Primjena 1,3,5-trihidroksi-2,4,6-trinitrobenzena kao građevnog bloka u kristalnom inženjerstvu

Smokrović, Kristina

Master's thesis / Diplomski rad

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:455700

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-11-19

Repository / Repozitorij:

Repository of the Faculty of Science - University of Zagreb

Kristina Smokrović

Primjena 1,3,5-trihidroksi-2,4,6-trinitrobenzena kao građevnog bloka u kristalnom inženjerstvu

Diplomski rad

predložen Kemijskom odsjeku Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu radi stjecanja akademskog stupnja magistra kemije.

Zagreb 2016.

Ova je diplomska radnja izrađena na Zavodu za opću i anorgansku kemiju Kemijskog odsjeka Prirodoslovno-matematičkog fakulteta u Zagrebu, pod vodstvom doc. dr. sc. Vladimira Stilinovića. The world always seems brighter when you've just made something that wasn't there before.

— Neil Gaiman

Prije svega, zahvaljujem svojem mentoru, doc. dr. sc. Vladimiru Stilinoviću, na podršci, savjetima, iznimnoj strpljivosti i kreativnoj slobodi koju mi je omogućio prilikom izrade ovog rada.

Posebno se zahvaljujem svojoj obitelji, majci Jasni i djedu Milanu, na podršci i razumjevanju tijekom diplomskog i preddiplomskog studija.

TEMELJNA DOKUMENTACIJSKA KARTICA SAŽETAK

Sveučilište u Zagrebu

Prirodoslovno-matematički fakultet

Kemijski odsjek

Diplomski rad

Primjena 1,3,5-trihidroksi-2,4,6-trinitrobenzena kao građevnog

BLOKA U KRISTALNOM INŽENJERSTVU

Kristina Smokrović

Horvatovac 102a, 10000 Zagreb

U sklopu diplomskog rada pripravljeno je te strukturno i termički okarakterizirano devetnaest soli i dva kokristala 1,3,5-trihidroksi-2,4,6-trinitrobenzen (trinitrofloroglucinol) s alifatskim i aromatskim aminima te heterocikličkim spojevima. Trinitrofloroglucinola pripravljen je nitriranjem 1,3,5-trihidroksibenzena. Soli i kokristali trinitrofloroglucinola pripravljeni su sporom evaporacijom otapala iz otopina koje sadrže trinitrofloroglucinol i organski spoj u odgovarajućem stehiometrijskom omjeru. Produkti su analizirani difrakcijom rentgenskog zračenja na jediničnom kristalu, razlikovnom pretražnom kalorimetrijom i spektroskopijom u infracrvenom području.

Nađeno je da trinitrofloroglucinol može sudjelovati u velikom broju međumolekulskih vodikovih veza jer sadrži veliki broja akceptora vodikove veze s obzirom na broj atoma u molekuli. Unutarmolekulske vodikove veze između protoniranih hidroksilnih skupina i susjednih nitro-skupina stabilizirane potpomognute su rezonancijom i delokalizacijom naboja te su slabi donori vodikove veze. To čini trinitrofloroglucinol odličnim modelnim spojem za proučavanje utjecaja strukture molekule donora vodikove veze na strukturu kristala.

(51 stranica, 90 slika, 9 tablica, 44 literaturnih navoda, jezik izvornika:hrvatski)

Rad je pohranjen u Središnjoj kemijskoj knjižnici Prirodoslovno-matematičkog

fakulteta - Kemijski odsjek, Horvatovac 102a, 10 000 Zagreb

Ključne riječi: kristalni inženjering / rentgenska strukturna analiza /

trinitrofloroglucinol / vodikove veze

Mentor doc. dr. sc. Vladimir Stilinović

Ocjenitelji doc. dr. sc. Josip Požar

doc. dr. sc. Rosana Ribić

Rad prihvaćen 15. lipnja 2016.

BASIC DOCUMENTATION CARD ABSTRACT

University of Zagreb

Faculty of Science

Department of Chemistry

Master's Thesis

Use of 1,3,5-Trihydroxy-2,4,6-trinitrobenzene as a Building Block in

Crystal Engineering

Kristina Smokrović

Horvatovac 102a, 10000 Zagreb

Nineteen salts and two co-crystals of 1,3,5-trihydroxy-2,4,6-trinitrobenzene (trinitrophloroglucinol) with heterocyclic compounds, aliphatic, and aromatic amines, were prepared and structurally and thermically characterised. Trinitrophloroglucinol was prepared from 1,3,5-trihydroxybenzene by nitration. Salts and cocrystals were prepared by slow evaporation of solvent from a solution containing trinitrophloroglucinol and an organic compound in an appropriate stoichiometric amount. Resulting compounds were analyzed by diffraction of X-rays on single crystals, differential scanning calorimetry and infra-red spectroscopy.

Trinitrophloroglucinol can participate in a great number of intermolecular hydrogen bonds because it contains a large number of hydrogen bond donors compared to the total number of atoms in the molecule. The protonated hydroxyl groups and adjacent nitro-groups are bonded by charge- and resonance-assisted hydrogen bonds and therefore are weak hydrogen bond donors. This makes trinitrophloroglucinol an ideal model compound for studying the effects of hydrogen bond donor molecule structure on crystal structure.

(57 pages, 90 figures, 9 tables, 44 references, original in Croatian)

Thesis deposited in the Central Chemical library, Faculty of Sciences - Department of

Chemistry, Horvatovac 102a, 10 000 Zagreb

Keywords: crystal engineering / hydrogen bonds /trinitrophloroglucinol /X-ray

structural analysis

Mentor doc. dr. sc. Vladimir Stilinović

Reviewers doc. dr. sc. Josip Požar

doc. dr. sc. Rosana Ribić

Thesis accepted 15^{th} of July, 2016.

Sadržaj

Te	melj	na doku	ımentacijska kartica	i
Ba	isic D	ocume	ntation Card	ii
1	Uvo	d		1
2	Lite	raturni	pregled	2
	2.1	Krista	lno inženjerstvo	2
	2.2	Vodik	ova veza	5
	2.3	Polini	trofenoli	8
		2.3.1	Sinteza polinitrofenola	10
		2.3.2	Polinitrofenoli i kristalni inženjering visokoenergetskih materijala	11
3	Eks j	perime	ntalni dio	14
	3.1	Sintez	a trinitrofloroglucinola, njegovih soli i kokristala	14
		3.1.1	Sinteza trinitrofloroglucinola	14
		3.1.2	Priprava soli i kokristala trinitrofloroglucinola	14
	3.2	Rentg	enska strukturna analiza monokristalnih uzoraka	18
	3.3	Analiz	za uzoraka razlikovnom pretražnom kalorimetrijom	26
	3.4	Analiz	za uzoraka spektroskopijom u infracrvenom području	26
4	Rez	ultati i	rasprava	27
	4.1	Strukt	ura trinitrofloroglucinola u različitim stupnjevima protonacije	27
		4.1.1	Struktura trinitrofloroglucinola monohidrata	29
	4.2	Supra	molekulske arhitekture pripravljenih soli i kokristala	30
		4.2.1	Diskretni supramolekulski kompleksi	30
		4.2.2	Supramolekulski polimerni lanci	33

		4.2.3	Dvodimenzionalne mreže	35
		4.2.4	Trodimenzionalne mreže	36
		4.2.5	Kationi s velikim nepolarnim supstituentima	40
		4.2.6	Soli trinitrofloroglucinola s imidazolima i benzotriazolom	42
		4.2.7	Spojevi trinitrofloroglucinola s organskim tvarima bez dobrih do-	
			nora vodikove veze	46
		4.2.8	Diaminometilenoksidanijev dihidrogentrinitrofloroglucinolat .	49
	4.3	Razlik	ovna pretražna kalorimetrija	51
5	Zak	ljučak		53
6	Lite	raturna	i vrela	55
A	Pop	ratni po	odatci	\mathbf{v}
	A.1	Param	etri vodikovih veza	v
	A.2	Asime	trične jedinice pripravljenih spojeva	xviii
	A.3	Razlik	ovna pretražna kalorimetrija	xxx
	A.4	Infrac	rvena spektroskopija	xli
B	Živo	otopis		xlix

1 | Uvod

Trinitrofloroglucinol (1,3,5-trihidroksi-2,4,6-trinitrobenzen) prvi put je pripravljen 1878. otapanjem floroglucinola u kiseloj otopini kalijeva nitrita. Oksidacijom nastalog produkta dušičnom kiselinom. R. Benedikt je pripravio četiri soli trinitrofloroglucinola, tri kalijeve i jednu olovovu, za koje je utvrdio da eksplodiraju prilikom naglog zagrijavanja.¹ Glavna primjena trinitrofloroglucinola je u kompozitnim visokoenergetskim materijalima i pri proizvodnji 1,3,5-triamino-2,4,6-trinitrobenzena. Tek krajem dvadesetog stoljeća s razvitkom kristalnog inženjerstva pristupa se ciljanom dizajnu kokristala visokoenergetskih materijala, s ciljem kontrole njihovih fizikalnih i kemijskih svojstava.^{2–5}

Polinitrofenoli, iako predstavljaju zanimljiv predmet istraživanja u kristalnom inženjerstvu jer sadrže jake i slabe akceptore vodikove veze, kao i slabe donore, nisu dobro istraženi u područjima izvan dizajna visokoenergetskih materijala i sinteze organskih pigmenata. Trinitrofenol (pikrinska kiselina) je iznimka s više od tisuću pohranjenih u kristalografskoj bazi podataka.

Trinitrofloroglucinol jaka je troprotonska kiselina s velikim brojem potencijalnih akceptora vodikove veze preko kojih može sudjelovati u velikom broju međumolekulskih interakcija. Unutarmolekulske vodikove veze između protoniranih hidroksilnih skupina i susjednih nitro-skupina stabilizirane potpomognute su rezonancijom i delokalizacijom naboja te su slabi donori vodikove veze. To čini trinitrofloroglucinol odličnim modelnim spojem za proučavanje utjecaja strukture molekule donora vodikove veze na strukturu kristala.

2 | Literaturni pregled

2.1 Kristalno inženjerstvo

Kristalno inženjerstvo bavi se dizajnom kristalnih struktura primjenjujući dosadašnje spoznaje o međumolekulskim interakcijama i njihovom utjecaju na slaganje molekula i iona u kristale, te utjecaju strukture na fizikalna i kemijska svojstva kristala.^{6,7} Iako se ideja da bi se pomoću usmjerenih međumolekulskih interakcijama moglo ciljano utjecati na način slaganja javila tijekom sedamdesetih godina dvadesetog stoljeća, kristalno inženjerstvo doživjelo je procvat tek u devedesetim godinama.⁸

Glavni ciljevi su predviđanje kristalne strukture i dizajn kristala i ugađanje njihovih kemijskih i fizikalnih svojstava malim strukturnim varijacijama molekula koje ga sačinjavaju. Slaganje molekula raščlanjuje se na kombinaciju supramolekulskih građevnih jedinica sastavljenih od molekulskih fragmenata međusobno povezanih međumolekulskim interakcijama. Te građevne jedinice nazivaju se supramolekulskim sintonima. Pojam sinton došao je iz sintetske organske kemije, a i samo kristalno inženjerstvo se razvilo iz grane organske kemije koja se bavi proučavanjem fotokemijskih reakcija u čvrstom stanju.⁹ Neke fotokemijske reakcije, poput [2+2] cikloadicije dienona, zahtijevaju da reaktanti poprime točno određenu konformaciju da bi mogli reagirati. Prvotna ideja je bila da bi se kokristalizacijom reaktante moglo ukočiti u položaju potrebnom za nastajanje željenog produkta. Primjer jedne takve reakcije daju Santra i suradnici koji kokristaliziraju produkt aldolne kondenzacije 4-piridinkarboksialdehida i acetona s rezorcinolom, floroglucinolom i 1metiloksibezen-3,5-diolom. Hidroksilne skupine ovih spojeva premoštavaju molekule dienona sa svake strane vodikovom vezom s piridinskim dušikom. Udaljenost parova dienona u nastalom kokristalu odgovara onoj potrebnoj za odvijanje cikloadicijske reakcije. Izlaganjem kokristala ultraljubičastom zračenju dobiven je samo jedan od mogućih dijastereomera u iskorištenju od 100%.¹⁰

G. R. Desiraju predlaže da se koncepti iz retrosintetske organske kemije mogu primjeniti i u ciljanom dizajnu kristala, pri čemu bi supramolekule odgovarale molekulama, međumolekulske interakcije kovalentnim vezama, a kristalizacija sintezi.¹¹

Sintone koji se često pojavljuju u kristalnim strukturama, iako postoji niz drugih, raznolikih, sintona koji su mogli nastati iz istih molekulskih fragmenata, nazivamo robustnim sintonima. Robustne sintone, tj. onih koji su očuvani u velikom broju kristalnih struktura, možemo odrediti statističkom analizom parametara kojim pojedini sinton možemo opisati (npr. duljina veze/kontakta, kut koji zatvaraju dvije veze ili dvije ravnine). Učestalost javljanja sintona može se provjeriti pretraživanjem kristalografske baze podataka (*Cambridge Structural Database*).¹² Prilikom pretraživanja baze možemo definirati cijeli niz parametara poput udaljenosti atoma, kuteva između kontakata, torzijskih kuteva i geometrijskih centara jedinki koji nam omogućuju da suzimo pretragu na motiv koji nas zanima. Identifikacija robustnih sintona iznimno je važna u kristalnom inženjerstvu jer omogućuje predviđanje strukturnih motiva koji bi se mogli pojaviti u dosad nepoznatoj strukturi. Predviđanje kompletne strukture nije toliko jednostavno jer na slaganje molekula u kristalu utječe cijeli niz parametara od kojih je nastajanje najpovoljnijih sintona jedan od najjednostavnijih za predvidjeti.^{6,7}.

Međumolekulske interakcije kojima se molekulski fragmenti povezuju u sintone, a koje ujedno i drže kristal na okupu, možemo podijeliti na usmjerene i neusmjerene (anizotropne i izotropne). Od izotropnih treba izdvojiti elektrostatičke i disperzijske interakcije (Londonove sile), dok su od anizotropnih najpoznatije vodikove i halogenske veze. Londonove sile najviše doprinose ukupnoj energiji kristala, iako su najslabije.¹³ Disperzijske sile su iznimno slabe u usporedbi s ostalim međumolekulskim interakcijama, kratkog su dosega ($E_{disp} \propto d^{-6}$, gdje je d udaljenost između dva atoma). Kao i elektrostatske sile, koje su u usporedbi s disperzijskim interakcijama iznimno jake i dugog dosega($E_{el} \propto d^{-1}$), nisu usmjerene i glavni su razlog zašto se jedinke u kristalima uglavnom teže okružiti što većim brojem susjeda. U molekulskim kristalima, iako su prilično slabe, disperzijske interakcije imaju veliki doprinos

POGLAVLJE 2. LITERATURNI PREGLED

ukupnoj energiji kristalne rešetke zbog kumulativnog učinka, što je jedan od glavnih razloga zašto je kristalnu strukturu molekulskih kristala teško predvidjeti i zašto je sinteza kristala s velikim šupljinama problematična. Prilikom dizajna poroznih materijala potrebno je kompenzirati energijski doprinos disperzijskih sila prilikom gustoga pakiranja, što nije jednostavno. Glavna strategija je oslanjanje na usmjerenost koordinacijskih veza između liganda i metalnih kationa te korištenje rigidnih liganada koji onemogućavaju promjenu konformacije nastalog polimernog kompleksa i na kompenzaciju energijskog doprinosa disperzijskih interakcija nastajanjem jakih koordinatnokovalentnih veza.¹⁴

Iako usmjerene međumolekulske interakcije imaju najveći utjecaj na motive povezivanja molekula unutar kristala, tako nastale supramolekulske mreže mogu se konoformacijski prilagoditi na način da se dobije što gušća slagala. Na nastajanje motiva povezivanjem molekula usmjerenim međumolekulskim interakcijama možemo utjecati variranjem strukture, tj. vrste i rasporeda molekulskih fragmenata koji mogu tvoriti supramolekulske sintone.

Jedinke u kristalu mogu imati više uloga u strukturi kristala, od kojih su u kristalnom inženjerstvu najvažnije uloge templata i građevne jedinice. Templati služe kao kalup oko kojeg se slažu ostale komponente kristala, koje su obično povezane u supramolekulsku mrežu. Primjer templatne uloge aniona vidimo kod helikati koje su pripravili Cui i suradnici s kompleksom srebra s bidentatnim ligandom. Nastali koordinacijski polimerni lanac slaže se u uzvojnicu u čijem se središtu nalaze anioni. Variranjem oblika i veličine aniona, od nitrata do perklorata, dobiju se uzvojnice s 2_1 , 3_1 i 4_1 simetrijskim osima.¹⁵ Primjer niza soli u kojem se konformacija fleksibilnog kationa prilagođava obliku aniona dali su Užarević i suradnici u radu iz 2010. godine u kojem opisuju niz soli fleksibilnog poliamina s šest karboksilnih dikiselina.¹⁶ Kation poprima niz različitih konformacija u nastalim supramolekulskim kompleksima što rezultira selektivnim nastajanjem jedne soli u prisutnosti nekoliko dikiselina.

2.2 Vodikova veza

Vodikova veza jedna je od najpoznatijih anizotropnih međumolekulskih interakcija. IUPAC definira vodikovu vezu kao privlačnu interakciju između vodikova atoma molekule ili molekulskog fragmenta, X-H …A u kojemu je X elektronegativniji od vodika, i atoma ili grupe atoma, gdje postoji indikacija o postojanju veze.¹⁷ Skupinu D-H nazivamo donorom vodikove veze, dok elektronegativni atom A nazivamo akceptorom vodikove veze. Interakcija između vodika i akceptora vodikove veze u pravilu je elektrostatske prirode, dok je veza D-H kovalentna.

