (HGP), world’s largest collaborative life science 

project. It was launched in 1990 with the $3 billion grant from the US government and 

ambitious objective of determining complete base pair sequence that makes up human DNA 

as well as identifying and mapping all of the genes from both physical and functional 

standpoint. This process was marked with several controversies, most notably, separation of 

a part of the HGP consortium, led by Craig Venter, due to disagreement over the method 

that was to be used in the project. The result was a simultaneous, privately funded project, 

with the same objective, and led by Venter’s company, Celera. They utilized modification of 

the original Sanger sequencing method called Shotgun sequencing.[38] Additional tension 

was raised between public and private sector after disagreement about intellectual property 

protection and legal status of genes and genomic regions. However, close to completion of 

the initial sequencing, the two groups united and in 2001 together published the first draft 

of the human genome.[39] Several improved versions followed with each of them containing 

fewer gaps in the sequence. Reference human genome is still incomplete. However, there 

are only ~100 gaps corresponding to <0.01 % of the overall sequence.[40] HGP is still active, 

working towards its initial goal, and expending it. In June 2016, HGP-write, ambitious 10 

year project extension was announced with the objective of synthesizing the three billion 

nucleotide long human genome.[41]

Determining genetic sequence triggered unprecedented scientific and medical 

advancement, which in turn led to research and improvement of the sequencing methods. 

Although powerful, Sanger sequencing had several shortcomings. Most notably, high per 

base sequencing cost and time-consuming preparation procedure. In the following years, 

several new methods were developed. Due to their matching objectives, they are 

collectively dubbed Next-generation sequencing (NGS) methods[42] (table 1). Few most 

important methods will now be described in detail. 
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Table 1: Some sequencing methods. 

Method Read length / bp Accuracy (single read 
not consensus)

Time per run Cost per 1 
million bases / 

US$
Single-molecule real-time 

sequencing (Pacific 
Biosciences)

10,000 to 15,000 87% single-read 
accuracy 

30 minutes to 4 
hours

$0.13–$0.60

Ion semiconductor (Ion 
Torrent sequencing)

up to 400 98% 2 hours $1

Sequencing by synthesis 
(Illumina)

varies between instruments, 
usually 50 to 300

99.9% (Phred30) 1 to 11 days $0.05 to $0.15

Chain termination (Sanger 
sequencing)

400 to 900 99.9% 20 minutes to 3 
hours

$2400

Nanopore sequencing up to 100,000 currently low flexible, as low as 30 
minutes

very low

2.3.1. Next Generation sequencing

Pyrosequencing is a DNA sequencing technique that relies on detection of pyrophosphate 

(P2O7
4-, PPi) released during nucleotide incorporation.[43] It is a type of “sequencing by 

synthesis” technique, which means that the nucleotide content is determined while the in 

vitro DNA replication process is performed. In the case of pyrosequencing, this is achieved 

by monitoring pyrophosphate release that accompanies nucleotide incorporation in the 

growing DNA chain.

The process begins by template preparation for which emulsion PCR (emPCR) 

amplification is used (figure 2.7a). A library of target DNA regions (fragmented or mate-

paired) is prepared and adaptors containing universal sequences are ligated to their ends. 

These universal primers enable the amplification of all genetic material with common PCR 

primers. After ligation, DNA is separated into single strands and captured onto beads under 

conditions that favor one DNA molecule per bead. Once DNA is captured, emPCR 

amplification is performed, resulting in multiple copies of DNA fragment from targeted 

genomic region on each bead. These are deposited into individual PicoTiterPlate wells[44] in 

which the sequencing is performed. Large number (1-2 million) of wells available for this 

process enables multiplexing of the method. Pyrosequencing is in its essence a 

bioluminescence method. The release of pyrophosphate during nucleotide incorporation is 

converted into visible light using series of enzymatic reactions (figure 2.7b). Different 

nucleotides, in form of dNTPs are added consecutively to the reaction. If the added 

nucleotide is complementary to the next un-paired nucleotide in the fragment on the bead, 

DNA polymerase will incorporate it and thus extend the strand. Simultaneously, 



Kristijan Vuković § 2. Literature review                                                                                      

16

pyrophosphate is released. To convert this into measurable signal, separate beads that have 

ATP sulfurylase and luciferase attached to them are loaded into wells surrounding the 

template beads. Additionally, wells are incubated with adenosine-5-phosphosulfate (APS) 

and luciferin. This produces a series of reactions that end with the light signal:

P2O7
4- + APS  ATP + SO4

2-

ATP + luciferin  luciferyl adenylate + P2O7
4-

luciferyl adenylate + O2  oxyluciferin + AMP + hν

Therefore, only wells that contain the bead, which has the nucleotide complementary to the 

one that is being incorporated, will produce this bioluminescence signal. Light is measured 

with the charge-coupled device camera and its intensity is proportional to the amount of 

pyrophosphate available to initiate reactions. Therefore, if multiple nucleotides are 

incorporated (due to consecutive nucleotides in the DNA fragment), more pyrophosphate 

will be released and the higher intensity measured (figure 2.7c). This effect imposes 

accuracy limitations to the method since after certain number of consecutive nucleotides, 

light intensity differences become indistinguishable, and the precise number of nucleotides 

in the DNA fragment can’t be determined.

Figure 2.7: Pyrosequencing procedure, a) emPCR, b) converting pyrophosphate into the light 

signal by a series of enzymatic reaction and c) flowgram.[42]

a)

b)
c)
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Another “sequencing by synthesis” platform was developed by the Illumina 

Company. Their sequencing method is based on modified deoxyribonucleotides that can act 

as reversible terminators during DNA synthesis.[45] This technology is currently dominating 

the sequencing market. Illumina uses solid-phase amplification to produce copies of 

targeted DNA fragments. Fragments are again ligated with the adaptor sequence and, in this 

method, primed to the complementary sequences attached to a glass slide (figure 2.8a). 

After that, bridge amplification is performed where each fragment is connected to the 

adjacent immobilized primer and copied by the DNA polymerase. This forms clusters of 

fragments, which increases the base calling sensitivity. Sequencing proceeds through 

sequential incorporation of modified nucleotides (figure 2.8b). First modifications they 

contain are terminating groups that prevent polymerase activity. Second modifications are 

fluorescent dyes. Each nucleotide is labeled with a different dye and can therefore be 

distinguished by the fluorescent signal. In each sequencing step, all modified nucleotides are 

added into the reaction mixture. Mutated DNA polymerase is used for the incorporation of 

modified nucleotides and in every step only one, complementary to the next un-paired 

nucleotide on the DNA fragment, is added to each strand belayed on the glass slide (figure 

2.8c). Synthesis can’t proceed until the terminating group is removed, but before this, 

unused nucleotides are washed away and fluorescent signals measured. This way, each step 

corresponds to the extension of targeted DNA fragments by one position and all four 

nucleotides are examined simultaneously. Output of this method is a nucleotide sequence 

of each DNA fragment cluster scattered on the glass slide (figure 2.8d).

Single-Molecule Real Time (SMRT) sequencing utilizes somewhat different 

sequencing approach. As the name suggests, it attempts to determine genetic sequence in 

real time and from a single DNA polymerase molecule.[46] To this end, sequencing is done on 

a chip that contains many small wells (figure 2.9a). At the bottom of each well, a single 

stranded DNA fragment is immobilized with an active DNA polymerase molecule 

synthesizing its complementary strand (figure 2.9b). Nucleotides that are being added are 

modified, each with a different fluorescent label, which produces light signal at the time of 

their incorporation. Genetic sequence is determined from the continuous measurement of 

fluorescence spectra. Unlike other methods, SMRT doesn’t use any signal amplification 

procedure. It therefore requires very sensitive measurement device. To this end, zero-mode 

waveguide (ZMW) detectors are utilized.[47] This is the main technological advancement that 
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enabled the SMRT procedure. The advantage it offers is that amplification step can be 

omitted. Sequencing is done in real time and whole process is a lot faster as it doesn’t 

require any reagent exchange or termination stops that are part of other NGS procedures. 

Problem with this method is that single DNA molecule detection causes base calling 

accuracy problems since there are no averaging effects that enhance signal-to-noise ratio. 

Combined with increased polymerase error rate, due to fluorescent modifications on the 

nucleotides, this causes a significantly lower read quality.[48] However, some modifications 

have already been purposed that improve the base calling accuracy.[46]

Figure 2.8: Illumina sequencing, a) bridge amplification on a glass slide, b) modified 

nucleotides, c) sequencing procedure, d) output of this method.[42]

a)

b)
c)

d)



Kristijan Vuković § 2. Literature review
                                                                                                                                     

19

Figure 2.9: SMRT sequencing, a) chip layout, b) sequencing procedure.[42] 

2.3.2. 3rd generation sequencing and nanopore

There are several new methods in development that try to simplify the sequencing process 

and avoid iterative procedure that most NGS technologies use. NGS has a lot of 

improvements over Sanger sequencing, especially in terms of time and cost reduction. 

However, some aspects haven’t been sufficiently advanced. Most notably, read lengths, 

which remain the bottleneck for many sequencing applications. Reads produced by these 

methods are relatively short and complicated bioinformatical algorithms required to extract 

information from them (see chapter 3.3.) This reduces variant discovery capabilities of NGS 

as larger variants often pass unnoticed. New methods, informally dubbed the third 

generation, try to address this problem as well as further reduce the sequencing cost and 

simplify the procedure.[48] Some of these methods in development will be briefly discussed. 

Transmission electron microscopy approach tries to detect atoms which uniquely 

identify individual nucleotides.[49] This method was envisioned by Richard Feynman even 

before Sanger sequencing was developed.[50] Electron microscopy can obtain resolution of 

up to 100 pm which is sufficient to observe small biomolecules and DNA can be seen easily 

(figure 2.10). However, this resolution isn’t sufficient to decipher individual nucleotides. 

Therefore, the DNA sample has to be selectively labeled with heavy atoms which is still a 

significant technological challenge.[51] Another sequencing method in development 

a) b)
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attempts to utilize tunneling currents to differentiate between nucleotides.[52] This method 

would operate on single DNA molecules confined to the conductive surface and read 

genetic code using scanning tunneling microscopy. This type of sequencing would be orders 

of magnitude faster than any other purposed or developed method, but there are 

significant technological barriers that still need to be overcome. Most notably, no methods 

have been described that would enable stretching and confining any longer DNA fragment 

to the conducive surface which is required for this sequencing process.

Figure 2.10: Negative Stain TEM of DNA-RecA Complex.[53]

Nanopore sequencing, developed by Oxford Nanopore Technologies, is currently the 

only commercially available third generation method.[54] Theoretical premise of the method 

is that the steady stream of ionic current (electric current due to the conduction of ions) 

through the pore of nanoscale dimensions gets modified when single stranded nucleic acid 

passes through it. If this change is characteristic for each nucleotide, then the genetic 

sequence can be deciphered in this way (figure 2.11a). Method is in development for almost 

30 years and was commercialized recently with the release of the MinIon device[55] (figure 

2.11b). The essence of this technology is an engineered protein nanopore, similar to the 

transmembrane proteins found in living cells. Nanopore is incorporated into an electrically 

resistant polymer membrane. Across the membrane voltage is applied causing the ionic 

current across the pore, which gets disrupted if an analyte passes through it. This enables 

base calling of single stranded nucleic acid molecules. DNA strands are separated by the 

helicase enzyme that was engineered to specifically recognize the nanopore protein. The 

enzyme also feeds the chain through the pore. As the chain moves, characteristic 

disruptions to the ionic current are recorded and translated into the nucleotide sequence.
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Nanopore technology has great potential, primarily due to the simple sequencing 

method at its core which doesn’t require any time-consuming preparation steps and can 

produce very long reads.[56] An additional advantage is a wide variety of available 

application environments, some of which are inaccessible to traditional sequencing 

methods.[57] Small device size also offers a distinct scaling opportunity which is already 

being exploited with Promethion, a bench-top sequencing system under development 

(figure 2.11c). However, a lot of challenges also remain. The most significant is the error 

rate, which is still very high. This is due to low signal-to-noise ratio of the ionic current 

changes for different nucleotides as well as the size of the system. The nanopore protein is 

much larger than individual nucleotides that pass through it and many nucleotides affect 

the ionic current at all times which is why complex algorithms are required to discern 

individual effects. A lot of effort is invested into tackling this problem, both by continuous 

modification of protein nanopores, and base calling algorithm optimizations, and a steady 

improvement of the sequencing accuracy is observed.[58] 

Figure 2.11: Nanopore, a) sequencing scheme, b) MinIon, c) PromethIon.[54]

2.4. 1000 Genomes Project

The 1000 Genomes Project was an international research effort aimed at establishing 

detailed catalogue of human genetic variation. Initial plan, made in 2008 when the project 

was launched, was to sequence the genome of at least one thousand anonymous 

participants that span several ethnic groups. Final data set, published in 2015 when the 

project was completed, contained data for 2504 individuals from 26 populations (figure 

2.12).

a) b) c)
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Figure 2.12: Populations in the 1000 Genomes Project.[59]

Motivation for the 1000 Genomes Project came from various studies that expended 

the results of initial human genome sequencing, revealing prominent genetic diversity 

between and within populations.[60] Furthermore, various structural variants were shown to 

exert influence on phenotype and contribute to genetic disease background. By far the most 

prominent of these, by measure of occurrence frequency, are SNPs, which were the topic of 

numerous GWAS that revealed loci involved in a wide range of traits - from human height[61] 

to disease susceptibility[62]. Another level of genetic diversity is caused by copy-number 

variants (CNVs), which are still used as genetic markers for forensic identification.[63] All of 

this indicated necessity for a rigorous and all-encompassing human genetic variation 

analysis.

The 1000 Genomes Project was divided into 4 phases. Results from the initial, pilot 

phase were published in 2010.[64] This consisted of low coverage whole-genome sequencing 

from 180 samples, high coverage whole-genome sequencing for 2 mother-fathter-child trios 

and high coverage sequencing of 1000 gene regions in 900 samples. Main purpose of this 

phase was to establish the sequencing depth required to obtain data of sufficient quality as 

well as assessing strategies for data sharing across samples, and was followed by 3 main 

project phases. Each of these consisted of low coverage genome and exome sequencing of 

all samples as well as high coverage genome sequencing for small number of individuals 

used for validation purposes. The number of individuals was gradually increased in each 
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phase. Final results from main phase 3 were published in October 2015[31][65] and were 

comprised of 2504 individual genomes, 24 of which included high coverage genome 

sequence.

Final results revealed over 88 million variants, 84.7 million of which are SNPs. A 

typical genome differs from the reference human genome at 4.1 to 5.0 million sites. Most of 

these sites (>99 %) correspond to SNPs. However, other structural variants affect more 

bases in the genome sequence overall. The total number of observed non-reference sites 

differs greatly among populations and is the highest in samples from African ancestry (figure 

2.13). This is consistent with out-of-Africa model of human origins that predicts longest 

variant accumulation time for African populations. The majority of variants are rare. ~64 

million have frequency <0.5 %, ~12 million have frequency between 0.5 % and 5 % and ~8 

million >5 %. However, most variants in a single genome correspond to high frequency ones. 

Only 1 - 4 % of those variants have frequency <0.5 %. With respect to the protein-coding 

regions, a typical genome was found to contain 149 - 182 sites that introduce stop codon 

and thus cause protein truncating variants, while 10,000 to 12,000 sites correspond to 

peptide-sequence-altering variants. African Genomes were consistently at the high end of 

these ranges as well. This pattern wasn’t observed in respect to abundance of disease 

causing variants. There were 24 - 30 variants per genome implicated in rare diseases, with 

European ancestry individuals at high-end of these counts. This is most likely due to the 

ethnic bias of current genetic studies.[31]

Figure 2.13: Distributions of the number of variant sites in individual genomes for 

populations sequenced in the 1000 Genomes Project.[31]
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As already mentioned, structural variants other than SNPs, although less numerous, 

affect more positions in the genetic sequence. 1000 Genomes Project also reported an 

integrated set of eight structural variant (SV) classes. Emphasis was put on major classes of 

SVs, defined as those that affect ≥ 50 bp. Overall, 68,818 SVs with average size of 5.57 kbp 

were identified.[65] SNPs will be the only variants considered in this thesis since only their 

occurrences in the protein-coding regions of the genome can be directly translated into the 

amino-acid substitutions.*

* In this case the term “variant” is used in broader sense since, by previous definition of SVs, SNPs are not in 
this category.
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§ 3. Theoretical background

3.1. Probability distributions

Probability distribution is a mathematical descriptions of a random phenomenon in terms of 

the probabilities of events. Events are the set of all possible outcomes of the phenomenon 

being observed. This set is called the sample space. For example, the sample space of a coin 

flip is: {heads, tails}, since this represents all possible outcomes of a phenomenon being 

observed.

There are two classes of probability distributions: discrete and continuous. Discrete 

probability distribution describes a probability of each outcome. Generally, it's used when 

there is a finite number of possible outcomes. The coin flip is an example of a discrete 

phenomenon. List of the probabilities of all outcomes for a discrete probability distribution 

is given by the probability mass function (PMF). Another simple example is the roll of a fair, 

six-sided dice. In that case there are 6 possible outcomes and the PMF is a function that 

assigns the probability of 1/6 to each dice value (1 to 6). Continuous probability distribution 

can be described by the probability density function (PDF). The idea is analogous to the 

discrete case, but the properties of a PDF are more complex.

A PDF of a continuous random variable is a function that describes the relative 

likelihood for this random variable to take on a given value. The probability of it falling 

within a particular range of values is given by the integral of this variable's density over that 

range. The probability density function must be nonnegative everywhere, and its integral 

over the entire space equal to one. The probability of any individual outcome is 0.

A probability distribution whose sample space is the set of real numbers is called 

univariate, while a distribution whose sample space is a vector space is called multivariate. 

Only univariate distributions will be considered hereafter.

Another closely related concept is the cumulative distribution function (CDF). CDF of 

a real-valued random variable X, evaluated at x, is the probability that X will take a value less 

than or equal to x. Precise mathematical definitions are not necessary to understand the use 

of these functions and therefore won’t be discussed, but it should be noted that in 

probability theory, defining either CDF of PMF are valid ways of specifying a discrete 
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probability distribution, while a continuous one can be specified by supplying either its PDF 

or CDF (there are also other ways for defining both of these).

The idea of probability distributions underlies the mathematical disciplines of 

probability theory and statistics. As such, it is used in any scientific field where the 

probability and statistics themselves are relevant. The basic understanding of concepts 

introduced in these disciplines and their application are therefore essential in any scientific 

research, since they are intrinsic to all systems, from elementary particles to biological 

populations. These concepts will now be explored for some frequently used probability 

distributions. 

3.1.1. Continuous uniform distribution

The simplest continuous probability distribution is the uniform, also called a rectangular 

distribution. This is a family of symmetric probability distributions such that for each 

member of the family, all intervals of the same length are equally probable (figure 3.1). 

Different members of the family are defined by the arbitrary values of parameters a and b in 

the PDF of the distribution:

𝑓(𝑥) =  { 1
𝑏 ‒ 𝑎         for a ≤  x ≤  b       

 0            otherwise            �
If a = 0 and b = 1, the resulting distribution is called a standard uniform and denoted U(0,1).  

In statistics, when a p-value is used as a test statistic for a simple null hypothesis, and 

the distribution of the test statistic is continuous, then the p-value is distributed according 

to U(0,1) if the null hypothesis is true.

Figure 3.1: Continuous uniform distribution.
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3.1.2. Normal distribution

The normal distribution is a very common continuous probability distribution that is often 

used in life sciences to represent random variables whose distributions are unknown (figure 

3.2). The PDF of this distribution is: 

𝑓(𝑥|𝜇,𝜎2) =
1

2𝜎2𝜋
𝑒

‒
(𝑥 ‒ 𝜇)2

2𝜎2

where  is mean of the distribution and  its standard deviation. These two parameters 

define the family of normal distributions and the special case in which  = 0 and  = 1 is 

called the standard normal.

Figure 3.2: Normal distribution.

The most important use for this family of distributions comes from the central limit 

theorem. This mathematical theorem states that averages of random variables 

independently drawn from some unknown distribution converge in their distribution to 

normal, that is, become normally distributed when the number of random variables is 

sufficiently large. What this means is that even if we don't know the precise distribution of 

our variable, given the large enough number of observations, averages of these 

observations will be normally distributed (if we repeat the sampling many times, averages 

of these samples will be normally distributed with some mean and standard deviation). This 

theorem is valid under some mild mathematical restrictions on the underlying distribution. 

If the sampling is done from distribution with mean  and variance , the derived normal 𝜎2

https://en.wikipedia.org/wiki/Random_variables
https://en.wikipedia.org/wiki/Convergence_of_random_variables#Convergence_in_distribution
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will have the same mean () and variance , where n is the number of observations in each 
𝜎2

𝑛

average.

