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Dijabetes mellitus tipa 1 (T1DM) je autoimuna bolest koja je specifična za gušteraču, a 

karakterizira ju nedostatak proizvodnje inzulina. Najčešći biomarkeri koji se koriste u 

dijagnozi i predviđanju nastanka bolesti su autoantitijela iz seruma za četiri najznačajnija 

antigena beta stanica: inzulin, GAD65, IA2 i ZnT8. Međutim, primijećeno je da još jedan 

protein koprecipitira s četiri spomenuta autoantigena. Istraživanja su pokazala da se radilo o 

glikoziliranom membranskom proteinu molekularne težine 38 kDa koji je nazvan Glima 38. 

Glima 38 je kasnije identificiran kao tetraspanin 7 (TSPAN7). TSPAN7 pripada proteinskoj 

obitelji tetraspanina te se sastoji od sedam domena: tri citoplazmatske (C1 do C3), četiri 

transmembranske (TM1 do TM4) i dvije ekstracelularne (E1 i E2), a u gušterači se nalazi 

specifično u stanicama Langerhansovih otoka. Hipoteza ovog istraživanja glasi da je 

imunoprecipitacijskim testom luciferaze moguće kvantificirati vezanje autoantitijela na 

proteinske fragmente TSPAN7. Cilj ovog istraživanje je bio utvrditi na koje domene se vežu 

autoantitijela kako bi se detaljnije mogli opisati autoimuni procesi u osobama koje boluju od 

dijabetesa tipa I. Glavna metoda korištena u ovom istraživanju je bila imunoprecipitacijski 

test luciferazom (LIPS), gdje su se proteinski fragmenti TSPAN7 obilježeni nanoluciferazom 

testirali na 41 uzorku seruma pacijenata koji su sadržavali autoantitijela na cjeloviti TSPAN7 i 

20 uzoraka seruma koji nisu sadržavali autoantitijela na cjeloviti TSPAN7. Rezultati 

sugeriraju da se najvjerojatnije u domenama TSPAN7 E2 i C3 nalaze epitopi za vezanje 

autoantitijela te da domena TM4 također ima ulogu ili tako što i sama sadržava epitope ili 

tako što smješta domene E2 i C3 u pravilnu konformaciju.  
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Type 1 diabetes mellitus (T1DM) is an organ-specific autoimmune disease, which is 

characterized by a deficiency in endogenous pancreatic insulin production. The typical 

biomarkers that predict type I diabetes are serum autoantibodies against beta-cell antigens: 

insulin, GAD65, IA2, and ZnT8. Along with the four known autoantigens, autoantibodies 

were also detected to another potential autoantigen, a 38 kDa glycosylated membrane protein 

known as Glima 38. Glima 38 was later identified as tetraspanin 7 (TSPAN7). TSPAN7 is a 

member of the tetraspanin protein family, it has seven domains: three cytoplasmic (C1 to C3), 

four transmembrane (TM1 to TM4), and two extracellular (E1 and E2), and in pancreas it is 

found specifically in the islets of Langerhans. Hypothesis of this study is that by using 

luciferase immunoprecipitation systems (LIPS) assay, binding of autoantibodies to TSPAN7 

protein fragments can be observed and quantified. The aim of this study was to map 

autoepitopes of the TSPAN7 in order to provide a more detailed description of autoimmune 

responses in T1DM individuals. The main method was the luciferase immunoprecipitation 

systems (LIPS) assay, where nanoluciferase-tagged truncated TSPAN7 forms were tested 

against 41 serum samples that had autoantibodies against full-length TSPAN7 and 20 samples 

that did not have autoantibodies against full-length TSPAN7. The results suggest that E2 and 

C3 TSPAN7 domains are the most likely candidates that carry autoepitopes, and that TM4 

could play a role in the binding as well, either by carrying autoepitopes, or by positioning E2 

and C3 in the proper conformation.  
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1. INTRODUCTION 

1.1. Type I diabetes mellitus  

Type 1 diabetes mellitus (T1DM) is an organ-specific autoimmune disease, which is 

characterized by a deficiency in endogenous insulin production. It arises as the result of 

autoreactive immune cell-mediated destruction of insulin-producing beta-cells in the pancreas 

(Weenink and Christie, 2006). This destruction can progress over many years and ultimately 

results in metabolic abnormalities starting with impaired glucose tolerance and then 

progressing to symptomatic hyperglycemia (Taplin and Barker, 2008). The clinical symptoms 

start to manifest only when most beta-cells have lost function and presumably have been 

destroyed (Skyler, 2013). However, T1DM usually has a preclinical phase characterized by 

the presence of autoantibodies to antigens of the pancreatic beta-cells (Ziegler et al., 2013). 

The primary genetic risk for developing T1DM is the inheritance of certain major 

histocompatibility complex (MHC) alleles (HLA-DR3/DR4, HLA-DQ8/DQ2) (Weenink and 

Christie, 2006). However, there are other numerous genes that also influence the disease 

onset, and usually a small number of genes have large effects and a large number of genes 

have small effects (Michels et al., 2015). T1DM comprises the majority of cases of diabetes in 

childhood, and it is one of the most prevalent childhood chronic diseases (Taplin and Barker, 

2008). The incidence of type I diabetes has increased worldwide, especially in children and in 

developed countries (Achenbach et al., 2005).  

1.2. Prediction and prevention of type I diabetes  

1.2.1. Genetic factor – human leukocyte antigen (HLA)  

The human leukocyte antigen (HLA) gene region is located on the short arm of the 

chromosome 6 (6p21) and it is the most important of the multiple gene loci that affects 

susceptibility to type I diabetes. A number of alleles of class II, DR and DQ HLA genes, are 

particularly important for the susceptibility (Lipponen et al., 2010) (Figure 1). HLA genes are 

co-dominant and follow a Mendelian form of transmission in families and, therefore, both 

alleles are expressed at a given HLA locus. The HLA antigens comprise two molecular 

classes of cell surface glycoproteins differing in structure, function and tissue distribution. 

There is a strong connection between HLA haplotypes and T1DM, considering the fact that 

more than 90% of T1DM patients carry either HLA DR3-DQ2 or DR4-DQ8 haplotypes, a 

group of genes inherited together from a single parent. Children carrying high-risk HLA 
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genotypes have a higher risk for early disease onset and more frequent development of islet 

autoantibodies in infancy. The risk of developing islet autoantibodies by age 2 years is 20% in 

individuals with the high-risk HLA DR3-DQ2/DR4-DQ8 or HLA DR4-DQ8/DR4-DQ 

genotypes compared with 2.7% in offspring without these genotypes. Overall, 50% of islet 

autoantibody-positive individuals have at least one of these genotypes (Achenbach et al., 

2005) (Figure 2). In cases of adult-onset type I diabetes genes have smaller impact, as shown 

by patients with disease onset after 20 years of age have lower frequencies of the high-risk 

HLA DR and DQ haplotypes (Bonifacio, 2015). Interestingly, the HLA allele DQB1*0602 

confers dominant protection of developing T1DM (Michels et al., 2015). 

