
Deep machine learning for syntactic annotation
projection

Marić, Tina

Master's thesis / Diplomski rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:780941

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-11-03

Repository / Repozitorij:

Repository of the Faculty of Science - University of
Zagreb

https://urn.nsk.hr/urn:nbn:hr:217:780941
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://zir.nsk.hr/islandora/object/pmf:4758
https://repozitorij.unizg.hr/islandora/object/pmf:4758
https://dabar.srce.hr/islandora/object/pmf:4758

UNIVERSITY OF ZAGREB

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

Tina Marić

DEEP MACHINE LEARNING FOR
SYNTACTIC ANNOTATION

PROJECTION

Master thesis

Mentor:
Goran Igaly

Zagreb, 2018.

Ovaj diplomski rad obranjen je dana pred ispitnim povjerenstvom
u sastavu:

1. , predsjednik

2. , član

3. , član

Povjerenstvo je rad ocijenilo ocjenom .

Potpisi članova povjerenstva:

1.

2.

3.

This thesis was made during my internship at the IT University of Copenhagen, that took
place from September until the end of December in 2017, under the supervision of

professor Željko Agić. I want to thank Željko for all the help, guidance and answers to all
of my questions.

Contents

Contents iv

Introduction 1

1 Annotations 2
1.1 Part-of-speech tagging and dependency parsing 2
1.2 Dataset . 3

2 Static multilingual projection 5
2.1 Coverage effect on projection accuracy 10
2.2 The World Atlas of Language Structures (WALS) 12
2.3 Experiments . 14
2.4 Evaluation and results . 15

3 Deep machine learning 23
3.1 Feed forward neural networks . 24
3.2 Recurrent neural networks (RNN) . 25
3.3 Long short-term memory (LSTM) . 26
3.4 Data representation . 27
3.5 Experiments . 29
3.6 Future work . 31

Bibliography 32

iv

Introduction

The automatic discovery of syntactic structure in natural language texts is instrumental in
enabling any sufficiently advanced language technology. Syntactic dependency parsing via
supervised learning over hand-annotated texts has seen a stream of major breakthroughs
over the last decade or so, where research has enabled highly accurate parsers for over
50 languages, for example via the Universal Dependencies project that makes uniformly
annotated training data readily available. Yet, these languages account for only a frac-
tion of the world’s written languages. For the remainder, dependency treebanks are either
prohibitively small or non-existent. Recently, we are witnessing a resurgence of interest
in applying cross-lingual transfer learning to dependency parsing, with a goal of enabling
syntactic analysis for these low-resource languages. Thus far, the best such approaches
involve annotation projection: the transfer of dependency structures via parallel texts, from
resource-rich to low-resource languages. Annotation projection in effect synthesizes the
training data in the target languages, enabling the induction of dependency parsers. Since
the projection of syntactic dependencies typically takes the form of a static algorithm, it
critically depends on the quality of parallel resources, namely the sentence- and word-level
alignments. In turn, these alignment procedures are automatic and incur a lot of noise,
which contributes to suboptimal parser quality downstream. This work tries to improve
some of the existing solutions and proposes an approach to improve the projection of syn-
tactic dependencies through learning to project with deep neural networks.

1

Chapter 1

Annotations

1.1 Part-of-speech tagging and dependency parsing
In traditional grammar, a part of speech tag (abbreviated form: PoS tag or POS tag) is a
category of words (or, more generally, of lexical items) which have similar grammatical
properties. Words that are assigned to the same part of speech tag generally display similar
behavior. In terms of syntax, they play similar roles within the grammatical structure of
sentences and sometimes in terms of morphology. Some part of speech tags for English
are given in the Table 1.1. Part-of-speech tagging (abbreviated form: POS tagging or PoS
tagging or POST) is the process of assigning a POS tag to every word in a text (corpus)
[7]. Example of tagged sentence is in Figure 1.1.

tag name

ADJ adjective
ADP adposition
ADV adverb
AUX auxiliary
CCONJ coordinating conjunction
DET determiner
INTJ interjection
NOUN noun
NUM numeral
PART particle
PRON pronoun
PROPN proper noun
PUNCT punctuation
SCONJ subordinating conjunction

2

CHAPTER 1. ANNOTATIONS 3

tag name

SYM symbol
VERB verb
X other

Table 1.1: List of English part of speech tags.

Figure 1.1: Example of sentence with assigned part of speech tags.

A dependency parser analyzes the grammatical structure of a sentence, establishing re-
lationships between ”head” words and words which modify those heads [12]. An example
of dependency parsing with TurboParser [2] can be seen in Figure 1.2.

Figure 1.2: Syntactic dependency parse from TurboParser. It outputs part of speech tags
using different notation [4].

1.2 Dataset
Our parallel corpus consists of publications from the Watchtower Society, that are being
published monthly by Jehovah’s Witnesses. They are available in up to 583 languages. We
use translations in 26 languages. Accurate parsers exist for 21 of them and we call them
source languages (sources). Other 5 will be called target languages (targets). Texts are re-
ligious and therefore biased, but the main advantage that we are going to exploit is having
resources that are massively multi-parallel.
For each language pair, there are sentences from one language that do not have a translation

CHAPTER 1. ANNOTATIONS 4

in the other. Therefore, Hunalign (Varga et al., 2005) was used to perform conservative sen-
tence alignment. The number of aligned sentences varies from 23 605, for Tamil-Persian
pair, up to 96 999, for Dutch-Portuguese pair. Words in aligned sentences were aligned
using the IBM1 aligner. Sentences written in source languages were parsed with the arc-
factored TurboParser, tagged with the TnT tagger with default settings and then annotated
using the format shown in Table 1.2 .

ID FORM POS HEAD

1 What PRON 3 0:-2.16285 ... 3:2.5009
2 Is VERB 3 0:-1.98414 ... 3:3.15446
3 Salvation NOUN 0 0:-2.76271 ... 4:-1.66405
4 ? PUNCT 1 0:-4.5454 ... 3:1.38236

Table 1.2: Example of annotated sentences written in a file.

Chapter 2

Static multilingual projection

In this chapter, we describe the process for syntactic annotation projection presented in
the paper Multilingual Projection for Parsing Truly Low-Resource Languages [8]. We
recreate presented novel idea for projection to see if we can improve the given ”black box”
algorithm and how much.

Authors of the paper assume to have n source languages and one target language t.
For each pair of translations, their algorithm projects syntactic annotations from n source
sentences to the target sentence. Projection step is formalized as a label propagation in a
graph structure defined in Definition 2.0.1. Words in sentences represent graph vertices,
while graph edges are represented by dependency edges and word alignments.

Definition 2.0.1. Projection graph is a graph G = (V, E). V is set of vertices that can be
decomposed as V = V0 ∪ ... ∪ Vn where Vi is the set of words in sentence i. E is a set of
edges that are weighted by the function we : E → R.
Lets denote target vertices as Vt = V0 and source vertices as Vs = V1 ∪ ... ∪ Vn.
The subgraph A = (Vs,Vt, EA) induced by all alignment edges is bipartite graph that is
connecting Vs and Vt.
The subgraph G[Vi] induced by the set of vertices Vi represents dependency edges between
the words of the sentences i.