Kad je vodikov atom vezan na elektronegativniji atom, dolazi do polarizacije tog dijela molekule. Vodikov atom koji sudjeluje u takvoj vezi ima pozitivan parcijalni naboj i može sudjelovati u neveznoj međumolekulskoj interakciji s atomom koji ima negativan parcijalni naboj. Udaljenost između vodikova atoma i akceptora vodikove veze u pravilu je kraća od sume van der Waalsovih radijusa pojedinačnih atoma, što nije točno za slabe vodikove veze kao što su interakcije C-H …O ili C-H … π .¹³

Vodikove veze u početku proučavane u otopinama vibracijskom spektroskopijom, a tek kasnije u čvrstom stanju nakon što je osamdesetih godina došlo do razvoja kristalnog inženjerstva. Uočeno je da jake vodikove veze nastaju kad su p K_a vrijednosti donora i konjugirane baze akceptora slične. Kako p K_a vrijednosti nisu definirane u sustavima poput kristala, ovo pravilo ne možemo koristiti za podjelu vodikovih veza prema jakosti. Vodikovu vezu definiramo pomoću udaljenosti d(D,A) između donora i akceptora vodikove veze koja je obično manja od zbroja van der Waalsovih radijusa donora i akceptora, te kuta $\langle (D-H \cdots A)$ koji je veći od 90°. Jakost vodikove veze može znatno varirati, od slabih C-H \cdots O interakcija do onih usporedivih s kovalentnom vezom (Tablica 2.1). Treba imati na umu da su vrijednosti dane u tablici (Tablica 2.1) smjernice. Ne postoji jasna granica između kategorija, ali ipak možemo okvirno definirati ekstreme na skali.¹³

Vodikovu vezu možemo promotriti i u kontekstu prijenosa protona tijekom reakcije

	Jake	Srednje jake	Slabe
d(A,H)/Å	1,2-1,5	1,5-2,2	>2,2
produljenje D-H vaze/Å	0,08-0,25	0,02-0,08	<0,02
d(D,H)/d(A,H)	≈ 1	>1	$\gg 1$
d(A,D)/Å	2,2-2,5	2,5-3,2	>3,2
∢(D, H, A)/°	170-180	>130	>90
energija veze/ kcal mol ⁻¹	15-40	4-15	<4

Tablica 2.1: Podjela vodikovih veza prema Jeffreyu¹⁸

opisane jednadžbom 2.1.

$$D-X\cdots A \longrightarrow D^{-} + H-A^{+}$$
 (2.1)

To bi značilo da je veza D-H slabija u vodikovoj vezi od D-H veze molekulskog fragmenta koji ne sudjeluje u vodikovoj vezi, tj. D-H veza je duža ako ako postoji vodikova veza. To također znači da je H … A interakcija nego u slučaju van der Waalsova kontakta i da bi se orijentacija fragmenta H … A naspram ostatka molekulskog fragmenta akceptora trebala okvirno poklapati s vezom H-A nakon prijenosa protona. Ovakav način gledanja na vodikovu vezu olakšava nam razlikovanje slabih vodikovih veza od van der Waalsovih kontakata.¹³

Osim najjednostavnijeg slučaja s jednim donorom i jednim akceptorom vodikove veze, na jedan vodikov atom mogu se koordinirati i dva ili tri akceptora (Slika 2.1. Takvu vodikovu vezu nazivamo bifurkiranom vodikovom vezom s dva akceptora. Postoji još i kelatna vodikova veza u kojoj se atom akceptora i atom donora povezuju preko dva različita vodika vezana na atom donora. U sintonima se može javiti niz različitih kombinacija bifurkiranih i kelatnih veza (Slika 2.1). Donori vodikove veze načešće su kisikovi i dušikovi atomi, atomi sumpora i fosfora, te nešto rjeđe, ugljika. Među akceptore spadaju atomi kisika, dušika, fosfora, sumpora i halogenih iona. U slučajevima kada je vodikov atom između akceptore i donora vodikove veze, nije jednostavno odrediti koji atom je donor, a koji akceptor vodikove veze.

Slika 2.1: Različite vrste vodikovih veza. a) Vodikova veza s jednim donorom i jednim akceptorom. b) Bifurkirana vodikova veza s dva akceptora. c) Bifurkirana vodikova veza s dva donora. d) Kelatna trocentrična vodikova veza.

Kod bifurkiranih i trifurkiranih vodikovih veza javlja se velika lokalna gustoća akceptora vodikove veze, i mogu se javiti i neki destabilizirajući efekti. Prvi su odbojni kontakti H …H, za koje je donja granica udaljenosti $d(H \dots H)$ 2,05 Å.^{19,20} Oni ne predstavljaju problem kod lančastih motiva vodikovih veza, ali zato znatno ograničavaju geometriju prstenova poput dimera karboksilnih kiselina (Slika 2.2) gdje svako odstupanje od planarnosti smanjuje $d(H \dots H)$. T. Steiner detaljno je proučio vodikove veze u kojima je karboksilna skupina donor.²¹ Pronađeno je da u samo 29% slučajeva karbokilne kiseline tvore dimere, tok je u ostalim slučajevima preferirana drukčija vrsta akceptora. Nađeno je da jaki akceptori vodikove veze, poput karboksilata, piridinskg dušika, fluorida i klorida, imaju 90% veću šansu da sudjeluju u vodikovoj vezi s karboksilnom kiselinom od kraboksilatnog dimera.

Slika 2.2: Sinton topologije $R_2^2(8)$ u dimerima karboksilnih kiselina

Vodikova veza ima važnu ulogu u kristalnom inženjerstvu jer se javlja u velikom broju robustnih sintona na čijoj primjerni se zasniva supramolekulska sinteza. Robustni sintoni su oni koji se javljaju u velikom broju kristalnih struktura uz male promjene u parametrima. Da bi mogli procijeniti da li neka vrsta vodikove veze može biti od koristi u kristalnom inženjerstvu možemo definirati vjerojatnost nastanka određenog motiva vodikove veze. F. H. Allen i suradnici odredili su vjerojatnosti nastanka niza bimolekularnih i intramolekularnih motiva vodikovih veza analizom kristalografske baze podataka (Slika 2.3).^{22,23} Vjerojatnost nastanka motiva raste s brojem vodikovih veza prisutnih u motivu, ako broj atomi donori/akceptori istog molekulskog fragmenta nisu međusobno jako udaljeni jedan od drugog.

Među prikazanim motivima (Slika 2.3) zadnja dva motiva prikazuju posebni slučaj

Slika 2.3: Primjeri različitih motiva povezivanja unutarmolekulskom i međumolekulskom vodikovim vezom i vjerojatnost njihova nastanka

vodikove veze potpomognute elektrostatskim privlačenjem (CAHB, *eng. chargeassisted hydrogen bonding*) i vodikove veze potpomognute rezonancijom (RAHB, *eng. resonance-assisted hydrogen bonding*). Sintoni u kojima se javljaju ta dva tipa vodikovih veza imaju veću vjerojatnost nastajanja od onih kod koji se takva dodatna stabilizacija ne javlja. Do dodatne stabilizacija ko CAHB vodikovih veza dolazi zbog privlačenja suprotno nabijenih molekulskih fragmenata zahvaljujući Coulombovoj sili, a kod RAHB stabilizacije dolazi do povećanja kovalentnog karaktera vodikove veze do te mjere da je ponekad teško identificirati koji atom je donor, a koji akceptor vodikove veze.^{24,25}

2.3 Polinitrofenoli

Još od sredine sedamnaestoga stoljeća bilo poznato da dušična kiselina s organskim tvarima poput drva, kože, bjelokosti i indiga, daje tvari žute boje koje mogu poslužiti za bojanje različitih materijala, prvi nitro-derivati aromatskih spojeva ciljano su sintetizirani tek sredinom osamnaestog stoljeća.^{26–28} Johnan R. Glauber prvi opisuje pripravu *žute tinkture* u svom alkemijskom djelu iz 1656. godine *Pharmacopoea spagyrica, sive, Exacta descriptio: Quâ ratione ex vegetabilibus, animalibus, & mineralibus, modo haud usitato faciliorique, utilia, efficacia, & penetrantia medicamenta fieri præpararique possint* otapanjem drva i drugih životinjskih i biljnih materijala u dušičnoj kiselini. Dodatkom potaše (smjese kalijeva karbonata, hidroksida i oksida) u *žutu tinkturu*, primijetio je promjenu boje iz jarko žute u narančastu. U *žutoj tinkturi* najvjerojatnije su se nalazile soli nitriranih aromatskih aminokiselina nastalih ksantoproteinskom reakcijom dušične kiseline i proteina.²⁶ Iako je uspješna, ta sinteza derivata polinitrofenola nije bila ciljana, a kemičari tog doba nisu znali odrediti elementarni sastav pripravljenih produkata. Tek nakon razvitka kemijske analize organskih spojeva ciljano su sintetizirani i analizirani prvi polinitrofenoli. Najpoznatiji pripadnik te skupine spojeva je 2,4,6-trinitrofenol (pikrinska kiselina). O njoj je pisao i Jöns J. Berzelius, a A. Laurent opisuje sintezu pikrinske kiseline i raznih derivata fenola i halogenbenzena.

Pikrinska kiselina je dobila ime po svom iznimno gorkom okusu (od grčke riječi πικρος: gorak), zbog čega su je gostioničari dodavali u razrijeđeno pivo kako bi mu vratili gorčinu. Kako je pikrinska kiselina otrovna, razvile su se i metode kojima se je moglo detektirati u pivu. Naime, pikrinska kiselina i drugi polinitrofenoli mogu se iskoristiti za bojanje materijala životinjskog porijekla u žutu. Pivo se kuhalo s komadićem bijele vune, koji se potom osušio te, ako je nakon iskuhavanja bio žute boje, isprao s malom količinom amonijaka. U otopinu se dodalo malo kalijeva cijanida. Nastanak ljubičastog obojenja, pripisanog nastanku izopurpurne kiseline, potvrdio bi prisutnost pikrinske kiseline u pivu.²⁹ Osim pikrinske kiseline, s razvitkom sintetske kemije, pripravljena je i većina ostalih polinitrofenola.^{29–31}

Pikirinska kiselina i ostali polinitrofenoli prvotno su se koristili u bojanju životinjskih materijala u različite nijanse žute, a kasnije i u proizvodnji niza drugih pigmenata. Redukcijom nitro-skupina polinitrofenola dobivaju se različiti aromatski amini koji služe u pripravi niza organskih boja. Osim u proizvodnji pigmenata, polinitrofenoli imaju široku primjenu u industriji eksploziva. Da kalijeva sol pikrinske kiseline eksplodira prilikom naglog zagrijavanja primjetio je još 1830. J. J. Welter, i tada počinje uporaba polinitrofenola i njihovih soli, ponajviše pikrinske kiseline,kao primarnih i sekundarnih eksploziva koja traje do današnjih dana.³² Soli polinitrofenola s metalima prijelazne skupine daju nestabilne soli koje se koriste kao detonatori, među kojima su najzastupljenije olovove soli derivata pikrinske i stifninske (1,3-dihidroksi2,4,6-trinitrobenzen) kiseline. Tek s razvojem kristalnog inženjerstva počelo se sa ciljanim dizajnom i modifikacijom fizikalnih i kemijskih svojstava primarnih i sekundarnih eksploziva.

2.3.1 Sinteza polinitrofenola

Polinitrofenoli pripravljaju se nitriranjem fenola i drugih polihidroksibenzena (Slika 2.4. Stupanj nitriranja može se kontrolirati promijenom sastava smjese za nitriranje. Ako za nitriranje koristimo vodenu otopinu 15%-tne dušične kiseline nastat će mononitrirani produkt, korištenjem bezvodne dušične kiseline ili smjese dušične i sumporne kiseline nastaje polinitrirani produkt.^{29,33}

Slika 2.4: Strukturne formule: a) fenola, b) katehola, c) rezorcinola, d) hidrokinona, e) pirogalola, f) galola i g) floroglucinola.

Uvođenje još većeg broja nitro-skupina obično zahtijeva još žešće uvijete i duže vrijeme reakcije. Broj i položaj nitro-skupina na benzenskoj jezgri određen je položajem hidrokisilnih skupina. Reakcija nitriranja odvija se elektrofilnom aromatskom supstitucijom prilikom koje, u prvom koraku, dolazi do adicije nitronijeva kationa na benzensku jezgru. U drugom koraku slijedi deprotonacija nastalog karbokationa. Elektrofilna aromatska supstitucija se brže odvija ako su na benzenskoj jezgri već prisutne elektron-donirajuće funkcionalne skupine, tj. kažemo da one aktiviraju benzensku jezgru. Elektron-odvlačeće skupine pak deaktiviraju benzensku jezgru, i reakcija je sporija. Deaktivirajući efekt nitro-skupine na benzenski prsten je kumulativan, i svaka konzekutivna reakcija nitriranja je sve sporija.

Elektron-donirajuće skupine, poput hidroksilne ili amino skupine, ubrzavaju reakciju jer je zbog delokalizacije elektrona sa skupine parcijalni naboj na *orto* i *para* položaju negativan te dolazi do adicije elektrofila u tim položajima. Elektron-odvlačeće skupine, kao što su nitro- i karboksilne skupine, uzrokuju nastanak pozitivnog parcijalnog naboja na *meta* položaju. Uvođenje nitro-skupine na meta položaju naspram hidroksilne skupine zahtijeva nešto kompliciraniji postupak s više koraka.

Hidroksilne skupine polinitrofenola bitno su kiselije od prosiječne hidroksilne skupine, jer deprotonacijom dolazi do delokalizacije negativnog naboja. Osim na kisikovu atomu deprotonirane hidroksilne skupine, negativan parcijalni naboj je i na kisikovim atomima nitro-skupina u *orto-* i *para-*položaju. Pearce i suradnici odredili su p K_a vrijednosti niza derivata fenola u acetonu, a među njima su se našli i polinitrofenoli (Tablica 2.2).³⁴

Polinitrofenol	Struktura	pK _a
pikrinska kiselina		0,4
stifninska kiselina		1,74 4,86
trinitrofloroglucinol		1,26 4,16 7,66

Tablica 2.2: p K_a vrijednosti trinitrofloroglucionla, pikrinske i stifninske kiseline u acetonu.³⁴

2.3.2 Polinitrofenoli i kristalni inženjering visokoenergetskih materijala

Prilikom razvitka novih visokoenergetskih materijala gleda se da je novi materijal što stabilniji i da ima što veću detonacijsku brzinu. Ta dva svojstva obično ne idu zajedno, i eksplozivi s velikom detonaciskom brzinom su obično i jako osjetljivi. Energetska moć eksploziva određena je sastavom i gustoćom dotičnog, dok je stabilnost određena s više faktora na razini molekule, kristala, čestice i materijala.^{2,35} Što je veći udio N-N i C-N veza u molekuli visokoenergetske tvari, to je veća energija koja se oslobodi prilikom eksplozije. Nitro-skupina polinitriranih spojeva služi kao izvor kisika, a

većina energije oslobađa se zbog oksidacije ugljikovodičnog kostura. Na stabilnost kristala visokoenergetskog materijala znatno utječu nepravilnosti i nečistoće, kao i slaganje molekula u kristalu. $\pi - \pi$ naslagivanje može umanjiti efekt mehaničkog stresa i smanjiti osjetljvost materijala. Jedna od načina smanjenja osjetljivosti je i kokristalizacija s jednom ili više tvari koje ne moraju nužno biti niskoenergetske.³

A. J. Matzger i suradnici dali su ekstreman primjer stabilizacije visokoenergetskog materijala kokristalizacijom diaceton diperoksida (DADP), iznimno osjetljivog eksploziva, s drugim eksplozivima!^{a 36} Pripravili su kokristale DADP s 2,4,6-triklor-(TCTNB), 2,4,6-tribrom- (TBTNB) i 2,4,6-trijod-1,3,5-trinitrobenzenom (TITNB). Struktura kokristala DADP i TITNB bitno se razlikuje od druga dva kokristala. Peroksidna veza nije stabilizirana interakcijom s π -sustavom koformera, već halogenskom vezom s atomima joda. Kokristal s TITNB znatno je stabilniji od druga dva kokristala i čistih reaktanata. Kokristal s TCTNB puno je bliži DADP-u nego čistom TCTNB-u po osjetljivosti i jedan je od prvih slučajeva u kojima je kokristalizacijom primarnog sa sekundarnim eksplozivom nastao primarni eksploziv. Kokristali primarnih i sekundarnih eksploziva obično su po osjetljivosti negdje između reaktanata.³

Glavni problem kod priprave kokristala visokoenergentskih materijala, i njihova stabilizacija međumolekulskim interakcijama s koformerima, predstavlja činjenica da većina visokoenergetskih materijala ne sadrži funkcionalne skupine koje mogu stupiti u dovoljno jake međumolekulske interakcije. Najčešće se javljaju nitro-skupine, koje su u najboljem slučaju srednje jaki akceptori vodikove veze, i slabi akceptori halogenske. Analizom kristalnih struktura niza kokristala visokoenergetskih materijala C. Zhang i suradnici utvrdili su da su O···O kontakti najčešći, a kao i slabe O ···C-H vodikove veze.⁴ Prilikom dizajna visokoenergetskih soli i kokristala važno je da na visokoenergetskom koformeru postoji barem jedna funkcionalna skupina koja može poslužiti kao dobar donor ili akceptor vodikove veze kojom se kokristal ili sol može stabilizirati. Soli visokoenergetskih materijala poželjnije su od kokristala jer imaju niži tlak para i veću gustoću. Polinitrofenoli stoga predstavljaju skupinu spojeva koja je od velikog interesa u dizajnu novih, stabilnih, visokoenergetskih materijala.

^aToliko osjetljivog da može eksplodirati i kad se nalazi u matičnici prekriven otopinom. Većina visokoenergetskih materijala nisu eksplozivni u otopini niti kad su samo vlažni.

Od svih polinitrofenola daleko najbolje proučena je prikrinska kiselina (2,4,6trinitrofenol). U kristalografskoj bazi podataka CSD (*Cambridge structural database*) pohranjeno je 1400 struktura koje sadrže pikrinsku kiselinu, od čega većinom u obliku pikratnog aniona, a samo 70 sadrži u obliku pikrinske kiseline. Od tih 1400 strukura 800 ih je s organskim kationima i koformerima, dok ostale sadrže metalne ione. C. Zhang i suradnici predlažu uporabu pikrinske kiseline pri sintezi novih visokoenergetskih kokristala jer sadrži fenolnu skupinu koju je lagano deprotonirati i koja je dobar akceptor vodikove veze.⁴ Glavni problem u primjeni polinitrofenola u proizvodnji visokoenergetskih materijala jest njihova kiselost i što s metalima, poput olova, daju iznimno nestabilne soli. Pikrati su bili glavni uzrok havarije kod Halifaxa, a R. Benedikt u svom radu iz 1878. opisuje da mala količina olovova trinitrofloroglucinolata, koliko bi stalo u ušicu igle, prilikom naglog zagrijavanja eksplodira pri čemu odjekne zvuk nalik prasku pištolja. Danas se soli polinitrofenola s različitim metalima, ponajviše s olovom, koriste kao primarni eksplozivi u detonatorima i smjesama za inicijaciju eksplozije. Osim s metalima, polinitrofenolati tvore soli i s velikim nizom organskih tvari, od čega su najbolje proučene soli sa spojivima bogatima dušikom poput tetrazina i aminotetrazola.^{5,15}

Iako je pikrinska kiselina dobro proučena u sklopu kristalnog inženjerstva, to nije slučaj kod trinitrofloroglucinola. Dosad su pohranjene samo dvadeset i dvije strukture u kristalografskoj bazi podataka. Primjena u u kristalnom inženjerstvu mu je ograničena jedino na dizajn nelinearnih optičkih materijala i stabilnijih sekundarnih eksploziva. Trinitrofloroglucinol u svom protiniranom i deprotoniranim oblicima može poslužiti kao dobar akceptor vodikovih veza zbog relativno velikog broja atoma akceptora.

G. Gilli i suradnici proučili su kristalne strukture niza soli pikrinske kiseline s organskim bazama kako bi dodatno potvrdili pravilo koje predlažu u svom radu iz 2009. godine.^{24,37} Postavili su empirijsko pravilo koje kaže da će najjače vodikove veze nastati ako je razlika p K_a između konjugirane baze akceptora i p K_a donora blizu nule.