 

 

Figure 1. The human leukocyte antigen (HLA) gene region located on the short arm 

of the chromosome 6 (6p21). It bears two classes of HLA genes (Class I and Class II), 

where the Class III is located in the same region, but it does not belong to the HLA 

genes. Class II genes are most important for susceptibility to T1DM (Zhang et al., 

2014).  
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Figure 2. Frequency of the human leukocyte antigen (HLA) genotypes. Children who 

develop multiple islet autoantibodies (Multiple Abs pos) have HLA genotypes that are 

found in T1DM. Nearly 60% of Multiple Abs pos children have either very high risk 

DR3/4-DQ8 or high risk DR4/4-DQ8 HLA genotypes, whereas children who 

developed single autoantibodies (Single Ab pos) have HLA genotypes similar to 

children who are autoantibody negative (Ab neg). Approximately 30% of Single AB 

pos and Ab neg children have very high risk or high risk HLA genotypes (Achenbach 

et al., 2005). 

1.2.2. Autoantibodies to beta-cell antigens  

The typical biomarkers that predict type I diabetes are serum autoantibodies against beta-cell 

antigens (Bonifacio, 2015). There are four major humoral autoantigens that have been 

identified in type 1 diabetes by defining the specificity of autoantibodies in the disease: pre-

pro-insulin, GAD65 (glutamate decarboxylase), IA2 (receptor-type tyrosine-protein 

phosphatase-like N), and ZnT8 (zinc transporter-8) (McLaughlin et al., 2016). Detection of 

multiple islet autoantibodies in children who are genetically at risk marks a preclinical stage 

of type I diabetes, and therefore, it can be said that development of multiple islet 

autoantibodies in children predicts type I diabetes (Ziegler et al., 2013). In genetically at-risk 

individuals, the islet autoantibody seroconversion is greatest between 9 months and 2 years of 

age and occurs earliest for pre-pro-insulin autoantibodies (Ziegler et Bonifacio, 2012). Ziegler 

et al. (2013) reported that progression to type I diabetes 10-year after islet seroconversion in 
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children with multiple islet autoantibodies was 69.7%, whereas in children with a single islet 

autoantibody it was 14.5%. Overall, over 80% of children with multiple islet autoantibodies 

progress to symptomatic, insulin-requiring diabetes within 15 years (Giannopolou et al., 

2015). Diabetes risk by 15 years of age was 0.4% in children with no autoantibodies, 12.7% 

in children with a single islet autoantibody, 61.6% in children with two islet autoantibodies, 

and 79.1% in children with three islet autoantibodies (Ziegler et al., 2013) (Figure 3). The 

same study reports that variation in progression time is associated with the age of 

seroconversion (progression is faster for children who had islet autoantibody conversion 

younger than 3 years), genetic markers (progression is faster for children with the HLA 

genotype DR3/DR4-DQ8), sex (progression seems to be faster for girls), and the type of islet 

autoantibody. Further, autoantibody titer is another contributor. Achenbach et al. (2004) 

reported that genetically at-risk individuals have significantly higher diabetes risk if they have 

high-titer islet cell antibodies.  However, the situation is somewhat different in adults. In cases 

of adult-onset T1DM, number of islet autoantibodies is less than in cases when T1DM 

develops in childhood, and many patients only present GADAs (Bonifacio, 2015). 

Autoantibodies tend to develop sequentially rather than simultaneously (Taplin and Baker, 

2008). Autoantibodies to insulin (IAA) tend to appear first, followed by autoantibodies to 

GAD65 (GADA) and IA2. GADAs and IAAs, when both present, are the most frequent 

antibodies in childhood, while GADA itself is the hallmark of adult-onset type I diabetes 

(Bonifacio, 2015). Since IA2 autoantibodies are associated with a higher risk than GADAs or 

IAAs in single autoantibody patients (Ziegler et al., 2013), detection of IA2 autoantibodies 

alone during childhood is very specific for the development of T1DM (Bonifacio, 2015). 

Detection of autoantibodies is important because T1DM risk stratification models that include 

autoantibody characteristics may improve T1DM stratification and risk assessment 

(Achenbach et al., 2004).  
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Figure 3. Development of T1DM in children based on the number of islet 

autoantibodies. Diabetes risk by 15 years of age was 0.4% in children with no 

autoantibodies, 12.7% in children with a single islet autoantibody, 61.6% in children 

with two islet autoantibodies, and 79.1% in children with three islet autoantibodies 

(Ziegler et al., 2013). 

1.2.2.1. Discovery of another autoantigen  

Along with the four known autoantigens, during several years and by several groups 

autoantibodies were also detected to a fifth potential autoantigen, a 38 kDa glycosylated 

membrane protein known as Glima 38 (Aanstoot et al., 1996; Roll et al., 2000; Winnock et 

al., 2001). It was only recently that the true identity of Glima 38 was revealed. Mass 

spectrometry analysis showed that only tetraspanin 7 matched the known properties of Glima 

38 (McLaughlin et al., 2016). 

1.2.3. Time points for intervention   

There are three possible time points for intervention in T1DM: prior to any evidence of 

autoimmunity (primary), after the development of islet autoantibodies (secondary), and 

shortly after onset of the disease (tertiary). The intervention involves dietary intervention that 

aims to interrupt putative environmental triggers of T1DM, antigen-specific therapies that aim 
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to control the autoimmune response, and other immunotherapies. The goal of T1DM detection 

in primary and secondary time points, before the disease onset, is to arrest the immune 

process by modulating the autoimmune response, and possibly prevent or delay clinical 

disease (Skyler, 2013). Secondary time point is characterized by usage of various biomarkers, 

such as genetic factors and antibodies to beta-cell antigens. The usage of biomarkers should 

provide benefits that span from learning about the disease process to preventing complications 

such as diabetic ketoacidosis at the diagnosis of diabetes, as well as possible prevention of 

diabetes entirely. However, it should be noted that biomarkers change with age, and 

predicting T1DM in adults is different to its prediction in children (Bonifacio, 2015). 

1.3. Tetraspanin protein family  

Tetraspanins are small integral membrane proteins, of approximately 30 kDa (Skaar et al., 

2015), and they protrude 4-5 nm above the membrane (Hemler, 2005). They share four 

characteristic transmembrane domains (TM1 to TM4), and mainly have three cytoplasmic and 

two extracellular domains (one short – E1, and one long – E2) (Hemler, 2005) (Figure 4). E2 

is divided into constant and variable regions, where constant region contains structurally 

conserved A, B and E alpha-helices, which provide a putative dimerization interface. There is 

a region of hypervariability between B and E helices, which demonstrates conformational 

fluctuations. Within the variable region reside critical protein-protein interaction sites. TM1, 

TM3 and TM4 typically contain polar residues (asparagine, glutamine, and glutamic acid) 

(Hemler, 2003), which are highly conserved between the tetraspanin family (Maecker et al., 

1997), and are believed to be involved in stabilizing the overall tetraspanin structure. 