Definition 2.0.2. POS projection problem is defined as assigning POS labels to the vertices
Vt by transferring the POS labels from vertices V1, ...,VN through the alignments A.

5

CHAPTER 2. STATIC MULTILINGUAL PROJECTION 6

Algorithm 1 Project POS tags
Data: A projection graph G = (Vs ∪ Vt, E); a set of POS labels L; a function p(l | v)

assigning probabilities to labels l for word vertices v.
Result: A POS labeling of Vt

p̃→ empty probability table
label→ empty label-to-vertex mapping
for vt ∈ Vt do

for l ∈ L do
p̃(l | vt) ∝

∑
vs∈Vs

p(l | vs)wa(vs, vt)
end
label(vt)→ argmaxl p(l | vt)

end

To describe Algorithm 1 for POS projection authors define conditional probability dis-
tribution p(l | v).

Definition 2.0.3. For all source vertices, the probability distributions are obtained by tag-
ging the corresponding sentences in the corpus with POS taggers, assigning a probability
of one to the best tag for each word.

Conditional probability distribution for target vertices p(l | v) over POS tags l ∈ L is
defined as:

p(l | vt) ∝
∑
vs∈Vs

p(l | vs)wa(vs, vt). (2.1)

It means that for each target token, i.e., each vertex v, the projection works by gathering
evidence for each tag from all source tokens aligned to v, weighted by the alignment score.

The projected tag for a target vertex v t is then:

argmaxl p(l | vt) (2.2)

The best results in the paper are achieved when both, alignment weights and source
tag probabilities are elements of {0, 1}. Therefore, further on in our work, POS projection
is reduced to a simple voting scheme that assigns the most frequent POS tag among the
aligned words to each target word.

Definition 2.0.4. Dependency projection problem is defined as assigning weights to the
edges of G[Vt] by transferring the syntactic parse graphs G[V1], ...,G[VN] from the source
languages through the alignments A.

While parsing the text written in source languages, probability scores we ∈ R were
assigned to the dependency edges. Scores were standardized to make them comparable

CHAPTER 2. STATIC MULTILINGUAL PROJECTION 7

across languages. Standardization centers the scores around zero with a standard deviation
of one by subtracting the mean and dividing the result by the standard deviation. The
normalization was applied to each sentence. Edge scores are projected from source edges
to target edges via world alignments. Alignments vary in quality and according to that
they are given scores wa ∈ [0, 1]. While projecting edges, their scores are scaled with
corresponding alignment probabilities.

Let (us, vs) be source edge with score ee. Edges ut, vt ∈ Vt are such that (us, ut) ∈ EA and
(vs, vt) ∈ EA with alignment scores wa1 ,wa2 respectively. Score for projected target edge
(ut, vt) is computed as:

we(us, vs)wa1(us, us)wa2(vs, vt). (2.3)

One projected target edge can originate from multiple source edges. In that case, the
projected edge is the one that gives the maximum score for the Equation 2.3.

With multiple sources, target edge scores are computed as a sum over the individual
sources

n∑
i=1

max
(us,vs)∈Vi

we(us, vs)wa1(us, us)wa2(vs, vt). (2.4)

Result of projection is in a form of a general graph, not necessarily a tree. To get a
dependency parse tree graph is decoded using directed maximum spanning tree (DMST)
algorithm 2.

CHAPTER 2. STATIC MULTILINGUAL PROJECTION 8

Algorithm 2 Project dependencies
Data: A projection graph G = (Vs ∪ Vt, E)
Result: A dependency tree covering the target vertices Vt

if project from trees then
for i = 0 to n do

G[Vi]← DMST(G[Vi])
end

end
for (ut, vt) ∈ G[Vt] do

we(ut, vt)← −∞
if (·, ut) or (·, ut) < EA then

continue
end
we(ut, vt)←

∑n
i=1 max

(us,vs)∈Vi
we(uS , vs)wa1(us, ut)wa2(vs, vt)

end
G[Vt]← normalize(G[Vt])
return DMST(G[Vt]

In order to efficiently implement projection of dependency trees from source languages
to target language, each sentence is represented as a matrix. For a sentence of length n
dependency parse tree can be transformed into matrix with dimension (n + 1) ∗ (n + 1).
If element ai j of a matrix is non-zero it means that the word with index j is the head
of the word with index i. If index j is zero then the word with index i is the root. An
example of dependency tree of a sentence is shown in Figure 2.1 and corresponding matrix
representation can be seen in Figure 2.2.

ID FORM POS HEAD

1 Salvation PROPN 2 0:-3.41698 ... 8:-0.346113
2 means VERB 0 0:-1.37355 ... 8:-0.780878
3 more ADJ 2 0:-2.08862 ... 8:-0.504575
4 than SCONJ 6 0:-4.36529 ... 8:0.656906
5 just ADV 6 0:-4.42531 ... 8:1.05511
6 deliverance NOUN 2 0:-3.66814 ... 8:0.784884
7 from ADP 8 1:-0.953412 ... 8:3.47576
8 destruction NOUN 6 0:-4.29034 ... 6:2.89611

Table 2.1: Annotated sentence

CHAPTER 2. STATIC MULTILINGUAL PROJECTION 9

Figure 2.1: Dependency tree of annotated sentence from Table 2.1.

Figure 2.2: Matrix representation of dependency tree of annotated sentence from Table 2.1.

Word alignments are presented in matrix form, as well. If a source sentence has m
words and a target sentence has n words, the matrix has a dimension (m+1)*(n+1) and a
non-zero element ai j is the score of alignment among word i in a source sentence and j
word in a target sentence. All projection steps are shown in Figure 2.3.

CHAPTER 2. STATIC MULTILINGUAL PROJECTION 10

Figure 2.3: Projection of POS tags and dependency trees. The first empty row of described
matrix representation is not shown in this image. The figure is borrowed from the paper
Multilingual Projection for Parsing Truly Low-Resource Languages [8].

2.1 Coverage effect on projection accuracy
Alignment coverage of a target sentence, for every target-source pair, is defined as a per-
centage of target words that are aligned with words in the source sentence. To analyze the
impact of coverage on the projection accuracy, one target language, Croatian (hr) and three
source languages, English (en), Czech (cs) and German (de) were selected. Furthermore,
23 368 sentences that have translations in all four languages were selected. Since pro-
jection process depends on word alignments, if one target-source sentence pair has many
unaligned words, we assume that projected tree and POS tags are going to be less accurate.