3 | Eksperimentalni dio

3.1 Sinteza trinitrofloroglucinola, njegovih soli i kokristala

3.1.1 Sinteza trinitrofloroglucinola

1,3,5-trihidroksi-2,4,6-trinitrobenzen (trinitrofloroglucinol, H₃**TNPG**) pripravljen je nitriranjem 1,3,5-trihidroksibenzena prema literaturnom postupku.³⁸

U 7,6 mL dušične kiseline (70%) doda se 12,4 mL 98%-tne sumporne kiseline. Zatim se u 100 mL 98%-tne sumporne kiseline otopi 5 g 1,3,5-trihidroksibenzena i ohladi na 0°C u ledenoj kupelji. Otopini 1,3,5-trihidroksibenzena doda se kap po kap smjesa za nitriranje uz konstantno miješanje i održavanje temperature između 0 i 5°C. Nakon pola sata reakcijska smjesa izlije se na 400 g leda. Nakon što se led otopi, žuti produkt otfiltrira se preko Büchnerova lijevka s bazom od sinteriranog stakla, ispere s 10 mL 5%-tne klorovodične kiseline i osuši pri sniženom tlaku.

3.1.2 Priprava soli i kokristala trinitrofloroglucinola

U 1 mL otapala otopi se 15 mg H_3 TNPG i doda se 1 mL otopine baze. Mase i vrsta otapala navedene su u tablici 3.2. Smjesa se zagrije do vrenja uz miješanje. Ukoliko je nastao talog, u smjesu se doda još 0,5 mL otapala i ponovo zagrije do vrenja. Kristali su dobiveni polaganim isparavnjem otapala pri sobnoj temperaturi.

Kratica	Sustavno ime	$pK_a(BH^+)$	Struktura
pic	4-metilpiridin	5,98	
dmap	4-N,N'-dimetilaminopiridin	4,8	N Nivile 2
cnpy	4-cijanopiridin	1,92	
bzpy	4-benzoilpiridin	4,2	N Ph
fen	fenazin	1,23	
daft	2,4-diamino-6-fenil-1,3,5-triazin	3,7	Ph NH2 NH2 NH2 NH2
im	imidazol	6,9	N
bzim	benzimidazol	5,38	NH NH
nbzim	5-nitrobenzimidazol	3,7	0,N
bta	benzotriazol	1,6	NH NH

Tablica 3.1: Tvari korištene u pripremi soli i kokristala trinitrofloroglucinola

Kratica	Sustavno ime	$pK_a(BH^+)$	Struktura
[tft]Cl	2,3,5-trifeniltetrazolijev klorid	/	
hpy	4-hidroksipiridin	3,7	N
kin	kinoksalin	0,8	
antr	antracen	/	
Ad	1-adamantilamin	10,7	H ₂ N
urea	urea	0,2	H,N NH2
aba	4-aminobenzojeva kiselina	2,38	H ₂ N
nica	3-piridinkarboksamid	3,35	NH ₂
H ₃ TNPG	2,4,6-trinitrobenzen-1,3,5-triol	1,26 4,16 7,66	

Tablica 3.1: Nastavak

Spoj	Sastav	Otapalo	m(B)/mg	$\frac{n(B)}{n(H,TNPG)}$
I	[H pic][H ₂ TNPG]	EtOH/H ₂ O (1:1)	5,0	1
II	[H pic] ₂ [HTNPG]	EtOH/H ₂ O (1:1)	15,1	3
III	[H dmap] ₂ [HTNPG]	EtOH/H ₂ O (1:1)	13,2	2
IV	[H cnpy][H ₂ TNPG]	EtOH/H ₂ O (1:1)	5,6	1
v	[H bzpy][H ₂ TNPG]	EtOH/H ₂ O (1:1)	9,9	1
VI	[Hfen][H ₂ TNPG]	EtOH/H ₂ O (1:1)	9,7	1
VII	[Hkin][H ₂ TNPG][H ₂ O]	EtOH/H ₂ O (1:1)	6,9	1
VIII	[H hpy][H ₂ TNPG]	EtOH/H ₂ O (1:1)	5,1	1
IX	[H hpy] ₂ [HTNPG]	EtOH/H ₂ O (1:1)	10,3	2
X	[Haba][H ₂ TNPG][urea] ^a	EtOH/H ₂ O (1:1)	7,4	1
XI	[H(nica) ₂][H ₂ TNPG]	EtOH/H ₂ O (1:1)	13,19	2
XII	[H daft] ₂ [H ₂ TNPG][H ₂ O]	EtOH/H ₂ O (1:1)	26,8	2
XIII	[HAd] ₆ [TNPG] ₂ [H ₂ O][EtOH]	EtOH/H ₂ O (1:1)	24,5	3
XIV	$[Him]_2[HTNPG]$	EtOH/H ₂ O (1:1)	11,0	3
XV	[H bzim] ₂ [HTNPG]	EtOH/H ₂ O (1:1)	19,1	3
XVI	[H nbzim][H ₂ TNPG][H ₂ O]	EtOH/H ₂ O (1:1)	26,4	1
XVII	[H bta][H ₂ TNPG]	EtOH/H ₂ O (1:1)	19,3	3
XVIII	[tft][H ₂ TNPG]	EtOH/H ₂ O (1:1)	18,08	1
XIX	[antr][H ₃ TNPG]	benzen	19,3	2
XX	[antr][H ₃ TNPG]	benzen	19,3	2
XXI	[H urea][H ₂ TNPG]	EtOH/H ₂ O (1:1)	7,2	2

Tablica 3.2: Priprava soli i kokristala trinitrofloroglucinola

^{*a*}urea je dodana u suvišku

3.2 Rentgenska strukturna analiza monokristalnih uzoraka

Difrakcijski podaci pogodni za određivanje molekulske i kristalne strukture pripravljenih soli i kokristala prikupljeni su na sobnoj temperaturi na četverokružnom difraktometru Oxford Diffraction Xcalibur 3 Kappa CCD s monokromatskim MoK_{α} zračenjem s grafitnim monokromatorom ($\lambda = 0,71073$ Å). Radni napon cijevi iznosio je 50 kV, a anoda je grijana strujom jakosti 40 mA. Za prikupljanje podataka korišten je programski paket *CrysAlis CCD 171.26*.³⁹ Redukcija prikupljenih difrakcijskih podataka napravljena je programom *CrysAlis RED 171.32.29*.⁴⁰

Kristalne strukture riješene su direktnim metodama pomoću programa SHELXS97⁴¹ i u slučaju spoja **XVI** metodom preklapanja naboja pomoću programa SUPERFLIP,^{42,43} te utočnjene metodom najmanjih kvadrata pomoću programa SHELXL97 iz programskog paketa WINGX.⁴⁴

Vodikovi atomi vezani na ugljikove atome postavljeni su na računate položaje. Vodikovi atomi vezani na kisikove i dušikove atome su u slučaju dobrih difrakcijskih podataka pronađeni u mapi diferentne elektronske gustoće. Kod spojeva **XVI**, **VII**, **XV**, **XVIII** i **XX** vodikove atome vezane na atome kisika i dušika nije bilo moguće pronaći u mapi diferentne elektronske gustoće te su stoga stavljeni na izračunate položaje. Vodikovi atomi utočnjeni su izotropno, dok su svi ostali atomi utočnjeni anizotropno.

	Ι	II	III
Formula	C ₁₂ H ₁₀ N ₄ O ₉	C ₁₈ H ₁₇ N ₅ O ₉	C ₂₀ H ₂₃ N ₇ O ₉
Mr/ g mol ⁻¹	354,240	447,366	1048,609
Kristalni sustav	monoklinski	triklinski	triklinski
Prostorna grupa	$P2_1/n$	$P\overline{1}$	$P\overline{1}$
a / Å	8,3361(5)	9,5202(7)	9,2716(8)
<i>b</i> / Å	13,3539(7)	9,6355(5)	9,4628(7)
<i>c</i> / Å	13,3533(7)	11,9629(9)	13,3372(9)
α /°	90	100,861(5)	91,204(6)
β /°	102,609(6)	112,869(7)	94,838(86)
γ /°	90	98,829(5)	106,936(7)
Volumen ćelije/ Å ³	1450,63(20)	961,34(42)	1114,13(26)
Ζ	6	4	4
$ ho_{calc}$ / g cm $^{-3}$	1,62	1,55	1,51
μ_{calc}/mm^{-1}	0,142	0,126	0,121
Raspon difr. kuteva	$4 \le \theta \le 36, 3$	$3,843 \le \theta \le 37,338$	$4,012 \le \theta \le 37,491$
	$-12 \le h \le 5$	$-16 \le h \le 15$	$-15 \le h \le 14$
Raspon Millerovih indeksa	$-17 \le k \le 21$	$-13 \le k \le 13$	$-10 \le k \le 15$
	$-22 \le l \le 18$	$-20 \le l \le 18$	$-22 \le l \le 20$
F(000)	728,0	420	264
Broj sakupljenih refleksâ	7978	9248	11989
Broj neovisnih refleksâ	5446	6744	8618
Broj opaženih refleksâ	1897	2319	2172
Broj parametara	238	301	329
R_{int}	0,0796	0,1569	0,2036
$R[F^2 > 2\sigma F^2]$	0,0501	0,0564	0,0549
$wR(F^2)$	0,1331	0,1661	0,1773
S	0,836	0,759	0,79
Δho_{max} / e Å $^{-3}$	0,23	0,261	0,225
Δho_{min} / e Å $^{-3}$	-0,31	-0,255	-0,217

Tablica 3.3: Osnovni kristalografski podaci za pripravljene spojeve

	IV	V	VI
Formula	$C_{12}H_7N_5O_9$	$C_{18}H_{12}N_4O_{10}$	C ₁₈ H ₁₁ N ₅ O ₉
Mr/ g mol ⁻¹	475,334	443,316	440,316
Kristalni sustav	triklinski	monoklinski	monoklinski
Prostorna grupa	$P\overline{1}$	$P2_1/n$	$P2_1/n$
a / Å	7,0366(5)	9,3809(7)	18,4192(9)
<i>b</i> / Å	9,6789(7)	19,8376(11)	4,8555(2)
<i>c</i> / Å	11,7273(8)	10,7456(9)	20,7581(10)
α /°	68,816(7)	90	90
β /°	75,888(6)	112,644(9)	109,372(5)
γ /°	69,255(7)	90	90
Volumen ćelije/ Å ³	690,28(26)	1845,55(75)	1751,38(33)
Ζ	2	4	4
$ ho_{calc}$ / g cm $^{-3}$	1,44	1,6	1,67
μ_{calc}/mm^{-1}	0,099	0,134	0,138
Raspon difr. kuteva	$4,335 \le \theta \le 35,348$	$3,9 \le \theta \le 37,3$	$3,9 \le \theta \le 35,9$
	$-4 \le h \le 10$	$-14 \le h \le 15$	$-26 \le h \le 29$
Raspon Millerovih indeksa	$-14 \le k \le 13$	$-30 \le k \le 32$	$-7 \le k \le 7$
	$-18 \le l \le 16$	$-18 \le l \le 17$	$-34 \le l \le 32$
<i>F</i> (000)	315	912	904
Broj sakupljenih refleksâ	6130	22148	22418
Broj neovisnih refleksâ	4188	7758	6966
Broj opaženih refleksâ	2641	1617	2358
Broj parametara	239	301	297
R _{int}	0,08	0,248	0,162
$R[F^2 > 2\sigma F^2]$	0,05	0,037	0,046
$wR(F^2)$	0,131	0,094	0,112
S	0,94	0,574	0,691
Δho_{max} / e Å $^{-3}$	0,414	0,148	0,272
Δho_{min} / e Å $^{-3}$	-0,551	-0,185	-0,337

Tablica 3.3: Nastavak

	VII	VIII	IX
Formula	$C_{14}H_{11}N_5O_{10}$	$C_{11}H_8N_4O_{10}$	C ₁₆ H ₁₃ N ₅ O ₁₁
Mr/ g mol ⁻¹	408,27	356,214	451,314
Kristalni sustav	monoklinski	triklinski	monoklinski
Prostorna grupa	<i>P</i> 2 ₁ / <i>c</i>	$P\overline{1}$	<i>P</i> 2 ₁ / <i>c</i>
<i>a</i> / Å	14,0396(51)	6,5935(3)	8,1362(3)
<i>b</i> / Å	8,9865(16)	10,9841(5)	13,6630(39)
<i>c</i> / Å	26,6959(59)	12,5660(7)	12,3647(38)
α /°	90	94,936(4)	90,076(26)
β /°	102,427(30)	91,476(4)	90,978(26)
γ /°	90	94,995(4)	90,163(23)
Volumen ćelije/ Å ³	3289,23(223)	902,75(5)	1374,31(9)
Ζ	8	2	4
$ ho_{calc}$ / g cm $^{-3}$	1,65	1,66	1,72
μ_{calc}/mm^{-1}	0,144	0,143	0,156
Raspon difr. kuteva	$4,4 \le \theta \le 36,6$	$3,9 \le \theta \le 37,6$	$4, 1 \le \theta \le 27, 0$
	$-21 \le h \le 22$	$-10 \le h \le 10$	$-10 \le h \le 10$
Raspon Millerovih indeksa	$-14 \le k \le 15$	$-18 \le k \le 16$	$-15 \le k \le 17$
	$-37 \le l \le 40$	$-20 \le l \le 21$	$-15 \le l \le 14$
<i>F</i> (000)	1680	464	728
Broj sakupljenih refleksâ	20450	12670	5627
Broj neovisnih refleksâ	6770	7041	2559
Broj opaženih refleksâ	2262	2457	1427
Broj parametara	270	289	242
R _{int}	0,223	0,15	0,136
$R[F^2 > 2\sigma F^2]$	0,105	0,05	0,09
$wR(F^2)$	0,349	0,139	0,275
S	1,026	0,789	0,946
Δho_{max} / e Å $^{-3}$	1,151	0,512	0,707
Δho_{min} / e Å ⁻³	-0,65	-0,303	-0,749

Tablica 3.3: Nastavak

	X	XI	XII
Formula	$C_{14}H_{14}N_6O_{12}$	C ₁₈ H ₁₅ N ₇ O ₁₁	C ₃₆ H ₂₉ N ₁₁ O ₁₀
Mr/ g mol ⁻¹	442,312	505,4	775,702
Kristalni sustav	rompski	monoklinski	triklinski
Prostorna grupa	$P2_{1}2_{1}2_{1}$	$P2_1/n$	$P\overline{1}$
a / Å	4,4717(3)	3,7794(5)	8,5174(6)
<i>b</i> / Å	16,4933(10)	26,4653(65)	11,745(11)
<i>c</i> / Å	25,0159(11)	20,1867(15)	15,4137(14)
α /°	90	90	70,773(8)
β /°	90	90,704(9)	77,516(7)
γ /°	90,023(5)	90	71,578(7)
Volumen ćelije/ Å ³	1845,00(2)	2018,98(6)	1375,07(49)
Ζ	4	4	4
$ ho_{calc}$ / g cm ⁻³	1,65	1,66	1,58
μ_{calc}/mm^{-1}	0,147	0,141	0,127
Raspon difr. kuteva	$4,0 \leq \theta \leq 27,0$	$3,8 \le \theta \le 37,6$	$4, 0 \le \theta \le 35, 9$
	$-5 \le h \le 5$	$-5 \le h \le 6$	$-12 \le h \le 14$
Raspon Millerovih indeksa	$-19 \le k \le 21$	$-41 \le k \le 42$	$-16 \le k \le 10$
	$-31 \le l \le 31$	$-34 \le l \le 33$	$-24 \le l \le 23$
F(000)	944	1040,0	676
Broj sakupljenih refleksâ	20191	28465	13829
Broj neovisnih refleksâ	4012	8720	9239
Broj opaženih refleksâ	169	1675	4663
Broj parametara	329	353	468
R_{int}	0,115	0,314	0,097
$R[F^2 > 2\sigma F^2]$	0,029	0,055	0,049
$wR(F^2)$	0,04	0,098	0,13
S	0,619	0,681	0,85
Δho_{max} / e Å $^{-3}$	0,111	0,226	0,362
Δho_{min} / e Å $^{-3}$	-0,14	-0,230	-0,276

Tablica 3.3: Nastavak

	XIII	XIV	XV
Formula	C ₇₄ H ₁₁₆ N ₉ O ₂₀	C ₁₂ H ₁₁ N ₅ O ₉	C ₂₀ H ₁₇ N ₇ O ₉
Mr/ g mol ⁻¹	1541,828	415,294	497,39
Kristalni sustav	monoklinski	rompski	triklinski
Prostorna grupa	$P2_{1}/c$	Pbcn	$P\overline{1}$
<i>a</i> / Å	18,8052(51)	17,7398(14)	8,0944(06)
<i>b</i> / Å	15,9755(39)	10,8035(11)	8,5520(4)
<i>c</i> / Å	27,1841(64)	8,607(7)	17,3913(9)
α /°	90,027(20)	90	86,023(4)
β /°	92,653(21)	90	87,836(5)
γ /°	90,247(21)	90	65,048(6)
Volumen ćelije/ Å ³	8157,88(87)	1649,55(03)	1088,84(34)
Ζ	4	8	4
$ ho_{calc}$ / g cm $^{-3}$	1,22	1,6	1,57
μ_{calc}/mm^{-1}	0,089	0,139	0,129
Raspon difr. kuteva	$3,9 \le \theta \le 36,6$	$3,8 \le \theta \le 36,5$	$4,3 \le \theta \le 37,3$
	$-28 \le h \le 30$	$-28 \le h \le 29$	$-13 \le h \le 13$
Raspon Millerovih indeksa	$-26 \le k \le 25$	$-16 \le k \le 16$	$-11 \le k \le 14$
	$-40 \le l \le 43$	$-13 \le l \le 13$	$-23 \le l \le 28$
F(000)	3216	816	528
Broj sakupljenih refleksâ	60495	27414	14963
Broj neovisnih refleksâ	32122	3682	8986
Broj opaženih refleksâ	4481	1398	2741
Broj parametara	953	129	149
R _{int}	0,423	0,164	0,291
$R[F^2 > 2\sigma F^2]$	0,107	0,068	0,165
$wR(F^2)$	0,344	0,243	0,465
S	0,755	0,899	1,169
Δho_{max} / e Å $^{-3}$	1,514	0,698	1,437
Δho_{min} / e Å $^{-3}$	-0,793	-0,675	-0,929

