Utjecaj salinomicina na N-glikom u modelu tumorskih matičnih stanica

Kliček, Filip

Master's thesis / Diplomski rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:497797

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-08-05

Repository / Repozitorij:

Repository of the Faculty of Science - University of Zagreb

Sveučilište u Zagrebu

PRIRODOSLOVNO-MATEMATIČKI FAKULTET Kemijski odsjek

Filip Kliček

UTJECAJ SALINOMICINA NA N–GLIKOM U MODELU TUMORSKIH MATIČNIH STANICA

Diplomski rad

predložen Kemijskom odsjeku Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu radi stjecanja akademskog zvanja magistra kemije

Zagreb, 2018.

Ovaj diplomski rad izrađen je u Genos-u d.o.o. te Laboratoriju za eksperimentalnu terapiju Instituta Ruđer Bošković pod mentorstvom prof. dr. sc. Gordana Lauca i neposrednim voditeljstvom dr. sc. Marka Marjanovića, znan. sur. te dr. sc. Mislava Novokmeta. Nastavnik imenovan od strane Kemijskog odsjeka je doc. dr sc. Morana Dulić.

Diplomski rad izrađen je u okviru projekta Hrvatske zaklade za znanost pod nazivom: "A multidisciplinary approach to discover selective drugs targeting cancer stem cells: The role of potassium transport – MultiCaST" (HRZZ 5660).

Zahvale

Zahvaljujem se prof. dr. sc. Gordanu Laucu na mogućnosti stjecanja znanja i iskustva u Laboratoriju za glikobiologiju tvrtke Genos.

Hvala mojim neposrednim voditeljima dr. sc. Marku Marjanoviću i dr. sc. Mislavu Novokmetu ponajprije na strpljenju te dobroj volji i neprocjenjivim savjetima.

Hvala mojoj obitelji koja me je podržavala svih ovih godina da stignem do svog cilja.

Hvala Karli, Mariji i svim ostalim prijateljima koji su trpjeli sve moje mušice dugi niz godina, sa mnom nebrojene sate kave pili te mi uvijek bili velika moralna podrška kad je bilo najteže.

Sadržaj

41
33
linije.30
29
<i>LE</i> 28
25
ı23
23
22
20
19
18
17
17
16
16
15
15
15
15
15
12
8
7
5
3
3
3
1
XI
IX
••

§ 7.	POPIS OZNAKA, KRATICA I SIMBOLA	
§ 8.	LITERATURNI IZVORI	
§ 9.	DODATAK	XV
9.1.	Slike	XV
9.2.	Tablice	xxiii
§ 10.	ŽIVOTOPIS	XLII

Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Kemijski odsjek

SAŽETAK

UTJECAJ SALINOMICINA NA N–GLIKOM U MODELU TUMORSKIH MATIČNIH STANICA

Filip Kliček

N-glikozilacija je post-translacijska modifikacija proteina koja se odvija u endoplazmatskom retikulumu i Golgijevom aparatu. Modifikacije N-glikana u Golgijevom aparatu su pH ovisne te je narušavanje homeostaze pH u Golgijevom aparatu vidljivo u promjeni struktura N-glikana. Efekt salinomicina istraživan je na profilu N-glikana na modelu TMS (HMLE-pBp i HMLE-Twist). Za salinomicin je prethodno pokazano selektivno djelovanje na tumorske matične stanice (TMS). Profil N-glikoma sekretiranih proteina se promijenio nakon tretmana salinomicinom u obje stanične linije. Najuočljivija razlika u profilima nakon tretmana je izostanak razgranatih kompleksnih glikanskih struktura te relativno povećanje jednostavnih glikana, što upućuje na to da salinomicin narušava homeostazu u Golgijevom aparatu dok endoplazmatski retikulum ostaje nepromijenjen. Nadalje, primijetili samo da je efekt naglašeniji na HMLE-Twist nego na HMLE-pBp staničnoj liniji.

(46 stranice, 46 slika, 21 tablica, 33 literaturnih navoda, jezik izvornika: hrvatski)

Rad je pohranjen u Središnjoj kemijskoj knjižnici Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu, Horvatovac 102a, Zagreb i Repozitoriju Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu

Ključne riječi: Golgijev aparat, LC-MS, N-glikozilacija, salinomicin, tumorske matične stanice

Mentor: prof. dr. sc. Gordan Lauc

Neposredni voditelji: dr. sc. Marko Marjanović, znan. sur. i dr. sc. Mislav Novokmet Nastavnik (imenovan od strane Kemijskog odsjeka): doc. dr. sc. Morana Dulić Ocjenitelji:

- 1. doc. dr. sc. Morana Dulić
- 2. prof. dr. sc. Nives Galić
- 3. prof. dr. sc. Biserka Prugovečki

Zamjena: doc. dr. sc. Marko Močibob

Datum diplomskog ispita: 12. prosinca 2018.

ix

Diplomski rad

Diploma Thesis

University of Zagreb Faculty of Science **Department of Chemistry**

ABSTRACT

EFFECT OF SALINOMYCIN ON N–GLYCOME IN A CANCER STEM CELL MODEL

Filip Kliček

N-glycosilation is a post-translational modification of proteins that occurs in endoplasmatic reticulum and Golgi apparatus. Modifications of N-glycans in the Golgi apparatus are pH dependent and a disruption of pH homeostasis in Golgi apparatus is visible in the change of N-glycan structures. We investigated the effect of salinomycin, a cancer stem cell (CSC) targeting compound, on N-glycan profile of a CSC model (HMLE-pBp and HMLE-Twist cell lines). N-glycome profile of secreted proteins changed in both cell lines after treatment with salinomycin. The most evident difference in profiles after treatment is the loss of highly branched complex glycan structures and the relative increase of simpler glycans, indicating that salinomycin disrupts the Golgi apparatus homeostasis while the endoplasmatic reticulum remains intact. Moreover, we noticed that the effect of is more prominent on HMLE-Twist than on HMLE-pBp cell line.