Transmembrane domain interactions also stabilize the conformation of the E2 domain 

(Hemler, 2003). E1 domain fits into a groove of E2 and transmembrane domains form a coil-

coiled structure, which is stabilized by hydrogen bonds involving the polar residues (Charrin 

et al., 2014). Unlike the transmembrane domains, extracellular domains show greater 

sequence divergence. There are, however, three cysteines in E2, which are located at defined 

distances from the TM regions in the majority of tetraspanin family members. Two of the 

mentioned cysteines are located in a conserved CCG motif about 50 amino acids after TM3. 

The third cysteine is often preceded by a glycine and is fixed as 11th amino acids upstream of 

TM4 (Maecker et al., 1997). The two latter cysteine residues contribute to two crucial 

disulphide bonds within the E2 (Hemler, 2005). Many tetraspanins are posttranslationally 

modified by N-linked glycosylation or palmitoylation (Skaar et al., 2015). They are involved 

in regulating cell morphology, motility, tissue invasion, fusion and signaling, in a number of 
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tissues as for example in the brain and the immune system, but they also play an important 

role in tumors (Hemler, 2005). Many members of the tetraspanin family associate specifically 

and directly with other proteins, and also with other tetraspanins, thereby generating a cascade 

of interactions (Charrin et al., 2014). The association of tetraspanin with the integrin family 

allows tetraspanins to regulate integrin-dependent cell migration and adhesion (Berditchevski, 

2001). The tetraspanins could be described as “molecular facilitators” that bring together large 

molecular complexes and allow them, through stabilization, to function more efficiently 

(Maecker et al., 1997). Individual tetraspanin proteins are often expressed at 30 000 – 100 000 

or more copies per cell (Hemler, 2003). There are 33 members of the tetraspanin family 

expressed in mammals, 37 in Drosophila melanogaster and 20 in Caenorhabditis elegans, as 

well as tetraspanin-like proteins expressed in plants (Charrin et al., 2014).  
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Figure 4. Structural features of tetraspanins. Tetraspanins contain four transmembrane 

domains, two extracellular loops (E1 and E2) with a very short intracellular loop (C2) 

flanked by relatively short N-terminal and C-terminal cytoplasmic tails (of approx. 8–

21 amino acids) (C1 and C3, respectively). The E2 is subdivided into a constant region 

(yellow, containing α-helices A, B and E), and a variable region (blue). All 

tetraspanins contain a CCG motif after the B helix, and two other conserved cysteines 

(yellow), which are arranged to form two intramolecular disulphide bonds (red lines). 

Nearly all tetraspanins also contain membrane proximal cysteines that undergo 

palmitoylation (Hemler, 2005). 

1.4. Tetraspanin 7  

Tetraspanin 7 (TSPAN7, A15, MXS1, CD231, MRX58, CCG-B7, TM4SF2, Glima 38) 

(Skaar et al., 2015) is one member of the tetraspanin family. The human TSPAN7 gene is 

located on the short arm of X-chromosome at position Xp11.4 (Kent et al., 2002). When it 

was called Glima 38 protein, one study, suggested it to be membrane bound based on its 

insolubility and fractionation with the detergent phase (Aanstoot et al., 1996). TSPAN7 is 

posttranslationally modified by N-glycosylation on its 22 kDa protein core, and it is a N-
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linked glycoprotein of the biantennary complex-type (Aanstoot et al., 1996; Roll et al., 2000). 

N-linked carbohydrates contribute to more than about 40% of the relative molecular weight of 

TSPAN7. TSPAN7 is likely to contain a minimum of five carbohydrate chains and it is, 

therefore, heavily glycated (Roll et al., 2000). Roll et al. (2000) reported that within 1 hour 

TSPAN7 is fully glycated in vivo. The same study reported the presence of terminal sialic 

acids in the carbohydrates of TSPAN7, as well as that it does not contain any O-linked 

carbohydrates. Carbohydrate modifications make TSPAN7 resistant to proteolysis (Roll et al., 

2000). Autoantibodies to TSPAN7 recognize both, the glycated and the non-glycated forms, 

suggesting that the 22 kDa protein core, not the carbohydrates, is the part carrying 

autoepitopes. Linearized form of TSPAN7 is not recognized by autoantibodies, which 

suggests that TSPAN7 autoepitopes might be conformational rather than linear (Roll et al., 

2000).  

1.4.1. Tetraspanin 7 and T1DM  

In the pancreas, TSPAN7 is found specifically in the islets of Langerhans (McLaughlin et al., 

2016). Autoantibodies to TSPAN7 have been detected in 19-38% of Type I diabetic patients, 

with significantly higher prevalence (up to 50%) in children (McLaughlin et al., 2016). They 

are almost exclusively found in new-onset children patients with other beta-cell 

autoantibodies, and they seem to appear late in the preclinical phase of type I diabetes 

(Walther et al., 2016). They mark the preclinical of type I diabetes, but they do not provide 

much additional information for the prediction or classification of type I diabetes because they 

do not add to the predictive power of other autoantigens (Winnock et al., 2001). However, 

since TSPAN7 autoantibodies were not analyzed in adult onset diabetes, it is possible that 

autoantibodies to TSPAN7 may be useful in diagnosis of adult autoimmune diabetes (Walther 

et al., 2016). The same study reported that some autoantibodies might bind to epitopes within 

the external domains of the protein, and such antibodies could directly mediate beta cell death 

or affect beta cell function. Further characterization of TSPAN7 could provide a more 

detailed description of autoimmune responses that develop in individuals with T1DM, which 

would be necessary for guiding the selection of autoantigen-specific immunotherapy 

(McLaughlin et al., 2016). Hypothesis of this study is that by using luciferase 

immunoprecipitation systems (LIPS) assay, binding of autoantibodies to TSPAN7 protein 

fragments can be observed and quantified. The aim of this study is to map TSPAN7 

autoantibody epitopes (autoepitopes). 
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2. MATERIALS AND METHODS  

2.1. Materials 

For the research, 61 serum samples from patients either diagnosed with T1DM, or that are 

first degree relatives of T1DM patients were used. From those, 41 samples were positive for 

antibodies against full length TSPAN7, and 20 were negative and used as negative control. 

The full length TSPAN7 positive samples were selected from the DiMelli cohort for new 

onset T1DM patients (Thümer et al., 2010) and negative from the TeenDiab cohorts of first 

degree relatives of T1DM patients (Ziegler et al., 2012A; Ziegler et al., 2012B). The ethical 

committees of Bavaria or the Ludwig-Maximillians University approved the studies, which 

were carried out in accordance with the Declaration of Helsinki. Informed, written consent 

was obtained from patients or parents of participants. For TSPAN7 protein fragment 

production and isolation, human embryonic kidney (HEK) 293T cell line was used, which 

originated from a fetus, and the cells have a very complex karyotype. 