To test presented hypothesis we define several coverage cut-offs and two types of sen-
tence selection. First selection criteria selects target sentence only if alignment coverage
is above given cut-off for all three source sentences. The second selects target sentence
if it has coverage above given cut-off for at least one source sentence. Figure 2.4 shows
the effect of target alignment coverage on a projection accuracy. On x-axis, one can see
a minimum expected alignment coverage and on y-axis calculated projection accuracy for
selected sentences based on a cut-off. It can be seen that better coverage does provide more
accurate projected trees. Also, significant improvement in projection accuracy is visible in
the case when all source sentences satisfy defined coverage cut-off and not at least one.
Figure 2.5 shows how many sentences were selected for a given cut-off.

CHAPTER 2. STATIC MULTILINGUAL PROJECTION 11

Figure 2.4: Effect of target alignment coverage on projection accuracy. On the x-axis is the
minimum expected alignment coverage and on the y-axis is calculated projection accuracy
for selected sentences based on a cut-off.

Figure 2.5: A number of selected sentences based on the alignment coverage cut-off shown
on the x-axis.

CHAPTER 2. STATIC MULTILINGUAL PROJECTION 12

One potential drawback of selecting only high covered sentences could be a change of
sentence length distribution in a set of selected sentences. That could have a bad effect
on parser training later on. Figure 2.6 shows distribution of selected sentences for each
cut-off. It can be seen that the distribution is significantly changed only when the cut-off is
90%.

Figure 2.6: Distribution of length of target sentences that were selected for each cut-off.

2.2 The World Atlas of Language Structures (WALS)
The World Atlas of Language Structures (WALS) [9] is a large database of structural
(phonological, grammatical, lexical) properties of languages gathered from descriptive ma-
terials (such as reference grammars) by a team of 55 authors. For well over a century,
linguists have also produced atlases that show the geographical distribution of linguistic
features in the dialects of a language. WALS is the first feature atlas on a world-wide

CHAPTER 2. STATIC MULTILINGUAL PROJECTION 13

scale. WALS provides an especially significant contribution to the field of areal typology,
which seeks to establish whether particular geographical distributions are the result of lan-
guage contact among neighboring languages. For example, Figure 2.7 shows which order
of object and verb is characteristic for languages across the world.

Figure 2.7: Order of object and verb across languages

From dataset used in this study, different language feature values were collected for lan-
guages in our data. Based on observed values of selected features, the similarity between
each language pair was calculated. Therefore, each language has the corresponding map-
ping with similarity values that are going to be used in experiments described in Section
2.3. Example of mapping for English can be seen in a Table 2.6.

’fr’: 0.37951807228915663 ’fa’: 0.55263157894736847 ’pt’: 0.36231884057971014
’pl’: 0.37373737373737376 ’sv’: 0.25287356321839083 ’hu’: 0.4567901234567901
’ta’: 0.67816091954022983 ’hi’: 0.4391891891891892 ’ro’: 0.34782608695652173
’no’: 0.31578947368421051 ’nl’: 0.34065934065934067 ’cs’: 0.44117647058823528
’fi’: 0.39393939393939392 ’he’: 0.42384105960264901 ’bg’: 0.36170212765957449
’hr’: 0.44285714285714284 ’es’: 0.36969696969696969 ’id’: 0.50306748466257667
’it’: 0.31868131868131866 ’sl’: 0.33962264150943394 ’et’: 0.41428571428571431
’ar’: 0.61111111111111116 ’el’: 0.41509433962264153 ’da’: 0.28358208955223879
’de’: 0.32704402515723269

Table 2.2: Language similarity values for English

CHAPTER 2. STATIC MULTILINGUAL PROJECTION 14

2.3 Experiments
While analyzing the data we have realized that, since texts are religious, sentences with
two words are usually in the form shown in Table 2.3. They are not informative for tagging
or parsing so they are filtered out before starting any experiment.

ID FORM POS HEAD

1 3 NUM 0 0:-1.77388
2 . PUNCT 1 0:-5.0905 1:2.60289

1 10 NUM 0 0:-1.77105
2 . PUNCT 1 0:-5.14443 1:2.29314

For every target language we do the experiment following the next steps:

• for each of the source-target sentence pair, project POS tags and dependency edges
using word alignments,

• for every token do majority vote on POS tags,

• do decoding on the summed edge scores using DMST,

• rank POS-tagged and dependency parsed target sentence applying two criteria de-
scribed in the Subsection 2.3,

• select top n sentences, n ∈ {500, 1000, 2000, 5000, 10000, 20000},

• create files from selected sentences for the tagger and parser training,

MarMoT tagger is used for tagging [13], a generic conditional random field (CRF)
framework as well as a state-of-the-art morphological tagger. AnnaParser [1] is used for
parsing instead of TurboPareser used in the paper [8].

Note 2.3.1. In order to maintain consistency with the report of results in the paper [8],
experiment is also done for each source language observed as a target language.

Sentence ranking
Authors of the paper [8] randomly subsampled all training sets to a maximum of 20k sen-
tences. In the multi-source systems, this means a uniform sample from all sources up to

CHAPTER 2. STATIC MULTILINGUAL PROJECTION 15

20k sentences. As our baseline, we do the same. On the other hand, our new approach
includes ranking all sentences based on some criteria. After that n highest ranking sen-
tences are selected, where n ∈ {500, 1000, 2000, 5000, 10000, 20000}. As stated before we
believe that sentence-pair alignment coverage has a big impact on projection quality. By
removing target sentences that have low coverage we are more likely to have better data for
the training. First criteria for ranking is calculating average coverage that one target sen-
tence has with the aligned source translations. If there is no translation (aligned sentence)
in some source language, we consider that the coverage is 0%. For the second criteria, we
want to see if we can make a use of WALS similarity values described in Section 2.2. If
some source language is more similar to the target language the translation in that source
language can be more informative than the translation in the source language that is a lot
less similar to the target. Therefore, before calculating the coverage average, each coverage
is multiplied by similarity value.

For each language, calculated similarity values are converted into action probabilities
[5]. We use the following form of softmax function

l = (l1, .., ls), vector of similarity values
P : Rs → [0, 1]s

P j(l) =
exp (l j

temperature)∑s
i=1 exp (li

temperature)
.

(2.5)

Softmax function is a generalization of the logistic function that ”squashes” the s-
dimensional vector of real values into the s-dimensional vector of real values in the range
[0, 1] that add up to 1.

Temperature is the parameter that is going to be tuned. For high temperatures (temper-
ature →∞), all actions have nearly the same probability of 1

s and the lower the tempera-
ture, the higher similarity values have more affect on the probability. For a low temperature
(temperature→0), the probability of the action with the highest similarity value tends to 1.