(46 pages, 46 figures, 21 tables, 33 references, original in Croatian)

Thesis deposited in Central Chemical Library, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia and in Repository of the Faculty of Science, University of Zagreb

Keywords: Golgi apparatus, LC-MS, N-glycosylation, salinomycin, cancer stem cells

Mentor: Dr. Gordan Lauc, Prof.

Assistant mentors: Dr. Marko Marjanović, Res. Assoc. and Dr. Mislav Novokmet Supervisor (appointed by the Department of Chemistry): Dr. Morana Dulić, Assist. Prof. Reviewers:

Dr. Morana Dulić, Assist. Prof.
Dr. Nives Galić, Prof.
Dr. Biserka Prugovečki, Prof.
Substitute: Dr. Marko Močibob, Assist. Prof.

Date of exam: 12th December 2018

§ 1. UVOD

Tumorske matične stanice (TMS) su vrlo mala subpopulacija stanica unutar karcinoma.¹ TMS imaju veliki potencijal pri razvitku karcinoma te predstavljaju veliki terapeutski problem jer su u pravilu rezistentne na klasičnu kemoterapiju i radioterapiju.² TMS dojke posjeduju specifične molekularne markere koji se ne pojavljuju u ostatku karcinoma dojke.¹ Iste markere eksprimiraju i stanice koje su prošle epitelno-mezenhimalnu tranziciju (EMT). EMT je molekularni program koji se aktivira u procesu organogeneze te omogućava pravilnu raspodjelu satnica unutar tkiva i organa.³ EMT se može postići *in vitro* na nekoliko različitih načina, npr. utišavanjem translacije E-kadherina ili ekspresijom transkripcijskog faktora Twist. Kao modelni sustav za izučavanje TMS-a, u ovom radu su korištene stanice koje su prošle EMT nakon inducirane povećane ekspresije Twist-a (HMLE-Twist). Za kontrolu smo koristili staničnu liniju HMLE-pBp koja je bila transformirana praznim vektorom. HMLE stanice su nastale redukcijskom mamoplastikom, a dodatno su modificirane za uspješan i dugotrajan rast u kulturi.²

N-glikozilacija je post-translacijska modifikacija koja obuhvaća gotovo sve membranske i sekretirane proteine.⁴ Proces N-glikozilacije je podijeljen u dva stanična organela: endoplazmatski retikulum (ER) i Golgijev aparat (GA). Navedeni organeli ujedno konstituiraju veći dio sekretornog puta.^{4,5} Proteini koji se glikoziliraju, unose se kotranslacijski u ER te vezikularnim prometom prelaze u Golgijev aparat, a potom dalje prema trans-Golgijevoj mreži. Glikozilacija se odvija u svim navedenim staničnim odjeljcima.⁵ Na membrani ER se odvija sinteza prekursora N-glikozilacije, koji se zatim u bloku veže za asparagin (Asn) na rastući protein unutra konsenzusnog slijeda Asn-X-Ser/Thr. Modifikacija prekursora započinje u ER-u te se nastavlja kroz Golgijev aparat gdje se odvija većina N-glikozilacijsog procesa. Unutar Golgijevog aparata proces se odvija konsekutivno i bez kalupa.⁴

Za normalno odvijanje procesa N-glikozilacije nužno je održavanje pH vrijednosti lumena Golgijevog aparata u blago kiselom području. Narušavanje homeostaze pH dovodi do promjene u količini i strukturi glikana te do morfoloških promjena samog Golgijevog aparata.^{6,7} Tako na primjer, monenzin, kemijski spoj koji pripada skupini ionofora koja

zamijenjuje natrij za proton preko lipidnog dvosloja Golgijevog aparata, mijenja morfologiju Golgijevog aparata i N-glikozilacijski profil.⁶

U Laboratoriju za eksperimentalnu terapiju je prethodno istraživan utjecaj salinomicina na Golgijev aparat te je uočen sličan efekt kao i kod tretmana monenzinom. (Marjanović i suradnici, neobjavljeni rezultati). Na primjer, primjećeno je da dolazi do nepotpunog procesiranja N-kadherina, markera koji je eksprimiran isključivo u HMLE-Twist staničnoj liniji. Pojava dulje, neprocesirane verzije proteina (proN-kadherin) je vidljiva tijekom SDS-PAGE elektroforeze i ukazuje na poremećaj u funkciji Golgijevog aparata nakon tretmana salinomicinom. (Slika 1.)

Slika 1. Rezultat SDS-PAGE elektroforeze membranskog proteina N-kadherina iz HMLE-Twist stanične linije. $M = mol/dm^3$, SAL = salinomicin.

Cilj ovog rada je pobliže opisati profil N-glikana sekretiranih proteina na modelu TMS-a te utjecaj salinomicina na profil N-glikana sekretiranih proteina obiju staničnih linija. U navedenu svrhu HMLE-pBp i HMLE-Twist stanične linje su uzgajane te su tretirane medijem u kojem se nalazila određena koncentracija salinomicina. Sekretirani proteini iz medija iznad stanica su prekoncentrirani te im je spektrofotometrijski određena koncentracija. Količina proteina je normalizirana na 30 µg po analiziranom uzorku. Proteini su denaturirani i potom enzimski deglikozilirani pomoću enzima PNGazeF. Slobodni glikani su fluorescentno obilježeni i analizirani na vezanom sustavu tekućinske kromatografije normalnih faza uz fluorescentnu detekciju spregnutom sa spektrometrijom masa.