2.2. Methods 

2.2.1. Molecular cloning – vector design for the production of truncated tetraspanin 7 

2.2.1.1. Polymerase chain reaction and purification 

In order to produce truncated forms of TSPAN7, the first step was to perform PCR by using 

the source of full-length TSPAN7 as a template to obtain TSPAN7 DNA that had different 

TSPAN7 domains. By using specific 5’ and 3’ primers with restriction sites for molecular 

cloning (Table 1), the following DNA fragments of TSPAN7 were obtained: C1-TM1-E1-

TM2 (225 bp), corresponding to amino acids from 1 to 75,  C1-TM1-E1 (168 bp), 

corresponding to amino acids 1 to 56, TM1-E1-TM2-C2 (207 bp), corresponding to amino 

acids 17 to 86, E1-TM1-C2 (135 bp), corresponding to amino acids 41 to 86, TM2-C2-TM3-

E2 (471 bp), corresponding to amino acids 57 to 213, C2-TM3-E2 (414 bp), corresponding to 

amino acids 76 to 213, TM3-E2-TM4-C3 (495 bp), corresponding to amino acids 87 to 249, 

E2-TM4-C3 (437 bp), corresponding to amino acids  113 to 249, and TM4-C3 (111 bp), 

corresponding to amino acids 214 to 249 (Figure 5). As a template for the PCR reactions, 

pCMV6-AC-TSPAN7-IRES-GFP-Puro (c = 87.7 ng/µl) containing the full length sequence of 

TSPAN7 was used. For the PCR approx. 100 ng of the template, (or 1 µl of DEPC-treated 

H2O (Thermo Scientific) for the negative control), 10 µl of 5x PrimeSTAR Buffer (Mg2+ 

plus) (Takara Bio), 4 µl of 10 mM dNTPs (Takara Bio), 1 µl of 10 µM 5’ – primer, 1 µl of 10 
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µM 3’ – primer, 0.5 µl of PrimeSTAR HS DNA Polymerase (Takara Bio), and 32.5 µl of 

DEPC-treated H2O (Thermo Scientific) were mixed resulting in a final reaction volume of 50 

µl. The PCR cycling protocol was the following: 30 cycles of denaturation at 98 °C for 10 s, 

annealing at 60 °C for 5 s, and extension at 72 °C for 1 min/kb, depending on the fragment 

size (Table 1), followed by 10 min final extension at 72 °C and storage at 4°C. 3 µl of the 

PCR reaction supplied with 6x DNA loading dye (Thermo Scientific) was analyzed on a 2% 

agarose gel along with 5 µl of 100 bp Gene Ruler (Thermo Scientific) as size control. After 

gel validation, PCR fragments were purified by using the QIAquick® PCR Purification Kit 

(Qiagen). After PCR purification, the presence and quantity of the fragments were analyzed 

on 2% agarose gels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 
 

Table 1. The list of PCR primers with BamHI and NotI restriction sites for cloning 

truncated forms of TSPAN7 into the pCMV6-AC-Nluc-IRES-GFP-Puro vector. 
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Figure 5. Truncated forms of TSPAN7. C1-TM1-E1-TM2 (225, red), AA 1 – 75; C1-

TM1-E1 (168, pink), AA 1 – 56; TM1-E1-TM2-C2 (207, blue), AA 17 – 86; E1-TM1-

C2 (135, purple), AA 41 – 86; TM2-C2-TM3-E2 (471, green), AA 57 – 213; C2-

TM3-E2 (414, yellow), AA 76 – 213; TM3-E2-TM4-C3 (495, orange), AA 87 – 249; 

E2-TM4-C3 (437, brown), AA 113 – 249; TM4-C3 (111, gold), AA 214 – 249. 

2.2.1.2. Restriction digestion and purification 

All TSPAN7 DNA fragments obtained by PCR and the pCMV6-AC-Nluc-IRES-GFP-Puro 

vector (Figure 6) were digested with restriction enzymes BamHI and NotI in order to be 

suitable for ligation. Since the BamHI and NotI enzymes do not exert complete activity in the 

same buffer, the DNA was first digested with the BamHI enzyme. For each reaction, 

approximately 1 µg TSPAN7 fragment and approximately 1 µg vector DNA were used, 2 µl 

of BamHI enzyme (Thermo Scientific), 4 µl of 10x BamHI buffer (Thermo Scientific) and 

distilled H2O (dH2O) up to 40 µl. The reaction was incubated for 1.5 h at 37 °C. Afterwards, 

the DNA was precipitated using 60 µl of dH2O and 70 µl of isopropanol, centrifuged 6 min at 

13000 rpm, washed by adding 100 µl of 70% ethanol, centrifugated 5 min at 13000 rpm, and 

finally dried in an Eppendorf Vacufuge® Plus vacuum concentrator (Eppendorf) for 20 min at 

45 °C. The DNA was then resuspended in 2 µl of NotI enzyme (Thermo Scientific), 4 µl of 

10x buffer O (Thermo Scientific) and 34 µl of dH2O. The reaction was again incubated for 1.5 

h at 37 °C. After incubation the TSPAN7 fragment DNA was precipitated and dried as 

described before and resuspended in 15 µl of dH2O, while the vector DNA was further 

dephosphorylated by adding 1 µl of Fast Alkaline Phosphatase (FastAP) enzyme (Thermo 

Scientific) into the reaction mix. The reaction was incubated first for 15 min at 37 °C and the 

enzyme was heat inactivated for 5 min at 75 °C. The vector DNA (pCMV6-AC-Nluc-IRES-

GFP-Puro) was then purified from an 0.7% agarose gel by using the MinElute® Gel 
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Extraction Kit (Qiagen). Both the precipitated TSPAN7 fragment and the purified vector 

DNA were analyzed on the 2% agarose gel.  

Figure 6. pCMV6-AC-Nluc-IRES-GFP-Puro vector used as destination vector for 

cloning TSPAN7 fragments. pCMV6 is the promotor, AC is the ampicillin resistance 

cassette, Nluc is the nanoluciferase tag, IRES is an internal ribosome entry site used 

for independent GFP synthesis, GFP is green fluorescent protein and Puro is 

puromycin resistance cassette. 