For example, sampling from previously discussed continuous uniform distribution 

produces the distribution of averages that increasingly resembles normal with larger 

number of observations (figure 3.3a). This property is even more obvious if sampling is done 

from some unknown distribution, which is evidently far from normal (figure 3.3b).

Figure 3.3: Plots of average values for 1000 samples with increasing number of observations 

in each sample (1, 2, 3, 5, 10, 20, 50 and 1000) from a) continuous uniform distribution and 

b) some random distribution.

a)

b)
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Another use of the normal distribution is for modeling measurement errors. If all 

variables of the measured property have been taken into account, than the errors observed 

in a physical experiment should be distributed according to the normal distribution. Any 

divergence from this behavior can be used as an indication that the model of the 

experiment needs to be changed.

3.1.3. Poisson distribution

Contrary to the previously discussed examples, Poisson distribution is a type of the discrete 

probability distribution. It defines the probability for a certain number of events occurring in 

a fixed interval of time, given that these events occur with a known average rate and 

independently of one another. Some examples of this behaviour are the number of decay 

events from a radioactive source occurring each second (or minute, hour, etc.) or the 

number of mutations introduced to a fixed length of DNA strand. The only parameter of the 

distribution, , is called the event rate and tells the average number of events in the given 

interval (figure 3.4). Poisson PMF is:

𝑃(𝑘 𝑒𝑣𝑒𝑛𝑡𝑠) =
𝜆𝑘𝑒 ‒ 𝜆

𝑘!

Figure 3.4: Poisson distribution for different values of parameter .

This distribution is used in many biological problems because it's a robust predictor 

of occurrence frequencies for various events. In biochemistry, the number of cells (or cell 

colonies) that are successfully transformed with the foreign plasmid in a given time interval 

will follow the Poisson distribution. If we know the event rate, we can predict the number of 

https://en.wikipedia.org/wiki/Statistical_independence
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cells that are transformed and use this information to decide how many we will submit to 

further testing.

3.1.4. χ2 distribution

The χ2 distribution with k degrees of freedom is the distribution of a sum of squares from k 

independent standard normal random variables. It is one of the most widely used 

probability distributions in inferential statistics.[66] It's also the most extensively used 

distribution in this thesis.

In mathematical notation, if Z1,...,Zk are independent, standard normal random 

variables, than the sum of their squares:

 𝑄 = ∑𝑘
𝑖 = 1𝑍2

𝑖

is distributed according to the χ2 distribution with k degrees of freedom (figure 3.5). This is 

denoted as  or . Number of degrees of freedom, k, is the only parameter of 𝑄 ~ 𝜒2(𝑘) 𝑄 ~ 𝜒2
𝑘

the distribution. Its PDF is:

𝑓(𝑥) =
1

2
𝑘

2Γ(
𝑘
2)

𝑥
𝑘
2 ‒ 1

𝑒
‒

𝑥
2

From this equation it can be seen that the χ2 is a special case of the more general  

distribution.

Figure 3.5: χ2 distribution for different values of parameter k.

This distribution is used in a wide variety of situations. The most common application 

is for two types of hypothesis tests: independence in contingency tables and goodness of fit 
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of observed data to a hypothetical distribution. It turns out that both of these problems 

follow the above described χ2 distribution. Mathematical proof for this won't be shown, but 

the relationship between tests and specific distributions will be explored later (see chapter 

3.2.) For contingency table independence, parameter , where N is the dimension 𝑘 = 𝑁 ‒ 1

of the table. It is the same for goodness of fit test, only there N represents the number of 

classes into which data is divided. Since they follow the χ2 distribution, tests themselves 

have been named χ2 contingency and χ2 goodness-of-fit test.

In biological terms, any problem that requires one of these tests will use χ2 

distribution to assess the significance of the observed effect. Common example for the 

contingency test is measuring differences of effect between males and females or between 

multiple specimens. Goodness-of-fit test can be used to assess whether some observations 

(e.g. medical) significantly deviate from their predicted values and it will be extensively used 

for this purpose. 

Apart from the hypothesis testing, χ2 is used in many other problems of statistical 

inference. Due to its role in Student's t-distribution, it is involved in estimating the mean of 

a normally distributed population or the slope of a linear regression. Additionally, it's 

important for any variance analysis problem in which F-distribution is used, since F-

distribution itself is just the ratio of two independent χ2 random variables. 

3.2. Statistical hypothesis testing

Hypothesis testing is the formal procedure in statistics used to accept or reject statistical 

hypotheses. The procedure consists of proposing the statistical relationship between some 

datasets and comparing it to an idealized null hypothesis that no relationship exists. Most 

often, two datasets are compared. They can either both be obtained by some sampling 

method, or one can be obtained that way and the other constructed from an idealized 

model based on the null hypothesis. The comparison is deemed statistically significant if the 

observed relationship between datasets would be unlikely given that the null hypothesis is 

true. The term "unlikely" is precisely defined by the threshold probability, which is chosen 
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independently in each situation and depends on the relationship that is being assessed and 

the precision required.

3.2.1. Null hypothesis vs. alternative hypothesis

Stating the null and the alternative hypothesis, as described above, is the crucial step of the 

testing procedure. These two hypotheses must be composite and mutually exclusive, 

meaning that they have to cover the whole space of possible testing outcomes and that 

they can't both be true at the same time. Failure to do this will blur the interpretation of the 

results because the question that needs to be answered won't be the direct output of the 

statistical test. This is called "garbage in, garbage out" (GIGO) principle.

The null hypothesis (usually denoted H0) will always assert that any discrepancy in 

the data results purely from chance. If we test two samples of some physical quantity, null 

hypothesis will claim that their average values are the same. If we test the fairness of a coin, 

the null hypothesis will claim that any discrepancy between the number of heads and tails 

results from randomness of a fair coin. In the criminal trial, the null hypothesis will be that 

the defendant is not guilty, that is, that any apparent evidence against him/her occurs 

accidentally. 

Alternative hypothesis (usually denoted H1) asserts that the observed data is 

influenced by some non-random cause, that is, that there are additional variables that 

influence the data which have not been taken into account by the null hypothesis. In the 

previous examples, the alternative hypotheses would claim that in two sets of observations, 

there is additional effect on the observed physical quantity, which differs between datasets. 

Therefore their averages would, under this hypothesis, differ as well. The alternative 

hypothesis for coin flips would claim that the coin is unfair, that is, that discrepancy 

between the number of heads and tails is caused by coin's preference for one of two sides. 

In the criminal trial, the alternative hypothesis is always that defendant is guilty and that the 

evidence against him/her are truthful.

The null hypothesis is always assumed to be correct prior to the statistical test and 

every test only tries to reject it. Observations are first analyzed under the scope of the null 

hypothesis. Then, the discrepancy in the data is quantified in terms of the p-value, which 

gives the probability that the observations indeed result from this null hypothesis. Finally, if 
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the p-value is lower than some defined threshold, the null hypothesis is rejected and the 

alternative hypothesis accepted. If p-value is not lower than the threshold, the null 

hypothesis is not rejected.*

Last thing to mention here is that hypotheses can be stated to allow for a one-sided 

(one-tailed) or a two-sided (two-tailed) test. In one-sided case, the alternative hypothesis 

might claim that some value is strictly smaller than expected (or it might claim that it’s 

strictly larger), while in two-sided case, it will simply claim that some discrepancy exists and 

won't specify the direction. From previous examples, one-sided tests would be that the 

average value of a physical quantity from one sample is larger than from the other (in that 

case the null hypothesis would be that the difference between the two averages is ≤ 0) and 

that the coin prefers heads (in which case the null hypothesis would be that the coin is fair 

or that it prefers tails). Which type of test is used depends on the data that we have and the 

question we want to answer.

3.2.2. Test statistics and p-value

The decision whether to reject the null hypothesis of any statistical test is based on the p-

value. The p-value states the probability that the observed data stems from the null 

hypothesis. Small p-value therefore indicates the alternative hypothesis to be true and large 

p-value indicates the null. The largest part of the statistical testing procedure is obtaining 

this quantity. There are several ways to do this. The most frequently used method, which 

will be explained further, is calculating the p-value from some test statistic. Some of the 

alternative methods are calculating it from repetitive simulations, estimating it from results 

of the analysis (the most uncertain method), or obtaining it through visualization of the 

appropriate data plots.[67]

Test statistic is a numerical summary that reduces the data to a single value and 

satisfies the following condition: sampling distribution of the test statistic under the null 

hypothesis must be calculable, either exactly or approximately. This condition ensures that 

the p-value can be directly calculated from the statistic. In practice, this means that the 

* It's important to note the terminology here. Due to the setup of the testing procedure in which the null 
hypothesis is assumed to be correct, failure to reject the null hypothesis (p-value above the threshold) 
shouldn't be called "accepting the null hypothesis", since this is already established at that point and such 
claim would imply that it was established only now.



Kristijan Vuković § 3. Theoretical background                                                                                      

34

method we choose to reduce our data and calculate the statistic must give a result that 

follows a valid probability distribution. Satisfying this condition allows us to directly 

correlate the value of the statistic with a p-value. Choosing the appropriate test statistic is 

often the hardest part of hypothesis testing since we have to a priori know the distribution 

it will follow. Choosing an inappropriate test statistic, which is not in accordance with 

proposed hypotheses will make the test result (or more precisely, our interpretation of it) 

invalid, as suggested by the GIGO principle. There are however many tests available, some 

of which are applicable in wide variety of situations. Examples of these are nonparametric 

tests like Kolmogorov-Smirnov, or Wilcoxon rank sum test, and it's often a good idea to use 

these when in doubt of the distribution that the data follows.   

Proceeding with our previous examples, for observations of a physical quantity we 

can test whether the two observed samples come from same distribution by applying 

Student's t-test. That gives us test statistic which follows t-distribution and from it we can 

directly determine p-value. If we are not sure whether our samples are normally distributed, 

which is a requirement for the t-test, we can instead use nonparametric Wilcoxon rank sum 

test to see whether two data samples have the same mean, regardless of their underlying 

distributions. This produces the test statistic W, which follows a complicated probability 

distribution, but still directly correlates to a p-value. The coin flip example is simpler, our 

test statistic for that case can simply be the number of heads (or tails) in a given number of 

coin flips. That value is known to follow a binomial distribution and therefore directly relates 

to the p-value. The court trial example is more complicated since it can't be resolved by any 

test statistic. Therefore, other methods for estimating the p-value (and subsequently, the 

defendant’s guilt) are required. 

3.2.3. Decision Errors

The described hypothesis testing procedure ends with the p-value from which the decision 

whether to reject the null hypothesis is made, based on the chosen threshold probability. In 

this step the probabilistic result (p-value) is converted into a binary (either reject or don't 

reject) and this contains an intrinsic error risk.

In every test, there are two possible errors we can make: we can reject the null 

hypothesis when in reality it is correct or we can fail to reject it when in reality it is wrong. 
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These are called type I and type II error, respectively (figure 3.6). Both of these can always 

be made, regardless of the p-value that was obtained in the test. However, their frequency 

can be controlled with the threshold probability. Since we decide which threshold to use, 

we can a priori know their relative probabilities.

Figure 3.6: Hypothesis testing errors.

In type I error we claim that there is additional effect in the observed sample, which 

hasn't been taken into account by the null hypothesis. However, no such effect exists. That's 

why this error is also called a false positive. The probability of committing a Type I error is 

called the significance level and is often denoted by . For a specific statistical test in which 

the null hypothesis is rejected, this probability is simply equal to the observed p-value.

In type II error we claim that the observed sample is described by the null hypothesis 

when in reality, there are additional factors. That's why this error is also called a false 

negative. The probability of committing a type II error is often denoted by  and the 

probability of not committing it (1 - ) is called the statistical power of the test. The power 

can also be defined as the probability of correctly rejecting the null hypothesis (the two 

definitions are equivalent). Estimating the power for a specific test in which the null 

hypothesis was rejected is complicated and it may depend on a number of factors some of 

which are the probability threshold, magnitude of the effect of interest in the population, 

used sample size etc.

It's important to note that the rates of type I and type II errors are inversely 

proportional and controlled by the applied threshold. If we use high threshold probability, 

we will relatively often reject the null hypothesis, which makes the type II error unlikely, but 

increases the probability of the type I error. Adversely, low threshold probability will ensure 

a small number of false positives, but will also increase the probability for a false negative. 
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Which situation is better depends on the problem that we are testing. If we are analyzing a 

set of genes as an initial filtering step for our research, we'll use high threshold probability 

to ensure we collect all potential candidates and won't mind if some of them don't end up 

being significant. For the court trial example, we'll use a very conservative threshold that 

will minimize the number of false positives (wrongful convictions), although we have to 

keep in mind that this will also increase the probability for a false negative (acquittal of the 

guilty).

 3.3. Bioinformatics

Bioinformatics is a broad, interdisciplinary field that deals with in silico analysis of biological 

data. The field is being intensely developed in conjunction with improvements to the 

sequencing technology and it’s primarily concerned with data produced by next generation 

methods (see chapter 2.3.1.) Despite this rapid development, vast abundance of sequencing 

data and the rate at which it is generated makes the bioinformatical analysis the bottleneck 

for many research applications.

The first step of analyzing both DNA and RNA sequencing data is read assembly. 

Sequencing methods generate nucleotide reads of various lengths and these need to be 

aligned either by de novo assembly or by mapping onto the reference genome.[68] Both 

methods involve some challenges. The mapping procedure is simpler and faster to perform, 

but it requires a reference genome (or transcriptome) and has problems detecting larger 

structural variants that significantly differ from that reference. De novo assembly is harder 

to accomplish but gives a more precise sequence as a result. For human genome and others 

of the similar length, mapping is the only feasible method since the reads from currently 

used sequencing platforms are not sufficiently long to enable de novo assembly.[34] New 

sequencing technologies are trying to address this problem (see chapter 2.3.2.) Tools used 

for sequence alignments are primarily developed by computer scientists and they are 

focused on algorithm optimization.[69]

Another major bioinformatical challenge is genome annotation, which aims to define 

regions of the genome that correspond to various biologically relevant features, e.g. genes, 

promotors, regulatory motifs etc. This process has to be automated to be employable on 



Kristijan Vuković § 3. Theoretical background
                                                                                                                                     

37

larger genomes. It’s usually done by looking for patterns in the genomic sequence that 

pinpoint to the region of interest.

Informatics has for a long time been used to complement research in evolutionary 

biology. Computational methods enabled tracing the evolution of a large number of 

organisms by measuring changes in their DNA, rather than through physiological 

observations. Recently, complex computational models of populations have been build and 

used to predict the evolutionary outcome of systems.[70] 

Finally, various specialized applications of the sequencing data pose specific and 

often unique challenges that require new bioinformatical methods and algorithms to be 

developed constantly. Improvements in the research methodology enabled the application 

of the DNA sequencing to a wide range of biochemically interesting topics: ChIP-seq is used 

to find DNA regions that interact with certain proteins or histone modifications,[71] DNase-

seq is used for genome-wide detections of regions sensitive to DNase I cleavage (which 

often correspond to segments enriched with regulatory elements)[72] and chromosome 

conformation capture (3C), as well as numerous modifications of this method are used to 

analyze the organization and interactions of chromosomes in a cell.[73] All of this suggest 

that application of informatics in biology will continue to expand and that bioinformatical 

analysis will remain a crucial component in further biological research. 

3.4. Data

With the advancement of NGS technologies, per base sequencing cost has decreased 

dramatically, even outpacing the Moore’s law (figure 3.7a). Foreseeably, the amount of 

genetic data available for researchers to explore has also exponentially increased (figure 

3.7b). Numerous online repositories of genetic data are currently active, each focusing on 

different sequencing sources and methods. These won’t be explored in detail and only the 

important aspects of few repositories relevant to the analysis will be discussed. The exact 

online location of individual datasets and the ways to access them are provided in the 

Materials and methods section.
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Figure 3.7: sequencing statistics, a) DNA sequencing cost b) number of nucleotide bases 

stored in GenBank and WGS.[74][75]

Three datasets were used in various stages of the analysis. These will be referred to 

as Uniprot1, Uniprot2 and 1000G and are described in detail in Materials and methods 

section. Every result will be accompanied with the reference to one of these datasets.

All three datasets are stored with the electronic version of this thesis on the 

accompanying DVD.

  

a)
b)
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§ 4. Results and discussion

4.1. Map of amino acid substitutions

A map of amino acid substitutions was constructed by combining counts from individual 

datasets. Every entry in a dataset represents one observed amino acid substitution and is 

included in its corresponding position on the map. Separate maps were constructed for 

Uniprot1 and Uniprot2 datasets (figure 4.1.; underlying tables in extended data 1). 

Substitutions from Uniprot1 that can’t occur due to a SNP in the reference amino acid’s 

codon (as they require more than 1 nucleotide change) were discarded from the map 

(colored in white) and will be explored later (see chapter 4.5.2.) Therefore, only 150 

substitutions that can occur as a consequence of a SNP are plotted. 

Several things should be noted. First, counts are significantly different between two 

maps with Uniprot2 map having larger values. This is a consequence of different dataset 

sizes. It is therefore clear that the absolute values of positions don’t have any direct 

meaning for the analysis. They do however indicate the significance of plots as they 

correspond to the size of underlying datasets. It’s important to note that, although much 

smaller, Uniprot1 largely captures the overall distribution. Second, underlying datasets 

don’t provide information on frequencies of individual variants. Therefore, although highly 

indicative, the relative values of different amino acid substitution counts don’t entirely 

capture their overall distribution in a population. Third, Uniprot2 map contains one 

additional row and column that correspond to stop codon variants (labeled “Ter”). All of 

these substitutions have exceptionally small counts. And fourth, the genetic code changes 

required for the corresponding amino acid substitutions immediately emerge as a potential 

explanation for the observed variability. This correlation will be later explored in detail (see 

chapter 4.5.)
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Figure 4.1: Map of amino acid substitutions. a) Uniprot1, b) Uniprot2. The general fashion 

and the color scheme of all subsequent heatmaps follow the ones given here. Blue locations 

correspond to small and red locations to large values. Columns specify amino acids that 

occur in a reference sequence and rows alternative amino acids.

a)

b)
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4.2. Disease causing variants

Both Uniprot1 and Uniprot2 datasets contain information on pathogenicity of their variants. 

In Uniprot1 this information is from manually curated references. In Uniprot2 it’s sourced 

from other databases as a keyword classifier. Maps of disease causing variants were 

constructed by taking the percentage of entries that are associated with a disease for each 

amino acid substitution in individual datasets (figure 4.2; normalized heatmaps and 

underlying tables in extended data 2). 

Several things should be noted about these maps. First, disease causing percentages 

differ greatly between maps and are not indicative for either one. In Uniprot1 they are too 

high because this data represents only a subset of known variants and is heavily biased 

towards disease causing ones that are of interest to researchers and therefore curated more 

often. Uniprot2 contains unbiased data of all known variants but lacks in their annotation. 

For a large part of this dataset there were no information about pathogenicity and it is 

expected for some part of this unknown variants to be pathogenic as well. This dataset 

therefore underestimates the overall disease causing percentages. Since the absolute values 

don’t give any insight, the data can be normalized without any loss of information (extended 

data 2). Second, relative values between amino acid substitutions give some indication of 

how deleterious individual substitutions are. These are consistent between datasets even 

though the scales are significantly different. This is especially clear in normalized heatmaps. 

Some of the substitutions with the highest signals are: Trp  Ser, Arg  Pro and Cys  

Phe. Third, the substitutions inside the green-lined area have significantly smaller disease 

casing percentages. This indicates that the amino acid type has large influence on the 

correct protein function and the substitutions that don’t change the type of the residue are 

less likely to be pathogenic. This effect will be further explored later (see chapter 4.4). And 

fourth, the maps seem to lean towards symmetry, in a sense that the values of any 

substitution seems to be correlated with its opposing substitution, e.g., since Trp  Cys has 

high disease causing percentage, Cys  Trp is likely to have it as well (and same with small 

percentages, e.g., Arg  Lys). The significance of this effect was confirmed by the 

correlation simulation test for Uniprot2 dataset. Null hypothesis tested was that there is no 

positive association between corresponding elements in the Uniprot2 disease causing 

substitution map (p-value = 5.1 × 10-4; Materials and methods).
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Figure 4.2: Maps of disease causing variants. a) Uniprot1, b) Uniprot2. Each amino acid is 

named with its 3-letter code and the type abbreviation, and grouped in such a way that the 

residues of the same type occur next to each other. Green lined area of the plot marks 

substitutions that do not change type of the residue in the primary protein structure.

a)

b)
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4.3. Pathogenicity and occurrence frequencies of individual amino acids

On the complete map of amino acid substitutions, several significant disease associations 

were observed (e.g. Trp  Ser, Arg  Pro). It’s interesting to look at disease causing 

percentages on the amino acid level of resolution (in contrast to the level of individual 

substitutions). To this end, pathogenicity frequencies were plotted for each amino acid in 

Uniprot1 and Uniprot2. Two separate bar-plots were constructed for each dataset. First is 

for the reference amino acids (figure 4.3) and second for the amino acids introduced by 

variants (figure 4.4).