§ 2. LITERATURNI PREGLED

2.1. Tumori dojke

Karcinomi su drugi prema uzroku smrtnosti u svijetu. Do danas je identificirano više od 277 različitih karcinomnih oboljenja.⁸ U muškoj populaciji najzastupljeniji su karcinomi prostate, pluća i bronhi, kolona i rektuma te mokraćnog mjehura. S druge strane u populaciji žena najveću zastupljenost ima karcinom dojke te potom pluća i bronhi, kolona i rektum, maternice te štitnjače. Budući da je karcinom dojke prvi po smrtnosti žena oboljelih od nekog oblika karcinoma, u svijetu se ulaže puno truda u njegovu prevenciju, rano otkrivanje i liječenje.^{8,10}

Karcinom dojke iskazuje iznimnu staničnu kompleksnost i heterogenost na molekularnoj i morfološkoj razini. Do sad je klasificiran, prema ekspresiji gena, u 5 subkategorija: Luminal–A, Luminal–B, HER2–pozitivan, nalik bazalnim stanicama (eng. *basal-like*) te nalik normalnim stanicama dojke. Ovisno o podtipu karcinoma, ovisit će način liječenja i dugoročna prognoza za pacijenta.^{9,11}

2.2. Tumorske matične stanice dojke

Tumorske matične stanice (TMS) predstavljaju subpopulaciju stanica unutar karcinoma dojke. TMS su dobile ime prema karakteristikama koje dijele s normalnim matičnim stanicama: proliferacija, diferencijacija i samo-obnova. Izolacija i identifikacija TMS-a dojki izvedena je pomoću eksprimiranih markera na površini stanice ESA⁺CD44⁺CD24^{-/low}Lineage⁻ za koje je pokazano da se eksprimiraju u TMS-u, ali ne u ostatku tumorskih stanica.¹ ESA je epitelspecifični antigen, CD44 i CD24 su molekule koje sudjeluju u međustaničnoj adheziji, Lineage je skupina staničnih markera (CD2, CD3, CD10, CD16, CD18, CD31, CD64 i CD140b)¹. Svega 200 stanica s gore navedenim markerima u ksenograftu miša je dalo potpuno razvijeni tumor s heterogenošću jednakom kao i u roditeljskom tumoru, što govori o velikom potencijalu TMS u nastanku i razvoju tumora. Naprotiv tomu, čak 20000 stanica koje eksprimiraju CD44⁺CD24⁺ markere nikada nisu formirale tumor, dajući dodatnu potvrdu o postojanju TMS.¹

Postoje dvije teorije o nastanku TMS-a koje se međusobno ne isključuju. Prva teorija tvrdi da TMS dolaze od normalnih i već prisutnih matičnih stanica.¹² Toj teoriji u prilog ide postojanje markera koji su eksprimirani kod normalnih matičnih stanica i TMS-a.¹³ U tkivu dojke su prirodno prisutne matične stanice mliječne žlijezde¹⁴ koje su zbog dugog životnog vijeka podložne onkogenim mutacijama. Druga teorija tvrdi da TMS nastaju iz tumorskih stanica koje su u epitelno – mezenhimalnoj tranziciji.¹² Epitelno – mezenhimalna tranzicija (EMT) je slijed biokemijskih procesa koji omogućavaju epitelnim stanicama da poprime mezenhimalni, pokretljivi fenotip.^{3,14} EMT je u normalnim uvjetima ključan za proces organogeneze embrija te postaje latentan kod odraslog čovjeka, a aktivira se tek u slučaju obnove tkiva.¹⁴ Četiri signalna puta su zaslužna za indukciju EMT-a: Wnt signalni put koji kada je aktivan suprimira E-kadherin, aktivirani TNF- α /NF- κ B signalni put koji inducira transkripcijske faktore povezane s EMT, Notch signalni put koji sudjeluje u staničnoj proliferaciji, diferencijaciji i apoptozi te TGF-B signalni put koji u ranim fazama suprimira tumore te ujedno pospješuje indukciju EMT.¹⁵ Među navedenim signalnim putovima ključan je Wnt signalni put jer suprimira E-kadherin koji se nalazi na površini stanica te sudjeluje u međustaničnoj adheziji.¹⁴ Navedenom opažanju ide u prilog da kada je u epitelnoj staničnoj kulturi inhibirana translacija E-kadherina uz pomoć kratke RNA ukosnice (shRNA) te stanice poprimaju mezanhimalni fenotip.² Uz EMT prisutan je povratni proces mezenhimalno – epitelne tranzicije (MET) zbog čega TMS iskazuju iznimnu plastičnost.¹⁵

Metastaze se pojavljuju u terminalnim fazama karcinoma za koje ne postoji učinkovita terapija te njihova pojava stoga najčešće rezultira smrću.¹⁶ Karakteristika metastaza je izostanak kompetentne međustanične adhezije pri čemu je ključan izostanak E-kadherina.^{16,17} Za nastanak kompetentnih metastaza nije dostatan samo izostanak međustanične adhezije, već je nužna aktivacija EMT-a. Eksperimentalno je pokazano da kada se eksprimira E-kadherin bez ektodomene ne rezultira nastankom metastaza, ali u slučaju potpunog izostanka E-kadherina aktivira se EMT te stanice poprimaju fenotip metastaza.¹⁷ Pokazano je da metastaze eksprimiraju karakteristične markere kao i TMS te se stoga smatra da su TMS izvor metastaza u organizmu.¹⁵ Nadalje, nastanak metastaza može biti potaknut ekspresijom transkripcijskog faktora Twist za koji je pokazano da aktivira EMT program. Ekspresija Twist-a između ostalog, suprimira transkripciju E-kadherina, čiji izostanak je ključan za inicijaciju EMT-a.¹⁸ Twist dodatno može stimulirati AKT2 ekspresiju te na taj način može pridonijeti rezistentnosti TMS-a na konvencionalne metode liječenja.¹⁴

5

U zapadnim zemljama se danas kao standardne metode liječenja koriste radioterapija i kemoterapija za koje je pokazano da ne djeluju na TMS.¹⁹ Neučinkovitost standardnih metoda liječenja je posljedica raznih mehanizama rezistentnosti koje TMS posjeduje, poput npr. ekspresije ABC transportera, aktivacije Wnt signalnog puta, aktivacije NF-κB signalnog puta, itd.¹⁹ Stoga je nužan razvoj novih terapeutskih metoda i lijekova koji će smanjiti ili u potpunosti eliminirati TMS u oboljelom tkivu te na taj način najdjelotvornije djelovati na tretman karcinoma.