2.4 Evaluation and results
Universal Dependencies v1.2 treebank [14] is used for evaluation. The Universal De-
pendencies (UD) is a project that is developing cross-linguistically consistent treebank
annotation for many languages, with the goal of facilitating multilingual parser develop-
ment, cross-lingual learning, and parsing research from a language typology perspective.
The general philosophy is to provide a universal inventory of categories and guidelines to
facilitate consistent annotation of similar constructions across languages, while allowing

CHAPTER 2. STATIC MULTILINGUAL PROJECTION 16

ID FORM LEMMA UPOSTAG XPOSTAG FEATS HEAD DEPREL DEPS MISC

1 Call call VERB VB Mood=Imp ... 0 root
2 me I PRON PRP Case=Acc ... 1 dobj
3 if if SCONJ IN 5 mark
4 there there PRON EX 5 expl
5 are be VERB VBP Mood=Ind... 1 advcl
6 any any DET DT 7 det
7 questions question NOUN NNS Number=Plur 5 nsubj SpaceAfter=No
8 . . PUNCT . 1 punct

Table 2.4: Test data format

language-specific extensions when necessary [6]. The test file format is shown in Table
2.4.

The goal is to evaluate the accuracy of parsers trained with selected target sentences.
In order not to have parsers assume the existence of POS-annotated corpora, we train the
tagger with selected target sentences. Trained tagger is used for tagging sentences from
test data. After that, POS column in test data is adjusted according to the tagger output.
Furthermore, since only information that we have after projection are projected tags and
dependency trees, all columns other than ID, FORM, POS and HEAD are removed from
test data. ID, FORM and POS columns are used for parser training and HEAD column is
used to calculate parser accuracy. Parser accuracy is calculated as unlabeled attachment
score (UAS):

accparser = UAS (parser) =
correctly predicted edges

total number of edges
. (2.6)

Tagger accuracy is calculated as:

acctagger =
correctly predicted POS tags

total number of words
(2.7)

Accuracies calculated for every language are used to calculate average parser and tag-
ger accuracy. Results are shown in Figures 2.8 and 2.9. It can be seen that the parser
trained with the 20 000 highest ranked sentences is more accurate than the parser trained
with 20 000 randomly selected sentences. Furthermore, the highest accuracy is achieved
when the parser is trained with only 5 000 sentences that have the highest average coverage.
With four times fewer sentences, training is faster and therefore more efficient. The same
conclusions can be applied to the target languages only. Their average tagger and parser
accuracies are shown in Figures 2.10 and 2.11. Results for each language, the number of
selected sentences and the type of selection are presented in Table 2.5.

CHAPTER 2. STATIC MULTILINGUAL PROJECTION 17

Figure 2.8: Average UAS parser accuracy for all 26 languages.

Figure 2.9: Average tagger accuracy for all 26 languages.

CHAPTER 2. STATIC MULTILINGUAL PROJECTION 18

Figure 2.10: Average UAS parser accuracy for 5 target languages.

Figure 2.11: Average tagger accuracy for 5 target languages.

CHAPTER 2. STATIC MULTILINGUAL PROJECTION 19

500 1000 2000 5000 10 000 20 000
rnd avg rnd avg rnd avg rnd avg rnd avg rnd avg

Sources
Arabic 27.82 29.28 30.37 27.75 29.21 33.64 34.41 35.93 33.36 37.79 34.08 36.91
Bulgarian 33.62 57.97 37.23 61.72 36.77 63.36 41.18 63.72 42.06 60.54 47.23 56.01
Croatian 41.87 47.85 45.82 52.58 43.88 54.55 48.51 57.99 50.88 55.64 50.98 57.31
Czech 36.39 52.09 38.87 55.06 42.58 55.99 42.79 56.40 45.81 56.97 47.31 55.46
Danish 49.54 50.92 51.24 55.73 55.08 56.99 55.66 59.76 57.00 60.81 57.94 59.40
Dutch 49.81 53.75 50.80 54.66 53.11 57.65 56.26 59.10 56.97 60.63 57.73 59.75
English 53.68 51.92 53.05 54.26 54.05 55.19 56.11 57.82 56.78 58.56 58.58 59.09
Farsi 15.74 18.27 17.54 18.39 18.65 18.51 19.13 20.62 19.58 21.69 19.93 21.38
Finnish 29.63 35.21 30.45 40.47 34.99 43.45 35.42 46.18 38.17 48.14 39.73 48.53
French 41.75 49.56 47.39 55.30 49.37 57.75 51.87 60.25 53.79 58.83 54.70 59.42
German 32.47 51.43 33.35 52.96 37.24 53.08 39.39 53.34 41.74 52.50 41.93 50.93
Hebrew 24.64 32.99 23.35 40.29 37.21 47.52 36.07 49.68 42.26 49.67 44.70 49.60
Hindi 15.44 19.19 14.63 18.32 14.41 17.76 15.12 18.12 16.06 17.45 16.83 17.39
Indonesian 44.98 50.74 47.31 52.99 50.46 53.86 51.65 55.04 52.90 55.53 54.67 56.89
Italian 58.61 61.22 59.82 65.27 61.89 65.18 63.79 67.80 64.99 67.36 64.66 67.91
Norweigan 57.13 57.54 59.84 62.55 63.48 65.32 64.32 67.39 66.07 67.42 67.19 68.33
Polish 52.75 57.97 54.74 61.11 58.72 64.80 59.96 66.43 59.68 66.50 62.20 65.26
Portugese 58.16 57.81 60.01 59.66 60.93 61.85 62.81 62.89 62.91 63.80 64.77 64.17
Slovene 44.44 53.52 46.23 57.99 47.29 60.08 50.52 60.49 53.54 61.49 53.30 58.97
Spanish 54.18 58.82 57.50 61.39 59.90 63.36 60.39 65.47 64.28 65.95 65.40 66.36
Swedish 51.00 52.37 55.18 55.48 58.27 57.82 60.98 61.17 61.68 62.07 63.96 63.76

Targets
Estonian 56.90 53.35 49.37 55.33 56.38 56.38 55.86 59.31 57.53 59.52 58.26 57.32
Greek 45.41 57.89 49.12 59.79 50.11 60.64 52.05 63.67 54.13 61.54 57.87 62.14
Hungarian 34.90 42.79 38.97 45.47 36.84 45.65 39.85 46.20 41.36 47.96 42.09 47.45
Romanian 42.14 50.91 46.13 50.62 47.43 52.86 51.12 55.32 52.35 55.61 54.45 57.28
Tamil 16.49 17.80 15.13 19.11 17.90 20.92 18.05 22.17 18.45 21.57 19.66 21.72

Averages
All 41.13 47.04 42.82 49.78 45.24 51.70 47.05 53.55 48.63 53.67 50.01 53.41
Sources 41.60 47.64 43.56 50.66 46.07 52.75 47.92 54.55 49.55 54.73 50.85 54.42
Targets 39.17 44.55 39.74 46.06 41.73 47.29 43.39 49.34 44.76 49.24 46.47 49.18

Table 2.5: Parser UAS scores for each language, number of selected sentences and type of
selection.