For the same reasons as in the previous plots, absolute values of amino acid 

frequencies are not informative and only the relative values between individual amino acids 

are important. For the reference amino acids, tryptophan and cysteine are most often 

disease associated in Uniprot1 dataset while in Uniprot2, tryptophan has the highest 

percentage with a considerable margin. For the alternative amino acids, cysteine, 

tryptophan and proline have most disease causing variants in Uniprot1 while in Uniprot2 

stop codon has the highest percentage. Stop codon variants are only present in the 

Uniprot2 dataset, as was discussed earlier. It’s interesting that stop codon has a very high 

percentage of disease causing variants when it’s introduced in genetic coding, thus causing 

protein truncation (4 times higher percentage than the next amino acid). When protein 

extension occurs, due to the removal of a stop codon, pathogenicity frequency declines (2 

times lower percentage than tryptophan). This result is a reliable indication that 

introduction of a stop codon in genetic code has a more harmful effect than its removal. 

Apart from the stop codon, results are consistent with Uniprot1, showing the highest 

disease causing percentages when proline, tryptophan or cysteine are the alternative amino 

acids introduced by variants.
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Figure 4.3: Disease causing percentages for reference amino acids, a) Uniprot1, b) Uniprot2. 

Each bar shows percentage of variants that are disease causing, regardless of the alternative 

amino acids.

a)

b)
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a)

b)
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Figure 4.4: Disease causing percentages for alternative amino acids, a) Uniprot1, b) 

Uniprot2, c) Uniprot2 with stop codon variants removed. Each bar shows percentage of 

variants that are disease causing, regardless of the reference amino acids.

Another interesting question is how often do variants of different amino acids occur 

in the affected proteins, i.e., what percentage of different amino acids are affected by 

variants (regardless of their pathogenicity). This can be answered using the information 

from the Uniprot1 dataset about the proteins affected by all the variants (Materials and 

methods). Bar-plot with the percentage of substitutions for each reference amino acid was 

constructed (figure 4.5). As usual, absolute values are not informative since Uniprot1 lists 

only part of the known variants. Relative values between amino acids show that arginine 

substitutions occur most often, while the amino acid with least recorded variants in human 

proteome is lysine.

c)
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Figure 4.5: Frequency of amino acid substitutions in human proteome.

4.4. Maps based on structural classification

The structural effects of an amino acid substitution are crucial for protein function. There 

are several ways in which 20 proteinogenic amino acids can be divided based on their 

structural elements. For this analysis, relatively simple classification was chosen in which 

each residue belongs to one of four groups: positive, negative, polar or hydrophobic (see 

chapter 2.1.2.) To analyze structural effects of the variants observed in our datasets, all 

amino acids were grouped based on their classification and the previous analysis was 

repeated with this level of resolution. Two maps were constructed for each dataset. First is 

the number of occurrences for each transition between groups and second is the disease 

percentage for each of these transitions. Results from the Uniprot2 dataset are shown 

(figure 4.6; Uniprot1 maps and underlying tables in extended data 3). 

The number of amino acids differs between groups. Furthermore, the number of 

ways in which transitions between groups can occur based on the genetic code of their 

elements is also highly variable. Therefore, the normalization of counts is necessary. For 

this, the normalization matrix was used (Materials and methods). For the second map 
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(disease percentages) this procedure wasn’t necessary since any effects that introduce 

discrepancy occur in both the disease causing counts and the overall counts.

Figure 4.6: Uniprot2 maps based on structural classification, a) normalized counts, b) 

disease causing percentages.

a)

b)
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Several properties of these maps should be noted. First, as with previous plots, only 

relative values between positions are relevant. Second, the values on the diagonal of the 

disease map are small indicating that the amino acid substitutions that don’t change the 

residue type less often correspond to a pathogenic variant. This is an expected result from 

the biochemical perspective since the type of the residue in primary protein structure 

greatly influences its role in a protein. Third, three transitions that have the highest disease 

association are pho  pos, pos  pho and pho  neg. It is interesting to note that all of 

these transitions also have small relative occurrences on the count map. The same is true, 

although to a lesser extent and in the opposite direction, with diagonal elements - they have 

higher than average occurrence frequencies on the count map. These observations can be 

explained from the evolutionary perspective: Transitions that are often disease associated 

are generally under negative selection and therefore occur less frequently. The same effect 

is observed for the stop codon variants in the full Uniprot2 table (figure 4.1b and extended 

data 1) where these have exceptionally small counts, especially in the “ter” column that 

records variants in which stop codon is introduced and protein thus truncated. Adversely, 

transitions that are rarely disease causing (e.g. those that don’t change the amino acid type) 

are under neutral selection, which enables their accumulation and subsequently produces 

more such variants in the genetic code. However, this effect isn’t entirely consistent. neg  

pos transition has high occurrence frequency but is also relatively often disease associated 

(as expected biochemically). And fourth, as with other plots, maps from Uniprot1 and 

Uniprot2 datasets are consistent between themselves and all discussed characteristics are 

evident on both.

4.5. Codons in the genetic code influence the amino acid distributions

Amino acid sequence of every protein is defined by its underlying genetic code. Three 

consecutive positions of this code represent one codon, which determines its corresponding 

amino acid. Genetic code is degenerate. Therefore, most amino acid substitutions can occur 

in multiple different ways. For the purpose of this analysis, only substitutions that can occur 

as a consequence of a SNP (that is, by one base change in their codon) will be considered. 

These are by far the most numerous in Uniprot1 dataset and the only ones recorded in 
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Uniprot2. From genetic code table, frequencies of amino acid substitutions were derived 

(table 2). These were counted by mapping all possible genetic code changes to their 

corresponding amino acid substitutions. Evidently, most diagonal elements of this table 

have a non-zero value. Since our datasets do not contain information on synonymous 

substitutions, the diagonal of this matrix was nulled wherever appropriate (e.g. for 

statistical tests) and this won’t be emphasized further. Since this table contains all possible 

substitutions, normalizing it produces their corresponding probabilities. That is, if a random 

SNP occurs, causing amino acid substitution, and without any other influencing factors, 

probability for each variant is given by this normalized table.

Table 2: Frequencies of amino acid substitutions based on the genetic code table.

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu lys Met Phe Pro Ser Thr Trp Tyr Val
Ala 12 0 0 2 0 0 2 4 0 0 0 0 0 0 4 4 4 0 0 4
Arg 0 18 0 0 2 2 0 6 2 1 4 2 1 0 4 6 2 2 0 0
Asn 0 0 2 2 0 0 0 0 2 2 0 4 0 0 0 2 2 0 2 0
Asp 2 0 2 2 0 0 4 2 2 0 0 0 0 0 0 0 0 0 2 2
Cys 0 2 0 0 2 0 0 2 0 0 0 0 0 2 0 4 0 2 2 0
Gln 0 2 0 0 0 2 2 0 4 0 2 2 0 0 2 0 0 0 0 0
Glu 2 0 0 4 0 2 2 2 0 0 0 2 0 0 0 0 0 0 0 2
Gly 4 6 0 2 2 0 2 12 0 0 0 0 0 0 0 2 0 1 0 4
His 0 2 2 2 0 4 0 0 2 0 2 0 0 0 2 0 0 0 2 0
Ile 0 1 2 0 0 0 0 0 0 6 4 1 3 2 0 2 3 0 0 3
Leu 0 4 0 0 0 2 0 0 2 4 18 0 2 6 4 2 0 1 0 6
lys 0 2 4 0 0 2 2 0 0 1 0 2 1 0 0 0 2 0 0 0

Met 0 1 0 0 0 0 0 0 0 3 2 1 0 0 0 0 1 0 0 1
Phe 0 0 0 0 2 0 0 0 0 2 6 0 0 2 0 2 0 0 2 2
Pro 4 4 0 0 0 2 0 0 2 0 4 0 0 0 12 4 4 0 0 0
Ser 4 6 2 0 4 0 0 2 0 2 2 0 0 2 4 14 6 1 2 0
Thr 4 2 2 0 0 0 0 0 0 3 0 2 1 0 4 6 12 0 0 0
Trp 0 2 0 0 2 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0
Tyr 0 0 2 2 2 0 0 0 2 0 0 0 0 2 0 2 0 0 2 0
Val 4 0 0 2 0 0 2 4 0 3 6 0 1 2 0 0 0 0 0 12

Obvious question about the previous substitution maps (figure 4.1) is can they be 

explained by this frequency table. To answer this, χ2 goodness-of-fit test was performed. 

Null hypothesis tested was that the probabilities for variant counts observed in each dataset 

equal those in the substitution matrix constructed from genetic code table. Null hypothesis 

was confidently reject for both datasets: p-value(Uniprot1) < 10-323, p-value(Uniprot2) <    

10-323 (for the purpose of testing the Uniprot2 dataset table, stop codon variants were 

discarded).
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4.5.1. Codon position significance

The genetic code is fine-tuned for optimization of cellular content. This is achieved by 

allowing some unspecific interactions between 3rd nucleotide in the mRNA codon and its 

corresponding nucleotide in the tRNA molecule. That way, one tRNA can recognize multiple 

codons and less of these molecules are required. As a consequence, an error in translation 

occasionally occurs on that last codon base. Genetic code compensates for this effect 

through high degeneracy of a 3rd codon position. Due to this degeneracy, SNPs that target 

3rd base will more often be synonymous then those that target other nucleotides. This effect 

can be quantified by a more detailed look into the genetic code table.

By restricting possible nucleotide substitutions to each of the three codon positions, 

reduced versions of the variant substitution tables can be derived (extended data 4). The 

expected percentage of synonymous substitutions for each position can now be calculated 

precisely (simply dividing the diagonal of each matrix by its sum): 

 P(1st base synonymous) = 5 % 

 P(2nd base synonymous) = 0 % 

 P(3rd base synonymous) = 72 % 

All of this shows that nucleotide positions play important role in the amino acid 

variation. This influence will now be explored in greater detail and with respect to disease 

and non-disease causing variants. It might be that optimization of genetic code extends 

beyond individual amino acids. For example, since most 3rd nucleotide substitutions (72 %) 

don’t cause the amino acid change, the code might be further optimized so that the 

remaining substitutions that do cause the change (28 %) introduce similar amino acid (e.g. 

same type). This, or any similar optimization would be seen in discrepancy of disease 

causing variants with respect to the position of SNPs in their underlying code. Variants in 

Uniprot1 and Uniprot2 datasets were analyzed based on these positions (table 3). Notably, 

some variants can be caused by SNPs on multiple positions (e.g. Arg  Ser). These 

substitutions were discarded for the purpose of this analysis since they couldn’t have been 

unambiguously assigned to either group. For each group, the overall number of variants was 

counted and compared with the number expected from the genetic code table (Materials 

and methods). The difference between these was assessed by χ2 goodness-of-fit test. Null 

hypothesis tested was that the probabilities for the observed variant counts equal those 
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expected from the genetic code. Each group was further divided into disease associated and 

non-disease associated substitutions (for Uniprot1 these two groups don’t add up as some 

substitutions have unknown disease significance). Finally, χ2 goodness-of-fit test was carried 

out for each pair, testing the difference between the number of observed disease variants 

and the number of those expected by the overall percentage of disease associated variants 

in each dataset (in other words - is any position especially enriched for disease associated 

variants). Null hypothesis thus tested was that the probabilities of disease and non-disease 

substitutions for a specific codon position equal those expected from the overall distribution 

of these substitutions in the dataset.

Table 3: Codon position significance analysis for the nucleotide substitutions in amino acid 

variants, a) Uniprot1, b) Uniprot2. 

observed, count
(expected, count)

disease, observed
(disease, expected)

non-disease, observed
(non-disease, expected)

p-value

1st base 1652366
(1513741)

6889
(7025)

1645477
(1645341)

0.105

2nd base 1713909
(1741838)

8184
(7286)

1705725
(1706623)

5.7e-26

3rd base 241819
(352515)

608
(1028)

241211
(240791)

2.3e-39

p-value <1e-323

observed, count
(expected, count)

disease, observed
(disease, expected)

non-disease, observed
(non-disease, expected)

p-value

1st base 30785
(29014)

11030
(11625)

16748
(16153)

4.6e-13

2nd base 34346
(33386)

14095
(12940)

16825
(17980)

1.9e-40

3rd base 4026
(6757)

1205
(1492)

2360
(2073)

2.0e-22

p-value 7.8e-270

Two properties of the resulting tables should be noted. First, null hypothesis that the 

observed variant counts equal those in the genetic code can be confidently rejected for 

both datasets. The interesting aspect of this result is that the 3rd nucleotide substitutions 

are the ones that occur less frequently than expected while both datasets show enrichment 

for variants that target the 1st nucleotide. And second, variants caused by SNP on the 3rd 

codon base are significantly depleted of disease associations in both datasets while the 

variants with the 2nd base SNP are enriched for these. Variants produced by SNP of the 1st 

codon nucleotide have slightly lower disease association then is expected in both datasets. 

For Uniprot2 this depletion isn’t significant and for Uniprot1 it is. These results indicate that 

a)

b)
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the most dangerous nucleotide substitutions are the ones occurring on the 2nd codon 

position while the most often tolerated substitutions are those on the 3rd nucleotide.

4.5.2. Variants with multiple nucleotide substitutions

As previously discussed, most of the recorded amino acid variants are caused by SNP in their 

underlying genetic code. However, in Uniprot1 dataset, some variants can’t emerge from a 

single nucleotide substitution, but require multiple positions of their codon to be changed. 

These amino acid substitutions have > 0 occurrences in the Uniprot1 dataset and 0 

frequency in the table derived from the genetic code (table 2).

Similar level of genetic code optimization can be proposed for this type of variants: 

Those that occur due to a single nucleotide substitution should more often be tolerable, 

while does that only occur when multiple nucleotides are changed should correspond to 

significantly different amino acids (e.g. structurally) and more often be disease associated. 

To test this, all variants from Uniprot1 dataset that require multiple nucleotide substitutions 

were grouped based on their disease causing capacity (those that have unknown association 

were discarded) and the discrepancy of these counts was assessed by χ2 goodness-of-fit test 

(table 4). Null hypothesis tested was that the probabilities for disease and non-disease 

association of variants caused by multiple nucleotide substitutions equal those expected 

from the overall distribution of disease and non-disease variants in the Uniprot1 dataset.

Table 4: Distribution of variants caused by multiple nucleotide substitutions in Uniprot1.

observed expected
dis 52 72

nondis 120 100

Contrary to the expectation, variants with multiple nucleotide substitutions showed 

less disease association than their SNP caused counterparts. Furthermore, this difference 

was relatively significant (p-value = 1.9 × 10-3). In an effort to explain this, type transitions 

(which were already shown to influence the disease association) for these two groups of 

substitutions were explored. If there is no significant enrichment for disease in variants that 

require multiple nucleotide substitutions, i.e. the genetic code is not optimized on that 

level, than the structural effects of two variant groups could potentially explain the disease 

association discrepancy. To this end, percentages of type changing substitutions were 
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calculated for each group. This was done by simply counting the number of type changing 

substitutions in each group and dividing it by the total number of substitutions possible in 

that group. The results show that SNP variants cause type transition in 65 % of cases while 

variants from multiple nucleotide substitutions do the same in 75 %. This result is consistent 

with initial assumption about genetic code optimization (although its significance can’t be 

assessed). Therefore, it doesn’t explain the results of the χ2 test, which indicates that SNP 

variants have higher disease association (even though they cause type transitions less 

frequently). It might be that neither of these effects has any real significance. To show that, 

χ2 test with larger sample size would have to be conducted.   

4.5.3. Synonymous variants

Nucleotide substitutions that don’t change the amino acids in their translated proteins are 

called synonymous SNPs. 1000G dataset contains all variants discovered in the 1000 

Genome Project including the synonymous ones. This information can be used to relate 

predictions about synonymous substitution frequencies from the genetic code with the 

observed frequencies. The expected percentage of synonymous substitutions can be 

calculated from the table of amino acid substitutions based on the genetic code (table 2) by 

dividing the sum of its diagonal elements (which correspond to the synonymous 

substitutions) with the complete matrix sum. This calculation yields 25.5 % of expected 

synonymous substitutions. On the other hand, the 1000G dataset contains 944,059 protein-

coding region SNPs, 376,732 out of which (38.9 %) are synonymous. This significant 

enrichment of our genome with synonymous variants is expected from the evolutionary 

perspective since these are under neutral selection more often than non-synonyms, and are 

therefore allowed to proliferate.

4.6. SIFT and PolyPhen

SIFT and PolyPhen are bioinformatics tools that try to predict whether amino acid 

substitutions in primary protein structure have a negative impact on its function. That is, 

whether they are disease causing. This is done by computational means and various factors 

are considered during the assessment. SIFT is mainly focused on conservation of amino acid 
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residues in sequence alignments derived from closely related sequences, while PolyPhen's 

prediction is based on a number of features comprising the sequence, phylogenetics and 

structural information characterizing the amino acid change and the substitution site.

Both methods take as an input the amino acid sequence, mutation site and the 

alternative residue. Their output is a numerical score between 0 and 1, which is used to 

predict the risk of the amino acid substitution and, based on this prediction, classify it into 

one of the corresponding groups. For SIFT, small scores indicate disease association and the 

classification groups are deleterious (for scores ≤ 0.05) and tolerated (for scores > 0.05). 

PolyPhen has the opposite scale in which higher values correspond to disease associated 

variants. Its groups are benign, possibly damaging, probably damaging and unknown (for 

substitutions that can’t be reliably predicted).

All non-synonymous variants from the 1000 Genome Project were analyzed with 

these two tools and the results are available in the 1000G dataset. To test the prediction 

accuracy, scores and classifications for some disease casing variants were explored. Since 

this dataset doesn’t contain information on pathogenicity of its variants, this information 

was mapped from the Uniprot1 dataset. Uniprot1 has the most reliable classification (which 

is the main use of this dataset) since its entries are manually curated. 1177 variants were 

successfully mapped from one dataset onto another. It should be noted that most Uniprot1 

variants don’t have their corresponding entries in 1000G. There are two main reasons for 

this. As previously discussed, a significant part of Uniprot1 variants were not obtained from 

SNPs in the underlying genetic code of their amino acid sequences. Any such variants are 

missing in 1000G. And more importantly, 1000G dataset lists only the more frequent 

substitutions that were detected in several of the 2504 sequenced genomes. This level of 

resolution is imposed by the coverage depth of the sequencing method. For Uniprot1 on the 

other hand, most disease causing variants correspond to events involved in severe 

Mendelian diseases (which are of interest for manual curation and further research) and are 

therefore frequently missed by the resolution of the 1000 Genomes Project.

4.6.1. Statistical tests

To analyze the classification accuracy of SIFT and PolyPhen, predictions for known disease 

variants were compared with their background distributions. This was tested on two levels: 
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For numeric prediction scores and for class predictions (figure 4.7). Background distributions 

were constructed from all available non-synonymous variants in the 1000G dataset. The 

purpose of this setup was to assess the shift of score distributions and class predictions 

between all substitutions and disease variants (since only these were available for testing). 

We would expect score distributions of disease associated substitutions to be significantly 

skewed towards small values for SIFT and large values for PolyPhen. Conversely, deleterious 

and probably pathogenic classes should be enriched for in these 1177 mapped disease 

variants. 

Figure 4.7: PolyPhen and SIFT scores and classifications of disease causing amino acid 

substitutions. a) PolyPhen scores, b) PolyPhen classes, c) SIFT scores, d) SIFT classes

It’s evident, just by looking at the plots, that both methods show the expected 

enrichments. Their shifts were tested separately for score and class distributions. For score 

distributions, one-sided Wilcoxon rank sum tests were used. For SIFT scores, the null 

hypothesis tested was that the disease associated distribution has a location shift of its 

d)c)

a) b)
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mean from the mean of overall distribution greater than or equal to 0. For PolyPhen, the 

Null hypothesis was analogous with the opposite side being tested, that is, a location shift of 

disease sample mean from the overall mean being lesser than or equal to 0. That way, the 

alternative hypothesis is precisely what we expect to see based on the samples tested as it 

corresponds to the location shift of the mean for disease associated variants towards 

smaller or larger values, for SIFT and PolyPhen respectively. For both methods the null 

hypothesis was confidently rejected: p-value(SIFT) = 2.7 × 10-38, p-value(PolyPhen) = 2.9 × 

10-52, thus confirming the observed shift of disease associated scores in the appropriate 

direction.