2.3. Salinomicin i monenzin te njihov utjecaj na tumorske matične stanice

Salinomicin (SAL) odnosno prema IUPAC-u (2R)-2-{(2R,5S,6R)-6-[(2S,3S,4S,6R)-6-{(2S,5S,7R,9S,10S,12R,15R)-2-[(2R,5R,6S)-5-etil-5-hidroksi-6-metilterahidro-2H-piran-2-il]-15-hidroksi-2,10,12-trimetil-1,6,8-trioksodispiro[4.1.5.3]pentadek-13-en-9-il}-3-hidroksi-4-metil-5-oksooktan-2-il]-5-metiltertaidro-2H-piran-2-il}butationska kiselina je organska molekula koja pripada velikoj skupini polieterskih ionofora koju prirodno proizvodi bakterija *Streptomyces albus*. SAL je slaba kiselina čiji p K_a iznosi 6,4 u dimetilformamidu. Molekulska formula SAL je C₄₂H₇₀O₁₁ te ima molarnu masu od 751 g/mol.²⁰

Slika 2. Struktura salinomicina (SAL). (preuzeto iz ref. 22)

SAL se danas upotrebljava u veterini u borbi protiv mikroba te je svoju primjenu ponajprije našao u peradarstvu i govedarsvu. Djeluje kao izmjenjivač kationa te na taj način narušava homeostazu ciljanog patogena. Pasivnom difuzijom SAL može prolaziti kroz lipidne membrane citoplazme i mitohondrija stvarajući metalne komplekse, a osobito kompleks s K⁺ te je poznato da djeluje kao K⁺/H⁺ izmjenjivač. Zbog prethodne činjenice, u ljudskom organizmu djeluje kao neurotoksin jer je za normalno funkcioniranje živčanog tkiva nužna homeostaza Na⁺/K⁺.²⁰ Monenzin ili prema IUPAC-ovoj nomenkalturi (2S,3R,4S)-4-[(2S,5R,7S,8R,9S)-2-[(2R,5S)-5-etil-5-[(2R,3S,5R)-5-[(2S,3S,5R,6R)-6-hidroksi-6-(hidroksimetil)-3,5dimetiloksan-2-yl]-3-metiloksan-2-yl]oksolan-2-yl]-7-hidroksi-2,8-dimetil-1,10dioksaspiro[4.5]dekan-9-il]-3-metoksi-2-metilpentatonična kiselina²³ je organska molekula strukturno i funkcionalno srodna salinomicinu. U biološkim sustavima preko hidrofobne membrane prebacuje jedan Na+ u zamjenu za jedan H+.⁶

Slika 3. Struktura monenzina (MON). (preuzeto iz ref. 24)

Monenzin je poznati agens koji narušava protonsku homeostazu u Golgijevom aparatu. Pod djelovanjem monenzina dolazi od bubrenja Golgijevih cisterni pri čemu efekt bubrenja raste od *cis-* prema *trans-*cisterni. U eksperimentu s intestinalnim apsortivnim stanicama štakora primijećena su dva tipa djelovanja monenzina. Prvi se odnosi na ranu vakolizaciju *trans-*Golgijeve cisterne te drugi u kojem dolazi do bubrenja Golgijevog aparata.6

Interes za salinomicin i srodne spojeve je porastao od kad je zabilježeno da imaju negativan i selektivan utjecaj na TMS dojke.^{2,20} Gupta i suradnici su prilikom probira među 16000 spojeva identificirali spojeve koji uspješno i selektivno ubijaju HMLE stanične linije koje su prošle kroz EMT (npr. HMLE-Twist staničnu liniju). SAL se pokazao kao najselektivniji, pri čemu je razlika u preživljavanju TMS naspram kontrolnih bila gotovo 100 puta. Nadalje, pokazali su da salinomicin ima isti efekt na stanice bez obzira na mehanizam indukcije EMT-a, ekspresijom Twista ili supresijom E-kadherina. Zbog svega navedenog salinomicin je okarakteriziran kao potencijani terapeutik u liječenju metastaza i recidivnog tumora.²

2.4. HMLE-pBp i HMLE-Twist

U ovom radu korišten je biološki model za tumorske matične stanice. Model je nastao transformacijom ljudskih epitelnih stanica dojke (eng. *Human mammary epithelial cells*, HMEC). HMEC su potom transformirane s ciljem beskonačne diobe stanica u kulturi. Stoga je u HMEC stanicama inducirana ekspresija telomeraze te su dodatno inficirane s dijelom genoma SV40 virusa (veliki i mali T protein). Ekspresija telomeraza i SV40 dala je HMLE staničnu liniju u kojoj je potom transdukcijom povećano eksprimiran transkripcijski faktor Twist te su dobivene stanice HMLE-Twist. HMLE-pBp stanična linija je dobivena jednakim postupkom kao i HMLE-Twist izuzev ekspresije Twist transkripcijskog faktora te se koristi kao kontrola u staničnim eksperimentima. Ovaj stanični par se koristi kao stanični model za TMS jer je ekspresija Twist transkripcijskog dovela do EMT u staničnoj liniji HMLE-Twist.² Uočava se morfološka razlika među staničnim linijama. HMLE-pBp stanica je epitelnog oblika, dok HMLE-Twist stanice poprimaju vretenast izgled tipičan za mezenhimalne stanice (Slika 4). Također, indukcijom EMT, HMLE-Twist stanice zadobile su markere tipične za TMS (CD44⁺CD24^{-/low}).