Tablica 3.3: Nastavak

	XVI	XVII	XVIII
Formula	C ₁₃ H ₁₀ N ₆ O ₁₂	C ₁₂ H ₈ N ₆ O ₉	C ₂₅ H ₁₇ N ₇ O ₉
Mr	442,267	380,234	556,082
Kristalni sustav	triklinski	monoklinski	monoklinski
Prostorna grupa	$P\overline{1}$	$P2_1/n$	P2/c
<i>a</i> / Å	7,0351(6)	10,0678(6)	6,6116(7)
<i>b</i> / Å	9,0449(7)	14,1920(9)	12,0617(13)
<i>c</i> / Å	13,7349(12)	10,0859(8)	15,5857(15)
α /°	77,784(7)	90	90
β /°	80,26(7)	101,126(6)	96,775(9)
γ /°	88,201(7)	90	90
Volumen ćelije/ Å ³	841,52(17)	1414,01(17)	1234,24(13)
Ζ	2	4	4
$ ho_{calc}$ / g cm $^{-3}$	1,67	1,79	1,51
μ_{calc}/mm^{-1}	0,15	0,156	0,118
Raspon difr. kuteva	$3,9 \le \theta \le 37,6$	$4,3 \le \theta \le 36,8$	$4, 2 \le \theta \le 36, 4$
	$-11 \le h \le 9$	$-16 \le h \le 16$	$-9 \le h \le 10$
Raspon Millerovih indeksa	$-15 \le k \le 11$	$-22 \le k \le 22$	$-19 \le k \le 20$
	$-22 \le l \le 22$	$-13 \le l \le 15$	$-23 \le l \le 24$
<i>F</i> (000)	432	776	580
Broj sakupljenih refleksâ	11635	14796	11188
Broj neovisnih refleksâ	7030	5311	5162
Broj opaženih refleksâ	1266	1668	1394
Broj parametara	271	246	189
R _{int}	0,372	0,167	0,192
$R[F^2 > 2\sigma F^2]$	0,157	0,039	0,053
$wR(F^2)$	0,481	0,076	0,125
S	0,939	0,628	0,634
Δho_{max} / e Å $^{-3}$	4,624	0,199	0,401
Δho_{min} / e Å $^{-3}$	-0,525	-0,261	-0,493

Tablica 3.3: Nastavak

	XIX	XX	XXI
Formula	$C_{20}H_{13}N_3O_9$	$C_{20}H_{13}N_3O_9$	C ₇ H ₇ N ₅ O ₁₀
Mr	439,334	439,334	305,176
Kristalni sustav	monoklinski	monoklinski	monoklinski
Prostorna grupa	<i>P</i> 2 ₁ / <i>c</i>	$P2_1/n$	$P2_1/n$
a / Å	16,9180(17)	6,9087(45)	12,8202(11)
<i>b</i> / Å	13,3344(8)	15,5042(71)	6,6921(12)
<i>c</i> / Å	9,7596(9)	17,1601(88)	13,1482(36)
α /°	90	90	90
β /°	122,613(14)	90,296(47)	90,390(17)
γ /°	90	90	90
Volumen ćelije/ Å ³	1854,54(197)	1838,06(18)	1128,01(4)
Ζ	4	4	4
$ ho_{calc}$ / g cm ⁻³	1,57	1,59	1,89
μ_{calc}/mm^{-1}	0,127	0,128	0,18
Raspon difr. kuteva	$4,0 \le \theta \le 37,3$	$3,8 \le \theta \le 37,9$	$4,3 \le \theta \le 27,0$
	$-28 \le h \le 28$	$-11 \le h \le 9$	$-16 \le h \le 16$
Raspon Millerovih indeksa	$-13 \le k \le 22$	$-26 \le k \le 26$	$-8 \le k \le 8$
	$-16 \le l \le 16$	$-29 \le l \le 27$	$-15 \le l \le 16$
F(000)	904	904	656
Broj sakupljenih refleksâ	11406	16085	8087
Broj neovisnih refleksâ	4152	8026	2426
Broj opaženih refleksâ	1430	861	1975
Broj parametara	147	284	227
R _{int}	0,147	0,5	0,048
$R[F^2 > 2\sigma F^2]$	0,048	0,115	0,039
$wR(F^2)$	0,149	0,257	0,117
S	0,835	0,826	1,126
Δho_{max} / e Å $^{-3}$	0,262	0,403	0,255
Δho_{min} / e Å ⁻³	-0,254	-0,354	-0,236

Tablica 3.3: Nastavak

3.3 Analiza uzoraka razlikovnom pretražnom kalorimetrijom

Razlikovna pretražna kalorimetrija (DSC, *differential scanning calorimetry*) provedena je na instrumentu Mettler-Toled DSC823e, kalorimetru tipa heat flux DSC. Korištene su aluminijeve posudice volumena 40 μ L. Mjerenja su provedena u struji dušika u temperaturnom području od 0 do 300°C uz brzinu zagrijavanja od 7°C min⁻¹. Rezultati mjerenja obrađeni su programom Mettler STARe 9.01.⁴⁵

3.4 Analiza uzoraka spektroskopijom u infracrvenom području

ATR spektri pripravljenih spojeva snimljeni su na Perkin-Elmer 10.4.2 spektrometru u području od 450 do 4500 cm⁻¹. ATR spektri su obrađeni programom Spectrus NIOS2 Main 00.02.0079.⁴⁶

4 | Rezultati i rasprava

4.1 Struktura trinitrofloroglucinola u različitim stupnjevima protonacije

2,4,6-trinitrofloroglucinol troprotonska je kiselina i u može postojati u protoniranom obliku i u jednostruko, dvostruko i trostruko deprotoniranom obliku. Ta četiri oblika 2,4,6-trintrofloroglucinola, osim po stupnju protonacije, razlikuju se i strukturno. Glavna razlika između protoniranih i deprotoniranih hidroksilnih skupina je u duljini C-O veze. Prosječna duljina C-O veze deprotonirane hidroksilne skupine je 1,255 Å dok je prosječna duljina C-O veze protonirane hidroksilne skupine 1,328 Å.

Vodikove atome hidroksilnih skupina možemo locirati na diferentnoj mapi elektronske gustoće ako su difrakcijski podatci dovoljno dobri (Slika 4.1). Za razlikovanje protonirane od deprotonirane hidroksilne skupine pouzdanije je ravnati se prema dulijini veze C-O nego prema diferentnoj mapi (Tablica 4.1). Protonirane hidroksilne skupine povezane su unutarmolekulskom vodikovom vezom s kisikovim atomom nitro-skupine. Povezivanje vodikovom vezom također utječe na duljinu veze N-O nitro-skupine. U slučaju kad niti jedan kisikov atom nitro-skupine ne sudjeluje u vodikovoj vezi, duljina obje veze N-O je oko 1,22 Å. Ako je samo jedan atom povezan vodikovom vezom, veze N-O nisu jednako dugačke i mogu se razlikovati i za 0,02 Å.

Dihidrogentrinitrofloroglucinolati tvore soli i sa jako slabim bazama poput uree i 4-aminobenzojeve kiseline, nešto jače baze poput piridinskog dušika s trinitrofloroglucinolom daju jednostruko i dvostruko deprotonirane anione, a alifatski amini daju soli i s trostruko deprotoniranim anionom. Kisikovi atomi deprotoniranih hidroksilnih skupina sudjeluju pak u međumolekulskim vodikovim vezama povezujući se
Veza	H ₃ TNPG	H ₂ TNPG ⁻	HTNPG ²⁻	TNPG ³⁻
$d_{C-O^-}/\text{\AA}$	/	1,246	1,243	1,274
$d_{C-OH}/\text{\AA}$	1,355	1,331	1,330	/
$d_{N-O}/\text{\AA}$	1,169	1,245	1,224	1,195
$d_{N-O\cdots H}/\text{\AA}$	1,256	1,283	1,226	
$d_{C-N,RHAB}/\text{\AA}$	1,433	1,212	1,379	/
$d_{C-N}/\text{\AA}$	1,489	1,453	1,457	1,442

Tablica 4.1: Duljine odabranih veza trinitrofloroglucinola i njegovih aniona

tako u diskretne supramolekulske komplekse, lance, dvodimenzionalne i trodimenzionalne mreže. Nitro-skupine koje sudjeluju u unutarmolekulskoj vodikovoj vezi koplanarne su s benzenskim prstenom. C-N veza koplanarne nitro-skupine bitno je kraća nego u nitro-skupina koje ne sudjeluju u unutarmolekulskoj vodikovoj vezi, a duljina N-O veza je veća što nas upućuje da je unutarmolekulska vodikova veza trinitrofloroglucinolatnih aniona potpomognuta rezonancijom.

Soli jednostruko, dvostruko i trostruko deprotoniranog 2,4,6-trinitrofloroglucinola razlikuju se i po boji: jednostruko deprotonirane su žute, dvostruko deprotonirane su narančaste dok su one s trostruko deprotoniranim anionima narančasto-crvene. S kokristalima je situacija nešto zamršenija jer boja ne ovisi samo o trinitrofloro-glucinolu, koji je u potpuno protoniranom stanju blijedo žut do bezbojan, nego i o strukturi koformera s kojim čini kristal. Primjerice kokristali s antracenom, **XVI** i **XVII**, su tamno crvene boje jer dolazi do nastajanja kompleksa s prijenosom naboja. Prilikom priprave dotičnih spojeva, potrebno je otopiti trinitrofloroglucinol monohidrat u benzenu prilikom čega nastaje jarko žuta otopina koja nakon dodatka antracena prelazi u tamno crvenu. Za očekivati je da bi trintrofloroglucinol s drugim policikličkim arenima također mogao davati jarko obojene produkte.

Slika 4.1: Diferentna mapa elektronske gustoće u strukturnim modelima trinitrofloroglucinola (a), dihidrogentrinitrofloroglucinolata (b) i hidrogentrinitrofloroglucinolata (c) prije lociranja vodikovih atoma. Maksimumi koji odgovaraju vodikovim atomima su zaokruženi.

4.1.1 Struktura trinitrofloroglucinola monohidrata

Trinitrofloroglucinol monohidrat kristalizira u prostornoj grupi P3/c u obilku jarko žutih igličastih kristala, dok bezvodni trinitrofloroglucinol kristalizira u prostornoj grupi $P2_1$ u obliku blijedih žutih iglica.^{47,48}

Hidroksilne skupine povezane su unutarmolekulskom vodikovom vezom s kisikovim atomima nitro-skupina. Jedna nitro-skupina koplanarna je s benzenskim prstenom i sudjeluje u dvije unutarmolekulske vodikove veze. Druge dvije nitroskupine zakrenute su u odnosu na benzenski prsten za 22,08°i 59,61°. Molekule trinitrofloroglucinola međusobno se povezuju vodikovom vezom između protonirane hidroksilne skupine i nitro-skupine zakrenute za 59,61°.

Strukture anhidrida i monohidrata pohranjene su u kristalografskoj bazi podataka *CSD* pod referentnim kodovima TICYOT i BOCNIQ. Iako su smjernice za određivanje stupnja protonacije trinitrofloroglucinola jednostavne i prema njima je lako moguće odrediti stupanj protonacije svih pripravljenih soli i kokristala, to nije tako u slučaju trinitrofloroglucinola monohidrata. Naime, atom kisika molekule vode leži na simetrijskoj osi C_3 i okružen je s tri kisikova atoma hidroksilnih skupina 2,90 Å. Molekula vode, koja ima simetriju C_{2v} , u pravilu se ne bi trebala nalaziti na simetrijskoj osi trećeg reda. Zašto je u ovom slučaju to ipak tako možemo objasniti na dva načina. Jedno od objašnjenja je da je molekula vode zapravo u statističkom neredu oko trigire. Druga mogućnost je da se zapravo radi o oksonijevoj soli dihidrogentrinitrofloroglucinolata

u kojoj je jedna od tri hidroksilne skupine protonirana i da je vodikov atom uneređen na tri simetrijski ekvivalentna položaja, tj. da je u prosijeku na svaku hidroksilnu skupinu vezana trećina atoma vodika. Duljine veza C-O trinitrofloroglucinola monohidrata kraće su nego kod nekonjugiranih fenola, i iznose u prosijeku 1,319 Å.⁴⁹ Boja samog trinitroflorogluciol monohidrata podržava hipotezu o postojanju oksonijeve soli trinitrofloroglucinola.

Slika 4.2: Prikaz povezivanja molekule vode i tri molekule trinitrofloroglucinola u strukturi trinitrofloroglucinola monohidrata.

4.2 Supramolekulske arhitekture pripravljenih soli i kokristala

4.2.1 Diskretni supramolekulski kompleksi

Reakcijom trinitrofloroglucinola i organskih spojeva koji sadrže akceptore vodikove veze može doći do prijenosa protona s hidroksilne skupine trinitrofloroglucinola. U slučaju kada se u protoniranoj molekuli nalazi samo jedan dobar akceptor vodikove veze, primjerice piridinski dušik, slučaj je jednostavan. Situacija se komplicira kad u organskoj molekuli koja reagira s trinitrofloroglucinolom nalazi više mogućih funkcionalnih skupina koje se mogu protonirati. Naime, za razliku od reakcija u otopini u kojima dolazi do protonacije one funkcionalne skupine koja će dati najslabiju konjugiranu kiselinu, ishod u čvrstom stanju nije toliko jednostavno predvidjeti.

POGLAVLJE 4. REZULTATI I RASPRAVA

Trinitrofloroglucinol reagira s derivatima piridina koji osim piridinskog dušika ne sadrže funkcionalne skupine koje bi mogle poslužiti kao donori ili kao akceptori vodikove veze. Hoće li reakcijom nastati soli s jednostruko ili dvostruko deprotoniranim trinitrofloroglucinolom ovisi o omjeru količina dodanog piridina i trinitrofloroglucinola. Koja je sol nastala može se vidjeti već i po boji kristala. Kao što je već spomenuto, soli s dihidrogentrinitrofloroglucinolatnim anionima su žute, dok su one s hidrogentrinitrofloroglucinolatnim anionima narančaste.

Analizom kristalnih struktura pripravljenih spojeva I, II, III i IV lako je uočiti glavni motiv povezivanja vodikovim vezama, a to je nastajanje diskretnih supramolekulskih kompleksâ. S 4-metilpiridinom pripravljene su dvije soli, I i II, od koji jedna sadrži jednostruko, a druga dvostruko deprotonirani anion. 4-Metilpiridinijevi kationi povezuju se bifurkiranom vodikovom vezom preko piridinskog dušika s deprotoniranim hidroksilnim skupinama trinitrinitrofloroglucinola i kisikovim atomima susjednih nitro-skupina, tvoreći diskretne supramolekulske komplekse (Slika 4.3).

Kako metilna skupina piridinijeva kationa nije elektronegativnija od ostatka molekule, veze C-H piridinskog prstena nisu dovoljno polarizirane da bi mogle poslužiti u međusobnom povezivanju diskretnih supramolekulskih kompleksâ slabim vodikovim vezama C-H …O. Rezultat je da se formulske jedinke slažu u gustu slagalinu. U oba spoja pristurno je $\pi - \pi$ naslagivanje, u slučaju spoja I duž osi *c* a u slučaju spoja II duž osi *a*. Kut između ravnina benzenskog i piridinskog prstena u spoju I iznosi 108,2°. Dvije nitro-skupine aniona zakrenute su u odnosu na benzenski prsten za 62,7°odnosno 44,8°.

Hidrogentrinitrofloroglucinolatni anion u spoju **II** tvori diskretni supramolekulski kompleks s dva 4-metilpiridinijeva kationa. Jedan kation povezan je s anionom bifurkiranom vodikovom vezom s deprotoniranom hidroksilnom skupinom i kisikovim atomom nitro-skupine koplanarne s benzenskim prstenom aniona, a drugi je povezan vodikovom vezom između protoniranog piridinskog dušika i deprotonirane hidroksilne skupine. Piridinski prstenovi i benzenski prsten aniona nisu koplanarni; jedan piridinski prsten je zakrenut za 2,60°, a drugi za 4,47° naspram ravnine u kojoj leži benzenski prsten.

Slika 4.3: Motiv povezivanja vodikovim vezama u strukturi (a) spoja I (b) spoja II.

Isti motiv se ponavlja i u solima s 4-*N*,*N*'-dimetilaminopiridinijevim i 4cijanopiridinijevim kationima (**III** i **IV**). Kationi se povezuju jakom vodikovom vezom s deprotoniranom hidroksilnom skupinom anona tvoreći diskretne supramolekulske komplekse koji se zatim slažu u gustu slagalinu. Ipak, u spoju **IV**, javljaju se slabe vodikove veze i $\pi - \pi$ kontakti koje povezuju susjedne formulske jedinke. Uzrok tome nalazi se u nitrilnoj skupini koja ima elektron-odvlačeći efekt. Veze C-H su polarnije nego u slučaju 4-metil- i 4-*N*,*N*'-dimetilaminopiridina, a time i bolji donori vodikove veze. Nitrilna skupina također je polarizirana i u kontaktu je s nitrilnom skupinom drugog 4-cijanopiridinijeva kationa (4.4b)

Slika 4.4: a)Motiv povezivanja kationa s anionima vodikovim vezama u strukturi spoja **IV**. (b) Kratki kontakti između dvije nitrilne skupine u spoju **IV**.

Od četiri dobivena diskretna supramolekulska kompleksa, jedino u spoju **IV** benzenska jezgra aniona i piridinski prsten nisu koplanarni već zatvaraju kut od 108,2°. To nas upućuje da čak i slabe vodikove veze mogu imati veliki utjecaj na konačnu geometriju supramolekulskog kompleksa, a time i na njegovu kristalnu strukturu.

4.2.2 Supramolekulski polimerni lanci

Ako u piridinskom derivatu zamijenimo slabo, elektron-odvlačeću funkcionalnu skupinu s nekom koja je elektronegativnija i bolji akceptor vodikove veze, motiv povezivanja aniona i kationa vodikovim vezama bitno će se promijeniti. Na primjer, ako pomiješamo 4-benzoilpiridin s otopinom trinitrofloroglucinola u stehiometrijskom omjeru 1:1 iz otopine će iskristalizirati 4-benzoilpiridinijeva dihidrogentrinitrofloroglucinolat (**V**, Tablica 3.2). U asimetričnoj jedinici spoja **V** nalazi se jedna formulska jedinka soli.

4-Benzoilpiridinijevi kationi povezuju se s anionima vodikovom vezom između protoniranog piridinskog dušika i deprotonirane hidroksilne skupine. Anioni se pak povezuju u lance duž osi *a* preko protonirane hidroksilne skupine povezane bifurkiranom vodikovom vezom s jednom od nekoplanarnih nitro-skupina susjednog aniona. Lanci se slažu antiparalelno tako da dvosloj aniona čine okosnicu na koju su vezani 4-benzoilpiridinijevi kationi.

U fenazinijevu dihidrogentrinitrofloroglucinolatu (VI) anioni se povezuju u lance kao što je slučaj u spoju V. Fenazinijevi kationi se vežu vodikovom vezom na anione vodikovom vezomtako da je kut između ravnine fenazinskog prstena i benzenske jezgre aniona 84,61°. Fenazinijevi kationi vezani na susjedne lance povezuju se međusobno slabim vodikovim vezama C-H …N u motiv topologije $C_2^2(8)$.⁵⁰ Između pojedinačnih mreža aniona nalaze se fenazinijevi kationi koji se slažu u dvorede s motivom riblje kosti. Takve dvodimenzionalne mreže s alternirajućim lancima aniona i kationa međusobno povezanih slabim vodikovim vezama slažu se okomito na os *b*.