For class predictions, χ2 goodness-of-fit tests were used. That way, the bias for 

grouping of disease associated variants into disease associated classes (deleterious and 

pathogenic) was assessed. The null hypothesis tested was that the classification 

probabilities for disease variants equal those for the complete dataset. For SIFT results this 

procedure is straightforward as there are only 2 groups into which variants can be classified. 

For PolyPhen results, only “probably damaging” and “benign” classes were used for testing, 

and the other two were discarded. For the “unknown” group this can easily be justified, as it 

contains no additional information about the prediction accuracy. The “possibly damaging” 

group was discarded because its precise position on the disease association spectrum is 

unknown and it would be hard to evaluate either the correct or the incorrect outcome of 

this classification. Also, having the same number of groups facilitates the comparison 

between methods. Null hypothesis was again confidently rejected for both methods:           

p-value(SIFT) = 1.3 × 10-32, p-value(PolyPhen) = 1.3 × 10-45, which could have been presumed 

from class prediction plots.

4.6.2. Comparison between methods

To assess the prediction accuracy of these two methods, their corresponding test results 

were compared. For Wilcoxon rank sum test, test statistics W, from which p-values were 

derived, are correlated with the shifts of the mean values between samples and, for same 

sample sizes, are comparable. This analysis shows that score distribution from PolyPhen (W 

= 4.2 × 108, corresponding p-value = 2.9 × 10-52) had a more significant location shift 

(towards larger values) for disease associated variants than score distribution from SIFT 
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(towards smaller values; W = 2.5 × 108, corresponding p-value = 2.7 × 10-38), which 

corresponds to better overall classification of pathogenic substitutions.

For χ2 goodness-of-fit test, χ2 statistic directly corresponds to the deviation of sample 

probabilities from those of the underlying distribution. Therefore, larger χ2 value, for the 

same number of groups (degrees of freedom), corresponds to the larger divergence of 

group probabilities in the tested sample. Again, the results of PolyPhen classification (χ2 = 

200.95, corresponding p-value = 1.3 × 10-45) indicate better prediction accuracy for disease 

associated variants than those of SIFT classification (χ2 = 141.39, corresponding p-value = 1.3 

× 10-32).

It should be emphasized that these tests only give the indication of prediction 

accuracies for the two methods. Some uncertainty was introduced by discarding one of the 

PolyPhen classes and, depending on the treatment of this group, the results might change. 

Also, in both assessments only the disease causing substitutions were tested. That is, the 

shift of the overall distribution from the distribution of disease associated variants. A more 

complete assessment would be the one that includes both a reliable set of disease and non-

disease associated variants and then also looks for the false positive and false negative rates 

of these two methods.

4.7. Population analysis

1000 Genomes Project analyzed samples from 26 populations arranged into 5 population 

groups: African (afr), American (amr), East Asian (eas), European (eur) and South Asian (sas). 

1000G dataset contains individual variant frequencies for each of these 5 groups. It should 

be noted that for a small part of the dataset (~5000 variants), population frequencies 

exceeded 50% in some or all of the populations. This is because the reference/alternative 

classification doesn’t always correspond to more/less frequent, which can be seen from the 

distribution of alternative allele frequencies on the whole genome scale (figure 4.8). These 

substitutions were discarded from further analysis as they would, due to their dominant 

occurrence frequencies, almost entirely shape all distributions and cover up the majority of 

population variability.    
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Figure 4.8: Distribution of alternative allele frequencies for structural variants in the whole 

genome.[31]

The results were analyzed by looking at the variability of individual amino acid 

substitutions between populations. To this end, the percentage of every amino acid 

substitution in each population group was calculated (Materials and methods). This 

procedure enables looking at the variation of individual substitutions between and within 

population groups.

4.7.1. Between population variations

Maps of frequency resolved amino acid substitutions were constructed for each of the five 

population groups (figure 4.9; underlying tables in extended data 5). Therefore, these plots 

contain no information about the absolute frequencies of individual substitutions, but 

rather show the relative variations between population groups. 

First thing that can be observed is that the African population group differs from the 

rest having the exceptionally high percentages for almost all substitutions. This effect was 

already observed on the whole genome scale in the 1000 Genome Project, which 

established that African genomes contain particularly high number of variants (figure 2.13). 

It’s reassuring that the same effect can be observed by looking only at the SNP variants in 

the protein-coding regions of the genome. In other population groups, no trends can be 

observed. However, there are several signals that stand out. Since the scale normalization 
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reduces the capacity for signal separation on individual maps, these will now be explored in 

detail on more appropriate plots.

Figure 4.9: Maps of frequency resolved amino acid substitution percentages in each 

population group, a) East Asian, b) American, c) African, d) European, e) South Asian. Scale 

was equalized on all plots. As usual, blue indicates low substitution percentages and red 

high. Every position shows the portion of the corresponding substitution in that population 

group.

e)

b)

d)c)

a)
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4.7.2. Within population variations

For each heatmap from the previous plot, substitution results were plotted on a separate 

density graph (figure 4.10). This way, the outliers can be most easily discerned. Each plot 

corresponds to one population group and on it, the proportions of all substitutions in that 

group are shown. The outliers are labeled with the amino acid substitution they correspond 

to.

Figure 4.10: Density plots of frequency resolved amino acid substitution percentages in each 

population group. a) East Asian, b) American, c) African, d) European, e) South Asian

Interesting aspect of these plots is that for most substitutions that have either 

particularly low or high signal in some population group there exists the opposite trend in a 

different group. Lys  Met substitution has a significantly low percentage in American 

populations, but is enriched for in Africans. Trp  Ser has a low signal in Africans, but a high 

one in European population group. This characteristic is unexpected since it would be 

statistically more likely for some substitution that is depleted in one population group to be 

a) b) c)

e)d)
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equally enriched for in all the others. It might, therefore, be a consequence of some 

underlying biochemical discrepancy between populations. Other signals, which don’t show 

this behavior are: Ile  Lys that is significantly more frequent in East Asians and Arg  Met, 

as well as Ser  Trp that are slightly enriched for in African population group.  

4.8. Disease association of amino acids with combined substitution order

The relative symmetry of disease causing variants map showed a significant correlation 

between substitutions with the exchanged amino acid order (see chapter 4.2). Furthermore, 

as shown in the previous chapter, notation for the reference and alternative residue doesn’t 

always correspond to more and less frequent amino acid. These two reasons suggest 

combining the corresponding substitutions in the analysis of disease associated variants to 

look at the amino acid pairs that have high or low disease causing frequencies instead of the 

individual substitutions. To this end, the ranked table of amino acid pairs was constructed, 

sorted by the combined disease causing percentage for both amino acid substitutions in 

each pair (A  B and B  A). The ordering was done by the average rank of the 

corresponding pair in Uniprot1 and Uniprot2 datasets, where the low ranks correspond to 

high disease causing percentages (table 5).

Table 5: Disease association ranking of amino acid pairs.

amino acid 
1

amino acid 
2

disese causing percentage, 
Uniprot1

rank, 
Uniprot1

disease causing percentage, 
Uniprot2

rank, 
Uniprot2

average 
rank

1 Trp Cys 0.66 3 0.0104 2 2.5
2 Trp Ser 0.66 4 0.0127 1 2.5
3 Gly Cys 0.66 2 0.0085 8 5.0
4 Phe Cys 0.68 1 0.0082 10 5.5
5 Met Arg 0.56 9 0.0097 3 6.0
6 Trp Gly 0.57 8 0.0092 5 6.5
7 Val Gly 0.57 7 0.0088 7 7.0
8 Ile Asn 0.60 6 0.0080 11 8.5
9 Leu Arg 0.56 13 0.0095 4 8.5

10 Gly Arg 0.55 17 0.0088 6 11.5
11 Tyr Cys 0.63 5 0.0065 19 12.0
12 Cys Arg 0.56 12 0.0074 13 12.5
13 Lys Ile 0.56 10 0.0070 16 13.0
14 Trp Arg 0.55 15 0.0079 12 13.5
15 Val Asp 0.56 11 0.0068 17 14.0
16 Pro Arg 0.55 14 0.0071 15 14.5
17 Gly Asp 0.53 19 0.0072 14 16.5
18 Trp Leu 0.46 25 0.0084 9 17.0
19 Tyr Asp 0.55 16 0.0068 18 17.0
20 Pro Leu 0.50 20 0.0058 22 21.0
21 Tyr Asn 0.50 21 0.0059 21 21.0
22 Met Lys 0.47 23 0.0059 20 21.5
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23 Val Phe 0.54 18 0.0052 27 22.5
24 Val Glu 0.42 32 0.0056 23 27.5
25 Gly Glu 0.43 29 0.0052 29 29.0
26 Ser Phe 0.46 24 0.0048 34 29.0
27 Tyr Ser 0.40 35 0.0052 25 30.0
28 Leu His 0.43 30 0.0050 31 30.5
29 Pro Gln 0.43 31 0.0051 30 30.5
30 Asp Ala 0.44 27 0.0046 35 31.0
31 Phe Ile 0.48 22 0.0044 40 31.0
32 Lys Glu 0.40 37 0.0052 26 31.5
33 His Arg 0.37 42 0.0054 24 33.0
34 Ser Leu 0.40 38 0.0052 28 33.0
35 His Asp 0.41 34 0.0049 33 33.5
36 Ser Ile 0.46 26 0.0043 41 33.5
37 Thr Arg 0.44 28 0.0044 39 33.5
38 Leu Gln 0.39 39 0.0046 37 38.0
39 Pro His 0.42 33 0.0040 44 38.5
40 Glu Ala 0.36 43 0.0046 36 39.5
41 Ser Gly 0.36 46 0.0045 38 42.0
42 Ser Arg 0.40 36 0.0036 49 42.5
43 Ser Cys 0.39 40 0.0038 47 43.5
44 Ile Arg 0.36 45 0.0041 43 44.0
45 Pro Ala 0.38 41 0.0037 48 44.5
46 Gln Arg 0.34 50 0.0042 42 46.0
47 Lys Gln 0.24 62 0.0049 32 47.0
48 Tyr His 0.36 44 0.0034 52 48.0
49 Asp Asn 0.35 47 0.0035 50 48.5
50 Thr Met 0.32 54 0.0039 46 50.0
51 Thr Ile 0.35 48 0.0032 55 51.5
52 Lys Asn 0.34 51 0.0032 56 53.5
53 Phe Leu 0.35 49 0.0029 60 54.5
54 His Asn 0.29 57 0.0034 53 55.0
55 Thr Lys 0.33 53 0.0031 57 55.0
56 Thr Pro 0.34 52 0.0031 58 55.0
57 Gly Ala 0.26 60 0.0035 51 55.5
58 Glu Gln 0.20 67 0.0039 45 56.0
59 Thr Asn 0.31 55 0.0028 61 58.0
60 Val Met 0.28 58 0.0029 59 58.5
61 Ser Pro 0.31 56 0.0028 62 59.0
62 Val Ala 0.25 61 0.0024 63 62.0
63 Tyr Phe 0.18 71 0.0033 54 62.5
64 Met Ile 0.28 59 0.0019 69 64.0
65 Ser Asn 0.23 64 0.0023 65 64.5
66 Thr Ala 0.22 66 0.0023 64 65.0
67 His Gln 0.24 63 0.0019 68 65.5
68 Val Leu 0.22 65 0.0022 66 65.5
69 Glu Asp 0.19 68 0.0015 71 69.5
70 Met Leu 0.18 69 0.0017 70 69.5
71 Ser Ala 0.14 73 0.0020 67 70.0
72 Lys Arg 0.16 72 0.0015 72 72.0
73 Leu Ile 0.18 70 0.0012 75 72.5
74 Thr Ser 0.12 74 0.0012 73 73.5
75 Val Ile 0.10 75 0.0012 74 74.5

Second and third column show the amino acid pair. Fourth column is the combined 

disease causing percentage of variants for the two possible substitutions in the Uniprot1 

dataset. This was calculated by summing the number of variants that are disease causing for 

either substitution and dividing that by the combined count of both variants. Fifth column is 

the rank of these percentages in decreasing order. Sixth and seventh column are the disease 

causing percentage and the rank for the Uniprot2 dataset (calculated in the same way). Last 

column is the average of the two ranks.
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The table shows a good consistency between substitution ranks in two datasets. This 

is especially true for the outmost ranks, that is, substitutions that are least often disease 

associated. However, with this level of precision, a few discrepancies can also be observed. 

For example, {Phe,Cys} is ranked 1st in Uniprot1 dataset but only 10th in Uniprot2. Largest 

difference between ranks is 30, for {Lys,Gln} variants. Mean difference between ranks is 6.6 

(median 6). This result confirms the observations from previous maps. Amino acid pairs that 

are most often disease associated are {Trp,Ser} and {Trp,Cys}, while those that are disease 

associated least often are {Val,Ile}, {Thr,Ser}, {Leu,Ile} and {Lys,Arg}. All of the later 

correspond to substitutions that don’t change the amino acid type.

4.9. Structural analysis of Trp  Ser substitutions

MD simulations have become a standard tool in analyzing conformational changes to the 

tertiary structure of a protein caused by amino acid mutation in its primary structure.{76} In 

these simulations, the potential energy surface of the protein is explored first in the un-

mutated, wild type protein and afterwards in its mutated variant. To obtain an initial 

structure of the mutated protein variant, a substitution of interest is introduced in place of 

reference amino acid with the rest of the structure conserved. That way, any discrepancies 

in the trajectory, which tracks conformational changes of a molecule through the simulated 

period of time, arise from differences in the potential energy surface caused by mutation.{77} 

A necessary prerequisite for a protein MD simulation is the crystal structure of a wild type 

protein (see chapter 2.1.1). The reason for this is that MD simulations track very minute 

conformational changes and starting the simulations from an un-optimized conformation 

makes it very hard to discern conformational changes caused by the mutation of interest 

from all the rest. 

In several steps of the preceding analysis, Trp  Ser substitution was shown to be 

dangerous when introduced in the human genetic code (with respect to pathogenicity 

frequency). The aim of this part of the research was to detect conformational changes that 

are mutual in proteins in which this substitution is disease causing. Any such changes might 

contribute to the probability of a Trp  Ser substitution being disease causing. This was 

done with a series of MD simulations conducted in GROMACS. All proteins which had 



Kristijan Vuković § 4. Results and discussion
                                                                                                                                     

65

available crystal structure in Protein Data Bank (PDB) and a reliable pathogenicity 

classification for the occurring Trp  Ser substitution were simulated.

4.9.1. Simulated proteins 

Proteins that were used for MD simulation were chosen from variants in the Uniprot1 

dataset. This dataset has a more reliable disease and non-disease classifications, but it also 

has more disease causing variants, which likely translates to more proteins of interest with 

available PDB structure. Overall, PDB structures for 19 proteins that have a recorded Trp  

Ser substitution in the Uniprot1 dataset were found (figure 4.11). 

Figure 4.11: Proteins with PDB structure and a recorded Trp  Ser substitution in Uniprot1. 

Proteins are named with their UniProt accession numbers.

From 97 recorded Trp  Ser substitutions, 20 had the PDB structure of their 

corresponding protein. 13 variants were pathogenic and 7 benign. 2 pathogenic variants 

were from the same protein. Each of these proteins was simulated first as a wild type (Trp 

variant) and then with tryptophan of interest mutated into serine (table 6). In total, 40 MD 

simulations were performed.

97 Trp -> Ser variants

12 protein structures with 
pathogenic variant

7 protein structures with 
benign variant

7 benign variants13 pathogenic variants

40 MD simulations

O00255
P06280
P34059
P37023
P03951
P04180
P08842
P15848
P29033
P49257
Q14353
Q9NZK5

O00767
O95881
P01892
P46952
P50135
Q96Q11
Q29983
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Table 6: List of simulated proteins with positions of Trp  Ser substitution.

Protein accession 
number

Variant 
classification

Tryptophan position in the
 UniProt record of the protein

O00255 Pathogenic 188
O00255 Pathogenic 428
P06280 Pathogenic 95
P34059 Pathogenic 409
P37023 Pathogenic 399
P03951 Pathogenic 587
P04180 Pathogenic 99
P08842 Pathogenic 372
P15848 Pathogenic 146
P29033 Pathogenic 44
P49257 Pathogenic 67
Q14353 Pathogenic 20
Q9NZK5 Pathogenic 264
O00767 Benign 101
O95881 Benign 65
P01892 Benign 131
P46952 Benign 264
P50135 Benign 115
Q96Q11 Benign 239
Q29983 Benign 253

4.9.2. MD simulations

Proteins were simulated in molecular dynamics program GROMACS. The following 

procedure was used for all simulations:

 Proteins structures were opened and, if necessary, fixed in Swiss-PdbViewer[78] 

(adding any bonds or atoms there were missed by the crystal structure).

 For mutated protein variants, serine was introduced in Swiss-PdbViewer by mutating 

the appropriate tryptophan. Initial serine conformation was chosen in a way as to 

minimize the energy of the system (calculation done by the default Swiss-PdbViewer 

method). This step was skipped for wild type protein simulations.

 The rest of the procedure was done in GROMACS and for all relevant steps, 

AMBER99SB-ILDN force field was used.[79]

  Gromacs structure was generated from the final pdb file.  

 Energy minimization of the whole protein was performed.
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 Protein was explicitly solvated in cubic box of TIP3P water molecules (figure 4.12).

 The system was neutralized by adding the appropriate number of Na+ or Cl- ions.

 Energy minimization of the whole system was performed.

 NVT and NPT equilibrations were performed, each with the length of 50,000 steps 

and 0.002 ps time-step (adding to 100 ps of equilibration, each).

 MD simulation was performed with the 0.001 ps time-step and total length of at 

least 30 ns.

Figure 4.12: Protein P06280 solvated in a box of explicit water molecules (TIP3P).

4.9.3. Initial analysis

As previously mentioned, research on conformational changes involved in pathogenicity of 

Trp  Ser variants is still in progress. Initial steps of the analysis conducted on the 

completed MD simulations will be described here. The objective is to find common 

structural elements involved in conformational changes that happen in mutated proteins of 

pathogenic variants, but don’t happen in mutated proteins of benign variants (figure 4.13). 

This requires two comparisons, first between trajectories of wild and mutated proteins for 

each variant and then between trajectories of pathogenic and benign variants. 
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Figure 4.13: Model for Trp  Ser structural analysis.

As an initial measure of conformational changes during the course of a simulation, 

the relative change in distance between C-α atoms of different residues was used. This 

quantity was calculated with the “mdmat” function from the GROMACS program package. 

“mdmat” calculates the distance matrix consisting of the smallest distances between 

residue pairs for each simulation step and outputs an averaged matrix over the whole 

trajectory. For the analysis, only distances between C-α atoms were considered (since the 

structural differences between tryptophan and serine highly influence the measurement 

across the whole residue). 

The output of this procedure is N x N matrix, where N is the number of residues in 

the initial PDB file (not necessarily the same as the number of amino acids in protein as the 

crystal structure doesn’t usually capture the whole protein). Each position of the matrix is 

the average distance between C-α atoms of the corresponding residues. These matrices 

were calculated for all simulations, converted into numerical values and exported for the 

analysis. 

Each individual matrix gives no information on the conformational changes occurring 

during the course of a single simulation (figure 4.14a), but the difference between matrices 

of wild and mutated variants of the same protein indicate residual contacts that differ 

between these two systems (figure 4.14b) and therefore likely undergo a significant 

conformational change in at least one of them. The focus of current analysis is on residual 

Benign variantPathogenic variant

Wild
protein

Mutant
protein

Mutant
protein

Wild
protein

Common structural element involved in 
conformational changes of pathogenic 

variants
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contacts that include the mutated residue (figure 4.14c) and another one. This procedure 

can detect amino acids that show different conformational behavior in wild and mutated 

protein as a direct consequence of the amino acid substitution, but there are likely more 

conformational differences captured in other parts of the matrix that are a consequence of 

indirect contacts. All These matricies will be further explored and quantified in terms of 

distribution of amino acids that show this different conformational behaviour between Trp 

and Ser protein variants.

Figure 4.14: Detecting amino acids that show different conformational behavior in wild and 

mutated protein, a) “mdmat” matrix of average distances between residues in wild type 

protein trajectory; distances are in nm, every distance > 1.5 nm is assigned the value 1.5 

(these are too far to have any influence on one another), b) ratio of “mdmat” matrices of 

wild type and mutated protein, c) row of the ratio matrix which corresponds to the mutated 

residue.

c)

a) b)
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§ 5. Conclusion

Amino acid substitutions from three online available datasets were analyzed with respect to 

occurrence frequencies and pathogenicity frequencies. Maps were constructed for 

individual substitutions and for amino acid classes based on their biochemical structure. Trp 

 Ser, Arg  Pro and Cys  Phe amino acid substitutions were consistent between 

datasets as the most frequently disease associated. In terms of structural classification, pho 

 pos, pos  pho and pho  neg substitutions had the highest pathogenicity. The 

evolutionary negative selection of these substitutions was evident as they also had among 

lowest occurrence frequencies in all datasets.