Slika 4. Lijevo je prikazana HMLE-pBp stanična linija, a desno HMLE-Twist stanična linija. HMLE-pBp stanice su okruglog oblika, dok HMLE-Twist stanice poprimaju vretenast izgled

2.5. N-glikozilacija

Glikani su velika skupina polimernih biomolekula čiji monomeri su jednostavni ugljikohidrati koji iskazuju veliku strukturnu raznolikost. Na primjer, u prirodi se pojavljuje osam strukturno različitih D-aldoza sa šest ugljikovih atoma (Slika 5).

Slika 5. Niz D-aldoza sa šest C atoma. Imena u kvadratićima se najčešće pojavljuju u biološkim sustavima. Kiralni C atomi su označeni crvenom bojom. (preuzeto i modificirano iz ref. 21)

Monomeri se povezuju glikozidnom vezom. Veza nastaje između anomernog ugljika jednog ugljikohidrata te hidroksilne skupine drugog ugljikohidrata. Dva jednostavna /monomerna ugljikohidrata međusobnim povezivanjem daju veliku raznolikost u stereoizomeriji i regioizomeriji zbog velikog broja mogućih načina povezivanja. Nadalje, na ugljikohidratu može doći do grananja što pridodaje kompleksnosti u strukturi glikana. Na taj način nastaju različite trodimenzionalne forme koje imaju različitu biološku funkciju.⁴ Kako bi prikaz i zapis struktura bili što jednostavniji, razvijen je sustav kratica i simbola za ugljikohidrate (Slika 6.)

Fukoza	Fuc	
Galaktoza	Gal	\bigcirc
Glukoza	Glc	
Manoza	Man	
N-acetilglukozanim	GlcNAc	
N-acetilgalaktozamin	GalNac	
N-acetilneuraminska kiselina	Neu5Ac	\blacklozenge

Slika 6. Kratice i pripadajući simboli najučestalijih ugljikohidrata koji se pojavljuju kod eukariota. (Prema ref. 21)

Glikozilacija je enzimski katalizirano kovalentno vezanje ugljikohidrata na protein, lipid, polinukleotid, ugljikohidrat ili neku drugu organsku molekulu. Reakciju uglavnom katalizira glikoziltransferaza. Na proteinima se razlikuje N- i O-glikozilacija ovisno o aminokiselini koja je akceptor glikana. N-glikozilacija se odvija na bočnom ogranku asparagina unutar konsenzusnog aminokiselinskog slijeda Asp-X-Ser/Thr, pri čemu X može biti bilo koja aminokiselina osim prolina. Ukoliko su bočni ogranci serina i treonina akceptori ugljikohidrata, radi se o O-glikozilaciji.⁴

Svi N-glikani imaju jednaki početni niz ugljikohidrata Man α 1-3(Man α 1-6)Man β 1-4GlcNAc β 1–4GlcNAc β 1–Asn-X-Ser/Thr koji se naziva jezgra. Jezgra N-glikana se nadograđuje granama ili antenama, prema čijem sastavu razlikujemo tri tipa glikanskih struktura kod čovjeka: oligomanozni glikani, kompleksni glikani te hibridni glikani (Slika 7). Oligomanozni glikani u sastavu antena imaju isključivo manozu, kompleksni glikani započinju s GlcNAc na obje manoze na jezgri te hibridni imaju bar jednu granu kopleksnu, a drugu oligomanoznu.⁴

Slika 7. Tipovi N-glikana u euakriotima se mogu svrstati u tri generalne skupine: oligomanozni glikani, kompleksni glikani te hibridni glikani. (Preuzeto iz ref. 4)

N-glikozilacija se odvija unutra sekretornog puta koji obuhvaća hrapavi endoplazmatski ritikulum (ER) te Golgijev aparat (GA), što je razlog zašto su skoro svi sekretirani i membranski proteini glikozilirani. Sekrecija svih proteina koji posjeduju odgovarajuću signalnu sekvencu započinje u ER-u. U ER-u se odvija smatanje proteina i kontrola pravilne provedbe tog procesa, a ako je protein pravilno smotan tada se isti pakira u vezikule. Vezikule se spajaju u *cis*-Golgijevu cisternu ili *cis*-Golgijevu mrežu. Prema teoriji sazrijevanja Golgijevih cisterni, *cis*-Golgijeva cisterna fizički se pomiče u stanici od *cis* prema *trans* položaju tj. cisterne se gibaju od ER (jezgre) prema staničnoj membrani. Na taj način slijedno *cis*-Golgijeva cistrena prelazi u *medial*-Golgijevu cisternu, pa potom u *trans*-Golgijevu cisternu te konačno u *trans*-Golgijevu mrežu. Uz navedeno prisutan je i retrogradni vezikularni transport. (Slika 8.)^{4,5}

Slika 8. Sekretorni put proteina od endoplasmatskog retikuluma (ER) kroz Golgijev aparat do stanične membrane (s lijeva na desno). *Trans*-Golgijeva mreža (TGM), endoplasmatski retikulum – Gilgijev aparat intremedijalna cisterna (ERGIC), razgradnja proteina u endoplazmatskom retikulumu (ERAD). (preuzeto i modificirano iz ref. 25)

Glikozilacija je enzimski katalizirana glikoziltransferazama koje dodaju aktivirane monosaharide, te glikozidazama, koje uklanjaju monosaharide. Enzimi su membranski te pripadaju tipu I ili najčešće tipu II membranskih proteina. Prije dodatka nove monosaharidne jedinice na rastući glikan, potrebno je tu monosaharidnu jedinicu prevesti u aktivirani oblik. Aktivirani, visoko energetski oblik monosaharida se sastoji od nukleotid difosfata (NDP) i monosaharida. Sinteza aktiviranog oblika se odvija u citosolu, no aktivirani oblik ne difundira kroz lipidni dvosloj te je stoga potrebno prenijeti aktivirane oblike monosaharida iz citosola u lumen GA. Prijenos se odvija preko seta prenositelja koji se nalaze u membrani GA.⁴