2.2.1.3. Ligation and electroporation  

To ligate the digested PCR and vector fragments, I used 100 ng of the vector DNA, 6 ng of 

the TSPAN7 fragment DNA (fragments 168, 135, and 111), or 9 ng of the TSPAN7 fragment 

DNA (fragments 225 and 207), or 18 ng of the TSPAN7 fragment DNA (fragments 414, 437, 

471, and 495), 1 µl of 10x T4 DNA ligase buffer (Thermo Scientific), 1 µl of T4 DNA ligase 

(Thermo Scientific), and dH2O up to 10 µl. The reaction was then incubated for 2 h at room 

temperature (RT). Afterwards 5 µl of each sample were dialyzed against water through EMD 

Millipore MF-Millipore™ nitrocellulose membrane filters, (0.025 μm pore size) (Fisher 
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Scientific) for 15 min at RT. During that time, 900 µl of SOC medium was added to a 1.5 ml 

microtube for each sample, and pre-warmed the microtubes at 37 °C. For each sample, 30 µl 

of Escherichia coli GB2005 electro competent cells were placed on ice to thaw. After 

thawing, down the cells were shortly span down. When the dialysis was complete, DNA was 

added to the E.coli cells. The complete bacterial sample was resuspended, transferred to pre-

cooled cuvette, and placed into the Eporator (Eppendorf). After electroporation at 1150V, 100 

µl of the pre-warmed SOC medium was added to the cuvette and resuspended. The reaction 

mix from the cuvette was put into a 1.5 ml microtube with the rest of the remained pre-

warmed SOC medium. The samples were placed in Thermomixer comfort (Eppendorf) to 

incubate for 1 h at 37 °C at 900 rpm. After incubation, the samples were centrifuged 3 min at 

6000 rpm. Afterwards, 800 µl of supernatant was removed and the rest of the pellet was 

resuspended in the remaining supernatant by pipetting. The complete cell suspension was 

plated on agar plates containing ampicillin (Amp+) and incubated overnight at 37 °C in the 

CO2-Incubator CB-210 (Binder, Tuttlingen, Germany).  

2.2.1.4. Minipreparation of plasmid DNA isolation  

The following day colonies were picked (10 colonies per one fragment sample if possible), 

and each colony was placed into a 2 ml microtube containing 1 ml of LB Amp+ medium. The 

microtubes were incubated at 37 °C and 900 rpm for approximately 8 h. After incubation, 100 

µl of the bacterial culture of each colony was transferred into 1.5 ml microtubes and stored 

them at 4 °C. The remaining 900 µl were centrifuged for 2 min at 6000 rpm at RT. The 

supernatant was drained and the pellet was resuspended in 200 µl of the P1 resuspension 

buffer containing RNAse A (Qiagen) by vortexing for approximately 5 minutes. 200 µl of the 

P2 lysis buffer (Qiagen) was added, and the samples were mixed by inverting the microtubes 

and left at RT for 5 min. 200 µl of the P3 neutralization buffer (Qiagen) was added the 

suspension was mixed by inverting microtubes. The samples were centrifuged for 10 min at 

13000 rpm at RT. After centrifugation, the supernatant was added to 1.5 ml microtubes 

prelaid with 500 µl isopropanol. The samples were centrifuged for 5 min at 13000 rpm at RT. 

The supernatant was drained, and the pellet was washed with 300 µl of 70% ethanol. The 

samples were again centrifuged for 5 min at 13000 rpm at RT. The supernatant was again 

drained, and the microtubes were then placed in the Eppendorf Vacufuge® Plus vacuum 

concentrator (Eppendorf) for 20 min at 45 °C. After the pellets were dry, they were 

resuspended in 30 µl of dH2O. The isolated plasmid DNA containing the appropriate 

TSPAN7 fragments was then digested with restriction enzymes listed in Table 2., and checked 
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on 2% agarose gels. An aliquot of the samples containing the correct construct were sent for 

sequencing to the Max Planck Institute of Molecular Cell Biology and Genetics and the rest 

stored at 4 °C. If the correct plasmid DNA sequence was confirmed by sequencing, the 

plasmid DNA was purified for the use in the cell culture. 60 µl of each culture containing 

appropriate plasmid DNA was put it into a 250 ml flask containing 100 ml of LB Amp+ 

medium. The suspension was incubated overnight at 37 °C and at 200 rpm. The subsequent 

steps of the purification followed the EndoFree® Plasmid Maxi Kit protocol (Qiagen). The 

concentrations of each sample were measured with the NanoPhotometer Implen P-Class 

(Implen, Munich, Germany) and are given in the Table 3.  

Table 2. Clones analyses after the plasmid DNA isolation from E.coli GB2005. The list of 

restriction enzymes for each plasmid DNA, used buffers in final concentrations, and size (bp) 

of the expected fragments on the agarose gel after digestion. 

 

 

Table 3. Concentrations (ng/µl) of plasmid DNA for each TSPAN7 fragment after 

EndoFree® Plasmid Kit (Qiagen) isolation. 

BamHI 7445

NotI 239

BamHI 7445

NotI 183

BamHI 6966

NotI 223

BamHI 7445

NotI 150

6903

760

6892

703

3728

2514

1714

3723

2513

1633

BamHI 7445

NotI 126

Fragment size after 

digestion (bp)
TSPAN7 fragment

Restriction 

enzymes
Buffer

2x Tango (Thermo 

Scientific)

C1-TM1-E1-TM2 

(225)

C1-TM1-E1 (168)

TM1-E1-TM2-C2 

(207)

E1-TM1-C2 (135)

TM2-C2-TM3-E2 

(471)

C2-TM3-E2 (414)

2x Tango (Thermo 

Scientific)

1x Buffer G 

(Thermo Scientific)

1x Buffer G 

(Thermo Scientific)

TM3-E2-TM4-C3 

(495)

E2-TM4-C3 (437)

TM4-C3 (111)

PvuII

PvuII

SacI

SacI

2x Tango (Thermo 

Scientific)

1x SacI buffer 

(Thermo Scientific)

2x Tango (Thermo 

Scientific)

2x Tango (Thermo 

Scientific)

1x SacI buffer 

(Thermo Scientific)
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2.2.2. Transfection of HEK 293T cells 

2.2.2.1. Day 1 – seeding cells 

Prior to each usage of the HEK cell medium (DMEM 1g/L glucose without L-glutamine 

(Lonza, Basel, Switzerland), 1:100 Penicillin-Streptomycin (Gibco), 2mM L-glutamine 

(Lonza, Basel, Switzerland), 10% heat inactivated and filtered Fetal Bovine Serum ultra-low 

IgG (Gibco)), it needed to be pre-warmed to 37 °C in a waterbath. To prepare HEK 293T 

cells for transfection, cells had to be detached from the surface by adding 1 ml of trypsin 

0.25% EDTA (Gibco) to the plate. Afterwards, 4 ml of HEK cell medium was added and the 

clumps were resuspended by pipetting. The suspension was transferred to a 15 ml Falcon 

tube. 5 ml of HEK cell medium was added again, and the suspension was transferred to the 

same Falcon tube. The cells were centrifuged for 10 min at 300g at RT to remove the trypsin. 