As mentioned in Subsection, 2.3, for the second type of sentence ranking, parameter
temperature from Equation 2.5 needs to be tuned in. First, the set of possible temperature
values is set. It contains five values: 3.0, 4.0, 5.0, 6.0 and 7.0. Then, the experiment ex-
plained in 2.3 is repeated for every temperature value. Results are show in Figures 2.10
and 2.11. It is visible that second type of selection does not bring improvement in parser
accuracy. But we can conclude that similarity languages values obtained from WALS do

CHAPTER 2. STATIC MULTILINGUAL PROJECTION 20

not have a bad impact on overall parser accuracy. Results for temperature value 5.0, each
language and number of selected sentences are presented in Table 2.6

Figure 2.12: Average parser accuracy for different temperature values and different number
of selected sentences.

CHAPTER 2. STATIC MULTILINGUAL PROJECTION 21

Figure 2.13: Average tagger accuracy for different temperature values and different number
of selected sentences.

CHAPTER 2. STATIC MULTILINGUAL PROJECTION 22

500 1000 2000 5000 10 000 20 000
avg wals avg wals avg wals avg wals avg wals avg wals

Sources
Arabic 29.28 29.23 27.75 28.27 33.64 31.26 35.93 36.41 37.79 37.83 36.91 36.97
Bulgarian 57.97 57.12 61.72 61.21 63.36 63.22 63.72 63.80 60.54 61.06 56.01 57.07
Croatian 47.85 49.62 52.58 53.26 54.55 55.44 57.99 58.13 55.64 56.34 57.31 58.74
Czech 52.09 51.76 55.06 54.99 55.99 56.47 56.40 56.35 56.97 56.66 55.46 55.15
Danish 50.92 50.20 55.73 54.67 56.99 57.55 59.76 59.62 60.81 61.27 59.40 60.84
Dutch 53.75 53.05 54.66 54.36 57.65 57.19 59.10 59.09 60.63 59.96 59.75 60.13
English 51.92 51.62 54.26 54.17 55.19 55.34 57.82 57.52 58.56 58.35 59.09 59.20
Farsi 18.27 17.28 18.39 18.48 18.51 19.60 20.62 20.55 21.69 21.33 21.38 21.42
Finnish 35.21 36.93 40.47 40.61 43.45 43.48 46.18 47.20 48.14 48.67 48.53 48.18
French 49.56 50.27 55.30 56.98 57.75 57.44 60.25 59.01 58.83 58.63 59.42 59.60
German 51.43 52.75 52.96 53.07 53.08 53.07 53.34 53.04 52.50 53.09 50.93 49.99
Hebrew 32.99 33.94 40.29 40.73 47.52 48.46 49.68 50.66 49.67 51.66 49.60 48.54
Hindi 19.19 19.73 18.32 18.92 17.76 18.31 18.12 18.19 17.45 17.43 17.39 16.71
Indonesian 50.74 51.44 52.99 52.95 53.86 54.38 55.04 55.31 55.53 55.40 56.89 56.52
Italian 61.22 61.30 65.27 65.82 65.18 66.33 67.80 67.22 67.36 67.71 67.91 67.46
Norweigan 57.54 58.45 62.55 63.00 65.32 65.67 67.39 67.30 67.42 67.79 68.33 68.18
Polish 57.97 58.68 61.11 61.88 64.80 63.12 66.43 65.72 66.50 66.56 65.26 66.25
Portugese 57.81 57.85 59.66 59.95 61.85 61.62 62.89 63.32 63.80 64.29 64.17 64.60
Slovene 53.52 54.00 57.99 58.00 60.08 60.98 60.49 60.82 61.49 59.76 58.97 60.39
Spanish 58.82 57.34 61.39 60.42 63.36 64.54 65.47 65.11 65.95 65.71 66.36 66.25
Swedish 52.37 51.99 55.48 56.73 57.82 58.03 61.17 61.00 62.07 62.52 63.76 64.21

Targets
Estonian 53.35 53.24 55.33 55.75 56.38 55.75 59.31 57.01 59.52 58.16 57.32 57.95
Greek 57.89 57.20 59.79 60.16 60.64 60.30 63.67 62.88 61.54 63.25 62.14 61.75
Hungarian 42.79 41.65 45.47 45.03 45.65 45.94 46.20 46.35 47.96 48.99 47.45 46.28
Romanian 50.91 48.95 50.62 51.92 52.86 51.77 55.32 53.73 55.61 56.84 57.28 56.55
Tamil 17.80 19.51 19.11 19.91 20.92 22.32 22.17 22.17 21.57 21.82 21.72 21.82

Averages
All 47.04 47.12 49.78 50.05 51.70 51.83 53.55 53.37 53.67 53.89 53.41 53.49
Sources 47.64 47.84 50.66 50.88 52.75 52.93 54.55 54.54 54.73 54.86 54.42 54.59
Targets 44.55 44.11 46.06 46.55 47.29 47.22 49.34 48.43 49.24 49.81 49.18 48.87

Table 2.6: Parser UAS scores for temperature value 5.0, each language and number of
selected sentences.

Chapter 3

Deep machine learning

In this chapter, we briefly describe basics of deep neural networks to refer to some concepts
and terms used in Section 3.5. Deep learning is a branch of machine learning. It is a re-
branded name for neural networks a family of learning techniques that was historically
inspired by the way computation works in the brain [11] .

A neural network consists of computational units called neurons. Each neuron has
scalar inputs and outputs. Each input is multiplied by an associated weight and all results
are summed. A non-linear function, called activation function, is applied to the sum and
passed to its output. One neuron is shown in Figure 3.1. Two kinds of networks, feed-
forward networks, and recurrent/recursive networks, are going to be described in Sections
3.1 and 3.2.

Figure 3.1: Neuron graphical representation.

23

CHAPTER 3. DEEP MACHINE LEARNING 24

3.1 Feed forward neural networks
The output of a neuron may feed into the inputs of one or more neurons. Feed forward
neural network is being created by connecting neurons into layers. The most common type
is called fully connected neural network and its structure can be seen in Figure 3.2.

Figure 3.2: Fully connected neural network with N + 3 layers, d inputs and k outputs.
Layers Li are called hidden layers, x is input layer and h(x) is output layer. Figure is
borrowed from [3].

In mathematical terms each layer can be presented as a function

Li(x) = Wix + bi, (3.1)

that is followed by non-linear activation function. Neural network inputs are training
examples (x(1), .., x(n)) that have corresponding labels (y(1), .., y(n)). The goal of a network is
to tune in weight parameters to output y(i) for x(i) as an input, where i ∈ {1, .., n}. By tuning
parameters, network is defining function h = LN ◦ ... ◦ L0 that for given input x outputs
desired value.

Training process relays on applying a loss function to the neural network predicted
output and the desired value. Loss function assigns a numerical score that represents loss
suffered when predicting incorrectly. Loss can be calculated for each input or for a defined
number of inputs called batch size.