S citosolne strane ER-a počinje sinteza prekursora, Glc₃Man₉GlcNAc₂-P-P-dolikol, koji se u bloku pomoću flipaze prebacuje u lunem ER-a te se nakon toga navedeni oligosaharid prenosi na asparagin unutra konsenzusnog slijeda tijekom sinteze proteina. Sinteza i prijenos prekursora su evolucijski vrlo očuvani jer navedeni oligosaharid sudjeluje u kontroli pravilnog smatanja proteina. Zadržavanjem glikoproteina u ER-u dolazi do cijepanja terminalnih glukoza te se prije prelaska proteina iz ER u GA uklanja manoza na središnjoj grani. U *cis*–Golgijevoj cisterni se nastavlja proces modifikacije glikana na proteinu gdje dolazi do cijepanja glikozidne veze među manozama. Nadalje, u *medijalnoj*-Golgijevoj cisterni započinje sinteza kompleksnih i hibridnih glikana te se konačna modifikacija glikana odvija u *trans*-Golgijevom aparatu. Enzimi su lokalizirani unutar GA. U lokalizaciji sudjeluje, uz ostale mehanizme, transmembranska regija enzima čija veličina se mijenja prema položaju unutar GA jer se debljina membrane GA povećava s *cis*- prema *trans*-cisterni.²⁷ Debljinu membrane GA diktira udio kolesterola u membrani, tj. povećanjem udjela kolesterola povećava se i debljina membrane.⁴

2.6. Tekućinska kromatografija i masena spektrometija

Tekućinska kromatografija je vrlo rasprostranjena metoda separacije jednog ili više analita iz kompleksnih uzoraka. Osnovne komponente svake tekućinske kromatografije su pokretna tekuća faza i stacionarna faza koja može biti tekuća ili kruta. Preduvjeti za uspješnu separaciju su: topljivost analita u tekućoj fazi te da se stacionarna i mobilna faza ne miješaju. Tekućinska kromatografija se može podijeliti prema geometriji stacionarne faze (kolonska ili plošna kromatografija) te prema mehanizmu separacije (razdjelna, adsorpcijska i afinitetna kromatografija, ionska izmjena te kromatografija isključenjem). Razdjelna tekućinska kromatografija ima široku primjenu zbog velikog raspona kombinacija mobilne i stacionarne faze kada je mobilna faza nepolarna (organska otapala) te kromatografiju obrnutih faza kada je mobilna faza polarna. U obje navedene kromatografije stacionarna faza je suprotne polarnosti. Prilikom separacije istraživanih uzoraka korištena je razdjelna tekućinska kromatografija normalnih faza na koloni (eng. *hydrophilic interaction chromatography*, HILIC).²⁶

U početku se za pokretanje mobilne faze kroz kolonu koristila gravitacija, zbog čega je kromatografija bila dugotrajna, te su bile potrebne velike količine otapala i uzorka. Razvojem tehnologije omogućen je razvitak instrumenata za tekućinsku kromatografiju. Razvijeni je tekućinski komatograf visoke djelotvornosti (eng. *high-performance liquid chromatography*, HPLC) te najnovije generacije tekućinski kromatograf ultra-visoke djelotvornosti (eng. *ultrahigh-performance liquid chromatography*, UPLC). Glavna karakteristika instrumenta je uporaba visokih tlakova za pokretanje mobilne faze kroz kolonu vrlo malog promjera. Instrumenti koriste male količine otapala te su potrebne male količine uzoraka (desetak mikrolitara). Detekcija analita se u klasičnoj kolonskoj kromatografiji vrši kemijskim postupcima (prskanjem sumporne kiseline, uporabom joda, itd...) dok se danas u instrumentaliziranoj tekućinskoj kromatografiji koriste spektrofotometri s protočnom ćelijom, detektira se ili UV/Vis ili fluorescencija uzorka. Nužan preduvjet za spektrofotometrijsku detekciju uzorka je posjedovanje kromofora/fluorofora na analitu. U slučaju da analit ne posjeduje kromofor/fluorofor potrebno je kemijski modificirati analit dodatkom kromofora/fluorofora na analit.²⁶

Spektrometrija masa je instrumentalna tehnika za identifikaciju, kvantifikaciju i određivanje strukture kemijskih i biokemijskih spojeva. Svaki spektrometar masa se sastoji od ionizatora, analizatora i detektora. Do danas je razvijen veliki broj ionizatora i analizatora čije

međusobno kombiniranje omogućuje analizu velikog broja spojeva, od jednostavnih organskih do složenih biopolimera. Funkcija ionizatora je prevesti analiziranu molekulu u ion. Ionizatori se primarno dijele prema agregatnom stanju analizirane tvari u trenutku ionizacije: ionizacija tvari u plinovitom stanju (ionizacija brzim elektronima, kemijska ionizacija i ionizacija poljem) te desorpciju, tj. analit je u tekućem ili krutom stanju, (desorpcija poljem, elektrosprej, matricom potpomognuta laserska desorpcija i dr.). Ionizacija elektosprejem je postala najvažnija tehnika ionizacije u analizi biomolekula te se odvija pod atmosferskim tlakom. Mehanizam ionizacije se zasniva na evaporaciji otapala i ionizaciji analita. Evaporacijom otapala smanjuje se volumen i povećava gustoća naboja kapljice sve do Rayleigheve granice, tj. trenutka kada površinska napetost ne može podnijeti naboj kapljice. Proces se ponavlja sve dok otapalo nije u potpunosti evaporiralo. Prednost elektrospreja u odnosu na druge ionizatore je mogućnost povezivanja tekućinskog kromatografa sa masenim spektrometrom.²⁶

Nakon ionizacije nužno je odvajanje analita u uzorku što se postiže analizatorom. Ovisno o željenoj rezoluciji spektra i vrsti analita ovisit će i izbor analizatora. Danas se koriste takozvani hibridni analizatori, npr. kvadrupol-vrijeme leta analizator. Navedeni analizator se često koristi u vezanim sustavima s tekućinskom kromatografijom jer omogućava simultano razdvajanje uz visoko razlučivanje iona u spektru.²⁶