Položaj atoma vodika na protoniranom atomu fenazinijeva kationa može se odrediti na više načina. Najjednostavniji način je iz diferentne mape elektronske gustoće(Slika 4.5) modela fenazinijeva kationa prije nego što smo na njega dodali vodik. Drugi način je analizom kristalne strukture. Omjer broja kationa i aniona u ćeliji je 1:1, a svaki kation ima u blizini dušikova atoma jednu deprotoniranu hidroksilnu skupinu dihidrogentrinitrofloroglucinolata i vodikov atom veze C-H susjednog kationa $(d < d_{\Sigma_{vdW}})$ što upućuje da je protonirani vodikov atom u kontaktu s hidroksilnom skupinom aniona. Fenazinijev kation povezan je bifurkiranom vodikovom vezom s kisikovim atomom deprotonirane hidroksilne skupine i kisikovim atomom susjedne

koplanarne nitro-skupine.

Slika 4.5: Diferentna mapa elektronske gustoće u strukturnom modelu fenazinijeva dihidrogentrinitrofloroglucinolata prije lociranja vodikova atoma vezanog na dušikov atom fenazinijeva kationa. Maksimum u blizini atoma N5 odgovara položaju vodikova atoma. Visina i širina slike iznosi 10 Å, a elektronska gustoća izražena je u e/ Å².

Na problem s lociranjem vodikova atoma nailazimo i u strukturi kinoksalinijeva dihidrogentrinitrofloroglucinolata monohidrata (**VII**). Na diferentnoj mapi elektronske gustoće kinoksalinijeva kationa (Slika 4.6) možemo vidjeti dva maksimuma u blizini atoma N4 i N5, te samo temeljem mape ne možemo zaključiti koji je od ta dva atoma dušika protoniran.

Analizom bliskih kontakata u kojima sudjeluju atomi N4 i N5 možemo vidjeti da je N5 u kontaktu s protoniranom hidroksilnom skupinom dihidrogentrinitrofloroglucinolatnog aniona, a atom N4 je u kontaktu s molekulom vode koja je povezana vodikovom vezom s hidroksilnim skupinama dva susjedna aniona. Kako se u blizini oba dušika nalaze maksimumi u diferentnoj mapi elektronske gustoće, a kationi su međusobno povezani lancem vodikovih veza topologije $C_3^3(13)$, jedno od objašnjenja je da je vodik u statističkom neredu između atoma N4 i N5. Vodikove veze koje povezuju atome N4 i N5 potpomognute su rezonancijom i nabojem (RAHB i CAHB). Duljina veza C-O koje sudjeluju u lancu odgovaraju prosiječnim vrijednostima za protoniranu i deprotoniranu hidroksilnu skupinu dihidrogentrinitrofloroglucinola, što nam govori da je većinski udio kinoksalinijevih kationa protoniran na dušiku

Slika 4.6: Diferentna mapa elektronske gustoće u strukturnom modelu kinoksalinijeva dihidrogentrinitrofloroglucinolata monohidrata prije lociranja vodikova atoma vezanog na dušikov atom kinoksalinijeva kationa. Vidljiva su dva maksimuma u blizini atoma N4 i N5. Visina i širina slike iznosi 8 Å, a elektronska gustoća izražena je u $e/Å^2$.

N4 (Slika 4.7). Dihidrogentrinitrofloroglucinolatni anioni međusobno se povezuju vodikovim vezama u lance duž osi b, a s kationima i molekulama vode povezuje se duž osi c u dvodimenzionalne mreže.

4.2.3 Dvodimenzionalne mreže

Kod organskih spojeva kod kojih postoji velika razlika u bazičnosti funkcionalnih skupina, kao što je to slučaj kod 4-benzoilpiridina, koje mogu reagirati s trinitrofloroglucinolom nije teško predvidjeti koja će skupina biti protonirana. To nije slučaj kad funkcionalne skupine imaju slične afinitete prema protonu.

4-Hidroksipiridin daje s trinitrofloroglucinolom dvije soli, VIII i IX. U spoju VIII 4-hidroksipiridinijevi kationi povezuju se vodikovom vezom preko protonirane hidroksilne skupine s deprotoniranom hidroksilnom skupinom dihidrogentrinitrofloroglucinolata i preko protoniranog piridinskog dušika s kisikovim atomom susjedne nitro-skupine tvoreći lance topologije $C_2^2(12)$ duž osi *b*. Sličan motiv povezivanja javlja se i u spoju IX u kojem se 4-hidroksipiridinijevi kationi povezuju s hidrogentrinitrofloroglucinolatnim anionima na sličan način. U oba slučaja anioni i kationi su naiz-

Slika 4.7: Prikaz motiva povezivanja u spoju VII duž osi a.

mjenično povezani u lance.

l U spoju XI anioni su premošteni s po dva 4-hidroksipiridinska kationa, što čini motiv $R_4^4(26)$. Deprotonirane hidroksilne skupine aniona povezuju se s protoniranim hidroksilnim skupinama 4-hidroksipiridinijevih kationa, a protonirani piridinski dušikovi atomi povezuju se vodikovom vezom s kisikovim atomom nitro-skupine. Jedna od nitro-skupina sujedluje u unutarmolekulskoj vodikovoj vezi s protoniranom hidroksilnom skupinom i koplanarna je s benzenskim prstenom. Lanci se međusobno povezuju slabim vodikovim vezama C14-H …O6 između protonirane hidroksilne skupine aniona i 4-hidroksipiridinijeva kationa. Kationi koji se nalaze u koplanarnim lancima povezuju se međusobno slabom C16-H15 …O6 vodikovom vezom u prsten toplologije $R_2^2(8)$.

4.2.4 Trodimenzionalne mreže

Reakcijom 4-aminobenzojeve kiseline i trinitrofloroglucinola nastaju iznimno tanke žute iglice koje nisu dovoljno velike za analizu difrakcijom rentgenskog zračenja na monokristalu. Takva morfologija kristala vjerojatno je posljedica povezivanja

Slika 4.8: a) Motiv povezivanja vodikovim vezama u strukturi spoja VIII. (b) Motiv povezivanja vodikovim vezama u strukturi spoja IX.

kationa i dihidrogentrinitrofloroglucinolatnog aniona jakim vodikovim vezama duž jedne osi. Kako bi se pokušalo omogućiti povezivanje 4-karboksianilinijevih katione i dihidrogentrinitrofloroglucinolatnih aniona da se povezuju u dvodimenzionalne ili trodimenzionalne mreže te tako pripravili kristale pogodne za analizu, u smjesu je dodan suvišak uree. Urea je prikladni izbor koformera zbog svoje dobre topljivosti u vodi i etanolu te činjenici da može sudjelovati u vodikovoj vezi i kao donor i kao akceptor. Dodatak uree u otopinu 4-aminobenzojeve kiseline i trinitrofloroglucinola rezultirao je nastajanjem žutih, igličastih kristala spoja **X**.

Jedinke u spoju X povezuju se vodikovim vezama u trodimnezionalnu mrežu. Svaki dihidrogentrinitrofloroglucinolat povezan je vodikovim vezama s tri 4karboksianilinijeva kationa, dvije molekule uree i dva susjedna aniona. S dva 4-karboksianilinijeva kationa povezuje se preko deprotonirane hidroksilne skupine bifurkiranom vodikovom vezom s protoniranom amino skupinom, dok se s trećim kationom povezuju preko protonirane hidroksilne skupine. Ona sudjeluje u unutramolekuskoj vodikovoj vezi sa susjednom nitro-skupinom i s karbonilnim kisikom karboksilne skupine. Karboksilna skupina povezana je s dvije vodikove veze s molekulom uree u motiv $R_2^2(8)$. Anioni se slažu jedan iznad drugoga duž osi *a*, okomito na koju stvaraju dvodimenzionalnu heksagonsku mrežu. U kanale između šesterokuta smješteni su kationi i molekule uree (4.9b).

Iz otopine trinitrofloroglucinola i 3-piridinkarboksamida izolirani su žuti kristali

Slika 4.9: a) Motiv povezivanja vodikovim vezama u strukturi spoja \mathbf{X} . (b) Prikaz strukture spoja \mathbf{X} duž osi *a*. Kalotnim modelom prikazani su dihidrogentrinitrofloroglucinolatni anioni.

spoja XI. U formulskoj jedinki spoja XI nalazi se jedan dihidrogentrinitrofloroglucinolatnog anion i dvije jedinke 3-piridinkarboksamida, od kojih je jedna protonirana. Iz diferentne mape elektronske gustoće nije moguće odrediti koja je od 3-karboksamidnih jedinki protonirana i na kojem atomu (Slika 4.10). Međutim, analizom parametara funkcionalnih skupina 3-piridinkarboksamida, poput duljine veza između pojedinih atoma i kuteva koje te veze zatvaraju možemo dokučiti koji je atom 3-piridinkarbokamida protoniran. Parametri koji opisuju amidne skupine obje jedinke su otprilike jednaki te možemo isključiti opciju da je jedna od amidnih skupina protonirana. Udaljenost između piridinskih dušika manja je od sume van der Waalsovih radijusa dušikovih atoma što nam govori o tome da postoji vodikova veza između ta dva atoma. Kut $\langle (C,N6,C)$ iznosi 121,67°, a kut $\langle (C,N7,C)$ 117,9°. Kutevi $\langle (C,N,C)$ piridinijevih kationa u prethodno opisanim spojevima iznose oko 120°, dok je u neprotoniranim piridinskim prstenovima taj kut oko 117°, iz čega možemo zaključiti da je atom N6 protoniran, a atom N7 je akceptor vodikve veze (4.16a).

Slika 4.10: Diferentna mapa elektronske gustoće u strukturnom modelu 3karbamoilpiridinijeva 3-karboksamid dihidrogentrinitrofloroglucinolata prije lociranja vodikova atoma na 3-karbamoilpiridinijevu kationu. Ne postoji maksimum elektronske gustoće između atoma N6 i N7. Visina i širina slike iznosi 8 Å, a elektronska gustoća izražena je u e / Å².

3-Karbamoilpiridinijevi kationi povezuju se u lance s molekulama nikotinamida, a anioni su smješteni u šupljine između lanaca u kojima se slažu duž osi *a*. Svaki dihidrogentrinitrofloroglucinolatni anion povezan je vodikovom vezom sa sedam jedinki nikotinamida. Deprotonirana hidroksilna skupina povezana je umjereno jakom, trifurkiranom vodikovom vezom C-H …O s dva 3-karbamoilpiridinijeva kationa i jednim nikotinamidom. 3-Karbamoilpiridinijevi kationi povezuju deprotonirane hidroksilne skupine susjednih aniona bifurkiranom C-H…O vodikovom vezom.

Slika 4.11: (a) Prikaz povezivanja vodikovim vezama i (b) kristalnog pakiranja u spoju **XI**.

4.2.5 Kationi s velikim nepolarnim supstituentima

2,4-Diamino-6-fenil-1,3,5-triazina (**daft**) s trinitrofloroglucinolom daje spoj **XII** u čijoj se formulskoj jedniki nalaze dva triazinijeva kationa, hidrogentrinitrofenolatni anion i molekula vode. 2,4,-Diamino-6-fenil-1,3,5-triazin moguće je protonirati na tri različita mjesta, te i u protoniranom i deprotoniranom obliku može biti i donor i akceptor vodikove veze.

Vodici na triazinijevim kationima locirani su iz diferentne mape elektronske gustoće modela dvije jedinke 2,6-diamino-4-fenil-1,3,5-triazina u asimetričnoj jedinici(Slika 4.12). Slika 4.12 prikazuje da su triazinijevi kationi protonirani na različitim položajima. 2,6-Diamino-4-fenil-1,3,5-triazinijev kation povezuje se s hidrogentrinitrofloroglucinolatnim anionom kompliciranim sintonom s tri kelatne vodikove veze. 2,4-Diamino-6-fenil-1,3,5-triazinijev kation povezuje se s hidrogentrinitrofloroglucinolatnim anionom s dvije vodikove veze između dušika amino skupina i protoniranog atoma dušika u triazinskom prstenu. 2,4-Diamino-6-fenil-1,3,5-triazinijevi kationi međusobno se povezuju preko jedne amino-skupine i neprotoniranog triazinskog atoma dušika čineći motiv $R_2^2(8)$. 2,4-Diamino-6-fenil-1,3,5-triazinijevi i 2,6-diamino-4-fenil-1,3,5-triazinijevi kationi povezani su vodikovom vezom preko amino skupina s molekulom vode.

Kationi i anioni se povezuju u lance, tako da okosnicu lanca čine polarni dijelovi kationa i anioni, dok su fenilne skupine s vanjske strane. Plosnati lanci međusobno su povezani vodikovim vezama između molekula vode i aniona. Udaljenost između dvije takve poveznice između dva sloja je 23,6 Å. Lanci se slažu tako da se fenilne skupine jednog i drugog lanca izmjenjuju. Slojevi se slažu tako da se lanci nalaze jedan iznad drugoga i da su anti-paralelno orijentirani (između dva lanca nalaze se centri inverzije).

Slika 4.12: Diferentne mape elektronske gustoće u strukturnim modelima dvije jedinke 2,6-diamino-4-fenil-1,3,5-triazina u asimetričnoj jedinici prije lociranja vodikova atoma na atomima N9 i N6. Visina i širina slike iznosi 6 Å, a elektronska gustoća izražena je u e / Å².

Fenilne skupine 2,4-diamino-6-fenil-triazinijevih kationa sterički onemogućuju izgradnju dvodimenzijsku mrežu vodikovih veza jer se ona nalazi u u ravnini s polarnim dijelom molekule. Pripravom soli trinitrofloroglucinola s adamantil-1-aminom postižemo nastajanje slojeva u kristalu. U jednom sloju dominiraju rezonancijom i nabojem potpomognute vodikove veze između amonijeve skupine kationa i trinitrofloroglucinolatnih aniona, dok se u drugom sloju nalaze alifatski, nepolarni, dijelovi kationa. Sol kristalizira u monoklinskim sustavu u prostornoj grupi $P2_1/c \le 10$ jedinki u asimetričnoj jedinici (dva trinitrofloroglucinolatna aniona, šest adamantan-1-amonijevih kationa i molekulom vode i etanola). U jediničnoj ćeliji nalazi se jedanaest formulskih jedinki. Svaki od aniona povezan je vodikovom vezom s osam kationa. Dva kationa vezana su bifurkiranom vodikovom vezom na istu hidroksilnu skupinu, tri su vezana preko kisika nitro-skupine, dva su vezana preko hidroksilnih skupina i jedan koji je povezan bifurkiranom vodikovom vezom s hidroksilnom skupinom i nitro-skupinom. Svaki od vodikovih atoma protoniranih amino skupina sudjeluje u vodikovoj vezi s anionima, od kojih dva su povezana i s molekulama vode i etanola. Anioni i kationi se slažu u slojeve dvodimenzionalnih mreža duž *c* osi tako da se u sredini sloja nalaze anioni, molekule vode i etanola i protonirane amino skupine kationa, dok su alifatski

dijelovi kationa u kontaktu s kationima susjednog sloja.

Slika 4.13: a) Prikaz pakiranja alifatskih dijelova adamantil-1-amonijevih kationa unutar jednog sloja. b) Shematski prikaz pakiranja dva sloja adamantil-1-amonijevih kationa. Žuti i narančasti peterokuti predstavljaju pentagone s molekulom etanola, a zeleni i plavi predstavljaju peterokuti s molekulom vode.

Kationi se unutar sloja slažu u peterokute koji se preko dva brida povezuju u lance duž osi *a*. Slika 4.13 prikazuje slaganje adamantil-1-amonijevih kationa u jednom sloju. U središtima peterokuta izmjenjuju se molekule vode i etanola. Molekule etanola skoro u potpunosti popunjavaju šupljinu u sredini peterokuta, što nije slučaj kod molekula vode. Volumen šupljina u središtima peterokuta nakon smještanja molekule vode u njih iznosi 18,4 Å³, volumen šupljina između dva reda pentagona je 2,2 Å³, a ukupan udio šupljina u jediničnoj ćeliji iznosi 37,6 %. Posljedica je da je izračunata gustoća kristala znatno manja od gustoća ostalih pripravljenih soli i kokristala (Tablica 3.3). Kationi su usidreni vodikovim vezama u polarnom sloju. Do gustog pakiranja alifatskih dijelova kationa ne dolazi jer velik broj jakih vodikovih veza u polarnom sloju kompenzira energetski doprinos disperzijskih interakcija.

4.2.6 Soli trinitrofloroglucinola s imidazolima i benzotriazolom

Imidazolijev kation ima samo jednu vrstu donora vodikove veze, dvije N-H skupine preko kojih se u spoju **XIV** vodikovim vezama premošćuju hidrogrntrinitrofenolatni

POGLAVLJE 4. REZULTATI I RASPRAVA

anioni. Hidrogentrinitrofloroglucinolatni anioni povezuju se vodikovim vezama s četiri susjedna imidazolijeva kationa, a svaki imidazolijev kation s dva aniona. Zajedno čine prstenove $R_6^8(32)$ koji se sastoje od po četiri kationa i četiri aniona. Svaki anion sudjeluje u dva prstena, i tako se povezuju u dvodimenzionalnu mrežu. Mreže se slažu duž osi *b* tako da hidrogentrinitrofloroglucinolatni anioni iz jedne mreže sjedaju u šupljine u središtu prstenova druge mreže (Slika 4.14).

Slika 4.14: a) Prikaz povezivanja aniona (svijetlo plavo) i kationa (tamno plavo) u $R_6^8(32)$ prstenove. b) Prikaz slaganja slojeva duž osi *b*.

Hidrogentrinitrofloroglucinolatni anioni slažu se jedan iznad drugog duž c osi u stupiće odvojene imidazolnim kationima (Slika 4.16).

Slika 4.15: Prikaz pakiranja hidrogentrinitrofloroglucinolata i imidazolijevih kationa

Da bi se ispitalo može li se utjecati na veličinu prstena derivatizacijom imidazolijevog kationa, napravljene su soli trinitrofloroglucinola s benzimidazolom, 5Nitrobenzimidazolom i benzotriazolom. Spojevi **XV**, **XVI** i **XVII**, iako sadrže katione koji su po prostornom rasporedu donora vodikove veze analogni imidazolijevu kationu, ne povezuju se u iste motive. 5-Nitrobenzimidazol daje jednstruko deprotoniranu sol trinitrofloroglucinola koja kristalizira kao monohidrat. 5-Nitrobenzimidazolijevi kationi povezani su vodikovom vezom s deprotoniranom hidroksilnom skupinom preko atoma aniona preko jednog atoma dušika i s molekulom vode preko drugog. Molekula vode također se spaja sa sljedećim anionom vodikovom vezom s kisikovim atomom nitro-skupine, te na taj način nastaju lanci koji se zatim slažu duž osi *a*. U kristalnom pakiranju javljaju se polarni slojevi koji sadrže anione i imidazolski dio kationa, a između njih nepolarni slojevi s benzenskom jezgrom kationa.