The observed substitution frequencies were compared with those expected from the 

genetic code table and the null hypothesis that they can be explained by the underlying 

codon distribution was confidently rejected. Genetic code table was further used to test 

pathogenicity of variants, which showed significant depletion of pathogenic variants for 

substitutions targeting 3rd codon nucleotide and the enrichment of pathogenicity for 

variants targeting the 2nd nucleotide.

The analysis was complemented with the assessment of SIFT and PolyPhen, two 

bioinformatical tools used in the 1000 Genomes Project to test the pathogenicity of all 

nsSNP variants. Only disease causing variants that could have been confidently mapped 

were tested and PolyPhen showed slightly better classification accuracy of disease causing 

variants, both in terms of numerical score assignment and group classification.

Population specific substitution maps were constructed for 5 population groups 

defined in the 1000 Genomes Project. African genomes had a significant enrichment for 

almost all amino acid substitutions. This result was consistent with the assessment of all 

structural variants by the 1000 Genomes Consortium that found similar enrichment of 

alternative alleles in genomes from African populations as well as with the out-of-Africa 

model of human origin. Additionally, some unexpected discrepancies between specific 

substitutions were found in several population groups. African genomes were enriched with 

the Lys  Met substitution, while American genomes were depleted of the same. Also, 

European genomes were enriched with the Trp  Ser substitution and African genomes 

depleted of it. This might be a consequence of some underlying biochemical difference.
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A significant symmetry of disease causing frequencies was detected between 

corresponding amino acid substitutions (A  B & B  A) which prompted ranking of amino 

acid pairs based on their average disease association. {Trp,Ser} and {Trp,Cys} were on top of 

these ranks while {Val,Ile}, {Thr,Ser}, {Leu,Ile} and {Lys,Arg} held the bottom. These results 

were consistent with the preceding analyses.

Finally, Trp  Ser substitution was chosen for the structural analysis that was 

conducted through a series of MD simulations. In total, 40 protein simulations were 

performed on 19 different proteins with each one simulated as a wild type and with 

introduced mutation(s) and each simulation at least 30 ns in length. The analysis of results 

was initiated by the construction of distance matrices between C-α atoms of different 

residues. These matrices will be further used to detect structural elements involved in 

conformational changes specific to proteins that have pathogenic Trp  Ser substitution.   
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§ 6. Materials and methods

Accessing Datasets

Data for Uniprot1 and Uniprot2 can be accessed in the archive of UniProt website.[80] File 

names are “humsavar.txt” and “homo_sapiens_variation.txt” respectively. Release version 

2016_02 from February 2016 was used. Newer version of these datasets can be found 

under the current release section of the UniProt website.[81] File names are the same.

Data for the 1000G dataset can be accessed in the 1000 Genomes Project 

repository.[82] It contains fully annotated variant calls from the completed project (main 

phase 3). Variants are provided in a separate file for each chromosome.

All three datasets are also stored with the electronic version of this thesis on the 

accompanying DVD.

Dataset: Uniprot1

This dataset was obtained from the Universal Protein Resource (UniProt) database. UniProt 

is comprised of three subunits: UniProtKB contains extensively curated protein information 

with emphasis on function, classification and cross-references, Uniref combines closely 

related sequences into a single record to speed up sequence similarity searches and UniParc 

is a comprehensive repository of all protein sequences, consisting only of unique identifiers 

and sequences.

Uniprot1 contains information of manually curated human polymorphisms and 

disease mutations and is a part of UniProtKB subunit. It is a tab delimited text file of amino 

acid altering variants imported form Ensemble Variation databases.

Information contained in this dataset are: affected gene-name and UniProt entry of 

its corresponding protein, reference variant identifier, amino acid change in its usual format 

where first amino acid corresponds to the residue in the reference sequence and second, 

the alternative residue introduced as a consequence of the variant, type of variant (whether 

it’s disease causing, benign polymorphism, or unknown), SNP identifier where applicable, 

and finally, disease name and reference for disease causing variants. Overall, there are 

73,266 entries (figure 6.1a).
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Several features of this dataset should be noted. First, it contains small number of 

variants (significantly fewer than other datasets). Second, it is manually curated. Third, 

there is relatively high percentage of disease causing variants. This is expected because of 

the previous point; these variants are of greatest interest for further research. Fourth, 

significant part of the dataset is derived from direct proteomic observations and is not 

obtained through genome variation mapping (even though the majority of the variants are 

still, most likely, discovered in this way). Consequently, there are many entries that don’t 

have their associated SNP identifiers and, more importantly, as will be seen, some of them 

contain amino acid substitutions that can’t be obtained from SNP translations since they 

require multiple nucleotides in their codons to be changed. And fifth, disease causing 

classification for variants should be reliable (because of the second point).

This dataset was used in most of the conducted analysis. Its advantages are simple, 

informative layout that enables various data extraction techniques and reliable disease 

causing classification that contributes to the significance of any disease associated signals. 

Its biggest disadvantage is small sample size.

Dataset: Uniprot2

This is another UniProt dataset. It lists all, un-curated protein altering variants imported 

from the Ensemble database and includes: 1000 Genomes Project, Exome Aggregation 

Consortium, Exome Sequencing Project and Catalogue of Somatic Mutations in Cancer. 

Variant types listed are missense, stop lost and stop gained mutations. When available, 

additional phenotype or disease descriptors are imported from Ensemble and included with 

their corresponding variants.

In this datasets, each entry corresponds to the mapping made between UniProtKB 

isoform sequence and Ensembl transcript. There are two layers of redundancy in the data 

introduced by this procedure. First, more than one transcript can often be mapped to the 

same isoform sequence (due to the alternative splicing events), consequently the same 

variant that occurs in more than one transcript is described multiple times in the dataset. 

And second, due to the automated mapping pipeline, whenever a variant has more than 

one phenotype or disease description, each description is recorded as a separate entry and 
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the variant is therefore duplicated. Second redundancy is clearly undesirable and is 

therefore discarded. As for the first redundancy, there are arguments both for discarding 

and for leaving it. From genomic standpoint, it makes more sense to discard this 

redundancy - if some SNP variant is known to be disease associated (e.g. from GWAS), then 

it would make no sense duplicating it simply because it appeared in the protein coding 

region that codes for multiple isoforms. However, from proteomic standpoint there is also 

an argument for leaving this redundancy - maybe some isoforms affected by the variant 

have functionally impaired proteins and for others, the protein function is unaffected, if this 

discrepancy was recorded, than it should be preserved. The same analysis was conducted 

with this redundancy both discarded and retained and the results were nearly identical. 

Since the case described under the genomic standpoint is a more plausible scenario (after 

all, data was obtained through translation of the protein-coding genomic regions), this 

dataset will be used when discussing the results. Discarding both redundancies leaves the 

dataset with 3,843,322 variants (figure 6.1b).

Disease, 
27553Non-

disease, 
38285

Uniprot1

Non-
disease, 
3826983

Disease, 
16339

Uniprot2

Figure 6.1: Distribution of disease and non-disease variants, a) Uniprot1 dataset, b) Uniprot2 

dataset.

Corresponding features of this dataset are: First, it’s ~50 times bigger than Uniprot1 

and is the largest dataset available as it combines findings of 1000 Genomes with several 

other, similar projects. This contributes to the statistical significance of results and 

therefore, in almost all analysis, Uniprot2 results should be taken with the greatest 

confidence. Second, it was generated by the automated pipeline and its entries have not 

been examined. Third, it contains information on pathogenicity for some of the variants, but 

the classification is more ambiguous. Every variant was merged with its corresponding 

Ensemble entry. If there was any information available, it was represented as a keyword and 

a) b)
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these keywords were extracted by the automated pipeline.[83] From all detected entries, the 

following classifiers were accepted as disease associated: "pathogenic”, ”not 

provided,pathogenic”, “uncertain significance,pathogenic”, “likely pathogenic,pathogenic” 

and “pathogenic,other”. Fourth, all variants were obtained by SNP translations and, 

therefore, only a subset of all possible amino acid substitutions (381) can be observed - 

those that can occur by a single nucleotide change in their codon (150; see chapter 2.2.) In 

addition to this, and for the same reason, introduction and loss of a stop codon are also 

observed. And fifth, since this data isn’t manually curated, disease classification is not as 

reliable as for the Uniprot1 dataset.

Advantages of the Uniprot2 dataset are its size and the inclusion of stop codon 

variants. Slight disadvantage is the ambiguity of disease associated variants classification. 

This dataset was also used in all conducted analysis.

Dataset: 1000G

Uniprot1 and Uniprot2 contain processed data, which means that the original data from the 

genome sequencing projects (or other sources) was retrieved and modified to enable the 

exploration of amino acid variants. In this process, some information was discarded. For 

that reason, the original 1000 Genome variant calling output contains some additional 

results that can be used to complement the amino acid variation analysis. The 1000G 

dataset contains this raw output and is used in several steps of the analysis. Notably, it 

contains information about variants in the whole genome and not just its protein coding 

regions, which is why several filtering steps were necessary to extract only the SNP causing 

variants. After this filtering, dataset contained 576,738 variants. 

Four aspects of the 1000G dataset were explored. First, while Uniprot1 and Uniprot2 

provide a comprehensive list of known amino acid variants, they do not contain their 

occurrence frequencies. This information is recorded in 1000G, and from it, the full map of 

amino acid substitutions was constructed (see chapter 4.7.) Second, 1000G also contains 

variant frequencies for each of the five population groups studied in the 1000 Genome 

Project: East Asians, South Asians, Europeans, Americans and Africans. This enabled 

construction of population-specific maps. Each of them also considered occurrence 
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frequencies for individual variants (see chapter 4.7.1.) Third, since this dataset contains 

sequencing information on genomic level, synonymous variants found in the protein-coding 

regions are also recorded. These were used to assess non-synonymous mutation 

frequencies (see chapter 4.5.3.) And fourth, the main disadvantage of the 1000G dataset is 

that it doesn’t contain information on pathogenicity of individual variants. However, it 

includes scores of protein variant disease classification assessments from two 

bioinformatical tools: PolyPhen[84] and SIFT.[85] These scores were analyzed with respect to 

the percentage of correct classifications for known disease causing variants (see chapter 

4.6.)

Disease casing map symmetry

To test for the significance of correlation between symmetrical elements in disease causing 

Uniprot2 map the following procedure was applied: First, Pearson correlation coefficient 

between the corresponding elements was calculated. Then, underlying matrix elements of 

the map were randomly rearranged and the correlation coefficient calculated for the new 

map. This procedure was repeated one million times. Finally, p-value for the significance of 

the initial correlation coefficient was assessed by comparing the number of coefficients 

from simulated matrices that had the value larger than the one from the initial matrix (one 

sided test, as we don’t expect negative correlation). Null hypothesis tested in this manner 

was that, given the disease causing percentages from the Uniprot2 dataset, the association 

between corresponding amino acid substitutions is ≤ 0. Null hypothesis was rejected with 

high confidence (p-value = 5.1 × 10-4; figure 6.2).

Notably, the p-value was slightly higher than the one calculated by the one sided 

Pearson correlation test which assesses the relation between corresponding elements, but 

without the condition imposed on their values (Pearson p-value = 2.8 × 10-4).
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Figure 6.2: Density plot of correlation coefficients between symmetrical elements for 

simulated Uniprot2 disease causing variant maps.

Percentage of amino acids affected by variants

Uniprot1 dataset contains reliable references to proteins affected by all the variants. This 

information can be used to assess the overall fraction of substitutions that occur for 

different amino acids. To explore this, number of occurrences of each amino acid was 

counted in the primary structure of all proteins that the variants in Uniprot1 dataset affect. 

Fraction of each individual amino acid in the proteome that is affected by variants was 

calculated by counting the number of occurrences of that amino acid as the reference 

residue in the Uniprot1 dataset and dividing it by the number of occurrences of that residue 

in all protein sequences.

Amino acid sequences for all required proteins were obtained from the UniProt 

repository.[7]

Normalization matrix for structural classification

Since the number of amino acids in each class and the number of possible transitions 

between classes differ, normalization of transition counts was necessary. This was achieved 
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by dividing the total number of transitions with the normalization matrix (table 7). This 

matrix counts the number of possible transitions between groups by taking both 

discrepancies into account. Each value corresponds to the number of amino acid 

substitutions that cause the given transition and can occur as a consequence of a SNP. The 

second condition was imposed because the number of such substitutions greatly exceeds 

the ones that occur with multiple nucleotide changes in Uniprot1 dataset and are the only 

ones recorded in Uniprot2. Effectively, it’s the number of amino acid substitutions that 

cause the given transition type and have occurrence frequency > 0 in the Uniprot2 dataset.

Table 7: Normalization matrix for structural classification.

neg pho pol pos
neg 2 6 3 2
pho 6 32 18 10
pol 3 18 14 10
pos 2 10 10 4

Expected number of variants for each codon position

To calculate the expected number of variants for each codon position, the sum of 

substitutions that correspond to variants caused by SNPs in a specific position (intersection 

of tables in extended data 4 and 1a) was divided by the sum of the whole substitution 

matrix (extended data 1a). That way, only variants that correspond to exactly one SNP 

position are counted. As a consequence, some substitutions are not included into any of the 

three sets and the percentages of counts sum to slightly less than 1.

Substitution frequencies in individual population groups

To analyze the variation of amino acid substitutions between 5 population groups, the 

following procedure was applied: First, all missense variants from the 1000G dataset were 

grouped according to the amino acid substitution they specify. Then, the average 

occurrence frequencies of all substitutions were calculated for each group. This step 

included the assumption that each population group has the same number of individuals 

sequenced. Since variant distributions of individual populations are almost identical, minor 
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deviations from this assumption wouldn’t significantly affect the results. Then, the overall 

substitution frequencies (for all groups combined) were calculated. Finally, for every amino 

acid substitution, the proportion of its occurrence frequency in each population group was 

calculated. With this procedure, frequencies of individual variants in the 1000G dataset 

were taken into account, and the proportion of every amino acid substitution, in each 

population group, obtained. Notably, for every substitution (e.g. Cys  Tyr), values in all 5 

population groups sum to 1.
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§ 7. Extended data

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
Ala 0 0 0 155 0 0 230 428 0 0 0 0 0 0 361 244 957 0 0 771
Arg 0 0 0 0 694 782 0 1771 678 37 491 580 140 0 480 445 198 416 0 0
Asn 0 0 0 1112 0 0 0 0 124 222 0 475 0 0 0 639 225 0 98 0
Asp 352 0 412 0 0 0 584 939 121 0 0 0 0 0 0 0 0 0 141 163
Cys 0 1887 0 0 0 0 0 297 0 0 0 0 0 170 0 365 0 226 841 0
Gln 0 2215 0 0 0 0 434 0 335 0 174 207 0 0 177 0 0 0 0 0
Glu 250 0 0 499 0 277 0 763 0 0 0 626 0 0 0 0 0 0 0 190
Gly 363 737 0 572 189 0 541 0 0 0 0 0 0 0 0 451 0 96 0 312
His 0 2013 169 363 0 487 0 0 0 0 125 0 0 0 211 0 0 0 416 0
Ile 0 66 145 0 0 0 0 0 0 0 187 44 396 111 0 192 870 0 0 1312
Leu 0 489 0 0 0 125 0 0 112 172 0 0 178 720 1765 662 0 77 0 612
Lys 0 418 500 0 0 223 1698 0 0 38 0 0 124 0 0 0 176 0 0 0
Met 0 54 0 0 0 0 0 0 0 351 215 80 0 0 0 0 977 0 0 1173
Phe 0 0 0 0 252 0 0 0 0 193 734 0 0 0 0 577 0 0 118 240
Pro 562 558 0 0 0 262 0 0 187 0 1585 0 0 0 0 658 349 0 0 0
Ser 445 437 986 0 337 0 0 1202 0 135 281 0 0 407 1113 0 392 97 140 0
Thr 1926 167 169 0 0 0 0 0 0 903 0 195 524 0 387 390 0 0 0 0
Trp 0 1632 0 0 173 0 0 126 0 0 69 0 0 0 0 62 0 0 0 0
Tyr 0 0 110 359 697 0 0 0 460 0 0 0 0 93 0 198 0 0 0 0
Val 1662 0 0 288 0 0 192 701 0 1050 673 0 667 152 0 0 0 0 0 0

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Ter Thr Trp Tyr Val
Ala 0 0 0 7933 0 0 13684 24130 0 0 0 0 0 0 31163 11905 0 50414 0 0 38146
Arg 0 0 0 0 16211 39044 0 75196 34045 1437 15034 42407 5199 0 30105 30291 875 9731 10044 0 0
Asn 0 0 0 62778 0 0 0 0 7233 7487 0 28332 0 0 0 37846 0 15537 0 3969 0
Asp 14837 0 20076 0 0 0 39193 36427 6215 0 0 0 0 0 0 0 0 0 0 3500 4303
Cys 0 89482 0 0 0 0 0 11136 0 0 0 0 0 7093 0 25329 364 0 8118 40242 0
Gln 0 115786 0 0 0 0 28221 0 19182 0 6767 12813 0 0 9447 0 861 0 0 0 0
Glu 10853 0 0 33513 0 20719 0 32539 0 0 0 34311 0 0 0 0 257 0 0 0 5059
Gly 25840 39434 0 33416 6234 0 32069 0 0 0 0 0 0 0 0 27316 247 0 2778 0 14193
His 0 93083 9184 18216 0 30156 0 0 0 0 4801 0 0 0 12550 0 0 0 0 19068 0
Ile 0 3731 6812 0 0 0 0 0 0 0 12471 2917 30041 4949 0 10099 0 60459 0 0 68940
Leu 0 26646 0 0 0 7730 0 0 7035 13158 0 0 13533 37907 104886 38453 363 0 2793 0 44996
Lys 0 23138 24296 0 0 14754 91778 0 0 1509 0 0 4976 0 0 0 217 9007 0 0 0
Met 0 2521 0 0 0 0 0 0 0 23918 11955 3971 0 0 0 0 0 43377 0 0 63238
Phe 0 0 0 0 8185 0 0 0 0 10222 52261 0 0 0 0 33871 0 0 0 7150 12640
Pro 20660 17908 0 0 0 11716 0 0 8385 0 41097 0 0 0 0 25056 0 13778 0 0 0
Ser 37159 24593 57129 0 11318 0 0 54590 0 5384 10472 0 0 13358 81378 0 510 28312 2613 5258 0
Ter 0 29072 0 0 4308 26510 12401 2269 0 0 2713 4030 0 0 0 6504 0 0 14618 11751 0
Thr 112260 10192 8068 0 0 0 0 0 0 46206 0 12918 27884 0 30140 25217 0 0 0 0 0
Trp 0 75848 0 0 5070 0 0 5942 0 0 3312 0 0 0 0 3298 737 0 0 0 0
Tyr 0 0 5157 17445 22390 0 0 0 30213 0 0 0 0 4962 0 11024 549 0 0 0 0
Val 104807 0 0 15310 0 0 10636 29246 0 70330 46822 0 38022 7316 0 0 0 0 0 0 0

Extended data 1: Tables of counts for maps of amino acid substitutions, a) Uniprot1                 
b) Uniprot2.