Diplomski rad

§ 3. EKSPERIMENTALNI DIO

3.1. Materijali

3.1.1. Kemikalije

HuMEC Ready Medium (1X) (Thermo Fisher Scientific), Dulbecco's Modified Eagle's medium (DMEM) (Sigma - Aldrich), inzulin (Sigma – Aldrich), L-glutamin, hidrokortizon (Sigma-Aldrich), penicilin/streptomicin (Sigma-Aldrich), fosfatni pufer koji ne sadrži magnezij i kalcij (PBS) (Lonza), tripsin (Thermo Fisher Scientific), MilliQ voda $R = 18.2 \Omega$, acetonitril, LC – MS stupnja čistoće (VWR), dimetilfulfoksid (DMSO) (Sigma-Aldrich), ledena octena kiselina (Sigma-Aldrich), etanol 99,8 % (Sigma-Aldrich), 2 – pikolin boran (Sigma-Aldrich), Prokainamid (Acros Organics), Chromabond sorbent C18 (Macherey-Nagel), trifluoroctena kiselina (Sigma-Aldrich), salinomicin (Sigma-Aldrich), hidrat natrijevog monenziata (Sigma-Aldrich), BCA set (Sigma-Aldrich), PNGase F (Promega), natrijev dodecilsulfat (SDS) (Invitrogen), Igepal CA-360 (Sigma-Aldrich)

3.1.2. Materijali

Stanična kultura HMLE-pBp i HMLE Twist, pločice za uzgoj stanica (*TPP*), Amicon Ultra centrifugalni filteri od 2 mL, 10k (*Millipore*), mikroepruvete (*Eppendorf*), epruvete (*Eppendorf*), GHP filterske pločice 1mL (*Pall*), PCR pločica AB-1300 (*Thermo Scientific*), pločica sa 96 jažica 1 mL (*Waters*), viale (*Waters*), tipsevi za pipete (*Rainin*), kromatografska kolona *Acquity UPLC BEH Glycan 1.7µm 2.1x150mm* (*Water*)

3.2. Instrumenti

Pipet-Lite XLS automatske mikropipete raznih volumena (*Rainin*), invertni svjetlosni mikroskop CKX41 (*Olympus*), Multiskan spektrofotometar (*Thermo Fisher Scientific*), centrifuga (*Eppendorf*), SpeedVac Concentrator SC210A uređaj za centrifugu s vakuum otparivačem (*Thermo*), tresilica (*GFL*), Laboratory Incubator inkubator (*M.R.C.*), inkubator INC108 (*Memmert*), Vacuum manifold za vakuumsko odsisavanje pločica (*Pall*), ACQUITY UPLC H class tekućinski kromatograf ultravisoke djelotvornosti (*Waters*), Compact Q-TOF spektrometar masa (*Bruker*)

3.3. Metode

3.3.1. Priprema medija za propagaciju i tretman stanica

DMEM medij se kompletira s fetalnim goveđim serumom (eng. *fetal bovine serum*, FBS) ukupnog 10%-tnog volumnog udjela u mediju, L-glutaminom konačne koncentracija 2 mmol dm⁻³ te antibioticima penicilinom i streptomicinom konačne koncentracije 1 μ g mL⁻¹.

Medij za propagaciju stanica pripremljen je miješanjem kompletiranog DMEM i HuMEC ready medija u volumnom omjeru 1:1 te su dodani suplementi u volumnim udjelima: 0,50% Gibco suplement, 0,25% ekstrakta hipofize. Uz suplemente još je dodan hidrokortizon konačne masene koncentracije 0,5 μ g mL⁻¹ i inzulin konačne množisnke koncentracije 0,2 mmol dm⁻³.

Pripremljena su dva medija za tretman stanica na identičan način kao i medij za propagaciju staničnih kultura s izuzećem FBS-a i Gibco suplementa, u jedan je dodan salinomicin konačne koncentracije $0,2 \ \mu$ mol dm⁻³ te drugi u koji je dodan monenzin konačne koncentracije $0,2 \ \mu$ mol dm⁻³. Sva priprema medija rađena je u sterilnim uvjetima.

3.3.2. Propagacija staničnih kultura

Stanice se čuvaju u tekućem dušiku te ih je potrebno odmrznuti prije rada s njima. Ampula koja sadrži stanice je najprije stavljena u vodenu kupelj na 37 °C dok se otopina stanica ne postane tekuća. Stanice se potom dodaju u sterilnu epruvetu u kojoj se nalazi 10 mL kompletiranog medija za propagaciju. Nadalje, epruveta sa stanicama se centrifugira 5 min na 250 g. Supernatant se odlije te se talog stanica resuspendira u 5 mL novog kompletiranog medija za propagaciju. Stanice su sada spremne za nasađivanje.

Nakon odmrzavanja, 1/10 stanica je presađena svakih 48 – 72 sata na nove ploče za uzgoj staničnih kultura u odgovarajući medij. Propagacija staničnih kultura izvršena je tako da se prvo ukloni stari medij. Sve stanične kulture se potom isperu s 5 mL PBS te se na njih doda 1,5 mL prethodno priređene otopine tripsina 0,25%-tnog volunmog udjela u PBS-u. Kulture se inkubiraju na 37 °C, 3 min za HMLE-Twist liniju te 10 min za HMLE-pBp liniju. Djelovanje tripsina se prekida dodatkom 5 mL medija za propagaciju te se stanice dodatno mehanički odljepljuju s podloge za uzgoj stanica ispiranjem iste s prethodno dodanim medijem za propagaciju. Na nove pločice stavi se 0,5 mL otopine stanica i 9 mL medija za

propagaciju kulture. Ploče za uzgoj se potom inkubiraju pri temperaturi od 37 °C, 5% volumnog udjela ugljikovog dioksida i 95% relativne vlažnosti.