The supernatant was aspired, the pellet was resuspended in 1 ml of HEK cell medium, and 

filled up to 10 ml with the HEK cell medium. The cell suspension was mixed by inverting the 

Falcon tube and 10 µl of the cell suspension was taken out for counting. The 10 µl of the cell 

suspension was mixed with 10 µl of 0.4% trypan blue dye suspension (Gibco), and 10 µl of 

that suspension was placed into a counting chamber ZK06 (A. Hartenstein, Würzburg, 

Germany) and cells were counted under the light microscope CKX41 (Olympus). 600 000 

cells per well in a 6-well plate (Thermo Scientific) were seeded in duplicate in 3 ml of the 

HEK cell medium. The cells were incubated overnight at 37 °C in CO2-Incubator CB-210 

(Binder, Tuttlingen, Germany).   

C1-TM1-E1 (168) 167.0

E1-TM1-C2 (135) 1093

C2-TM3-E2 (414) 1037

E2-TM4-C3 (437) 811.0

TM4-C3 (111) 331.0

659.0

46.60

Concentration 

(ng/µl)

1326

990.0

TSPAN7 fragment

C1-TM1-E1-TM2 

(225)

TM1-E1-TM2-C2 

(207)

TM2-C2-TM3-E2 

(471)

TM3-E2-TM4-C3 

(495)
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2.2.2.2. Day 2 – transfection  

The cells seeded the day before needed to be 40-60% confluent prior to transfection. The 

medium was removed from the wells, and 1.5 ml of fresh HEK cell medium was added to 

each well. The transfection reaction was prepared by mixing 2 µg of the appropriate plasmid 

DNA containing the epitopes and DMEM 1g/L glucose without L-glutamine, resulting in a 

final volume of 100 µl in one 1.5 ml microtube for the positive control and for each well. As a 

negative control 100 µl of DMEM 1g/L glucose without L-glutamine was used. To each 

microtube I added 20 µl of transfection reagent polyethylenimine (PEI) (Polysciences, 

Warrington, PA, USA). The tubes were vortexed and shortly span down. The samples were 

incubated for 10 min at RT. After incubation, 600 µl of the HEK cell medium was added to 

each sample to stop the transfection reaction, and everything was added to the appropriate 

well with cells. The plates were placed back in the CO2-Incubator CB-210 (Binder, 

Tuttlingen, Germany) at 37 °C.  

2.2.2.3. Day 3 – transfection validation  

The cells were placed under a Nikon Eclipsi Ti fluorescent microscope of 470 nm wave-

length. Since the translation of the green fluorescent protein (GFP) is controlled by the IRES 

element in the vector, it is independent of the TSPAN7 protein fragment synthesis, but serves 

as a marker of a successful transfection, because both proteins are translated from the same 

mRNA. Thus, if the cells emitted green signal, it confirmed that the plasmid DNA containing 

the epitopes entered the cells.  

2.2.2.4. Day 4 – protein isolation  

The medium was removed from each well and 400 µl of trypsin was added to detach the cells. 

To each well, 1 ml of the HEK cell medium was added, the clumps were resuspended by 

pipetting, and cell suspension was transferred into a separate 15 ml Falcon tube. Each well 

was flushed twice with 1 ml of the HEK cell medium and transferred into the corresponding 

Falcon tubes. The samples were then centrifuged for 10 min at 300g at RT. The supernatant 

was removed and the cell pellets were resuspended in 1 ml of 1x PBS and transferred into a 

separate 1.5 ml microtube. The samples were centrifuged again for 10 min at 400g at 4 °C. 

The supernatant was removed and the cell pellets were lysed in 100 µl of protein lysis buffer 

(0.02M Tris pH 8, 0.14M NaCl, 1mM EDTA, 1% Triton X100, 1:100 Phosphatase inhibitor, 

1:100 Protease inhibitor, dH2O). The samples were placed 30 min on ice. During that 
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incubation period, the lysate was mixed twice more. Afterwards, the samples were centrifuged 

for 10 min at 13000 rpm at 4 °C. The supernatant was transferred into a separate pre-cooled 

1.5 ml microtube and the luciferase light emission activity (protein activity) was measured. 

The Nluc-tagged TSPAN7 protein fragments were diluted in 1x TBST buffer (Tris buffered 

saline pH 7.2 plus 0.1% Tween 20). Each Nluc-tagged TSPAN7 protein fragment sample was 

first diluted 100 times, and the 1:100 dilution was diluted again 10, 100 and 1000 times. The 

final protein dilutions were 10-3, 10-4 and 10-5. The Luciferase protein activity was measured 

in white 96-well microplates (Perkin Elmer, Waltham, MA, USA), where I used 1x TBST as a 

negative control. The dilutions of the samples were measured in triplicates. Into each well 25 

µl of 1x Passive lysis buffer (Promega), 5 µl of the protein sample, and 25 µl of 1x Nluc Glo 

luciferase substrate (Promega) were added. The Luciferase protein activity was measured with 

Glomax 96 Microplate reader (Promega) by using the standard CellTiterGlo protocol 

(Promega). After the Luciferase protein activity measurement, the undiluted protein samples 

were stored at -80 °C.  

2.2.3. Luciferase immunoprecipitation systems (LIPS) assay  

In the luciferase immunoprecipitation systems (LIPS) assay an antigen is fused to a luciferase 

protein. The recombinant antigen is then incubated with antibodies, where antibodies bind to 

the recombinant antigen. The antibody-antigen complex is then transferred to a filter plate 

containing antibody capturing reagents. The antibody capturing beads bind both free 

immunoglobulins and antibodies bound to the recombinant antigen, while free unbound 

antigens are removed by several washing steps. The relative amount of antibody bound to the 

recombinant antigen can be determined by measuring the light emitted after addition of the 

substrate for the luciferase (Burbelo et al., 2015) (Figure 7).  

 

Figure 7. LIPS workflow (Figure from Dr. Michelle Ashton, AG Bonifacio, CRTD, 

TU Dresden, Cluster of Excellence).  
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The patient serum was diluted 1:5 in 1x TBST, and the 10 µl of serum was added in 

duplicates to transparent round-bottom Microplate 96/U (Eppendorf). The activity of the 

Nluc-tagged TSPAN7 protein fragments was measured prior to the LIPS assay as described in 

the section 2.2.2.4. To each well 25 µl of the TSPAN7 protein fragment was added, 

containing 5 million counts per s of Nluc-tagged antigen diluted in 1x TBST. The plates were 

shortly spun down, mixed on a plate shaker for 30 s at 300 rpm, and incubated in the dark at 

room temperature for 2 h. Protein-A Sepharose (GE Healthcare, Freiburg, Germany), in 

equivalent to 1.5 mg per one well sample, was pre-swollen in 1x TBST buffer containing 

0.1% BSA low IgG (Life Technologies, Darmstadt, Germany). During the plate incubation, 

the sepharose beads were centrifuged for 5 min at 500g at room temperature with acceleration 

7 and deceleration 5 mode on the centrifuge. The supernatant was removed, the 15 ml Falcon 

tube with the sepharose beads was filled up with 1xTBST buffer containing 0.1% low IgG 

BSA, and centrifuged again as described above. This procedure was repeated once more. 