          reference
         alternative

        reference
       alternative

a)

b)
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neg 
Asp

neg 
Glu

pho 
Ala

pho 
Gly

pho 
Ile

pho 
Leu

pho 
Met

pho 
Phe

pho 
Pro

pho 
Trp

pho 
Val

pol 
Asn

pol 
Cys

pol 
Gln

pol 
Ser

pol 
Thr

pol 
Tyr

pos 
Arg

pos 
His

pos 
Lys

neg Asp 0.18 0.5 0.58 0.6 0.27 0.64 0.36
neg Glu 0.21 0.44 0.54 0.52 0.19 0.31
pho Ala 0.32 0.28 0.33 0.2 0.18 0.07 0.15
pho Gly 0.45 0.29 0.17 0.62 0.46 0.68 0.16 0.41
pho Ile 0.14 0.28 0.45 0.11 0.56 0.35 0.32 0.23 0.48
pho Leu 0.21 0.2 0.37 0.37 0.52 0.23 0.24 0.4 0.5 0.4
pho Met 0.28 0.17 0.29 0.31 0.28 0.22
pho Phe 0.5 0.32 0.53 0.75 0.41 0.19
pho Pro 0.49 0.65 0.51 0.39 0.38 0.65 0.53
pho Trp 0.52 0.39 0.66 0.56 0.54
pho Val 0.53 0.33 0.29 0.62 0.08 0.21 0.26 0.55
pol Asn 0.38 0.63 0.2 0.32 0.57 0.27 0.28
pol Cys 0.65 0.58 0.66 0.27 0.6 0.53
pol Gln 0.21 0.51 0.31 0.39 0.27 0.2
pol Ser 0.18 0.43 0.61 0.4 0.54 0.26 0.72 0.26 0.53 0.11 0.46 0.41
pol Thr 0.25 0.37 0.32 0.29 0.31 0.13 0.37 0.3
pol Tyr 0.51 0.16 0.44 0.67 0.35 0.33
pos Arg 0.6 0.59 0.61 0.67 0.43 0.58 0.64 0.22 0.39 0.49 0.29 0.17
pos His 0.42 0.46 0.32 0.3 0.22 0.39 0.4
pos Lys 0.43 0.66 0.62 0.4 0.28 0.37 0.14

neg-
Asp

neg-
Glu

pho-
Ala

pho-
Gly

pho-
Ile

pho-
Leu

pho-
Met

pho-
Phe

pho-
Pro

pho-
Trp

pho-
Val

pol-
Asn

pol-
Cys

pol-
Gln

pol-
Ser

pol-
Thr

pol-
Tyr

pos-
Arg

pos-
His

pos-
Lys

neg-Asp 0.0018 0.0049 0.01 0.0114 0.0033 0.0109 0.0056
neg-Glu 0.0011 0.0075 0.0077 0.0089 0.0046 0.0039
pho-Ala 0.0039 0.0023 0.0047 0.0019 0.0017 0.00140.0017
pho-Gly 0.004 0.0026 0.0025 0.0115 0.0049 0.0075 0.0014 0.0089
pho-Ile 0.0008 0.0019 0.0051 0.0015 0.0066 0.003 0.003 0.0032 0.0051
pho-Leu 0.0015 0.0019 0.0038 0.0036 0.0107 0.0026 0.0026 0.0053 0.009 0.0037
pho-Met 0.0019 0.0014 0.0031 0.0044 0.004 0.0028
pho-Phe 0.004 0.0022 0.0052 0.0089 0.0037 0.0021
pho-Pro 0.0064 0.0115 0.0055 0.00520.0046 0.0133 0.0051
pho-Trp 0.0081 0.0063 0.0093 0.0097 0.0073
pho-Val 0.0056 0.004 0.0026 0.0106 0.001 0.0018 0.0026 0.0052
pol-Asn 0.0036 0.0092 0.00170.00210.0081 0.0036 0.0026
pol-Cys 0.009 0.0073 0.0111 0.0023 0.0054 0.0068
pol-Gln 0.0034 0.0068 0.0046 0.0049 0.0023 0.0036
pol-Ser 0.0022 0.0061 0.0067 0.005 0.0076 0.002 0.0165 0.0026 0.0072 0.001 0.008 0.005
pol-Thr 0.0025 0.0034 0.003 0.0024 0.004 0.0015 0.0034 0.002
pol-Tyr 0.006 0.005 0.0043 0.0084 0.0039 0.0026
pos-Arg 0.0088 0.0063 0.0105 0.0125 0.0034 0.0124 0.011 0.0022 0.00240.0053 0.003 0.0014
pos-His 0.0046 0.0069 0.0033 0.0032 0.0017 0.0047 0.0063
pos-Lys 0.0057 0.0106 0.0084 0.0037 0.0061 0.0047 0.0016

Extended data 2: a) normalized Uniprot1 map of disease casing variants, b) normalized 
Uniprot2 map of disease casing variants, c) table for Uniprot1 map of disease causing 

variants, d) table for Uniprot2 map of disease causing variants.

            reference
         alternative

            reference
         alternative

d)

c)
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neg pho pol pos
neg 542 444 283 380
pho 332 565 405 398
pol 641 490 400 651
pos 1036 385 410 922

neg pho pol pos
neg 0.19 0.54 0.3 0.32
pho 0.37 0.32 0.34 0.51
pol 0.36 0.36 0.37 0.4
pos 0.43 0.56 0.37 0.31

neg pho pol pos

neg 77880 35196 31222 42593

pho 40123 65883 43004 39496

pol 76740 54683 44441 74183

pos 116194 32812 42045 102340

neg pho pol pos

neg 0.0007 0.0041 0.0021 0.002

pho 0.0017 0.0016 0.0018 0.0038

pol 0.0019 0.0019 0.0017 0.0022

pos 0.0026 0.0038 0.0019 0.0019

Extended data 3: Maps based on structural classification, a) Uniprot1 map of normalized 
counts, b) Uniprot1 map of disease percentages, c,d) tables for Uniprot1 maps, e,f) tables 

for Uniprot2 maps.

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu lys Met Phe Pro Ser Thr Trp Tyr Val
Ala 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 0 0 0
Arg 0 4 0 0 2 0 0 6 0 0 0 0 0 0 0 2 0 2 0 0
Asn 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0
Asp 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0
Cys 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0
Gln 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0 0 0
Glu 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0
Gly 0 6 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0
His 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
Ile 0 0 0 0 0 0 0 0 0 0 4 0 0 2 0 0 0 0 0 3
Leu 0 0 0 0 0 0 0 0 0 4 4 0 2 2 0 0 0 0 0 6
lys 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0

Met 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1
Phe 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 2
Pro 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 0
Ser 4 2 0 0 2 0 0 2 0 0 0 0 0 0 4 0 4 0 0 0
Thr 4 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 0 0
Trp 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Tyr 0 0 2 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
Val 0 0 0 0 0 0 0 0 0 3 6 0 1 2 0 0 0 0 0 0

            reference
                   alternative

            reference
                   alternative

            reference
                   alternative

            reference
                   alternative

            reference
         alternative

b)a)

c) d) f)e)

a)
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Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu lys Met Phe Pro Ser Thr Trp Tyr Val
Ala 0 0 0 2 0 0 2 4 0 0 0 0 0 0 0 0 0 0 0 4
Arg 0 0 0 0 0 2 0 0 2 1 4 2 1 0 4 0 2 0 0 0
Asn 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 2 0 0 0
Asp 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2
Cys 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 2 0
Gln 0 2 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0
Glu 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2
Gly 4 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 4
His 0 2 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0
Ile 0 1 2 0 0 0 0 0 0 0 0 1 0 0 0 2 3 0 0 0
Leu 0 4 0 0 0 2 0 0 2 0 0 0 0 0 4 2 0 1 0 0
lys 0 2 0 0 0 0 0 0 0 1 0 0 1 0 0 0 2 0 0 0

Met 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
Phe 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0
Pro 0 4 0 0 0 2 0 0 2 0 4 0 0 0 0 0 0 0 0 0
Ser 0 0 2 0 2 0 0 0 0 2 2 0 0 2 0 0 2 1 2 0
Thr 0 2 2 0 0 0 0 0 0 3 0 2 1 0 0 2 0 0 0 0
Trp 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
Tyr 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0
Val 4 0 0 2 0 0 2 4 0 0 0 0 0 0 0 0 0 0 0 0

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu lys Met Phe Pro Ser Thr Trp Tyr Val
Ala 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Arg 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
Asn 0 0 2 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
Asp 0 0 0 2 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
Cys 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
Gln 0 0 0 0 0 2 0 0 4 0 0 0 0 0 0 0 0 0 0 0
Glu 0 0 0 4 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
Gly 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0
His 0 0 0 0 0 4 0 0 2 0 0 0 0 0 0 0 0 0 0 0
Ile 0 0 0 0 0 0 0 0 0 6 0 0 3 0 0 0 0 0 0 0
Leu 0 0 0 0 0 0 0 0 0 0 14 0 0 4 0 0 0 0 0 0
lys 0 0 4 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

Met 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0
Phe 0 0 0 0 0 0 0 0 0 0 4 0 0 2 0 0 0 0 0 0
Pro 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0
Ser 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0
Thr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0
Trp 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Tyr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12

Extended data 4: Frequencies of amino acid substitutions based on the genetic code table, 
a) 1st codon base substitutions, b) 2nd codon base substitutions, c) 3rd codon base 

substitutions.

            reference
         alternative

            reference
         alternative

c)
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Ala Cys Asp Glu Phe Gly His Ile lys Leu Met Asn Pro Gln Arg Ser Thr Val Trp Tyr
Ala 0.22 0.18 0.2 0.18 0.16 0.17 0.18
Cys 0.2 0.17 0.18 0.17 0.17 0.18
Asp 0.21 0.17 0.18 0.16 0.18 0.18 0.18
Glu 0.17 0.17 0.17 0.18 0.17 0.12
Phe 0.19 0.2 0.19 0.17 0.18 0.17
Gly 0.17 0.21 0.18 0.2 0.15 0.17 0.22 0.24
His 0.18 0.15 0.21 0.17 0.19 0.18 0.19
Ile 0.2 0.18 0.16 0.19 0.19 0.25 0.15 0.16 0.17
lys 0.18 0.29 0.18 0.17 0.19 0.18 0.19
Leu 0.18 0.17 0.17 0.17 0.17 0.16 0.18 0.17 0.17 0.14
Met 0.2 0.13 0.18 0.12 0.17 0.18
Asn 0.18 0.15 0.18 0.18 0.18 0.19 0.18
Pro 0.19 0.19 0.16 0.14 0.19 0.18 0.2
Gln 0.18 0.17 0.17 0.18 0.17 0.18
Arg 0.18 0.19 0.18 0.16 0.18 0.17 0.16 0.19 0.18 0.19 0.15 0.17
Ser 0.17 0.2 0.19 0.18 0.21 0.16 0.18 0.18 0.18 0.18 0.17 0.22
Thr 0.17 0.18 0.2 0.17 0.19 0.18 0.18 0.19
Val 0.18 0.21 0.18 0.18 0.2 0.17 0.17 0.16
Trp 0.24 0.18 0.2 0.18 0.13
Tyr 0.17 0.18 0.18 0.17 0.13 0.14

Ala Cys Asp Glu Phe Gly His Ile lys  Leu Met Asn Pro Gln  Arg Ser Thr Val Trp Tyr
Ala 0.19 0.19 0.18 0.19 0.19 0.18 0.19
Cys 0.18 0.18 0.18 0.19 0.17 0.19
Asp 0.18 0.19 0.18 0.19 0.19 0.18 0.19
Glu 0.2 0.19 0.2 0.18 0.2 0.19
Phe 0.19 0.17 0.19 0.17 0.19 0.18
Gly 0.18 0.21 0.19 0.2 0.19 0.18 0.2 0.17
His 0.18 0.2 0.19 0.18 0.18 0.19 0.19
Ile 0.18 0.17 0.19 0.19 0.2 0.19 0.21 0.19 0.19
lys 0.18 0.17 0.19 0.18 0.21 0.19 0.2
Leu 0.2 0.16 0.19 0.19 0.18 0.18 0.18 0.19 0.19 0.18
Met 0.19 0.13 0.2 0.16 0.19 0.19
Asn 0.19 0.2 0.21 0.18 0.18 0.18 0.16
Pro 0.19 0.2 0.18 0.19 0.2 0.19 0.21
Gln 0.18 0.18 0.19 0.18 0.18 0.19
Arg 0.19 0.19 0.19 0.22 0.19 0.19 0.19 0.19 0.18 0.19 0.16 0.18
Ser 0.19 0.19 0.18 0.19 0.17 0.2 0.19 0.19 0.19 0.19 0.2 0.19
Thr 0.19 0.18 0.2 0.19 0.2 0.2 0.18 0.18
Val 0.19 0.15 0.21 0.17 0.18 0.19 0.2 0.18
Trp 0.18 0.17 0.18 0.18 0.18
Tyr 0.19 0.18 0.19 0.18 0.19 0.18

Ala Cys Asp Glu Phe Gly His Ile lys  Leu Met Asn Pro Gln  Arg Ser Thr Val Trp Tyr
Ala 0.25 0.26 0.26 0.26 0.3 0.28 0.28
Cys 0.29 0.29 0.28 0.26 0.32 0.27
Asp 0.26 0.28 0.25 0.23 0.27 0.26 0.29
Glu 0.25 0.27 0.26 0.29 0.25 0.35
Phe 0.25 0.3 0.26 0.3 0.29 0.24
Gly 0.29 0.25 0.26 0.24 0.28 0.3 0.23 0.27
His 0.28 0.22 0.28 0.26 0.27 0.26 0.27
Ile 0.24 0.25 0.27 0.28 0.22 0.21 0.3 0.3 0.28
lys 0.27 0.21 0.26 0.31 0.26 0.26 0.25
Leu 0.27 0.32 0.29 0.24 0.27 0.31 0.26 0.28 0.28 0.3
Met 0.26 0.46 0.23 0.38 0.25 0.27
Asn 0.25 0.27 0.23 0.26 0.29 0.3 0.31
Pro 0.28 0.28 0.3 0.28 0.24 0.27 0.23
Gln 0.27 0.27 0.26 0.27 0.28 0.26
Arg 0.28 0.26 0.28 0.23 0.28 0.27 0.25 0.26 0.28 0.28 0.31 0.29
Ser 0.26 0.26 0.29 0.26 0.3 0.26 0.28 0.26 0.27 0.28 0.14 0.26
Thr 0.27 0.28 0.23 0.29 0.25 0.26 0.24 0.28
Val 0.26 0.33 0.21 0.28 0.27 0.27 0.27 0.29
Trp 0.24 0.27 0.29 0.27 0.38
Tyr 0.28 0.27 0.28 0.29 0.31 0.33

            reference
         alternative

            reference
         alternative

a)

c)

b)

            reference
         alternative
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Ala Cys Asp Glu Phe Gly His Ile lys Leu Met Asn Pro Gln Arg Ser Thr Val Trp Tyr
Ala 0.19 0.18 0.18 0.18 0.17 0.18 0.18
Cys 0.14 0.17 0.18 0.19 0.17 0.19
Asp 0.17 0.17 0.19 0.22 0.19 0.2 0.18
Glu 0.19 0.19 0.19 0.17 0.19 0.18
Phe 0.17 0.16 0.19 0.17 0.18 0.21
Gly 0.19 0.15 0.2 0.19 0.19 0.18 0.2 0.14
His 0.19 0.22 0.14 0.19 0.18 0.18 0.18
Ile 0.2 0.2 0.19 0.17 0.2 0.17 0.18 0.19 0.18
lys 0.18 0.18 0.18 0.17 0.18 0.18 0.17
Leu 0.18 0.18 0.18 0.19 0.18 0.16 0.19 0.18 0.18 0.22
Met 0.17 0.14 0.21 0.19 0.19 0.18
Asn 0.19 0.2 0.2 0.18 0.17 0.17 0.15
Pro 0.16 0.18 0.18 0.19 0.2 0.18 0.21
Gln 0.18 0.19 0.18 0.19 0.17 0.19
Arg 0.18 0.18 0.17 0.22 0.17 0.18 0.18 0.18 0.18 0.16 0.18 0.17
Ser 0.18 0.18 0.16 0.18 0.16 0.19 0.17 0.18 0.18 0.18 0.27 0.15
Thr 0.18 0.18 0.19 0.18 0.21 0.19 0.21 0.17
Val 0.18 0.14 0.2 0.19 0.17 0.18 0.19 0.19
Trp 0.19 0.19 0.15 0.18 0.14
Tyr 0.18 0.18 0.18 0.18 0.19 0.18

Ala Cys Asp Glu Phe Gly His Ile lys Leu Met Asn Pro Gln Arg Ser Thr Val Trp Tyr
Ala 0.16 0.19 0.18 0.19 0.18 0.18 0.18
Cys 0.19 0.2 0.19 0.18 0.17 0.18
Asp 0.18 0.2 0.19 0.2 0.18 0.18 0.17
Glu 0.19 0.19 0.18 0.18 0.19 0.16
Phe 0.19 0.16 0.18 0.18 0.16 0.2
Gly 0.18 0.18 0.18 0.17 0.19 0.18 0.16 0.18
His 0.17 0.21 0.18 0.21 0.19 0.19 0.19
Ile 0.18 0.2 0.18 0.18 0.19 0.18 0.17 0.17 0.18
lys 0.19 0.15 0.19 0.17 0.17 0.19 0.18
Leu 0.17 0.17 0.17 0.2 0.19 0.19 0.19 0.18 0.18 0.16
Met 0.18 0.14 0.18 0.16 0.19 0.18
Asn 0.19 0.18 0.17 0.2 0.18 0.15 0.19
Pro 0.17 0.16 0.18 0.2 0.17 0.17 0.15
Gln 0.2 0.18 0.2 0.18 0.19 0.19
Arg 0.18 0.18 0.17 0.17 0.18 0.19 0.21 0.18 0.18 0.18 0.2 0.2
Ser 0.2 0.19 0.18 0.19 0.16 0.19 0.18 0.18 0.18 0.18 0.22 0.17
Thr 0.19 0.18 0.19 0.18 0.15 0.18 0.2 0.18
Val 0.18 0.17 0.19 0.17 0.18 0.18 0.18 0.18
Trp 0.15 0.18 0.18 0.19 0.17
Tyr 0.19 0.18 0.16 0.18 0.18 0.17

Extended data 5: Table of percentages for maps of frequency resolved amino acid 
substitutions in each population group. a) East Asian, b) American, c) African, d) European, 

e) South Asian

            reference
         alternative

d)

e)

            reference
         alternative
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§ 9. Supplements

9.1. Code for programming language R

Most of the analyses for this thesis were conducted in programming language R. The 

computational code is ready for execution and provided with the electronic version of the 

thesis on the accompanying DVD, together with all required datasets. It’s also pasted here 

for quick reference.

#############################################################################################
# Uniprot1
#############################################################################################
library("seqinr")
library("dplyr")
library("Biostrings")
library("tidyr")
library("gplots")
color.final <- colorRampPalette(c("blue","red"), space = "rgb")(299)

# loading and extracting data
# !!setwd to location of datasets
load <- read.fwf("uniprot1.txt", widths = c(10, 11, 12, 15, 14, 12, 10000), header = F, skip 
= 30, stringsAsFactors = F)
old <- substr(load[,4], 3, 5)
new <- sub(".{5}[[:digit:]]*", "", load[,4])
new <- substr(new, 1, 3)
dis <- ifelse(load$V7 == "-", F, T)
sub <- data.frame(old, new)
sub <- sub[1:(nrow(sub) - 5),]
res <- table(sub)[,4:23]
res <- res[-c(1,15,18,23),]
res <- t(res)

# Genetic code
g <- GENETIC_CODE
t0 <- names(g)
codeSwitch <- function(code, position, depth){
  if(substr(code, position, position) == "T"){
    substr(code, position, position) <- "G"
  } else if(substr(code, position, position) == "G"){
    substr(code, position, position) <- "C"
  } else if(substr(code, position, position) == "C"){
    substr(code, position, position) <- "A"
  } else if(substr(code, position, position) == "A"){
    substr(code, position, position) <- "T"
  }
  if(depth != 1){
    return(codeSwitch(code, position, depth - 1))
  } else {
    return(code)
  }
}
for(i in 1:3)
  for(j in 1:3)
    assign(paste("t",i,j, sep = ""), sapply(t0, codeSwitch, position = i, depth = j))
codes <- data.frame(t0,t11,t12,t13,t21,t22,t23,t31,t32,t33)
codes.aa <- data.frame(g[t0])
for(i in 2:10)
  codes.aa[,i] <- g[as.vector(codes[,i])]
codes.aa.res <- table(codes.aa[[1]], codes.aa[[2]])
for(i in 3:10)
  codes.aa.res <- codes.aa.res + table(codes.aa[[1]], codes.aa[[i]])
codes.aa.res <- codes.aa.res[-1,-1]
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rownames(codes.aa.res) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
colnames(codes.aa.res) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
codes.aa.res <- t(codes.aa.res)
codes.aa.res <- codes.aa.res[order(rownames(codes.aa.res)), order(colnames(codes.aa.res))]

# counting by AA type
res.x <- res
res.x[res.x < 10] <- NA
heatmap.2(res.x, Rowv = F, Colv = "Rowv", col = color.final, dendrogram = "none", trace = 
"none", density.info = "none", xlab = "reference", ylab = "alternative",  
          key.xlab = "count", main = "Uniprot1 map")