(a)

Slika 4.16: Prikaz motiva povezivanja vodikovim vezama u (a) spoju XV, (b) XVI i (c)XVII.

U strukturi benzimidazolijeva hidrogentrinitrofloroglucinolata javljaju se prstenovi topologije $R_4^4(20)$, u kojima su dva aniona premošteni s dva kationa, ali za razliku od spoja **XIV**, prstenovi su planarni, i u sredini nemaju šupljinu u kojoj bi mogli ugostiti neku molekulu. Anioni se povezuju u lance vodikovom vezom između protonirane hidroksilne skupine i nitro-skupine susjednoga aniona. Susjedni lanci su antiparalelni, a između njih se nalaze benzimidazoni kationi. Svaki anion povezan je vodikovom vezom s tri benzimidazolna kationa, od kojih su dva koplanarna i povezana bifurkiranom vodikovom vezom s deprotoniranom hidroksilnom skupinom i kisikovim atomom nitro-skupine, dok je treći povezan vodikovom vezom s drugim kisikovim atomom koplanarne nitro-skupine.

Slična situacija je i s benzotriazolijevim dihidrogentrinitrofloroglucinolatom, jedino što se anioni ne premošćuju s dvije vodikove veze N-H \cdots O, već je jedna od njih zamijenjena s dvije vodikove veze C-H \cdots O (Slika 4.16).

Iz diferentne mape elektronske gustoće struktrunog modela benzotriazolijeva kationa prije dodavanja vodikovih atoma možemo zaključiti da se vodikovi atomi nalaze na atomima N1 i N3.

Slika 4.17: Diferentna mapa elektronske gustoće u strukturnom modelu benzotriazolijeva dihidrogentrinitrofloroglucinolata prije lociranja vodikova atoma na benzotriazolijevu kationu.Javljaju se dva maksimuma u blizini atoma N1 i N3. Visina i širina slike iznosi 6 Å, a elektronska gustoća izražena je u e / Å².

Atom N3 povezan je bifurkiranom vodikovom vezom s deprotoniranom hidroksilnom skupinom i kisikovim atomom nitro-skupine trinitrofloroglucinolatnog aniona. nitro-skupina s druge strane deptotonirane hidroksilne skupine povezana je vodikovom vezom s atomom N1. Na taj način se kationi i anioni povezuju u lance duž osi *b*, a slažu se duž osi *c*.

4.2.7 Spojevi trinitrofloroglucinola s organskim tvarima bez dobrih donora vodikove veze

Spoj **XVIII** dobar je primjer kako i slabe vodikove veze C-H …O mogu imati značajan utjecaj na kristalno pakiranje u slučaju kad u kristalu nema boljih donora vodikove veze od fenilnog prstena. U tetrazolijevu kationu C-H veze fenilnih prstenova bolji su donori vodikove veze od prosiječne veze C-H zbog polarizirajućeg efekta tetrazolijeva kationa na kojeg su vezani. U strukturi spoja **XVIII** zanimljiva je činjenica da je motiv povezivanja kationa i aniona slabim vodikovim vezama iznimno sličan onome koji se javlja u spoju **XIV** s imidazolijevim kationima.

Slika 4.18: (a) Motiv prstena u kristalnoj strukturi spoja **XVIII**. (b) Pakiranje jedinki u kristalnoj strukturi spoje **XVIII** duž osi *a*.

U asimetričnoj jedinici spoja XVIII nalazi se pola formulske jedinke tetrazolijeva dihidrogentrinitrofloroglucinolata jer se kation i anion nalaze na osi drugog reda. Os prolazi kroz vezu C-N nitro-skupine koplanarne s benzenskom jezgrom i kroz atom C15 i sredinu nasuprotne veze N-N tetrazolijeva prstena. U anionu je jedna nitro-skupina koplanarna, a druge dvije skupine su zakrenute za 56,47° u odnosu na ravninu prstena. U tetrazolijevu kationu fenilna skupina vezana za ugljikov atom u tetrazolijevu prstenu s njim zatvara kut od 14,97°, a fenilne skupine vezane na dušikove atome zatvaraju kut od 64,30°. Jedinke se slažu tako da je deprotonirana hidroksilna skupina ispod tetrazolijeva prstena koji je pozitivno nabijen. Fenilnih skupina tetrazolijevih kationa i nekoplanarne nitro-skupine povezane su bliskim kontaktima C-H···O.

Zašto soli trinitrofloroglucinola s tetrazolijevim i imidazolijevim kationima imaju slične kristalne strukture, dok soli s kationima strukturno puno sličnijim imidazolu pakiraju na drugačiji način možemo objasniti činjenicom da se u spojevima XIV i XVIII kation i anion bitno razlikuju u veličini. U strukturi spoja XIV imidazolijev kation bitno je manji od aniona, dok je u spoju XVIII situacija obrnuta. U obje strukture veći ion iz jednog sloja ulazi u šupljine u sredini prstenova susjednog sloja. Benzimidazolni, 5-nitrobenzimidazolni i benzotriazolni kationi podjednako su veliki kao i trinitrofloroglucinolatni anioni te čak i u slučaju kad nastane motiv prstena slojevi s ne mogu ulaziti jedan u drugoga.

Otprije je poznato da pikrinska kiselina i drugi polinitrofenoli daju s poliarenima intenzivno obojene spojeve.²⁹ Otapanjem trinitrofloroglucinola u benzenu nastaje jarko žuta otopina koja poprimi tamnocrvenu boju nakon što se u nju doda otopina antracena. Polaganim isparavnanjem otopine pri sobnoj temperaturi dobivene su dvije vrste tamnocrvenih kristala istog sastava, **XIX** i **XX**. Intenzivnu boju kokristala, a i samu činjenicu da se trinitrofloroglucinol otapa u benzenu, možemo pripisati nastajanju kompleksa s prijenosom naboja.

Polimorf **XVI** (Tablica 3.2) kristalizira u monoklinskom sustavu u prostornoj grupi $P2_1/c$ u obliku tamnocrvenih iglica. U asimetričnoj jednici nalaze po jedna molekula 2,4,6-trinitrofloroglucinola i jedna molekula antracena, od kojih ni jedna ne leži na nekom od specijalnih položaja. Molekule antracena i 2,4,6-trinitrofloroglucinola naizmjence se slažu duž osi *a*. Kut koji zatvaraju ravnine u kojima leže molekule antracena povezane kliznom ravninom *c* iznosi 16,27°. Molekule 2,4,6-trinitrofloroglucinola noiznitro-skupine u parove. Prstenovi su im koplanarni, a motiv nastao povezivanjem možemo opisati oznakom $R_2^2(12)$.

Polimorf **XVII** (Tablica 3.2) kristalizira u monoklinskom sustavu u prostornoj grupi *C*2/*c* u obliku tamnocrvenih blokova. U jediničnoj ćeliji nalazi se 7 molekulskih jedinki, a u svakoj asimetričnoj jedinici je pola molekule antracena i pola molekule 2,4,6-trinitrofloroglucinola. Molekule antracena leži na centru inverzije, a ravnina na kojoj leži okomita je na ravninu (010) i paralelna s ravninom u kojoj leži 2,4,6-trinitrofloroglucinol. S ravninom (100) zatvara kut od 18,3°. Molekula 2,4,6trinitrofloroglucinola leži na osi drugog reda koja prolazi duž C-N veze ne-koplanarne nitro-skupine. Molekule 2,4,6-trinitrofloroglucinola povezuju se vodikovim vezama u lance duž osi *c*, kroz sintone topologije $R_2^2(12)$ i $C_2^2(10)$. U strukturama oba polimorfa javlja se motiv naizmjeničnog $\pi - \pi$ naslagivanja molekula 2,4,6-trinitrofloroglucinola i antracena. Udaljenost između ravnina u kojima leže trinitrofloroglucinol i antracen u polimorfu **XVII** je 3,329 Å, a u kokristalu **XVI** 3,295 Å. U oba polimorfa dvije nitro-skupine 2,4,6-trinitrofloroglucinola su koplanarne s benzenskom jezgrom, dok je jedna zakrenuta u odnosu na prsten za oko 70° i sudjeluje u vodikovoj vezi sa su-sjednom molekulom 2,4,6-trinitrofloroglucinola.

(a)

Slika 4.19: (a) Prikaz pakiranja molekula u kristalnoj strukturi spoja **XIX**. (b) Prikaz pakiranja molekula u kristalnoj strukturi spoja **XX**.

4.2.8 Diaminometilenoksidanijev dihidrogentrinitrofloroglucinolat

Iz otopine uree i trinitrofloroglucinola dobiveni su žuti kristali spoja **XXI**, neovisno o količini dodane uree. Analizom kristala difrakcijom rentgenskog zračenja na monokristalu utvrđeno je da se u kristalu nalaze trinitrofloroglucinol i urea. Diferentna mapa elektronske gustoće jasno pokazuje da je molekula uree protonirana na kisikovu atomu (Slika 4.20). Veza C-O u diaminometilenoksidanijevu kationu veća je od prosječne za karbonilnu skupinu, i iznosi 1,282 Å naspram 1,24 Å. Veze C-N su nešto kraće od onih u molekuli uree, i iznose 1,31 Å naspram 1,33 Å. Svaki kation povezan vodikovim vezma s četiri aniona, dok je svaki anion povezan s četiri kationa i dva aniona. Deprotonirana hidroksilna skupina povezana je bifurkiranm vodikovom vezom s amino skupinom i protoniranom hidroksilnom skupinom kationa. Anioni se povezuju bifurkiranom vodikovom vezom u lance okomite na os *b*, i zajedno s kationima čine dvodimenzionalne mreže, koje se slažu jedna na drugu duž osi **b** (Slika 4.21).

Slika 4.20: Diferentna mapa elektronske gustoće u strukturnom modelu (diaminometilen) oksidanijeva dihidrogentrinitrofloroglucinolata prije lociranja vodikova atoma na (diaminometilen) oksidanijevu kationu. Maksimum u blizini atoma O10 odgovara poziciji vodikova atoma. Visina i širina slike iznosi 8 Å, a elektronska gustoća izražena je u e / Å ².

Slika 4.21: Prikaz strukture spoja XXI duž osi b.

4.3 Razlikovna pretražna kalorimetrija

Sol / kokristal	<i>m</i> /mg	E/ mJ	$-\Delta_r H$ / kJmol ⁻¹	<i>T_{onset}</i> /°C	
Ι	0,644	610,4	335,8	150,07	
II	0,36	223,5	277,7	142,75	
III	0,545	431,82	376,7	151,39	
IV	0,408	397,17	355,5	137,66	
V	0,387	390,89	448,8	177,44	
VI	0,46	491,13	471,2	198,48	
VII	0,776	576,03	340,2	220,75	
VIII	0,542	424,32	278,9	157,58	
IX	0,481	521,09	488,9	153,38	
X	0,724	1296,88	467,7	200,56	
XI	0,44	321,76	369,5	145,92	
XII	0,645	345,88	350,4	230,87	
XIII	0,315	178,97	848,7	223,9	
XIV	0,336	324,97	384,2	156,22	
XV	0,539	423,61	390,9	166,76	
XVI	0,418	313,86	330,5	149,66	
XVII	0,37	482,66	496,0	213,53	
XVIII	0,51	579,59	635,8	195,26	
XIX	0,709	594,38	368,3	189,45	
XX	0,35	390,11	489,7	181,29	
XXI	0,541	609,11	361,6	209,25	
H_3 TNPG \cdot H_2O	0,854	1082,1	518,6	167,71	

Tablica 4.2: Analiza pripravljenih soli i kokristala razlikovnom pretražnom kalorimetrijom

Analizom pripravljenih spojeva razlikovnom pretražnom kalorimetrijom (DSC, *eng. differential scanning calorimetry*) određene su entalpije raspada i temperatura pri kojoj se raspad događa prilikom zagrijavanja u atmosferi dušika. Kod svih analiziranih uzoraka dolazi do egzotermnog raspada. Nađeno je da je entalpija raspada dva od dvadeset i jednog pripravljenog spojveća od entalpije raspada trinitrinitrofloroglucinola monohidrata. Najveća energija oslobađa se pri raspadu spojeva **XIII** i **XVIII**. Iako su strukturno i po sastavu sasvim različiti u oba spoja postoji kelatna bifurkirana vodikova veza između kiselog protona i dva kisikova atoma nitro skupine. U spojevima koji ih slijede po količini oslobođene energije također postoje vodikove veze između skupina koje sadrže najkiselije vodikove atome i nitro-skupina, ali uz dodatnu stabilizaciju povezivanjem s drugim donorima i akceptorima vodikove veze.

5 | Zaključak

U ovom radu opisane su strukture devetnaest soli i dva kokristala trinitrofloroglucinola s nizom heterocikličkih spojeva te alifatskih i aromatskih amina. Trinitrofloroglucinol javlja se u potpuno protoniranom obliku jedino u slučaju kokristala s antracenom, dok u svim ostalim slučajevima postoji u jednostruko, dvostruko i trostruko deprotoniranom obliku. Trinitrofloroglucinolatni anioni povezuju se vodikovim vezama s kationima, drugim trinitrofloroglucinolatnim anionima, koformerima i molekulama otapala. Deprotonirane hidroksilne skupine trinitrofloroglucinolatnih aniona povezuju se jakim vodikovim vezama s protoniranom funkcionalnom skupinom kationa u svim slučajevima osim kod spoja **XXI**. Protonirane hidroksilne skupine povezane su jakom unutarmolekulskom vodikovom vezom sa susjednom nitro-skupinom. U tom slučaju je nitro-skupina koplanarna s benzenskim prstenom aniona. Nitro-skupine, kao i protonirane hidroksilne skupine sudjeluju u srednje jakim i slabim vodikovim vezama s ostalim mogućim donorima i akceptorima vodikove veze.

Trinitrofloroglucinol može tvoriti više različitih tipova supramolekulskih arhitektura, od diskretnih supramolekulskih kompleksa (spojevi I, II, III i IV) do kompleksnih trodimenzionalnih mreža (spoj XX). Tip supramolekulske strukture prvenstveno ovisi o broju, vrsti i geometrijskom razmještaju donora i akceptora vodikove veze u kationu s koji tvori sol. Ako postoji samo jedan dobar donor vodikove veze, poput protoniranog piridinskog dušika u spojevima I-V, nastat će diskretni supramolekulski kompleksi s trinitrofloroglucinolatnim anionom. U slučaju više potencijalnih donora vodikove veze, s deprotoniranom hidroksilnom skupinom u većini slučajeva povezat će se onaj koj ima manji p K_a (HB⁺) (iznimka je spoj XI, gdje je protonirani piridinski dušikov atom povezan vodikovom vezom s neprotoniranim piridinskim dušikom molekule nikotinamida umjesto s anionom).

Nepolarni djelovi kationa koji s trinitrofloroglucinolatnim ionima čine rigidne sintone, poput fenilne skupine 2,4-diamino-6-fenil-triazinijeva kationa ili ugljikovodičnog kostura adamatil-amonijeva kationa, slagat će se oko okosnice koju čine anioni i polarni dijelovi kationa tako da svi mogući donori vodikove veze sudjeluju u njoj s jednim ili više akceptora makar to bilo nauštrb dodatne stabilizacije koju pruža gusto pakiranje.

Iako je 2,4-diamino-6-feniltriazin veći od trinitrofloroglucinola te strukturno sličan trifeniltetrazolijevu kationu, u strukturi spoja XII ne javlja se motiv prstena u čije središte ulaze fenilne skupine kationa iz susjednog sloja. Razlog tome je što protonacijom triazinskog dušika nastaje molekulski fragment koji ima raspored tri donora vodikove veze koji topološki odgovara rasporedu akceptora vodikove veze u hidrogentrinitrofloroglucinolatnom anionu. Nastaje rigidni sinton koji drži katione u ravnini s anionima. To nije slučaj kod spojeva XIV i XVIII kod kojih ne postoji srednji donor vodikove veze što omogućava rotaciju kationa i prilagodbu konformacija sintona u supramolekulskim mreže kako bi se postiglo što gušće pakiranje i da bi anioni i kationi susjedni slojeva bili što bliže.

Trinitrofloroglucinol može poslužiti kao građevni blok za niz različitih supramolekulskih arhitektura, od diskretnih kompleksa do trodimenzionalnih mreža. Koji će tip supramolekulske arhitekture nastati ovisi o broju i prostornom rasporedu donora i akceptora vodikove veze na molekuli ili kationu s kojim trinitrofloroglucinol interreagira.

Stupanj deprotonacije, broj vodikovih veza s kojima je trinitrofloroglucinolatni anion povezan i način slaganja formulskih jedinki u kristalnoj strukturi utječe na stabilnost soli kao i na količinu energije koja se oslobađa njenim raspadom.

6 | Literaturna vrela

- [1] R. Benedikt. Ber. Dtsch. Chem. Ges. 11 (1878) 1374–1378.
- [2] C. Zhang, X. Wang, H. Huang. J. Am. Chem. Soc. 130 (2008) 8359.
- [3] C. Zhang, Y. Cao, H. Li, Y. Zhou, J. Zhou, T. Gao, H. Zhang, Z. Yanga, G. Jiangc. *CrysEngComm* 15 (2013) 4003.
- [4] X. Wei, A. Zhang, Y. Ma, X. Xue, J. Zhou, Y. Zhub, C. Zhang. *CrystEngComm* 17 (2015) 9037–9047.
- [5] J.-G. Zhang, Y.-H. Liang, J.-L. Feng, K. Wang, T.-L. Zhang, Z.-N. Zhou, J. Y. and Z. Anorg. Allg. Chem. 638 (2012) 1212.
- [6] G. R. Desiraju. Angew. Chem. Int. Ed. 46 (2007) 8342 –8356.
- [7] G. R. Desiraju. J. Am. Chem. Soc. 27 (2013) 9952–9967.
- [8] G. M. J. Schmidt. Pure Appl. Chem. 27 (1971) 647–648.
- [9] K. B. R. Santra. CrystEngComm 10 (2008) 1524–1526.
- [10] K. B. R. Santra. CrystEngComm 13 (2011) 3246.
- [11] G. R. Desiraju. Angew. Chem. Int. Ed. 23 (1995) 120–126.
- [12] F. H. Allen. Acta Cryst. Sect B 58 (2002) 380–388.
- [13] T. Steiner. Angew. Chem. Int. Ed. 41 (2002) 48–76.
- [14] B. Seoane, S. Castellanos, A. Dikhtiarenko, F. Kaptol. Coord. Chem. Rev. 307 (2016) 147–187.
- [15] Y. Cui, T.-L. Zhang, J.-G. Zhang, X.-C. Hu, J. Zhang, H.-S. Huang. *Chin. J. Chem.* 26 (2008) 426.
- K. Užarević, I. Halasz, I Đilović, N. Bregović, M. Rubčić, D. Matković-Čalogović,
 V. Tomišić. Angew. Chem. Int. Ed. 52.21 (2013) 5504–5508.