After the second wash, the Falcon tube was filled up to the required volume. To each well of a 

UniFilter-96 GF/C microfiltration plate (Perkin Elmer, Waltham, MA, USA), 50 µl of the 

sepharose beads suspension was added. To the same microfiltration plate 25 µl of antigen-

antibody complex was added to each well. The plate was then incubated for 1 h on a shaker at 

300 rpm and at 4 °C. After incubation, the plate was washed 10 times with 200 µl of 1x TBST 

per well. The bottom lid was removed, the bottom was dried, and sealed again with white 

adhesive bottom seal (Perkin Elmer, Waltham, MA, USA). On the microfiltration plate 25 µl 

of 1x Passive Lysis Buffer and 25 µl of 1x Nluc Glo luciferase substrate were added to each 

well. The Nluc-tagged protein activity was measured as described in the chapter 2.2.2.4.  

2.2.4. Inhibition luciferase immunoprecipitation systems (LIPS) assay  

In the inhibition LIPS assay there were two versions: the first version (v1) contained untagged 

full-length TSPAN7 along with the Nluc-tagged TSPAN7 protein fragments, and the second 

(v2) contained protein lysis buffer (used in the protein isolation) along with the Nluc-tagged 

TSPAN7 protein fragment. The two versions of the assay were conducted for each tested 

Nluc-tagged TSPAN7 protein fragment. The assay was designed to confirm specific antigen-

antibody binding, and rule out antibody binding to the Nluc fragment or the fusion peptide. 

For a specific binding, there should be a drop in the Nluc protein activity in the first version of 

the assay compared to the second version because untagged and tagged protein in the first 

version competed for the antibodies present in the patient serum, and antibodies should bind 
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untagged protein as well. The protocol was the same as for the LIPS assay described in the 

section 2.2.3.   
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3. RESULTS 

3.1. Production of tetraspanin 7 truncated forms  

As the result of molecular cloning, the plasmid DNA containing the TSPAN7 fragments was 

produced and digested with restriction enzymes as listed in the Table 2. to see whether the 

cloning was successful. For all fragments but 495 and 437 there was only one band shown on 

the gel, instead of two, because the larger band about 7kb was at the very top of the 2% 

agarose gel. For all samples there were bands correlated with the expected fragments after the 

digestion (Figure 8). In summary, restriction digests showed that all the TSPAN7 DNA 

fragments were successfully cloned into the pCMV6-AC-Nluc-IRES-GFP-Puro vector 

(Figure 6). In total, nine DNA plasmids were produced, containing different TSPAN7 

fragments that were used to transfect HEK cells to produce the fusion proteins. The list of the 

DNA plasmids and their abbreviated names are given in the Table 4.   

Table 4. List of plasmid DNA containing the TSPAN7 fragments obtained after 

molecular cloning and their abbreviated names.  

 

Plasmid DNA with TSPAN7 fragments Abbreviated name

pCMV6-AC-Nluc-C1-TM1-E1-TM2-IRES-GFP-Puro 225

pCMV6-AC-Nluc-C1-TM1-E1-IRES-GFP-Puro 168

pCMV6-AC-Nluc-TM1-E1-TM2-C2-IRES-GFP-Puro 207

pCMV6-AC-Nluc-E1-TM2-C2-IRES-GFP-Puro 135

pCMV6-AC-Nluc-TM2-C2-TM3-E2-IRES-GFP-Puro 471

pCMV6-AC-Nluc-C2-TM3-E2-IRES-GFP-Puro 414

pCMV6-AC-Nluc-TM3-E2-TM4-C3-IRES-GFP-Puro 495

pCMV6-AC-Nluc-E2-TM4-C3-IRES-GFP-Puro 437

pCMV6-AC-Nluc-TM4-C3-IRES-GFP-Puro 111
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Figure 8. Restriction digestion of vector DNA on 2% agarose gels A. For 225 and 207 

fragments, bands of approximately 250 bp correspond to the expected 239 and 223 bp 

fragments, respectively; B. For 111 and 168 fragments, bands of approximately 150 and 

200 bp, respectively, correspond to the expected 126 and 183 bp fragments, respectively; 

C. For 135 and 414 fragments, bands between 100 and 200 bp and of approximately 700 

bp, respectively, correspond to the expected 150 and 703 bp fragments, respectively; D. 

For 471 fragment, a band of approximately 750 bp, correspond to the expected 760 bp 

fragment; E. For 495 fragment, bands of approximately 1500, 2500, and 3500 bp 

correspond to the expected 1714, 2514, and 3728 bp fragments; F. For 437 fragment, 

bands of approximately 1500, 2500, and 3500 bp correspond to the expected 1633, 2513, 

and 3723 bp fragments. 

3.2. Fusion proteins have sufficient luciferase activity for the LIPS assay   

Immediately prior to the LIPS assay, the luciferase light emission activity (protein activity) of 

Nluc-tagged TSPAN7 protein fragments was measured. The results showed that the fusion 

proteins 207, 135 and 437 had the highest activity, while the fusion protein 471 the lowest 

(Table 5). However, the protein activity in all samples was sufficient for the LIPS assay.  
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Table 5. Luciferase light emission activity (protein activity) of Nluc-tagged TSPAN7 

protein fragments given in counts per s (cps)/µl.  

  

3.3. Screening patients serum samples for autoantibodies against TSPAN7  

41 patient serum samples that had antibodies to the full-length TSPAN7 served as the source 

of antibodies for TSPAN7 epitope testing. As negative controls, 20 patient serum samples that 

did not have antibodies to the full-length TSPAN7 and 1xTBST were used. Six out of the nine 

TSPAN7 protein fragments, were bound by antibodies in patient sera, as shown by higher 

counts detected in the LIPS assay using some of the positive serum samples as compared to 

the negative controls. Fragments C1-TM1-E1-TM2 (225), TM3-E2-TM4-C3 (495), E2-TM4-

C3 (437), and TM4-C3 (111) gave stronger positive signals through antibody binding (Figure 

9), while fragments C1-TM1-E1 (168), and TM1-E1-TM2-C2 (207) gave positive signals 

through antibody binding that were barely higher than the background signals (Figure 10), as 

determined by the appropriate cut-offs. Three fragments, E1-TM2-C2 (135), TM2-C2-TM3-

E2 (471), and C2-TM3-E2 (414), gave no positive signals through antibody binding compared 

to the counts in the negative controls (Figure 11). The six fragments and the corresponding 

sera, which gave positive signals, were further tested in the inhibition LIPS assay.  