# normalization
type <- 
c("pho","pos","pol","neg","pol","pol","neg","pho","pos","pho","pho","pos","pho","pho","pho","
pol","pol","pho","pol","pho")
res.type2 <- rowsum(t(rowsum(t(res), type)), type)
codes.aa.res.type <- codes.aa.res
diag(codes.aa.res.type) <- 0
codes.aa.res.type[codes.aa.res.type > 0] <- 1
codes.aa.res.type <- rowsum(t(rowsum(t(codes.aa.res.type), type)), type)
codes.aa.res.type.full <- rowsum(t(rowsum(t(matrix(1, 20, 20)), type)), type)
heatmap.2(res.type2/codes.aa.res.type, Rowv = F, Colv = "Rowv", col = color.final, dendrogram 
= "none", trace = "none", density.info = "none", xlab = "reference type",  
          ylab = "alternative type",main = "Structural classification count map - Uniprot1")
legend("bottomleft",c("neg - negative","pho - hydrophobic","pol - polar","pos - positive"), 
cex = 0.7)

diss <- subset(load, V5 == "Disease       ")
nondiss <- subset(load, V5 == "Polymorphism  ")
old.diss<- substr(diss[,4], 3, 5)
new.diss <- sub(".{5}[[:digit:]]*", "", diss[,4])
new.diss <- substr(new.diss, 1, 3)
sub.diss <- data.frame(old.diss, new.diss)
res.diss <- table(sub.diss)[-16,]
res.diss <- t(res.diss)
old.nondiss<- substr(nondiss[,4], 3, 5)
new.nondiss <- sub(".{5}[[:digit:]]*", "", nondiss[,4])
new.nondiss <- substr(new.nondiss, 1, 3)
sub.nondiss <- data.frame(old.nondiss, new.nondiss)
res.nondiss <- table(sub.nondiss)
res.nondiss <- t(res.nondiss)
res.type.diss <- rowsum(res.diss, type)
res.type.diss <- res.type.diss/as.vector(table(type))
res.type.diss <- t(rowsum(t(res.type.diss), type))
res.type.norm.count.diss <- t(t(res.type.diss) / as.vector(table(type)))
res.type.norm.count.perc.diss <- res.type.norm.count.diss/sum(res.type.norm.count.diss)
res.type.nondiss <- rowsum(res.nondiss, type)
res.type.nondiss <- res.type.nondiss/as.vector(table(type))
res.type.nondiss <- t(rowsum(t(res.type.nondiss), type))
res.type.norm.count.nondiss <- t(t(res.type.nondiss) / as.vector(table(type)))
res.type.norm.count.perc.nondiss <- 
res.type.norm.count.nondiss/sum(res.type.norm.count.nondiss)

# type analysis
res.type.diss <- rowsum(t(rowsum(t(res.diss), type)), type)
res.type.diss <- res.type.diss/res.type2
heatmap.2(res.type.diss, Rowv = F, Colv = "Rowv", col = color.final, dendrogram = "none", 
trace = "none", density.info = "none", xlab = "reference type", ylab =  
            "alternative type", key.xlab = "disease causing percantage",main = "Structural 
classification disease map - Uniprot1")
legend("bottomleft",c("neg - negative","pho - hydrophobic","pol - polar","pos - positive"), 
cex = 0.7)

# AA that change the most
proteins.used <- unique(load$V2[1:73234])
proteins.used <- substr(proteins.used, 1, 6)
proteins.used[proteins.used == "A0A087"] <- "XXXXXX"
ss <- read.fasta("supplement.fasta", seqtype = "AA")
match("sp|A0A087X1C5|CP2D7_HUMAN", names(ss))
names(ss)[3702] <- "XXXXXXXXXXXX"
names(ss) <- substr(names(ss), 4, 9)
ss <- ss[names(ss) %in% proteins.used]
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all <- unname(unlist(ss))
aa.data <- colSums(res)
aa.all <- table(all)
names(aa.all) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","xxx","Val","Trp","xxx","Tyr")
aa.all <- aa.all[order(names(aa.all))][-(21:22)]
par(bg = "white")
plot(aa.data/aa.all, xaxt = "n")
axis(1, at = 1:20, labels = names(aa.all))
barplot(aa.data/aa.all, xlab = "residue", ylab = "pecentage of amino acids affected by 
variants", col = "black", ylim = c(0,0.025))

barplot(colSums(res.diss)/(colSums(res)), xlab = "reference amino acid", ylab = "pecentage of 
disease causing substitutions", ylim = c(0,0.7), main = "Uniprot1")
barplot(rowSums(res.diss)/rowSums(res), xlab = "alternative amino acid", ylab = "pecentage of 
disease causing substitutions", ylim = c(0,0.6), main = "Uniprot1")

area <- 
matrix(c(0.5,20.5,0.5,18.5,2.5,18.5,2.5,9.5,11.5,9.5,11.5,3.5,17.5,3.5,17.5,0.5,20.5,0.5,20.5
,3.5,17.5,3.5,17.5,9.5,11.5,9.5,11.5,18.5,2.5,18.5,2.5,20.5), ncol  
               = 2, byrow = T)
ress <- res
ress[ress < 10] <- 0
res.diss[res.diss < 10] <- 0
aa.dis.subs <- res.diss/ress
rownames(aa.dis.subs) <- paste(type, rownames(aa.dis.subs))
colnames(aa.dis.subs) <- paste(type, colnames(aa.dis.subs))
aa.dis.subs <- aa.dis.subs[order(rownames(aa.dis.subs)), order(colnames(aa.dis.subs))]
aa.dis.subs
heatmap.2(aa.dis.subs, Rowv = NA, Colv = "Rowv", col = color.final, scale = "none", xlab = 
"reference + type", ylab = "alternative + type", main = "Uniprot1 - Disease  
          causing substitutions",
          add.expr = polygon(area, lwd = 3, border = 3), dendrogram = "none", trace = "none", 
density.info = "none", key.xlab = "percentage of disease causing")
legend("bottomleft",c("neg - negative","pho - hydrophobic","pol - polar","pos - positive"), 
cex = 0.65)
# normalized:
heatmap.2(replace(aa.dis.subs, 1:400, scale(as.vector(aa.dis.subs))), Rowv = NA, Colv = 
"Rowv", col = color.final, scale = "none", xlab = "reference + type", ylab =  
            "alternative + type", main = "Uniprot1 - Disease causing substitutions 
(normalized)",
          add.expr = polygon(area, lwd = 3, border = 3), dendrogram = "none", trace = "none", 
density.info = "none")
legend("bottomleft",c("neg - negative","pho - hydrophobic","pol - polar","pos - positive"), 
cex = 0.65)

# Genetic code 2 or more mutations
res.diss.save <- res.diss
res.nondiss.save <- res.nondiss
sum(diag(codes.aa.res))/sum(codes.aa.res)
observed.multi.count <- sum(res * ifelse(codes.aa.res == 0, 1, 0))
observer.multi.perc <- sum(res * ifelse(codes.aa.res == 0, 1, 0))/sum(res)
diss.multi.count <- sum(res.diss.save * ifelse(codes.aa.res == 0, 1, 0))
diss.multi.perc <- diss.multi.count/sum(res.diss.save)
nondiss.multi.count <- sum(res.nondiss.save * ifelse(codes.aa.res == 0, 1, 0))
nondiss.multi.perc <- nondiss.multi.count/sum(res.nondiss.save)
multi.changes <- c(diss.multi.count, nondiss.multi.count)   
names(multi.changes) <- c("dis","nondis")
multi.changes
expected.multi <- 
c(sum(res.diss.save),sum(res.nondiss.save))/(sum(res.diss.save)+sum(res.nondiss.save)) * 
sum(multi.changes)
names(expected.multi) <- c("dis","nondis")
multi <- data.frame(multi.changes,expected.multi)
chisq.test(multi.changes, p = expected.multi, rescale.p = T)
chisq.test(multi)
colnames(multi) <- c("observed","expected")

tt <- codes.aa.res
rownames(tt) <- type
colnames(tt) <- type
diag(tt) <- 1
k <- arrayInd(which(tt == 0), dim(tt))
multi.type.perc <- sum(rownames(tt)[k[,1]] == colnames(tt)[k[,2]])/nrow(k)
diag(tt) <- 0
k <- arrayInd(which(tt != 0), dim(tt))
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single.type.perc <- sum(rownames(tt)[k[,1]] == colnames(tt)[k[,2]])/nrow(k)

# Genetic code by position
for(j in 1:3)
  assign(paste("one",j, sep = ""), sapply(t0, codeSwitch, position = 1, depth = j))
for(j in 1:3)
  assign(paste("two",j, sep = ""), sapply(t0, codeSwitch, position = 2, depth = j))
for(j in 1:3)
  assign(paste("three",j, sep = ""), sapply(t0, codeSwitch, position = 3, depth = j))
codes.one.aa <- data.frame(g[t0], g[one1], g[one2], g[one3])
codes.two.aa <- data.frame(g[t0], g[two1], g[two2], g[two3])
codes.three.aa <- data.frame(g[t0], g[three1], g[three2], g[three3])
codes.one.aa.res <- table(codes.one.aa[[1]], codes.one.aa[[2]]) + table(codes.one.aa[[1]], 
codes.one.aa[[3]]) + table(codes.one.aa[[1]], codes.one.aa[[4]])
codes.two.aa.res <- table(codes.two.aa[[1]], codes.two.aa[[2]]) + table(codes.two.aa[[1]], 
codes.two.aa[[3]]) + table(codes.two.aa[[1]], codes.two.aa[[4]])
codes.three.aa.res <- table(codes.three.aa[[1]], codes.three.aa[[2]]) + 
table(codes.three.aa[[1]], codes.three.aa[[3]]) + table(codes.three.aa[[1]], codes.three.aa 
                                                                                                                                
[[4]])
codes.one.aa.res <- t(codes.one.aa.res[-1,-1])
codes.two.aa.res <- t(codes.two.aa.res[-1,-1])
codes.three.aa.res <- t(codes.three.aa.res[-1,-1])
rownames(codes.one.aa.res) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
rownames(codes.two.aa.res) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
rownames(codes.three.aa.res) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
colnames(codes.one.aa.res) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
colnames(codes.two.aa.res) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
colnames(codes.three.aa.res) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
codes.one.aa.res <- codes.one.aa.res[order(rownames(codes.one.aa.res)), 
order(colnames(codes.one.aa.res))]
codes.two.aa.res <- codes.two.aa.res[order(rownames(codes.two.aa.res)), 
order(colnames(codes.two.aa.res))]
codes.three.aa.res <- codes.three.aa.res[order(rownames(codes.three.aa.res)), 
order(colnames(codes.three.aa.res))]

# expected synonymous by position:
sum(diag(codes.one.aa.res))/sum(codes.one.aa.res)
sum(diag(codes.two.aa.res))/sum(codes.two.aa.res)
sum(diag(codes.three.aa.res))/sum(codes.three.aa.res)

codes.aa.res.save <- codes.aa.res
diag(codes.aa.res.save) <- 0
gcp11 <- sum(ifelse((codes.one.aa.res != 0 & codes.two.aa.res == 0 & codes.three.aa.res == 
0), 1, 0) * codes.one.aa.res)/sum(codes.aa.res.save)
gcp12 <- sum(ifelse((codes.one.aa.res != 0 & codes.two.aa.res == 0 & codes.three.aa.res == 
0), 1, 0) * res)/sum(res)
gcp13 <- sum(ifelse((codes.one.aa.res != 0 & codes.two.aa.res == 0 & codes.three.aa.res == 
0), 1, 0) * res.diss)/sum(res.diss)
gcp14 <- sum(ifelse((codes.one.aa.res != 0 & codes.two.aa.res == 0 & codes.three.aa.res == 
0), 1, 0) * res.nondiss)/sum(res.nondiss)
gcp21 <- sum(ifelse((codes.two.aa.res != 0 & codes.one.aa.res == 0 & codes.three.aa.res == 
0), 1, 0) * codes.two.aa.res)/sum(codes.aa.res.save)
gcp22 <- sum(ifelse((codes.two.aa.res != 0 & codes.one.aa.res == 0 & codes.three.aa.res == 
0), 1, 0) * res)/sum(res)
gcp23 <- sum(ifelse((codes.two.aa.res != 0 & codes.one.aa.res == 0 & codes.three.aa.res == 
0), 1, 0) * res.diss)/sum(res.diss)
gcp24 <- sum(ifelse((codes.two.aa.res != 0 & codes.one.aa.res == 0 & codes.three.aa.res == 
0), 1, 0) * res.nondiss)/sum(res.nondiss)
diag(codes.three.aa.res) <- 0
gcp31 <- sum(ifelse((codes.three.aa.res != 0 & codes.two.aa.res == 0 & codes.one.aa.res == 
0), 1, 0) * codes.three.aa.res)/sum(codes.aa.res.save)
gcp32 <- sum(ifelse((codes.three.aa.res != 0 & codes.two.aa.res == 0 & codes.one.aa.res == 
0), 1, 0) * res)/sum(res)
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gcp33 <- sum(ifelse((codes.three.aa.res != 0 & codes.two.aa.res == 0 & codes.one.aa.res == 
0), 1, 0) * res.diss)/sum(res.diss)
gcp34 <- sum(ifelse((codes.three.aa.res != 0 & codes.two.aa.res == 0 & codes.one.aa.res == 
0), 1, 0) * res.nondiss)/sum(res.nondiss)
gcp <- 
data.frame(c(gcp11,gcp12,gcp13,gcp14),c(gcp21,gcp22,gcp23,gcp24),c(gcp31,gcp32,gcp33,gcp34))
rownames(gcp) <- c("expected","observed","dis","nondis")
colnames(gcp) <- c("1st base", "2nd base", "3rd base")
gcp

# Genectic code by position - test
prob.expected <- c(gcp11,gcp21,gcp31)
prob.dis <- c(sum(res.diss),sum(res.nondiss))
observed <- c(sum(ifelse((codes.one.aa.res != 0 & codes.two.aa.res == 0 & codes.three.aa.res 
== 0), 1, 0) * res),sum(ifelse((codes.two.aa.res != 0 & codes.one.aa.res  
                                                                                                                             
== 0 & codes.three.aa.res == 0), 1, 0) * res),sum(ifelse((codes.three.aa.res != 0 & 
codes.two.aa.res == 0 & codes.one.aa.res == 0), 1, 0) * res))
chisq.test(observed, p = prob.expected, rescale.p = T)$p.value
expected <- sum(observed) * (prob.expected/sum(prob.expected))
dis.1 <- sum(ifelse((codes.one.aa.res != 0 & codes.two.aa.res == 0 & codes.three.aa.res == 
0), 1, 0) * res.diss)
nondis.1 <- sum(ifelse((codes.one.aa.res != 0 & codes.two.aa.res == 0 & codes.three.aa.res == 
0), 1, 0) * res.nondiss)
dis.2 <- sum(ifelse((codes.two.aa.res != 0 & codes.one.aa.res == 0 & codes.three.aa.res == 
0), 1, 0) * res.diss)
nondis.2 <- sum(ifelse((codes.two.aa.res != 0 & codes.one.aa.res == 0 & codes.three.aa.res == 
0), 1, 0) * res.nondiss)
dis.3 <- sum(ifelse((codes.three.aa.res != 0 & codes.two.aa.res == 0 & codes.one.aa.res == 
0), 1, 0) * res.diss)
nondis.3 <- sum(ifelse((codes.three.aa.res != 0 & codes.two.aa.res == 0 & codes.one.aa.res == 
0), 1, 0) * res.nondiss)
chisq.test(c(dis.1,nondis.1), p = prob.dis, rescale.p = T)$p.value
chisq.test(c(dis.2,nondis.2), p = prob.dis, rescale.p = T)$p.value
chisq.test(c(dis.3,nondis.3), p = prob.dis, rescale.p = T)$p.value

chisq.test(res[res > 0 & codes.aa.res > 0], p = codes.aa.res[res > 0 & codes.aa.res > 0], 
rescale.p = T)$p.value

suppressWarnings(chisq.test(res.diss.save[res.nondiss.save > 0], p = 
res.nondiss.save[res.nondiss.save > 0], rescale.p = T))

# pairs
# need to run Uniprot2 befor this
res.diss.combined <- res.diss + t(res.diss)
ress.combinded <- ress + t(ress)
combined <- res.diss.combined/ress.combinded
combined[lower.tri(combined)] <- NaN
comb <- data.frame(expand.grid(rownames(combined), colnames(combined)), as.vector(combined))
comb <- comb[!is.nan(comb[,3]),]
comb[,4] <- 76-rank(comb[,3])
comb2 <- read.table("supplement2")
comb <- as.data.frame(bind_cols(comb, comb2[,3:4]))
comb[,7] <- (comb[,4] + comb[,6])/2
comb <- comb[order(comb[,7]),c(2,1,3,4,5,6,7)]
rownames(comb) <- NULL
colnames(comb) <- c("amino acid","amino acid","disese causing percentage, Uniprot1","rank, 
Uniprot1","disease causing percentage, Uniprot2","rank, Uniprot2","average  
                    rank")

#############################################################################################
# Uniprot2
#############################################################################################
load <- read.table("uniprot2.txt", sep = "\t", header = F, skip = 144, stringsAsFactors = F, 
quote = "", fill = T)
load <- load[grepl(">",load$V10),]
data1 <- load[!duplicated(load$V10),]
data2 <- load[!duplicated(load[c("V10", "V13")]),]

# subset
dis.string <- c("pathogenic","not provided,pathogenic","uncertain 
significance,pathogenic","likely pathogenic,pathogenic","pathogenic,other")
data2.dis <- data2[data2$V6 %in% dis.string,]
data1.dis <- data1[data1$V6 %in% dis.string,]
data2.nondis <- data2[!(data2$V6 %in% dis.string),]
data1.nondis <- data1[!(data1$V6 %in% dis.string),]
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# res
old <- substr(load[,3], 3, 5)
new <- sub(".{5}[[:digit:]]*", "", load[,3])
new <- substr(new, 1, 3)
res.full <- t(table(old,new)[-5,])
res <- res.full[-17,-17]

old <- substr(data1[,3], 3, 5)
new <- sub(".{5}[[:digit:]]*", "", data1[,3])
new <- substr(new, 1, 3)
res1.full <- t(table(old,new)[-5,])
res1 <- res1.full[-17,-17]

old <- substr(data2[,3], 3, 5)
new <- sub(".{5}[[:digit:]]*", "", data2[,3])
new <- substr(new, 1, 3)
res2.full <- t(table(old,new)[-5,])
res2 <- res2.full[-17,-17]

chisq.test(res1[res2 > 0], p = res2[res2 > 0], rescale.p = T)$p.value

# heatmap
res.x <- res1.full
res.x[res.x < 10] <- NA
heatmap.2(res.x, Rowv = F, Colv = "Rowv", col = color.final, dendrogram = "none", trace = 
"none", density.info = "none", xlab = "reference", ylab = "alternative",  
          key.xlab = "count", main = "Uniprot2 map")

# normalization 
type <- 
c("pho","pos","pol","neg","pol","pol","neg","pho","pos","pho","pho","pos","pho","pho","pho","
pol","pol","pho","pol","pho")
res.type2 <- rowsum(t(rowsum(t(res), type)), type)
codes.aa.res.type <- codes.aa.res
diag(codes.aa.res.type) <- 0
codes.aa.res.type[codes.aa.res.type > 0] <- 1
codes.aa.res.type <- rowsum(t(rowsum(t(codes.aa.res.type), type)), type)
codes.aa.res.type.full <- rowsum(t(rowsum(t(matrix(1, 20, 20)), type)), type)
heatmap.2(res.type2/codes.aa.res.type, Rowv = F, Colv = "Rowv", col = color.final, dendrogram 
= "none", trace = "none", density.info = "none", xlab = "reference type",  
          ylab = "alternative type", main = "Structural classification count map - Uniprot2")
legend("bottomleft",c("neg - negative","pho - hydrophobic","pol - polar","pos - 
positive"),cex=0.7)

# res subset
old <- substr(data1.dis[,3], 3, 5)
new <- sub(".{5}[[:digit:]]*", "", data1.dis[,3])
new <- substr(new, 1, 3)
res1.dis.full <- t(table(old,new)[-5,])
res1.dis <- res1.dis.full[-17,-17]
old <- substr(data1.nondis[,3], 3, 5)
new <- sub(".{5}[[:digit:]]*", "", data1.nondis[,3])
new <- substr(new, 1, 3)
res1.nondis.full <- t(table(old,new)[-5,])
res1.nondis <- res1.nondis.full[-17,-17]
old <- substr(data2.dis[,3], 3, 5)
new <- sub(".{5}[[:digit:]]*", "", data2.dis[,3])
new <- substr(new, 1, 3)
res2.dis.full <- t(table(old,new)[-5,])
res2.dis <- res2.dis.full[-17,-17]
old <- substr(data2.nondis[,3], 3, 5)
new <- sub(".{5}[[:digit:]]*", "", data2.nondis[,3])
new <- substr(new, 1, 3)
res2.nondis.full <- t(table(old,new)[-5,])
res2.nondis <- res2.nondis.full[-17,-17]