- [17] E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjærgaard, A. C. Legon, B. Mennucci, D. J. Nesbitt. *Pure Appl. Chem.* 83 (2011) 1637–1641.
- [18] G. A. Jeffrey, W. Saenger. *An Introduction to Hydrogen Bonding*. Oxford University Press, Oxford, 1997.
- [19] T. Steiner, W. Saenger. Acta Crys. Sect. B 47 (1991) 1022–1023.
- [20] W. H. Baur. Acta Crys. Sect. B 28 (1972) 1456–1465.
- [21] T. Steiner. Acta. Cryst. Sect. B. 57 (2001) 103–106.
- [22] F. H. Allen, G. P. Shields, J. A. K. Howard, C. Bilton. Acta Cryst. Sect. B. 56 (2000) 849–856.
- [23] F. T. Allen, W. D. S. Motherwell, P.Raithby, G. P. Shields, R. Taylor. *New J. Chem.* 23 (1999) 25–34.
- [24] P. Gilli, L. Pretto, V. Bertolasi, G. Gilli. Accounts of Chemical Research 42.1 (2009) 33–44.
- [25] P. Gilli, G. Gilli. Supramolecular Chemistry: From Molecules to Nanomaterials. John Wiley & Sons, Ltd., 2012.
- [26] J. R. Glauber. Pharmacopoea spagyrica, sive, Exacta descriptio: Quâ ratione ex vegetabilibus, animalibus, & mineralibus, modo haud usitato faciliorique, utilia, efficacia,
 & penetrantia medicamenta fieri præpararique possint. Impressum Amsterodami: Apud Joannem Janssonium, 1654.
- [27] P. Woulfe. *Phil. Trans.* **61** (1771) 1–47.
- [28] A. Laurent. Ann. Chim. Phys. 3 (1841) 221.
- [29] H. E. Roscoe, C. Schorlemmer. *A Treatise on Chemistry: The Chemistry of the hydrocarbons and their derivatives.* Sv. **3**. Appleton & co., 1890.
- [30] H. Hlasiwetz. Ann. Chem. Pharm. 46 () 118.
- [31] Schreder. Ann. Chem. Pharm. 158 (1871) 244.
- [32] J. J. Welter. Ann. Chim. Phys. 29 (1830) 301.
- [33] A. V. Joshi, M. Baidoosi, S. Mukhopadhyay, Y. Sasson. Org. Process Res. Dev. 7.1 (2003) 95–97.

- [34] P. J. Pearce, R. J. J Simkins. Can. J. Chem. 46 (1968) 241.
- [35] M. M. Kuklja, S. N. Rashkeev. Appl. Phys. Lett. 90 (2007) 151913.
- [36] K. B. Landenberger, J. Bolton, A. J. Matzger. J. Am. Chem. Soc. 137 (2015) 5074– 5079.
- [37] V. Bertolasi, P. Gilli., G. Gilli. Cryst. Growth Des. 11 (2011) 2724–2735.
- [38] DeFusco, A.A., Nielsen, A.T., Atkins, R.L. Synthesis of trinitrophloroglucinol. US Patent 4,434,304. 1984.
- [39] CrysAllis CCD v171.26 Oxford Diffraction. Abingdon, Oxfordshire UK: Oxford Diffraction LTD., 2003.
- [40] CrysAllis RED v171.29 Oxford Diffraction. Abingdon, Oxfordshire UK: Oxford Diffraction LTD., 2003.
- [41] G. M. Sheldrick. Acta Crystallographica Section B: Structural Sciences 64 (2008) 112–122.
- [42] L. Palatinus, G. Chapuis. J. Appl. Cryst. 40 (2007) 786–790.
- [43] L. Palatinus, S. J. Prathapa, S. van Smaalen. J. Appl. Cryst. 45 (2012) 575–580.
- [44] L. J. Farrugia. J. Appl. Cryst. 32 (1999) 380–388.
- [45] *Mettler STARe* 9.01. Columbus, OH 43240: Mettler-Toledo, LLC, 2000.
- [46] *Perkin-Elmer spectophotometer 10.4.2.* Waltham, MA: Perkin-Elmer, 2003.
- [47] J. Wolff, F. Gredel, H. Irngartinger, T. Dreier. Acta Crystallogr., Sect.C: Cryst. Struct. Commun. 52 (1996) 3225.
- [48] M. A. Pierce-Butler. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 38 (1982) 3097.
- [49] A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson, R. Taylor. Structure Correlation, Vol. 2, ur. H.-B. Btirgi, J. D. Dunitz. VCH, 1994.
- [50] M. C. Etter, J. C. MacDonald, J. Bernstein. Acta Cryst. Sect. B 46 (1990) 256–262.

A | Popratni podatci

A.1 Parametri vodikovih veza

Veza		$d_{D,H}/\text{\AA}$	$d_{H,A}/\text{\AA}$	$d_{D,A}/\text{\AA}$	∢(D,H,A/°
I					
O4-H1 …N2		0,89(3)	2,27(3)	2,836(3)	122(2)'
O3-H2 ···O5		0,80(3)	1,77(3)	2,512(3)	153(3)
O3-H2 …N2		0,80(3)	2,33(3)	2,831(3)	122(2)'
N1-H3 …O1	1-x,1-y,1-z	0,84(3)	2,51(3)	3,120(3)	130(2)
N1-H3 …O7	1-x,1-y,1-z	0,84(3)	1,86(3)	2,636(3)	153(3)'
II					
O9-H3 ···O1		0,86(3)	1,63(3)	2,438(2)	156(3)
O9-H3 …N1		0,86(3)	2,25(3)	2,801(3)	122(2)'
N4-H4 …O2	1 + x, 1 + y, z	0,92(3)	2,27(2)	2,882(2)	123,5(18)
N4-H4 ···O3	1 + x, 1 + y, z	0,92(3)	1,76(3)	2,630(3)	156,6(18)''
N5-H5 …O5	2 - x, -y, 1 - z	0,95(2)	2,49(3)	2,958(3)	110,2(16)

Tablica A.1: Parametri vodikovih veza pripravljenih spojeva

Veza		$d_{D,H}/{ m \AA}$	$d_{H,A}/\text{\AA}$	$d_{D,A}/\text{\AA}$	∢(D,H,A/°
N5-H5 ···O6	2 - x, -y, 1 - z	0,95(2)	1,66(2)	2,605(2)	171(3)'
III					
O6-H1 …O5		0,88(3)	1,61(3)	2,421(3)	151(3)
O6-H1 …N5		0,88(3)	2,26(3)	2,777(3)	117(2)'
N7-H1A …O8		0,92(3)	2,35(3)	2,990(3)	127(2)
N7-H1A O9		0,92(3)	1,73(3)	2,592(3)	153(3)'
N1-H7 O1	1-x,1-y,-z	0,94(3)	1,81(3)	2,632(3)	145(2)
N1-H7 ····O4	1-x,1-y,-z	0,94(3)	2,14(3)	2,860(3)	132(2)'
IV					
O2 -H2 ····O4		0,82	1,82	2,5298(16)	145
O2 -H2 …N5		0,82	2,42	2,8559(17)	114
O3 -H3 …O5		0,82	1,81	2,5285(18)	145
O3 -H3 …N5		0,82	2,41	2,8512(19)	114
N1 -H6 ····O1	-x, 1-y, 1-z	0,85(2)	2,01(2)	2,8066(19)	154,2(19)
N1 -H6 ···· O8	-x, 1-y, 1-z	0,85(2)	2,587(19)	3,102(2)	119,8(17)
V					
N4-H1 …O4	2 - x, -y, 1 - z	0,938(19)	1,738(18)	2,654(2)	164,4(17)
O1-H2 ····O9		0,843(19)	1,757(19)	2,5081(18)	147,2(19)
O1-H2 …N1		0,843(19)	2,360(19)	2,835(2)	116,2(17)
O7-H3 ····O8		0,93(2)	1,65(2)	2,500(2)	149,1(19)

Tablica A.1: Parametri vodikovih veza pripravljenih spojeva

Veza		$d_{D,H}/\text{\AA}$	$d_{H,A}/\text{\AA}$	$d_{D,A}/\text{\AA}$	∢(D,H,A/°
O7-H3 ⋯N1		0,93(2)	2,28(2)	2,825(2)	116,7(15)
VI					
O1-H1 ····O9		0,98(3)	1,56(3)	2,4654(18)	152(2)
O1-H1 ··· N3		0,98(3)	2,19(3)	2,7889(18)	118,5(19)
O1-H1 …O9	1 - x, -y, -z	0,98(3)	2,35(2)	3,0414(18)	128(2)"
O4-H2 ···O3		0,85(2)	1,72(2)	2,4993(18)	152(2)
O4-H2 …N1		0,85(2)	2,32(2)	2,8500(19)	120,8(19)
N5-H3 ····O7		0,943(19)	1,680(19)	2,6035(16)	165,4(17)
N5-H3 ····O8		0,943(19)	2,173(19)	2,644(2)	109,7(14)
VII					
O2-H2 ····O5		0,82	1,88	2,573(4)	142
O2-H2 ···N3		0,82	2,48	2,896(4)	113
O2-H2 ···N7	$x, 1-y, -\frac{1}{2}+z$	0,82	2,29	2,851(4)	126
O3-H3 ····O4		0,82	1,8	2,514(4)	144
O3-H3 ···O8	x, 1 + y, z	0,82	2,59	3,191(5)	131
O3-H3 ···N3		0,82	2,4	2,834(4)	114
N6-H6 ··· O10		0,86	1,77	2,620(4)	170
O10-H21 ···O3	1545,01	0,84(4)	24(4)	3,047(4)	160(5)
O10-H22 ····O1	1555,01	0,84(3)	85(2)	2,649(4)	160(5)
С-Н0 … О1		0,93	2,48	3,411(5)	175

Tablica A.1: Parametri vodikovih veza pripravljenih spojeva

Veza		$d_{D,H}/\text{\AA}$	$d_{H,A}/\text{\AA}$	$d_{D,A}/\text{\AA}$	∢(D,H,A/°
С8-Н8 …О5	$x, 1-y, \frac{1}{2}+z$	0,93	2,48	3,061(5)	121
VIII					
O3-H102 ····O6		0,75(6)	1,90(6)	2,539(4)	143(6)
O3-H102 …N3		0,75(6)	2,44(6)	2,848(4)	116(5)
O1-H103 ····O7		0,79(6)	1,84(6)	2,512(4)	142(6)
O1-H103 …N3		0,79(6)	2,39(7)	2,827(4)	116(6)
O1-H103 O5	$x, \frac{1}{2} - y, -\frac{1}{2} + z$	0,79(6)	2,50(6)	3,033(5)	126(6)
O10-H105O2	$1 + x, \frac{1}{2} - y, -\frac{1}{2} + z$	0,90(5)	1,71(5)	2,598(4)	169(5)
O10-H105O12	$1 + x, \frac{1}{2} - y, -\frac{1}{2} + z$	0,90(5)	2,30(5)	2,719(8)	108(4)
N4-H401 …O11	1-x,-y,1-z	0,86(6)	2,19(6)	2,985(7)	155(5)
С7-Н7 …О2	$1 + x, \frac{1}{2} - y, -\frac{1}{2} + z$	0,93	2,49	3,132(5)	127
С9-Н9 …О5	1-x, 1-y, 1-z	0,93	2,58	3,415(5)	149
C11-H11 O7	$x, \frac{1}{2} - y, \frac{1}{2} + z$	0,93	2,44	3,357(5)	167
С12-Н12 … О12	1-x, -y, 1-z	0,93	2,48	3,139(7)	128
IX					
O3-H1 ···O5		0,82	1,72	2,4443(18)	147
O3-H1 …N1		0,82	2,37	2,8147(19)	115
O9-H2 ····O2	1 + x, y, -1 + z	1,05(4)	1,61(4)	2,628(2)	164(3)
O9-H2 ····O4	1 + x, y, -1 + z	1,05(4)	2,23(3)	2,7401(19)	108(2)
N2-H5 …O5	-x, -y, 1-z	0,90(2)	1,96(2)	2,847(2)	165(2)

Tablica A.1: Parametri vodikovih veza pripravljenih spojeva

Veza		$d_{D,H}/\text{\AA}$	$d_{H,A}/\text{\AA}$	$d_{D,A}/\text{\AA}$	∢(D,H,A/°
О6-Н8 …О10	2 - x, 1 - y, 1 - z	0,88(3)	1,70(2)	2,5629(19)	169(2)
N3-H11 …O4	x,y,-1+z	0,71(2)	2,12(2)	2,805(2)	163(3)
С9-Н3 …О2	1+x,y,-1+z	0,93	2,33	3,003(2)	128
С9-Н3 … О7	1+x,y,-1+z	0,93	2,37	3,268(2)	161
C7-H4O7	-x, -y, 1-z	0,93	2,46	3,153(2)	131
С14-Н6 … ОЗ	1+x,y,z	0,93	2,55	3,276(2)	135
С2-Н9 …О8	2 - x, 1 - y, 1 - z	0,93	2,32	3,228(2)	164
С2-Н9 …О10	2-x,1-y,1-z	0,93	2,39	3,037(2)	127
С15-Н13 …О6	2-x,1-y,1-z	0,93	2,52	3,317(2)	144
x					
N4-H1N O1	1 + x, y, z	1,01(3)	1,76(3)	2,750(4)	165(2)
N4-H1N O2	1+x,y,z	1,01(3)	2,46(3)	2,836(4)	101,2(19)
O4-H1O …O5		0,83(3)	1,85(3)	2,575(3)	145(3)
O4-H1O …N2		0,83(3)	2,42(3)	2,872(4)	115(2)
O4-H1O …O10	$-x, -\frac{1}{2}+y, \frac{1}{2}-z$	0,83(3)	2,34(3)	2,881(3)	123(2)
N4-H2N O12	$1 - x, -\frac{1}{2} + y, \frac{1}{2} - z$	0,89(3)	1,96(3)	2,826(4)	162(3)
O7-H2O ····O6		0,87(3)	1,82(3)	2,562(3)	142(3)
O7-H2O ⋯N2		0,87(3)	2,43(3)	2,875(4)	113(2)
O7-H2O …O6	$\frac{1}{2} + x, \frac{1}{2} - y, 1 - z$	0,87(3)	2,29(3)	2,923(3)	129(3)
N4-H3N …O1		1,12(4)	1,69(4)	2,791(4)	165(3)

Tablica A.1: Parametri vodikovih veza pripravljenih spojeva

Veza		$d_{D,H}/{ m \AA}$	$d_{H,A}/\text{\AA}$	$d_{D,A}/\text{\AA}$	∢(D,H,A/°
N4-H3N ··· O9		1,12(4)	2,47(4)	3,011(4)	108(3)
O11-H3O …O12	$\frac{3}{2} - x, 1 - y, -\frac{1}{2} + z$	0,90(4)	1,75(4)	2,617(4)	162(3)
N6-H4N …O2	$-x, \frac{1}{2} + y, \frac{1}{2} - z$	0,96(4)	2,24(4)	3,203(4)	179(4)
N6-H5N ···· O8	1 + x, y, z	0,84(3)	2,26(3)	3,029(4)	152(3)
N5-H7N ···· O10	$\frac{3}{2} - x, 1 - y, \frac{1}{2} + z$	0,96(4)	2,18(4)	3,091(4)	157(3)
N5-H7N ···· O5	$\frac{3}{2} + x, \frac{1}{2} - y, 1 - z$	0,96(4)	2,59(4)	3,128(4)	116(3)
XI					
N5-H1 …O6	$-\frac{1}{2} + x, \frac{1}{2} - y, -\frac{1}{2} + z$	0,83(3)	2,46(3)	3,255(3)	161(2)
N5-H2 O2	$\frac{1}{2} + x, \frac{1}{2} - y, -\frac{1}{2} + z$	1,01(3)	1,91(3)	2,909(3)	176(2)
N6-H3 …N7	-1+x,y,z	1,10(3)	1,58(3)	2,685(3)	176(2)
N4-H20O1	$-\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$	0,91(3)	1,97(3)	2,878(4)	172(3)
N4-H20O3	$\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$	0,91(3)	2,56(3)	2,965(3)	108(2)
N4-H21 O3	$\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$	0,83(4)	2,58(3)	2,965(3)	110(3)
N4-H21 ···· O4	$\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$	0,83(4)	2,39(3)	3,214(4)	171(3)
O11-H22O2	1 + x, y, z	0,72(3)	2,50(3)	2,936(3)	121(3)
O11-H22O10		0,72(3)	1,89(3)	2,533(3)	149(3)
O11-H22 …N1		0,72(3)	2,44(3)	2,857(3)	119(3)
O3-H23 …O1	-1 + x, y, z	0,97(4)	2,39(4)	2,943(3)	116(3)
O3-H23 O9		0,97(4)	1,67(4)	2,514(3)	143(3)
O3-H23 …N1		0,97(4)	2,32(4)	2,826(3)	112(3)

Tablica A.1: Parametri vodikovih veza pripravljenih spojeva
		1 / 9	1 / 2	1 / 9	
Veza		<i>d</i> _{<i>D</i>,<i>H</i>} /A	$d_{H,A}/A$	$d_{D,A}/A$	∢(D,H,A/°
С9-Н9 …О1		0,93	2,4	2,746(3)	101
С9-Н9 … О9	1+x,y,z	0,93	2,44	3,319(3)	158
C11-H11 O8	$\frac{3}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$	0,93	2,44	3,347(3)	164
C13-H13 O8	$\frac{3}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$	0,93	2,37	3,070(3)	132
C15-H15 …O2		0,93	2,41	2,738(3)	100
C15-H15 …O10	-1 + x, y, z	0,93	2,35	3,229(3)	157
C17-H17 ··· O4	$\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$	0,93	2,53	3,421(3)	160
C18-H18 O5	$\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$	0,93	2,58	3,051(4)	112
XII					
N8-H1N O10	1+x,y,z	0,773(18)	2,278(18)	3,046(2)	172,5(19)
O4-H1O …O5		0,97(3)	1,52(3)	2,450(2)	159(2)
O4-H1O …N2		0,97(3)	2,14(3)	2,8017(19)	123,9(19)
O10-H1W …O1	-1 + x, y, z	0,70(3)	2,52(3)	3,007(2)	128(3)
O10-H1W …O2	-1 + x, y, z	0,70(3)	2,25(3)	2,915(2)	159(3)
N8-H2N ··· O9	2-x, 1-y, -z	0,852(18)	2,161(18)	3,0018(19)	169,2(16)
N7-H3N …N4	1-x,1-y,-z	0,84(2)	2,20(2)	3,0359(19)	177(2)
N7-H4N …O1	-1 + x, y, z	0,89(2)	2,01(2)	2,840(2)	155,5(17)
N7-H4N …O9	-1 + x, y, z	0,89(2)	2,131(19)	2,731(2)	124,2(16)
N6-H6 ····O1	-1 + x, y, z	0,876(17)	2,156(17)	2,9278(18)	146,8(14)
N13-H6N …O5	x, 1 + y, z	0,815(18)	2,574(18)	3,327(2)	154,2(16)