It was shown by [Cybenko, 1989, Hornik et al., 1989] that network with only one layer
is a universal approximator. It can approximate with any desired non-zero amount of error
a family functions that include all continuous functions on a closed and bounded subset

CHAPTER 3. DEEP MACHINE LEARNING 25

of Rn, and any function mapping from any finite dimensional discrete space to another.
However, it does not say how easy or hard it is to set the parameters based on training
data and a specific learning algorithm, it also does not guarantee that a training algorithm
will find the correct function generating our training data and it does not state how large
the hidden layer should be. Therefore, there is a benefit in trying out some more complex
architectures such as recursive neural networks. [11]

3.2 Recurrent neural networks (RNN)
Textual language data comes in sequences such as letters, words, and sentences. Recurrent
neural networks are specialized models for sequential data. Recurrent neural networks
allow representing arbitrarily sized sequential inputs in a fixed-size vector. They take as
input a sequence of items and produce a fixed size vector that summarizes that sequence
[11]. Formally it is defined as a recursive function given in Equation 3.2.

A(t) = Wh(t−1) + b + Ux(t) (3.2)

The base of the recursion is an initial state vector, h0, which is also an input to the RNN.
A recurrent neural network can be thought of as multiple copies of the same network, each
passing a message to a successor [15]. In Figure 3.3 unrolled network, for every timestamp
t, can be seen.

Figure 3.3: An unrolled recurrent neural network. The figure is borrowed from [15].

In theory, recurrent neural networks, because of its recursive definition, are able to
connect previous information to the present task. In practice, it turns out that if the gap
between the relevant information and the point where it is needed becomes very large,
recurrent networks don’t seem to be able to learn them [15]. A special type of recurrent
network, called long short-term memory network, is able to cope with that problem.

CHAPTER 3. DEEP MACHINE LEARNING 26

3.3 Long short-term memory (LSTM)
The Long Short-Term Memory (LSTM) neural network is currently the most successful
type of RNN architecture. It explicitly splits the state vector hi into two half, where one half
is treated as “memory cells” and the other is working memory. It was the first architecture
to introduce the gating mechanism. At each input state, a gate is used to decide how much
of the new input should be written to the memory cell, and how much of the current content
of the memory cell should be forgotten. Mathematically it is defined in Equation 3.3.

ht = o · tahn(ct)
ct = f · ct−1 + i · z

i = σ(W xixt + Whiht−1)

f = σ(W x f xt + Wh f ht−1)

o = σ(W xoxt + Whoht−1)

z = tanh(W xzxt + Whzht−1)

(3.3)

Figure 3.4

The state at time t is composed of two vectors, memory cell state ct and hidden state
ht. There are three gates, i (input), f (forget) and o (output). All gate values are computed
based on linear combinations of the current input xt and the previous state ht−1, upon which
is applied sigmoid activation function. LSTM network has the ability to remove or add
information to the memory cell state ct using input and forget gates. Sigmoid activation
function plays a key role in that.

CHAPTER 3. DEEP MACHINE LEARNING 27

(a) Sigmoid function graph.
(b) Hyperbolic tangent function graph.

Figure 3.5: Graphs of activation functions in LSTM.

Sigmoid function is defined In Equation 3.4 and its graph is shown in Figure 3.5a.
It can be seen that it outputs values in the range from 0 to 1. After every gate, there
is a multiplication of a vector with the result of the sigmoid function. If the result is
close to zero it means that information, which vector holds, is going to be dropped after
multiplication and if the result is close to one, all information is going to be kept.

σ(x) =
1

1 + e−x
(3.4)

The memory ct is computed as a sum of previous memory state (ct−1) multiplied with
forget gate result, and update candidate z multiplied by the input gate result. Update can-
didate is computed as a linear combination of xt and ht−1, passed through a hyperbolic
tangent activation function. Hyperbolic tangent function (tanh) is defined in Equation 3.5
and its graph is shown in Figure 3.5b. It is used to place update candidate values between
−1 and 1.

tanh(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex − e−x =
1 − e−2x

1 + e−2x
(3.5)

Finally, the new hidden state ht, which is also an output of the neural network, is com-
puted based on the previously computed new memory state ct passed through a tanh acti-
vation multiplied by the result of the output gate.

3.4 Data representation
Inputs of neural networks used in experiments, described in Section 3.5, are sentences
observed as sequences of words. Sentences have a different number of words whereas

CHAPTER 3. DEEP MACHINE LEARNING 28

network inputs need to have the same dimension. Therefore, in this section is described
how we represent sentences to satisfy that constraint.

Before any data preparation, maximum sentence length value (N) is defined. It is going
to enable same dimensional representation of each sentence. To adjust data we use matrix
representation of a sentence, similar to one described in Chapter 2 and showed in Figure
2.2. The only difference is that we omit the first row of zeros. Therefore, matrix represen-
tation of a sentence with n words has dimension n ∗ (n + 1). For each sentence, its length n
is compared with the defined length N and the matrix is adjusted as described below:

• if n < N: add (N − n) rows and (N − n) columns with zeros

• if n == N: no changes,

• if n > N: remove last (n − N) rows and (n − N) last columns.

After described adjusting, every sentence is represented as a two-dimensional matrix
whose dimension is N ∗ (N + 1). All sentences used to train network are concatenated to
form a three-dimensional matrix whose dimension is (d,N,N + 1) where d is a number
of sentences used for training. The third dimension holds information about heads of the
words. Example can be seen in Figure 3.6.

CHAPTER 3. DEEP MACHINE LEARNING 29

Figure 3.6: Example of representation of data containing 12 sentences with maximum
length set at 10. Gray area represents added rows and columns. Matrix at the top is repre-
sentation of the sentence from Table 2.1. Since its length is 8, two rows and columns are
added.

3.5 Experiments
The goal of experiments is to find learning signal in data by training different neural net-
work models. Due to server and time limitation, ten language pairs were selected for
experiments. It resulted in 564 966 sentences that are going to be inputs to the network
and the same number of translations that are going to be desired outputs. Sentences are
processed to be in a form described in a previous section.

Projection from one language to another is observed as:

CHAPTER 3. DEEP MACHINE LEARNING 30

• sequence-to-sequence learning problem, because of transformation from one sen-
tence into its translation,

• sequence labelling problem, because for each word we want to determine its head of
a parse tree. Therefore word is being classified into (N + 1) ”classes”.

Model is composed of one LSTM layer with sigmoid activation function and one dense
(fully connected) layer with softmax activation function. Dense layer is wrapped with the
TimeDistributed wrapper. This wrapper applies a layer to every temporal slice of an input.
Our input is sequence of N vectors with dimension (N+1). Therefore, dense layer is applied
to each of the N timesteps, independently. In our case, it determines the probability that
some word is the head in a dependency parse tree. Categorical cross-entropy loss function
was used. For predicted output ỹ and true label y it is defined as

Lcross−entropy(ỹ, y) = −
∑

i

y[i]log(ỹ[i]). (3.6)

It measures the dissimilarity between the true label distribution y and the predicted
label distribution.