# Type
res.type.diss.1 <- rowsum(t(rowsum(t(res1.dis), type)), type)
res.type.diss.2 <- rowsum(t(rowsum(t(res2.dis), type)), type)
res.type.diss.1 <- res.type.diss.1/res.type2
res.type.diss.2 <- res.type.diss.2/res.type2
heatmap.2(res.type.diss.1, Rowv = F, Colv = "Rowv", col = color.final, dendrogram = "none", 
trace = "none", density.info = "none", xlab = "reference type", ylab =  
            "alternative type", key.xlab = "disease causing percantage",main = "Structural 
classification disease map - Uniprot2")
legend("bottomleft",c("neg - negative","pho - hydrophobic","pol - polar","pos - positive"), 
cex = 0.7)
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# dis AA
barplot(colSums(res1.dis.full)/colSums(res1.full), xlab = "reference amino acid", ylab = 
"pecentage of disease causing substitutions", ylim = c(0,0.025), main =  
          "Uniprot2")
barplot(rowSums(res1.dis.full)/rowSums(res1.full), xlab = "alternative amino acid", ylab = 
"pecentage of disease causing substitutions", ylim = c(0,0.05), main =  
          "Uniprot2")
barplot(rowSums(res1.dis)/rowSums(res1), xlab = "alternative amino acid", ylab = "pecentage 
of disease causing substitutions", ylim = c(0,0.01), main = "Uniprot2")

# dis heatmap
ress <- res1
aa.dis.subs <- res1.dis/ress
rownames(aa.dis.subs) <- paste(type, rownames(aa.dis.subs))
colnames(aa.dis.subs) <- paste(type, colnames(aa.dis.subs))
aa.dis.subs <- aa.dis.subs[order(rownames(aa.dis.subs)), order(colnames(aa.dis.subs))]
aa.dis.subs
heatmap.2(aa.dis.subs, Rowv = NA, Colv = "Rowv", col = color.final, scale = "none", xlab = 
"reference + type", ylab = "alternative + type", main = "Uniprot2 - Disease  
          causing substitutions",
          add.expr = polygon(area, lwd = 3, border = 3), dendrogram = "none", trace = "none", 
density.info = "none", key.xlab = "percentage of disease causing")
legend("bottomleft",c("neg - negative","pho - hydrophobic","pol - polar","pos - positive"), 
cex = 0.65)
# normalized:
heatmap.2(replace(aa.dis.subs, 1:400, scale(as.vector(aa.dis.subs))), Rowv = NA, Colv = 
"Rowv", col = color.final, scale = "none", xlab = "reference + type", ylab =  
            "alternative + type", main = "Uniprot2 - Disease causing substitutions 
(normalized)",
          add.expr = polygon(area, lwd = 3, border = 3), dendrogram = "none", trace = "none", 
density.info = "none")
legend("bottomleft",c("neg - negative","pho - hydrophobic","pol - polar","pos - positive"), 
cex = 0.65)

# Genetic code chi sq test
chisq.test(res1[res1 > 0], p = codes.aa.res[res1 > 0], rescale.p = T)
chisq.test(res2, p = codes.aa.res, rescale.p = T)

# Genectic code by position - test
prob.expected <- c(gcp11,gcp21,gcp31)
prob.dis <- c(sum(res1.dis),sum(res1.nondis))
observed <- c(sum(ifelse((codes.one.aa.res != 0 & codes.two.aa.res == 0 & codes.three.aa.res 
== 0), 1, 0) * res1),sum(ifelse((codes.two.aa.res != 0 & codes.one.aa.res  
                                                                                                                              
== 0 & codes.three.aa.res == 0), 1, 0) * res1),sum(ifelse((codes.three.aa.res != 0 & 
codes.two.aa.res == 0 & codes.one.aa.res == 0), 1, 0) * res1))
chisq.test(observed, p = prob.expected, rescale.p = T)$p.value
expected <- sum(observed) * (prob.expected/sum(prob.expected))
dis.1 <- sum(ifelse((codes.one.aa.res != 0 & codes.two.aa.res == 0 & codes.three.aa.res == 
0), 1, 0) * res1.dis)
nondis.1 <- sum(ifelse((codes.one.aa.res != 0 & codes.two.aa.res == 0 & codes.three.aa.res == 
0), 1, 0) * res1.nondis)
dis.2 <- sum(ifelse((codes.two.aa.res != 0 & codes.one.aa.res == 0 & codes.three.aa.res == 
0), 1, 0) * res1.dis)
nondis.2 <- sum(ifelse((codes.two.aa.res != 0 & codes.one.aa.res == 0 & codes.three.aa.res == 
0), 1, 0) * res1.nondis)
dis.3 <- sum(ifelse((codes.three.aa.res != 0 & codes.two.aa.res == 0 & codes.one.aa.res == 
0), 1, 0) * res1.dis)
nondis.3 <- sum(ifelse((codes.three.aa.res != 0 & codes.two.aa.res == 0 & codes.one.aa.res == 
0), 1, 0) * res1.nondis)
chisq.test(c(dis.1,nondis.1), p = prob.dis, rescale.p = T)$p.value
chisq.test(c(dis.2,nondis.2), p = prob.dis, rescale.p = T)$p.value
chisq.test(c(dis.3,nondis.3), p = prob.dis, rescale.p = T)$p.value
gcpp <- t(data.frame(as.character(prob.expected), as.character(observed), 
as.character(c(dis.1,dis.2,dis.3)),as.character(c(nondis.1,nondis.2,nondis.3))))
prob.expected/sum(prob.expected) * sum(observed)
prob.dis/sum(prob.dis) * sum(c(dis.3+nondis.3))

# res1.dis correlation test
sim.res.save <- res1
res1 <- res1.dis/res1
real.cor <- cor(res1[upper.tri(res1) & !is.na(res1)], t(res1)[upper.tri(res1) & 
!is.na(res1)])
sim.cor <- function(){
  ss <- sample(res1[!is.na(res1)],150)
  return(cor(ss[1:75],ss[76:150]))
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}
set.seed(1)
test.cor <- replicate(1000000, sim.cor())
plot(density(c(real.cor,test.cor)), xlab = "Correlation", main = "Correlation simulation")
points(real.cor,0, col = 2)
legend("topright","real correlation",col=2,pch=1)
(test.cor.p <- (sum(real.cor < test.cor)+1)/(1000001))
res1 <- sim.res.save
cor.test(res1[upper.tri(res1) & !is.na(res1)], t(res1)[upper.tri(res1) & !is.na(res1)], 
alternative = "g")$p.value

# combined
res.diss.combined <- res1.dis + t(res1.dis)
ress.combinded <- res1 + t(res1)
combined <- res.diss.combined/ress.combinded
combined[lower.tri(combined)] <- NaN
comb <- data.frame(expand.grid(rownames(combined), colnames(combined)), as.vector(combined))
comb <- comb[!is.nan(comb[,3]),]
comb[,4] <- 76-rank(comb[,3])
write.table(comb, "supplement2")
comb <- comb[order(comb[,4]),c(2,1,3,4)]

#############################################################################################
# 1000G
#############################################################################################
# !!setwd to location of 1000g dataset
# !!extract files in the 1000g folder
res <- as.data.frame(matrix(ncol = 7, nrow = 0))
colnames(res) <- c("old","new","rs","pp","pp.sc","sift","sift.sc")
res[,1:7] <- sapply(res[,1:7], as.character)
sum.miss <- 0
sum.syn <- 0

for(i in 1:22){
  file.name <- 
paste("ALL.chr",i,".phase3_shapeit2_mvncall_integrated_v5.20130502.sites.annotation.vcf", sep 
= "")
  load <- read.table(file.name, header = F, skip = 258, sep = "", stringsAsFactors = F)
  t <- (grepl("missense", load[,8]) & nchar(load$V4) == 1 & nchar(load$V5) == 1)
  tt <- (grepl("synonymous", load[,8]) & nchar(load$V4) == 1 & nchar(load$V5) == 1)
  sum.miss <- sum.miss + sum(t)
  sum.syn <- sum.syn + sum(tt)
  data <- subset(load, subset = t)
  rs <- data[,3]
  pp <- as.character(lapply(strsplit(data[,8], split = "\\|"), "[", 18))
  pp.sc <- sapply(strsplit(pp, split = "[\\(|\\)]"), "[", 2)
  pp <- sapply(strsplit(pp, split = "[\\(|\\)]"), "[", 1)
  sift <- as.character(lapply(strsplit(data[,8], split = "\\|"), "[", 17))
  sift.sc <- sapply(strsplit(sift, split = "[\\(|\\)]"), "[", 2)
  sift <- sapply(strsplit(sift, split = "[\\(|\\)]"), "[", 1)
  data <- strsplit(data[,8], split = "\\/")
  old <- as.character(lapply(data, "[[", 2))
  new <- as.character(lapply(data, "[[", 1))
  old <- substr(old, 1, 1)
  new <- substr(new, nchar(new), nchar(new))
  res <- bind_rows(res, data.frame(old, new, rs, pp, pp.sc, sift, sift.sc))
}

colnames(res) <- c("new", "old", "rs", "pp","pp.sc","sift","sift.sc")
res.full <- table(res[,1:2])[,-18]
colnames(res.full) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
rownames(res.full) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
res.full <- res.full[order(rownames(res.full)), order(colnames(res.full))]
res.save <- res

# synonymous
sum(diag(codes.aa.res))/sum(codes.aa.res)
sum.syn/(sum.syn + sum.miss)

# chisq test
diag(codes.aa.res) <- 0
chisq.test(x = res.full[codes.aa.res != 0], p = codes.aa.res[codes.aa.res != 0], rescale.p = 
T)
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# scores
t <- scan("supplement3.txt", what = "character", sep = "")
res.scores <- res.save[res.save$rs %in% t,]
res.dis <- table(res.scores$new, res.scores$old)
rownames(res.dis) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
colnames(res.dis) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
res.dis <- res.dis[order(rownames(res.dis)), order(colnames(res.dis))]

par(mfrow=c(2,2))
plot(density(as.numeric(res.save$pp.sc), na.rm = T), col = 11, xlab = "PolyPhen value", main 
= "PolyPhen prediction - Scores")
lines(density(as.numeric(res.scores$pp.sc), na.rm = T), col = 2)
legend(x = "topright", legend = c("all","disease"), col = c(11, 2), lty = 1, cex = 0.7)
barplot(rbind((table(res.scores$pp)/sum(table(res.scores$pp))),(table(res.save$pp)/sum(table(
res.save$pp)))), col = c(2,3), beside = T, xlab = "PolyPhen class",
        main = "PolyPhen prediction - Classes", ylab = "Percentage of data classified", 
cex.names = 0.6)
legend(x = "topright", legend = c("all","disease"), col = c(3, 2), pch = 16, cex = 0.7)
# par(mfrow=c(1,2))
plot(density(as.numeric(res.save$sift.sc), na.rm = T), col = 11, xlab = "SIFT value", main = 
"SIFT prediction - Scores")
lines(density(as.numeric(res.scores$sift.sc), na.rm = T), col = 2)
legend(x = "topright", legend = c("all","disease"), col = c(11, 2), lty = 1, cex = 0.7)
barplot(rbind((table(res.scores$sift)/sum(table(res.scores$sift))),(table(res.save$sift)/sum(
table(res.save$sift)))), col = c(2,3), beside = T, xlab = "SIFT class",
        main = "SIFT prediction - Classes", ylab = "Percentage of data classified")
legend(x = "top", legend = c("all","disease"), col = c(3, 2), pch = 16, cex = 0.7)
par(mfrow=c(1,1))

# scores testing
wilcox.test(x = as.numeric(res.scores$pp.sc), y = as.numeric(res.save$pp.sc), alternative = 
"greater", paired = F, conf.int = T)$p.value
wilcox.test(x = as.numeric(res.scores$sift.sc), y = as.numeric(res.save$sift.sc), alternative 
= "l", paired = F, conf.int = T)$p.value
chisq.test(table(res.scores$sift), p = table(res.save$sift), rescale.p = T)$p.value
test.pp.save <- c(table(res.save$pp)[1], sum(table(res.save$pp)[3]))
test.pp.scores <- c(table(res.scores$pp)[1], sum(table(res.scores$pp)[3]))
chisq.test(test.pp.scores, p = test.pp.save, rescale.p = T)$p.value

# population
res <- as.data.frame(matrix(ncol = 7, nrow = 0))
colnames(res) <- c("old","new","eas","amr","afr","eur","sas")
res[,1:7] <- sapply(res[,1:7], as.character)
for(i in 1:22){
  file.name <- 
paste("ALL.chr",i,".phase3_shapeit2_mvncall_integrated_v5.20130502.sites.annotation.vcf", sep 
= "")
  load <- read.table(file.name, header = F, skip = 258, sep = "", stringsAsFactors = F)
  t <- (grepl("missense", load[,8]) & nchar(load$V4) == 1 & nchar(load$V5) == 1)
  data <- subset(load, subset = t)
  data2 <- strsplit(data[,8], split = "\\/")
  new <- as.character(lapply(data2, "[[", 2))
  old <- as.character(lapply(data2, "[[", 1))
  new <- substr(new, 1, 1)
  old <- substr(old, nchar(old), nchar(old))
  eas <- sapply(strsplit(data[,8], split = "EAS_AF="),"[",2)
  eas <- sapply(strsplit(eas, split = "\\;"),"[",1)
  amr <- sapply(strsplit(data[,8], split = "AMR_AF="),"[",2)
  amr <- sapply(strsplit(amr, split = "\\;"),"[",1)
  afr <- sapply(strsplit(data[,8], split = "AFR_AF="),"[",2)
  afr <- sapply(strsplit(afr, split = "\\;"),"[",1)
  eur <- sapply(strsplit(data[,8], split = "EUR_AF="),"[",2)
  eur <- sapply(strsplit(eur, split = "\\;"),"[",1)
  sas <- sapply(strsplit(data[,8], split = "SAS_AF="),"[",2)
  sas <- sapply(strsplit(sas, split = "\\;"),"[",1)
  res <- bind_rows(res, data.frame(old, new, eas, amr, afr, eur, sas))
}

zz1 <- as.matrix(res[,3:7])
mode(zz1) <- "numeric"
sum(rowMeans(zz1))
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res <- res[-which(res$eas > 0.5 | res$amr > 0.5 | res$afr > 0.5 | res$eur > 0.5 | res$sas > 
0.5),]
res <- res[-which(res$old == "U" | res$new == "U"),]

zz2 <- as.matrix(res[,3:7])
mode(zz2) <- "numeric"
sum(rowMeans(zz2))

x.eas <- group_by(res, old, new) %>% summarize(mean(as.numeric(eas)))
x.afr <- group_by(res, old, new) %>% summarize(mean(as.numeric(afr)))
x.amr <- group_by(res, old, new) %>% summarize(mean(as.numeric(amr)))
x.eur <- group_by(res, old, new) %>% summarize(mean(as.numeric(eur)))
x.sas <- group_by(res, old, new) %>% summarize(mean(as.numeric(sas)))

res.all <- table(res$new, res$old)
x.res.eas <- res.all
for(i in 1:length(x.eas$old))
  x.res.eas[x.eas$new[i],x.eas$old[i]] <- as.numeric(x.eas[x.eas$old == x.eas$old[i] & 
x.eas$new == x.eas$new[i],][3])
x.res.amr <- res.all
for(i in 1:length(x.amr$old))
  x.res.amr[x.amr$new[i],x.amr$old[i]] <- as.numeric(x.amr[x.amr$old == x.amr$old[i] & 
x.amr$new == x.amr$new[i],][3])
x.res.afr <- res.all
for(i in 1:length(x.afr$old))
  x.res.afr[x.afr$new[i],x.afr$old[i]] <- as.numeric(x.afr[x.afr$old == x.afr$old[i] & 
x.afr$new == x.afr$new[i],][3])
x.res.eur <- res.all
for(i in 1:length(x.eur$old))
  x.res.eur[x.eur$new[i],x.eur$old[i]] <- as.numeric(x.eur[x.eur$old == x.eur$old[i] & 
x.eur$new == x.eur$new[i],][3])
x.res.sas <- res.all
for(i in 1:length(x.sas$old))
  x.res.sas[x.sas$new[i],x.sas$old[i]] <- as.numeric(x.sas[x.sas$old == x.sas$old[i] & 
x.sas$new == x.sas$new[i],][3])
xx.res.all <- x.res.eas + x.res.amr + x.res.afr + x.res.eur + x.res.sas

col.break <- c(seq(0,0.2,length=100),seq(0.201,0.25,length=100),seq(0.251,0.5,length=100))
xx <- x.res.eas/xx.res.all
rownames(xx) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
colnames(xx) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
heatmap.2(xx, Rowv = NA, Colv = "Rowv", col = color.final, scale = "none", xlab = 
"reference", ylab = "alternative", main = "eas", dendrogram = "none", trace = "none",  
          density.info = "none", breaks = col.break, key.xlab = "percentage in eas")
xx <- x.res.amr/xx.res.all
rownames(xx) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
colnames(xx) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
heatmap.2(xx, Rowv = NA, Colv = "Rowv", col = color.final, scale = "none", xlab = 
"reference", ylab = "alternative", main = "amr", dendrogram = "none", trace = "none",  
          density.info = "none", breaks = col.break, key.xlab = "percentage in amr")
xx <- x.res.afr/xx.res.all
rownames(xx) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
colnames(xx) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
heatmap.2(xx, Rowv = NA, Colv = "Rowv", col = color.final, scale = "none", xlab = 
"reference", ylab = "alternative", main = "afr", dendrogram = "none", trace = "none",  
          density.info = "none", breaks = col.break, key.xlab = "percentage in afr")
xx <- x.res.eur/xx.res.all
rownames(xx) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
colnames(xx) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
heatmap.2(xx, Rowv = NA, Colv = "Rowv", col = color.final, scale = "none", xlab = 
"reference", ylab = "alternative", main = "eur", dendrogram = "none", trace = "none",  
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          density.info = "none", breaks = col.break, key.xlab = "percentage in eur")
xx <- x.res.sas/xx.res.all
rownames(xx) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
colnames(xx) <- 
c("Ala","Cys","Asp","Glu","Phe","Gly","His","Ile","lys","Leu","Met","Asn","Pro","Gln","Arg","
Ser","Thr","Val","Trp","Tyr")
heatmap.2(xx, Rowv = NA, Colv = "Rowv", col = color.final, scale = "none", xlab = 
"reference", ylab = "alternative", main = "sas", dendrogram = "none", trace = "none",  
          density.info = "none", breaks = col.break, key.xlab = "percentage in sas")

# Difference within population
par(mfrow=c(2,3))
z <- x.res.eas/xx.res.all
plot(density(z[!is.na(z)]),xlim = c(0.1,0.5), xlab = "Percantage of variation", main = "eas")
z <- x.res.amr/xx.res.all
plot(density(z[!is.na(z)]),xlim = c(0.1,0.5), xlab = "Percantage of variation", main = "amr")
z <- x.res.afr/xx.res.all
plot(density(z[!is.na(z)]),xlim = c(0.1,0.5), xlab = "Percantage of variation", main = "afr")
z <- x.res.eur/xx.res.all
plot(density(z[!is.na(z)]),xlim = c(0.1,0.5), xlab = "Percantage of variation", main = "eur")
z <- x.res.sas/xx.res.all
plot(density(z[!is.na(z)]),xlim = c(0.1,0.5), xlab = "Percantage of variation", main = "sas")
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9.2. List of symbols and abbreviations

Amino acid symbols
Ala Alanine Leu Leucine
Arg Arginine Lys Lysine
Asn Asparagine Met Methionine
Asp Aspartic acid (Aspartate) Phe Phenylalanine
Cys Cysteine Pro Proline
Gln Glutamine Ser Serine
Glu Glutamic acid (Glutamate) Thr Threonine
Gly Glycine Trp Tryptophan
His Histidine Tyr Tyrosine
Ile Isoleucine Val Valine

Other abbreviations
3C Chromosome Conformation Capture GIGO ‘garbage in, garbage out’
A Adenine GWAS Genome Wide Association Studies
AFR African HGP Human Genome Project
AMP Adenosine monophosphate MD Molecular Dynamics
AMR American NGS Next-generation Sequencing
APS Adenosine-5-phosphosulfate nsSNP nonsynonymous SNP
ATP Adenosine triphosphate PDB Protein Data Bank
bp base pair PDF Probability Density Function
C Cytosine PMF Probability Mass Function
CDF Cumulative Distribution Function PPi Pyrophosphate, P2O7

4-

CNV Copy-Number Variant SAS South Asian
cryo-EM cryo-Electron Microscopy SMRT Single-Molecule Real Time
dNTP Nucleoside triphosphate SNP Single-Nucleotide Polymorphism
EAS East Asian SV Structural Variant
emPCR emulsion PCR T Thymine
EUR European U Uracile
G Guanine ZMW Zero-Mode Waveguide
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