Tablica A.1: Parametri vodikovih veza pripravljenih spojeva

Veza		$d_{D,H}/\text{\AA}$	$d_{H,A}/\text{\AA}$	$d_{D,A}/\text{\AA}$	∢(D,H,A/°
N13-H6N …O6	<i>x</i> ,1+ <i>y</i> , <i>z</i>	0,815(18)	2,374(18)	3,122(2)	153,0(16)
N13-H7N …O6	1 - x, 1 - y, -z	0,89(2)	2,14(2)	2,910(2)	145(2)
N13-H7N …O7	1-x,1-y,-z	0,89(2)	2,12(3)	2,858(2)	140(2)
N9-H9 …O7	1-x,1-y,-z	0,92(2)	1,79(2)	2,6524(17)	156(2)
N9-H9 ····O8	1-x,1-y,-z	0,92(2)	2,44(3)	3,1128(18)	130,3(19)
N12-H9N …O8	1-x,1-y,-z	0,79(2)	2,08(2)	2,821(2)	158(3)
N12-H10N O10		0,85(2)	2,07(2)	2,841(3)	150,8(19)
XIII					
O19-H1 …O1		0,82	2,26	2,745(5)	118
N6-H16A …O11		0,89	2,43	3,052(5)	127
N6-H16A …O12		0,89	2,09	2,981(4)	174
N6-H16B …O14	$-x, -\frac{1}{2} + y, \frac{1}{2} - z$	0,89	2,41	3,071(8)	132
N6-H16B ····O15	$-x, -\frac{1}{2} + y, \frac{1}{2} - z$	0,89	2,26	3,137(6)	171
N6-H16C O1		0,89	1,84	2,720(5)	169
N3-H18A …O7		0,89	1,86	2,710(4)	160
N3-H18B …O4	$1 - x, \frac{1}{2} + y, \frac{1}{2} - z$	0,89	1,91	2,775(5)	165
N3-H18C O20	$1 - x, \frac{1}{2} + y, \frac{1}{2} - z$	0,89	1,97	2,838(11)	163
N5-H28A …O11	$x,\frac{1}{2}+y,\frac{1}{2}-z$	0,89	2,3	2,802(5)	116
N5-H28A …O13	$x,\frac{1}{2}+y,\frac{1}{2}-z$	0,89	1,9	2,757(4)	161
N5-H28B …O19	$x, \frac{1}{2} + y, \frac{1}{2} - z$	0,89	2,06	2,944(5)	172

Tablica A.1: Parametri vodikovih veza pripravljenih spojeva

Veza		$d_{D,H}/\text{\AA}$	$d_{H,A}/\text{\AA}$	$d_{D,A}/\text{\AA}$	∢(D,H,A/°
N5-H28C …O16		0,89	1,94	2,798(4)	161
N1-H29A …O13	$x, \frac{1}{2} + y, \frac{1}{2} - z$	0,89	1,96	2,826(4)	164
N1-H29B …O2	x, 1+y, z	0,89	2,08	2,943(5)	165
N1-H29C …O16		0,89	1,87	2,718(4)	157
N1-H29C …O17		0,89	2,46	3,073(5)	126
N4-H30A …O8		0,89	2,13	2,869(7)	139
N4-H30A …O9		0,89	2,46	3,274(6)	153
N4-H30A …N10		0,89	2,61	3,461(5)	160
N4-H30B …O10		0,89	2,01	2,851(5)	158
N4-H30C ····O5	$1 - x, \frac{1}{2} + y, \frac{1}{2} - z$	0,89	1,97	2,842(5)	168
N4-H30C ····O6	$1 - x, \frac{1}{2} + y, \frac{1}{2} - z$	0,89	2,49	3,206(5)	137
N4-H30C …N11	$1 - x, \frac{1}{2} + y, \frac{1}{2} - z$	0,89	2,59	3,457(5)	165
N2-H31A …O4	$1 - x, \frac{1}{2} + y, \frac{1}{2} - z$	0,89	1,92	2,788(4)	163
N2-H31B …O18	$1 - x, -\frac{1}{2} + y, \frac{1}{2} - z$	0,89	2,23	3,094(5)	165
N2-H31C O6		0,89	2,5	3,145(5)	130
N2-H31C …O7		0,89	2,05	2,902(4)	160
XIV					
01-H1 ···O4	$-x,y,\frac{1}{2}-z$	0,82	1,88	2,565(2)	141
O1-H1 …N1	$-x,y,\frac{1}{2}-z$	0,82	2,27	2,742(2)	117
N3-H3 …O2	$\frac{1}{2} - x, -\frac{1}{2} + y, z$	0,86	1,91	2,744(2)	162

Tablica A.1: Parametri vodikovih veza pripravljenih spojeva

Veza		$d_{D,H}/\text{\AA}$	$d_{H,A}/\text{\AA}$	$d_{D,A}/\text{\AA}$	∢(D,H,A/°
N3-H3 …O5	$\frac{1}{2} - x, -\frac{1}{2} + y, z$	0,86	2,28	2,802(4)	119
N4-H4 ····O2	$x, 1-y, \frac{1}{2}+z$	0,86	1,89	2,683(2)	152
N4-H4 ····O3	$x, 1-y, \frac{1}{2}+z$	0,86	2,31	2,903(2)	127
XV					
N1-H1 …O5	2-x, -y, 1-z	0,86	1,79	2,565(8)	149
N1-H1 …O6	2 - x, -y, 1 - z	0,86	2,33	2,913(8)	125
N2-H2 ····O7	x, -1 + y, z	0,86	1,99	2,809(8)	159
O4-H4 ····O7		0,82	1,72	2,458(7)	150
O4-H4 …N3		0,82	2,33	2,797(8)	117
N6-H6 ····O1	x, 1 + y, z	0,86	1,99	2,685(8)	137
N6-H6 ····O2	<i>x</i> ,1+ <i>y</i> , <i>z</i>	0,86	2,20	2,861(7)	133
XVI					
O3-H3 ···O4		0,82	1,81	2,526(8)	146
O3-H3 ···N3		0,82	2,42	2,863(8)	115
O3-H3 ···O11	1-x, -y, 1-z	0,82	2,47	3,034(8)	126
N4-H4 ··· O8	1 - x, 1 - y, -z	0,86	2,35	2,848(9)	117
N4-H4 …O9	1-x,1-y,-z	0,86	1,83	2,657(7)	161
O6-H6 ····O5		0,82	1,79	2,508(8)	145
O6-H6 …N3		0,82	2,34	2,789(9)	115
C7-H7 …O10	-x, -y, -z	0,93	2,53	3,365(11)	150

Tablica A.1: Parametri vodikovih veza pripravljenih spojeva

Veza		$d_{D,H}/\text{\AA}$	$d_{H,A}/\text{\AA}$	$d_{D,A}/\text{\AA}$	∢(D,H,A/°
C11-H11 O4	1 - x, -y, 1 - z	0,93	2,39	3,298(10)	165
C13-H13 …O7	<i>x</i> ,1 + <i>y</i> , <i>z</i>	0,93	2,48	3,056(10)	120
С13-Н13 …О10	x, 1+y, z	0,93	2,57	3,096(11)	116
C13-H13O8	1-x,1-y,-z	0,93	2,38	2,874(10)	113
XVII					
O1-H1 ··· O8		0,82	1,77	2,4891(15)	146
01-H1 ··· N4		0,82	2,38	2,8220(17)	115
01-H1 ····01	1 - x, -y, 1 - z	0,82	2,50	2,8175(15)	105
N1-H1A …O6	$\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$	0,86	1,95	2,8007(17)	172
O3-H3 ····O9		0,82	1,79	2,5072(15)	145
O3-H3 …N4		0,82	2,38	2,8270(17)	115
O3-H3 ··· O6	$\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$	0,82	2,52	2,9086(16)	110
N3-H3A …O2	1+x,y,z	0,86	1,88	2,6259(16)	145
N3-H3A …O5	1 + x, y, z	0,86	2,30	2,9301(17)	130
С5-Н5 …О9	$-\frac{1}{2} + x, \frac{1}{2} - y, -\frac{1}{2} + z$	0,93	2,57	3,2704(19)	132
С6-Н6 … О8	$-\frac{1}{2} + x, \frac{1}{2} - y, -\frac{1}{2} + z$	0,93	2,58	3,4764(18)	161
XVIII					
O5-H5 ···O6		0,82	1,78	2,5018(19)	146
O5-H5 …N5		0,82	2,38	2,8287(16)	115
С10-Н10 …ОЗ		0,93	2,58	3,375(2)	144

Tablica A.1: Parametri vodikovih veza pripravljenih spojeva

Veza		$d_{D,H}/\text{\AA}$	$d_{H,A}/\text{\AA}$	$d_{D,A}/\text{\AA}$	∢(D,H,A/°
XIX					
O7-H7 ···O6		0,82	1,81	2,5140(15)	144
O7-H7 ···N3		0,82	2,43	2,8671(17)	114
O8-H8A …O1		0,82	1,76	2,4755(14)	145
O8-H8A …N1		0,82	2,4	2,8480(16)	115
O9-H9A …O2		0,82	1,87	2,5558(15)	141
O9-H9A …N1		0,82	2,44	2,8679(17)	114
XX					
O2-H2 ···O3		0,82	1,81	2,5117(3)	143
O2-H2 ··· N31		0,82	2,43	2,8586(3)	114
O2-H2 ····O1	$x, -y, -\frac{1}{2}+z$	0,82	2,54	2,8946(3)	108
O5-H5 ····O4		0,82	1,79	2,5152(3)	147
O5-H5 …N31		0,82	2,35	2,8139(3)	117
XXI					
O7-H1 ····O6		0,91(3)	1,73(2)	2,5017(16)	141(2)
O7-H1 …N2		0,91(3)	2,36(2)	2,8256(17)	111,7(18)
O7-H1 ····O2	$\frac{1}{2} + x, \frac{1}{2} - y, -\frac{1}{2} + z$	0,91(3)	2,42(2)	3,0191(17)	123,9(18)
O4-H2 ··· O5		0,89(2)	1,67(2)	2,4860(15)	151(2)
O4-H2 …N2		0,89(2)	2,29(2)	2,8207(17)	118,6(19)
O4-H2 ··· O9	$\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$	0,89(2)	2,56(2)	3,0912(17)	119,2(19)

Tablica A.1: Parametri vodikovih veza pripravljenih spojeva

Veza		$d_{D,H}/\text{\AA}$	<i>d_{H,A}</i> /Å	$d_{D,A}/\text{\AA}$	∢(D,H,A/°
N4-H3 …O5	$\frac{3}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$	0,91(3)	2,46(2)	2,9708(19)	115,7(19)
N4-H3 ····O8	1-x,1-y,-z	0,91(3)	2,34(3)	3,189(2)	155(2)
N4-H4 ····O6	$\frac{3}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$	0,85(3)	2,37(2)	3,0351(19)	136(2)
N5-H5 ···O3	1 - x, 1 - y, 1 - z	0,87(3)	2,21(3)	3,042(2)	159(2)
N5-H5 ····O4	1-x,1-y,1-z	0,87(3)	2,39(3)	2,9483(19)	123(2)
N5-H6 ····O1	$\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$	0,88(2)	2,07(2)	2,8444(18)	146,5(19)
N5-H6 ····O9	$\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$	0,88(2)	2,28(2)	2,980(2)	136,2(18)
О10-Н7 … О1	$\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$	0,88(3)	1,77(3)	2,6278(16)	164(2)
О10-Н7 …О2	$\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$	0,88(3)	2,28(3)	2,7488(16)	114(2)

Tablica A.1: Parametri vodikovih veza pripravljenih spojeva

A.2 Asimetrične jedinice pripravljenih spojeva

Slika A.1: Prikaz sadržaja asimetrične jedinke spoja I napravljen u programu ORTEP. Elipsoidi su prikazani pri 50% elektronske gustoće.

Slika A.2: Prikaz sadržaja asimetrične jedinke spoja II napravljen u programu ORTEP. Elipsoidi su prikazani pri 50% elektronske gustoće.

Slika A.3: Prikaz sadržaja asimetrične jedinke spoja III napravljen u programu ORTEP. Elipsoidi su prikazani pri 50% elektronske gustoće.

Slika A.4: Prikaz sadržaja asimetrične jedinke spoja **IV** napravljen u programu ORTEP. Elipsoidi su prikazani pri 50% elektronske gustoće.

Slika A.5: Prikaz sadržaja asimetrične jedinke spoja **V** napravljen u programu ORTEP. Elipsoidi su prikazani pri 50% elektronske gustoće.

Slika A.6: Prikaz sadržaja asimetrične jedinke spoja **VI** napravljen u programu ORTEP. Elipsoidi su prikazani pri 50% elektronske gustoće.

Slika A.7: Prikaz sadržaja asimetrične jedinke spoja **VII** napravljen u programu OR-TEP. Elipsoidi su prikazani pri 50% elektronske gustoće.

Slika A.8: Prikaz sadržaja asimetrične jedinke spoja **VIII** napravljen u programu OR-TEP. Elipsoidi su prikazani pri 50% elektronske gustoće.

Slika A.9: Prikaz sadržaja asimetrične jedinke spoja **IX** napravljen u programu ORTEP. Elipsoidi su prikazani pri 50% elektronske gustoće.

Slika A.10: Prikaz sadržaja asimetrične jedinke spoja **X** napravljen u programu ORTEP. Elipsoidi su prikazani pri 50% elektronske gustoće.

Slika A.11: Prikaz sadržaja asimetrične jedinke spoja **XI** napravljen u programu OR-TEP. Elipsoidi su prikazani pri 50% elektronske gustoće.

Slika A.12: Prikaz sadržaja asimetrične jedinke spoja **XII** napravljen u programu OR-TEP. Elipsoidi su prikazani pri 50% elektronske gustoće.

Slika A.13: Prikaz sadržaja asimetrične jedinke spoja **XIII** napravljen u programu OR-TEP. Elipsoidi su prikazani pri 50% elektronske gustoće.

Slika A.14: Prikaz sadržaja asimetrične jedinke spoja **XIV** napravljen u programu OR-TEP. Elipsoidi su prikazani pri 50% elektronske gustoće.

Slika A.15: Prikaz sadržaja asimetrične jedinke spoja **XV** napravljen u programu OR-TEP. Elipsoidi su prikazani pri 50% elektronske gustoće.

Slika A.16: Prikaz sadržaja asimetrične jedinke spoja **XVI** napravljen u programu OR-TEP. Elipsoidi su prikazani pri 50% elektronske gustoće.

Slika A.17: Prikaz sadržaja asimetrične jedinke spoja **XVII** napravljen u programu ORTEP. Elipsoidi su prikazani pri 50% elektronske gustoće.

Slika A.18: Prikaz sadržaja asimetrične jedinke spoja **XVIII** napravljen u programu ORTEP. Elipsoidi su prikazani pri 50% elektronske gustoće.

Slika A.19: Prikaz sadržaja asimetrične jedinke spoja **XIX** napravljen u programu OR-TEP. Elipsoidi su prikazani pri 50% elektronske gustoće.

Slika A.20: Prikaz sadržaja asimetrične jedinke spoja **XX** napravljen u programu OR-TEP. Elipsoidi su prikazani pri 50% elektronske gustoće.

Slika A.21: Prikaz sadržaja asimetrične jedinke spoja **XXI** napravljen u programu OR-TEP. Elipsoidi su prikazani pri 50% elektronske gustoće.

A.3 Razlikovna pretražna kalorimetrija

Slika A.23: DSC krivulja za spoja II.

Slika A.24: DSC krivulja za spoja III.

Slika A.25: DSC krivulja za spoja **IV**.

Slika A.26: DSC krivulja za spoja V.

Slika A.27: DSC krivulja za spoja **VI**.

Slika A.28: DSC krivulja za spoja VII.

Slika A.29: DSC krivulja za spoja **VIII**.

Slika A.32: DSC krivulja za spoja XI.

Slika A.33: DSC krivulja za spoja XII.

Slika A.34: DSC krivulja za spoja XIII.

Slika A.35: DSC krivulja za spoja **XIV**.

Slika A.36: DSC krivulja za spoja **XV**.

Slika A.37: DSC krivulja za spoja **XVI**.

Slika A.39: DSC krivulja za spoja XVIII.

Slika A.41: DSC krivulja za spoja **XX**.

Slika A.42: DSC krivulja za spoja **XXI**.

Slika A.43: DSC krivulja trinitrofloroglucinola.

Slika A.46: IR spektar spoja III.

Slika A.49: IR spektar spoja VI.

Slika A.52: IR spektar spoja **IX**.

Slika A.55: IR spektar spoja XII.

Slika A.58: IR spektar spoja XV.

Slika A.61: IR spektar spoja XVIII.

Slika A.64: IR spektar spoja XXI.

Slika A.65: IR spektar spoja H₃TNPG.

B | Životopis

Osobni podatci

	Datum rođenja	17. svibnja 1992.		
	Adresa	dr. Ante Šercera 53, 10000 Zagreb		
	Mjesto rođenja	Zagreb, Hrvatska		
Obrazovanje				
	19992007.	OŠ Petar Zrinski, Zagreb		
	20072011.	V. gimnazija, Zagreb		
	20112014.	preddiplomski studij kemije, Kemijski odsjek, Prirodoslovno-matematički fakultet, Zagreb		
	20142016.	diplomski studij kemije, istraživački smjer, grana: anorganska i organska kemija, Kemijski odsjek, Prirodoslovno-matematički fakultet, Zagreb,		
Nagrade i stipendije				
	2016.	Pohvalnica Fakultetskog vijeća PMF-a Sveučilišta u Zagrebu za izuzetan uspjeh u diplomskom studiju		
	2016.	Rektorova nagrada za rad Supramolekulsko samorazvr- stavanje u čvrstom stanju u sustavima organskih kiselina i piridinskih derivata		

	2013.	Posebna Rektorova nagrada za sudjelovanje na 6. Otvorenom danu kemijskog odsjeka		
Sudjelovanje na znanstvenim skupovima				
	2015.	Poster i usmeno priopćenje na 24. hrvatskom skupu kemičara i kemijskih inženjera pod nazivom 1. simpo- zij studenata kemičara		
	2015.	Izlaganje na 2. simpoziju studenata kemičara pod na- zivom Soli 2,4,6-trinitrobenzen-1,3,5-triola s donorima i akceptorima vodikove veze		
	2016.	Poster na XI. susretu mladih kemijskih inženjera pod nazivom Primjena 2,4,6-trinitrofloroglucinola kao gra- đevnog bloka u kristalnom inženjerstvu		
Članstva				
	2012 2016.	predstojnica Studentske sekcije Hrvatskog kemijskog društva		
	2016.	član Hrvatske kristalografske zajednice		
Ostalo				
	2011.	sudjelovanje na 43. Međunarodnoj kemijskoj olimpi- jadi, Ankara, Turska		
	2013 2016.	sudjelovanje na 6., 7., 8. i 9. Otvorenom danu kemij- skog odsjeka		
	2014.	član organizacijskog odbora 1. Simpozija studenata kemičara		
	2015.	član organizacijskog odbora 2. Simpozija studenata kemičara		