Several models were trained with a different combination of network parameters to with
the aim to find one whose loss function converges to zero as a number of epochs increases.
We started out with 512 LSTM number of units (dimensionality of the output) and with
15 epochs. Maximum sentence length was set to 100. Training trough one epoch lasted
for approximately two hours. After the tenth epoch loss stars to converge to the 0.39. The
number of units was increased to 1024 and 2048, also several batch number values were
tried (32, 64, 128) but the behaviour of the loss function stayed the same. Model loss
convergence can be seen in Figure 3.7.

Since input data has high dimensionality ((100 ∗ 101) when the maximum length is
100) deeper and wider network architecture should be considered. Such set up would
significantly increase the time of training on our server.

CHAPTER 3. DEEP MACHINE LEARNING 31

Figure 3.7: Categorical cross-entropy loss after each epoch.

3.6 Future work
Instead of the categorical cross-entropy loss, custom loss function could be used. It would
be based on the unlabeled attachment score defined in Equation 2.7. Instead of correctly
predicted edges, the function would calculate the number of incorrectly predicted edges.
In that case minimization of the loss function would improve projection accuracy. More
hidden layers should be added to make network deeper and their output dimension should
be higher to make the network wider. That kind of network should be able to better capture
learning signal from high dimensional input data.

Furthermore, if the information about a part of speech tags is known when training
a parser, parser accuracy increases. Therefore, adding information about part of speech
tags in the data representation should also improve the accuracy of network projections of
dependency trees.

Bibliography

[1] AnnaParser, http://backingdata.org/dri/library/mavenRepo/mate/

anna/parser/3.61/, [Online; accessed 25-January-2018].

[2] ARK Syntactic Semantic Parsing Demo, howpublished = ”http://demo.ark.cs.
cmu.edu/parse”, note = ”[online; accessed 25-january-2018]”.

[3] Neural nets, howpublished = ”http://frnsys.com/ai_notes/machine_
learning/neural_nets.html”, note = ”[online; accessed 25-january-2018]”.

[4] Penn Part of Speech Tags, howpublished = ”https://cs.nyu.edu/grishman/
jet/guide/PennPOS.html”, note = ”[online; accessed 25-january-2018]”.

[5] Softmax function, https://en.wikipedia.org/wiki/Softmax_function, [On-
line; accessed 25-January-2018].

[6] Universal Dependencies, http://universaldependencies.org/docsv1/

introduction.html, [Online; accessed 25-January-2018].

[7] Wikipedia - Part-of-speech tagging, howpublished = ”https://en.wikipedia.
org/wiki/Part-of-speech_tagging”, note = ”[online; accessed 25-january-
2018]”.

[8] Željko Agić, Anders Johannsen, Barbara Plank, Héctor Martınez Alonso, Natalie
Schluter, and Anders Søgaard, Multilingual projection for parsing truly low-resource
languages, (2016).

[9] Martin Dryer, Matthew S. Haspelmath, The World Atlas of Language Structures On-
line. , http://http://wals.info//, 2013, [Online; accessed 25-January-2018].

[10] D. E. Dutkay, D. Han, Q. Sun, and E. Weber, Hearing the hausdorff dimension,
(2009), http://arxiv.org/abs/0910.5433.

[11] Yoav Goldberg, Neural network methods in natural language processing, Morgan
publishers, 2016.

32

http://backingdata.org/dri/library/mavenRepo/mate/anna/parser/3.61/
http://backingdata.org/dri/library/mavenRepo/mate/anna/parser/3.61/
http://demo.ark.cs.cmu.edu/parse
http://demo.ark.cs.cmu.edu/parse
http://frnsys.com/ai_notes/machine_learning/neural_nets.html
http://frnsys.com/ai_notes/machine_learning/neural_nets.html
https://cs.nyu.edu/grishman/jet/guide/PennPOS.html
https://cs.nyu.edu/grishman/jet/guide/PennPOS.html
https://en.wikipedia.org/wiki/Softmax_function
 http://universaldependencies.org/docsv1/introduction.html
 http://universaldependencies.org/docsv1/introduction.html
https://en.wikipedia.org/wiki/Part-of-speech_tagging
https://en.wikipedia.org/wiki/Part-of-speech_tagging
http://http://wals.info//
http://arxiv.org/abs/0910.5433

CHAPTER 3. DEEP MACHINE LEARNING 33

[12] Stanford NLP Group, Software, Stanford Parser, Neural Network Dependency Parser,
https://nlp.stanford.edu/software/nndep.shtml, [Online; accessed 25-
January-2018].

[13] Thomas Mueller, Helmut Schmid, and Hinrich Schütze, Efficient higher-order CRFs
for morphological tagging, Proceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing (Seattle, Washington, USA), Association for
Computational Linguistics, October 2013, pp. 322–332, http://www.aclweb.org/
anthology/D13-1032.

[14] Joakim Nivre, Željko Agić, Lars Ahrenberg, Lene Antonsen, Maria Jesus Aranz-
abe, Masayuki Asahara, Luma Ateyah, Mohammed Attia, Aitziber Atutxa, Liesbeth
Augustinus, Elena Badmaeva, Miguel Ballesteros, Esha Banerjee, Sebastian Bank,
Verginica Barbu Mititelu, John Bauer, Kepa Bengoetxea, Riyaz Ahmad Bhat, Eck-
hard Bick, Victoria Bobicev, Carl Börstell, Cristina Bosco, Gosse Bouma, Sam Bow-
man, Aljoscha Burchardt, Marie Candito, Gauthier Caron, Gülşen Cebiroğlu Eryiğit,
Giuseppe G. A. Celano, Savas Cetin, Fabricio Chalub, Jinho Choi, Silvie Cinková,
Çağrı Çöltekin, Miriam Connor, Elizabeth Davidson, Marie Catherine de Marneffe,
Valeria de Paiva, Arantza Diaz de Ilarraza, Peter Dirix, Kaja Dobrovoljc, Timo-
thy Dozat, Kira Droganova, Puneet Dwivedi, Marhaba Eli, Ali Elkahky, Tomaž
Erjavec, Richárd Farkas, Hector Fernandez Alcalde, Jennifer Foster, Cláudia Fre-
itas, Katarı́na Gajdošová, Daniel Galbraith, Marcos Garcia, Moa Gärdenfors, Kim
Gerdes, Filip Ginter, Iakes Goenaga, Koldo Gojenola, Memduh Gökırmak, Yoav
Goldberg, Xavier Gómez Guinovart, Berta Gonzáles Saavedra, Matias Grioni, Nor-
munds Grūzı̄tis, Bruno Guillaume, Nizar Habash, Jan Hajič, Jan Hajič jr., Linh
Hà Mỹ, Kim Harris, Dag Haug, Barbora Hladká, Jaroslava Hlaváčová, Florinel Hoci-
ung, Petter Hohle, Radu Ion, Elena Irimia, Tomáš Jelı́nek, Anders Johannsen, Fredrik
Jørgensen, Hüner Kaşıkara, Hiroshi Kanayama, Jenna Kanerva, Tolga Kayadelen,
Václava Kettnerová, Jesse Kirchner, Natalia Kotsyba, Simon Krek, Veronika Laip-
pala, Lorenzo Lambertino, Tatiana Lando, John Lee, Phng Lê H`ông, Alessan-
dro Lenci, Saran Lertpradit, Herman Leung, Cheuk Ying Li, Josie Li, Keying Li,
Nikola Ljubešić, Olga Loginova, Olga Lyashevskaya, Teresa Lynn, Vivien Macke-
tanz, Aibek Makazhanov, Michael Mandl, Christopher Manning, Cătălina Mărănduc,
David Mareček, Katrin Marheinecke, Héctor Martı́nez Alonso, André Martins, Jan
Mašek, Yuji Matsumoto, Ryan McDonald, Gustavo Mendonça, Niko Miekka, Anna
Missilä, Cătălin Mititelu, Yusuke Miyao, Simonetta Montemagni, Amir More, Laura
Moreno Romero, Shinsuke Mori, Bohdan Moskalevskyi, Kadri Muischnek, Kaili
Müürisep, Pinkey Nainwani, Anna Nedoluzhko, Gunta Nešpore-Bērzkalne, Lng
Nguy˜ên Thi., Huy`ên Nguy˜ên Thi. Minh, Vitaly Nikolaev, Hanna Nurmi, Stina Ojala,
Petya Osenova, Robert Östling, Lilja Øvrelid, Elena Pascual, Marco Passarotti, Cenel