C1-TM1-E1-TM2 (225) 2191755

C1-TM1-E1 (168) 16488029

TM1-E1-TM2-C2 (207) 58633824

E1-TM2-C2 (135) 70715686

TM2-C2-TM3-E2 (471) 581924

C2-TM3-E2 (414) 9212820

TM3-E2-TM4-C3 (495) 13844731

E2-TM4-C3 (437) 55787286

TM4-C3 (111) 2761858

TSPAN7 fragment
Protein activity (counts 

per s/µl)
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Figure 9. Nluc-tagged TSPAN7 fragments that gave stronger positive signals through 

antibody binding compared to negative controls in the LIPS assay. The sera samples 

which gave positive signals are shown in darker shade in each graph and are used in 

inhibition LIPS assay. A. C1-TM1-E1-TM2 (225) fragment gave positive signals in 

three serum samples with approx. cutoff at 150000 cps; B. TM3-E2-TM4-C3 (495) 

fragment gave positive signals in four serum samples with approx. cut-off at 5000 cps; 

C. E2-TM4-C3 (437) fragment gave positive signals in three serum samples with 

approx. cutoff at 40000 cps; D. TM4-C3 (111) fragment gave positive signals in 11 

serum samples with approx. cutoff at 12000 cps.  
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Figure 10. Nluc-tagged TSPAN7 fragments that gave weaker positive signals through 

antibody binding compared to negative controls in the LIPS assay. The sera samples 

which gave positive signals are shown in darker shade in each graph and are used in 

inhibition LIPS assay. A. C1-TM1-E1 (168) fragment gave positive signals in 13 

serum samples with approx. cutoff at 8000 cps; B. TM1-E1-TM2-C2 (207) fragment 

gave positive signals in four serum samples with approx. cutoff at 10000 cps.  
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Figure 11. Nluc-tagged TSPAN7 protein fragments which gave no positive signals 

through antibody binding in serum samples in the LIPS assay. A. E1-TM2-C2 (135); 

B. TM2-C2-TM3-E2 (471); C. C2-TM3-E2 (414). They were not tested in inhibition 

LIPS assay. 

3.4. Inhibition luciferase immunoprecipitation systems (LIPS) assay  

The TSPAN7 fragment TM3-E2-TM4-C3 (495) for all tested serum samples gave observably 

higher signals through antibody binding in v2 than in v1 of the assay. The fragments E2-

TM4-C3 (437) and TM4-C3 (111) gave higher signals through antibody binding in v2 

compared to v1 for some of the tested serum samples, while the fragment TM1-E1-TM2-C2 

(207) gave higher signals through antibody binding for all tested serum samples in v2, but the 

difference in counts between v2 and v1 was not as big (Figure 12). For the fragments C1-

TM1-E1-TM2 (225) and C1-TM1-E1 (168), there was no observable difference in signals 

through antibody binding between v2 and v1 (Figure 13).   
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Figure 12. TSPAN 7 protein fragments that showed positive inhibition to the binding 

of Nluc-TSPAN fragments to some or all tested serum samples, which confirmed 

specific antibody-TSPAN7 protein fragment binding. A. TM1-E1-TM2-C2 (207); B.  

TM3-E2-TM4-C3 (495); C. E2-TM4-C3 (437); D. TM4-C3 (111). 
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Figure 13. TSPAN 7 protein fragments that showed no inhibition to the binding of 

Nluc-TSPAN fragments to serum samples, which suggests that antibodies bound Nluc 

fragment or Nluc fusion peptide instead of TSPAN7 protein fragment. A. C1-TM1-

E1-TM2 (225); B. C1-TM1-E1 (168). 
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4. DISCUSSION 

In the LIPS assay, antibodies from the serum samples bound six TSPAN7 fragments. The 

indicator of the positive binding were the counts produced through binding of antibodies in 

the patient serum samples to TSPAN7 fragments, which were observably higher than the 

counts of the negative controls. Out of the six TSPAN7 fragments that produced positive 

signals when tested against patient serum samples, only three showed inhibited binding in the 

inhibition LIPS assay. In the inhibition LIPS assay there were two versions of the assay. In 

the first version, Nluc-tagged and untagged TSPAN7 fragments competed for antibodies from 

the sera samples. If the antibody binding was specific for a protein fragment rather than for 

Nluc tag or to a part overlapping Nluc and TSPAN7 (Nluc fusion peptide), the second version 

of the assay, which contained only Nluc-tagged TSPAN7 fragments, should give rise to 

observably higher counts than the first version. From the results it can be seen that fragments 

TM3-E2-TM4-C3 (495), E2-TM4-C3 (437), and TM4-C3 (111) gave strong positive signals 

through antibody binding in the LIPS assay, which indicated that antibodies from patient 

serum samples bound those Nluc-tagged fragments. With the inhibition LIPS assay, it was 

confirmed that the antibodies indeed bound TSPAN7 fragments rather than Nluc tag or the 

fusion peptide due to the significant drop in counts in v1 compared to the v2. The results of 

the LIPS and inhibition LIPS assays suggest that E2 and C3 TSPAN7 domains are the most 

likely candidates that carry autoepitopes, and that TM4 domain could play a role in the 

binding as well. Because most serum samples that had antibodies against full-length TSPAN7 

did not have increased binding of antibodies to TSPAN7 truncated forms, it can be suggested 

that the major epitopes are lost when only fragments of the TSPAN7 are expressed. This 

finding supports the theory about conformational, rather than linear, TSPAN7 autoepitopes 

(Roll et al., 2000). It also suggests that other domains, such as transmembrane domains, are 

necessary for proper TSPAN7 conformation and overall protein stabilization, as proposed by 

Hemler (2003). In order to confirm that indeed E2 and C3 TSPAN7 domains carry 

autoepitopes, these domains should be used to replace the same domains in another member 

of the tetraspanin family, with similar structure, but which does not bind antibodies in the sera 

of T1DM patients. In that case, the tetraspanin protein carrying E2 or C3 TSPAN7 domains 

should be able to achieve proper conformation. If E2 and C3 domains of another tetraspanin 

protein would be replaced with E2 and C3 TSPAN7 domains, respectively, it could be 

confirmed that the positive binding of antibodies is specific to E2 and/or to C3 TSPAN7 

domains. In order to further narrow down the autoepitopes, site directed mutagenesis of the 
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TM3-E2-TM4-C3 (495) fragment would be a logical next step. By specifically mutating 

amino acids in E2 and C3 regions, positions of amino acids that carry autoepitopes could be 

uncovered.  
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5. CONCLUSION 

E2 and C3 TSPAN7 domains are the likely candidates that carry autoepitopes in type I 

diabetes. TM4 could also play a role either by carrying autoepitopes itself, or by positioning 

E2 and C3 in proper conformation. When only fragments of the TSPAN7 protein are 

expressed, instead of the full-length protein, major epitopes are lost.  
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