https://nlp.stanford.edu/software/nndep.shtml
http://www.aclweb.org/anthology/D13-1032
http://www.aclweb.org/anthology/D13-1032

Augusto Perez, Guy Perrier, Slav Petrov, Jussi Piitulainen, Emily Pitler, Barbara
Plank, Martin Popel, Lauma Pretkalniņa, Prokopis Prokopidis, Tiina Puolakainen,
Sampo Pyysalo, Alexandre Rademaker, Loganathan Ramasamy, Taraka Rama, Vinit
Ravishankar, Livy Real, Siva Reddy, Georg Rehm, Larissa Rinaldi, Laura Rituma,
Mykhailo Romanenko, Rudolf Rosa, Davide Rovati, Benoı̂t Sagot, Shadi Saleh, Tanja
Samardžić, Manuela Sanguinetti, Baiba Saulı̄te, Sebastian Schuster, Djamé Seddah,
Wolfgang Seeker, Mojgan Seraji, Mo Shen, Atsuko Shimada, Dmitry Sichinava, Na-
talia Silveira, Maria Simi, Radu Simionescu, Katalin Simkó, Mária Šimková, Kiril
Simov, Aaron Smith, Antonio Stella, Milan Straka, Jana Strnadová, Alane Suhr,
Umut Sulubacak, Zsolt Szántó, Dima Taji, Takaaki Tanaka, Trond Trosterud, Anna
Trukhina, Reut Tsarfaty, Francis Tyers, Sumire Uematsu, Zdeňka Urešová, Larraitz
Uria, Hans Uszkoreit, Sowmya Vajjala, Daniel van Niekerk, Gertjan van Noord, Vik-
tor Varga, Eric Villemonte de la Clergerie, Veronika Vincze, Lars Wallin, Jonathan
North Washington, Mats Wirén, Tak sum Wong, Zhuoran Yu, Zdeněk Žabokrtský,
Amir Zeldes, Daniel Zeman, and Hanzhi Zhu, Universal dependencies 2.1, 2017,
http://hdl.handle.net/11234/1-2515, LINDAT/CLARIN digital library at the
Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and
Physics, Charles University.

[15] Christopher Olah, Understanding LSTM Networks, http://colah.github.io/
posts/2015-08-Understanding-LSTMs, [Online; accessed 25-January-2018].

http://hdl.handle.net/11234/1-2515
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs

Summary

The purpose of this thesis was to explore cross-lingual transfer learning to dependency
parsing, with a goal of enabling syntactic analysis for low-resource languages. The best
approaches involve annotation projection: the transfer of dependency structures via parallel
texts, from resource-rich to low-resource languages.

In the first chapter, basic concepts of part of speech tagging and dependency parsing
are described as well as the way of annotating texts. The first approach to solving an anno-
tation projection problem is described in the second chapter. It is based on the algorithm
presented in the paper Multilingual Projection for Parsing Truly Low-Resource Languages
[10]. We propose the way of adjusting the existing algorithm which leads to the improve-
ment of results. In the third chapter, the idea how to use neural networks for annotation
projection is presented, and also some of the ideas how the work done in this thesis can be
extended in the future.

Sažetak

U ovom radu istražuje se prijenosno učenje kroz više jezika s ciljem omogućavanja sin-
taktičke analize jezika koji nemaju dovoljno označenih podataka za učenje. Najbolji pris-
tupi rješavanju problema uključuju projekciju oznaka sintaktičkih ovisnosti preko paralel-
nih tekstova, iz jezika koji imaju mnogo označenih podataka za učenje u jezike koji imaju
nedovoljno.

U prvom poglavlju opisuju se osnovni pojmovi morfološkog označivanja rečenica i
parsanja njihovih ovisnosnih stabala kao i nacin označivanja sintaktičkih ovisnoti. Prvi
pristup rješavanja problema projekcije oznaka sintaktičkih ovisnosti je opisan u drugom
poglavlju. Zasnovan je na algoritmu predstavljenom u znanstvenom radu Multilingual
Projection for Parsing Truly Low-Resource Languages [10]. Predložene su prilagodbe
algoritma koje vode poboljšanju rezultata. U trećem poglavlju predstavljena je ideja o
upotrebi neuronskih mreža za projekcije oznaka sintaktičkih ovisnosti te nekoliko ideja
kojima rad u budućnosti može biti unaprijeden.

Curriculum vitae

I was born in 1994. in Split, where I have finished primary school and mathematical
high school. In 2012. I started an undergraduate programme of Mathematics on Faculty
of science at the University of Zagreb. After getting a Bachelor degree In 2015., I have
started the Master’s programme of Computer science and mathematics which finishes with
this thesis.

Životopis

Rodena sam 19. ožujka 1994. godine u Splitu, gdje sam završila osnovnu školu i Matematičku
gimnaziju. 2012. godine upisujem preddiplomski sveučilišni studij Matematika na Prirodoslovno-
matematičkom fakultetu Sveučilišta u Zagrebu, koji završavam 2015. godine stekavši naziv
sveučilišna prvostupnica matematike. Iste godine upisujem diplomski studij Računarstva i
matematike koji završavam ovim radom.

	Contents
	Introduction
	Annotations
	Part-of-speech tagging and dependency parsing
	Dataset

	Static multilingual projection
	Coverage effect on projection accuracy
	The World Atlas of Language Structures (WALS)
	Experiments
	Evaluation and results

	Deep machine learning
	Feed forward neural networks
	Recurrent neural networks (RNN)
	Long short-term memory (LSTM)
	Data representation
	Experiments
	Future work

	Bibliography