3.3.3. Brojanje stanica

Prije nego što su stanične kulture tretirane salinomicinom i monenzinom potrebno ih je izbrojiti, tj. odrediti količinu stanica u volumenu koji će se nasaditi za tretman. Naime, ciljana popunjenost površine pločice za uzgoj je 80% što se postiže nasađivanjem 10⁶ stanica te se pomoću prebrojavanja odredi volumen u kojem se nalazi ciljani broj stanica.

Za prebrojavanje stanice su skinute s podloge kako je to prethodno opisano te su prebačene u sterilnu epruvetu. Nakon resuspendiranja, 20 μ L stanica je pomiješano s 80 μ L prethodno priređene otopine tripanskog modrila u jažici mikrotitarske pločice. Tako priređena suspenzija je prebačena pod pokrovno stakalce Neubauer komorice za brojanje. Stanice su prebrojane pod svjetlosnim mikroskopom tako da su pobrojane samo one koje su se nalazile unutar rešetke. Zbog razrjeđenja potrebno je preračunati broj stanica na početnu koncentraciju te je isto rađeno prema jednadžbi:

$$N = \frac{n}{4} \cdot 5 \cdot 10^4$$

pri čemu N označava broj stanica u mililitru suspenzije, n označava broj stanica u zadanom polju točno poznatog volumena, 4 označuje broj prebrojanih rešetki, množenje brojem 5 se odnosi na peterostruko razrijeđenje suspenzije u mikrotitarskoj jažici te se 10⁴ odnosi na volumen komore iznad jedne rešetke za brojanje.

3.3.4. Tretman staničnih linija salinomicinom i monenzinom

Nakon definiranja količine stanica u mililitru suspenzije za svaku staničnu liniju, izračunat je volumen (V) u kojem se nalazi 10⁶ stanica prema jednadžbi

$$V[mL] = \frac{10^{6}[br.st.]}{N[br.st./mL]}$$

Izračunati volumen nasađen je na ploče za uzgoj te je dodan medij za propagaciju tako da ukupan volumen na petrijevci bude 10 mL. Stanice se inkubiraju 24h na 37 °C u atmosferi CO₂ volumnog udjela 5% i 95 % relativne vlažnosti.

Sljedeći dan medij za propagaciju se ukloni iznad stanica te se svaka pločica ispire 4 puta s 5 mL PBS-a. Na odgovarajuće pločice doda se novi medij s nosačem (DMSO, kontrolni uzorak) koji ne sadrži FBS te zasebno medij sa salinomicinom i monenzinom. Nastavi se inkubacija u trajanju od 48h pri istim uvjetima kao i za propagaciju kulture.

3.3.5. Izolacija sekretiranih proteina te određivanje koncentracije proteina

Nakon 48 satne inkubacije pločice su stavljene na led. Medij iznad stanica, volumena 10 mL, je prebačen u epruvete. Medij je centrifugiran 10 min na 2000 g pri +4°C te je supernatant prebačen u nove epruvete.

Centrifugalne filter kolone su hidratizirane dva puta s 1 mL MiliQ vode uz centrifugiranje na 750 g i 5 min. Potom je dodavan po 1 mL sakupljenog medija dok nije profiltriran ukupni volumen. Nakon svakog dodatka medija kolone su centrifugirane 15 min na 4000 g. Koncentrat je sakupljen u mikroepruvete okretanjem kolone te centrifugiranjem 2 min pri 1000 g. Površina filtera je dodatno isprana s 300 μ L MiliQ vode te su kolone centrifugirane 2 min pri 1000 g.

Koncentracija proteina je određena prema komercijalno dostupnom BCA protokolu. Ukratko, koncentracija je određivana u mikrotirarskim pločicama s 96 jažica. U jažice se pipetiraju duplikati proteinskog standarda, albumin iz seruma goveda (eng. *"bovine serum albumin*", BSA), volumena 10 μL u koncentracijama 2,0 mg mL⁻¹, 1,5 mg mL⁻¹, 1,0 mg mL⁻¹, 0,5 mg mL⁻¹, 0,25 mg mL⁻¹ te 0,125 mg mL⁻¹. U duplikatima se također pipetiraju uzorci (10 μL). Indikatorska otopina BCA seta se priredi miješanjem otopina A i B u omjeru 50:1, prema preporuci proizvođača. U svaku jažicu sa standardom i uzorkom se doda 190 μL indikatorske otopine koje se dobro promiješaju pipetiranjem. Pločica se nakon toga inkubira 30 min na 37 °C. Po završetku inkubacije intenzitet obojenja indikatorske otopine se određuje spektrofotometrijski pri valnoj duljini od 570 nm. Pomoću poznate koncentracije standarada i izmjerene apsorbancije konstruira se baždarni dijagram iz kojeg se interpolacijom odredi nepoznata koncentracija proteina u uzorcima.

3.3.6. Deglikozilacija sekretiranih proteina

Deglikozilirano je 30 µg proteina od svakog eksperimentalnog uzorka za tretmane i kontrole svake stanične linije. Prije same deglikozilacije volumen otopine koji sadrži 30 µg proteina je

ispipetiran u pločicu od 96 jažica volumena 1 mL te stavljen na sušenje preko noći. Nakon sušenja na istu pločicu u zasebne jažice je dodano 10 μ L plazma standarda. Potom je pipetirano 20 μ L SDS-a mesenog udjela 2% na plazma standard te 30 μ L SDS-a masenog udjela 1,33% na uzorke. Pločica se prekrije aluminijskom adhezivnom folijom te se takva pločica inkubira 10 min na 65 °C. Nakon inkubacije, pločica se 30 min hladi na sobnoj temperaturi. U svaku jažicu s uzorkom i standardom, na ohlađenu pločicu, se doda 10 μ L Igepal-a masenog udjela 4%. Smjesa se miješa 15 min uz lagano potresanje na tresilici.

Enzimska otopina PNGaze F se priredi dodatkom 10 μ L 5x PBS-a i 0,3 μ L PNGaze F po uzorku ukupno.

Na uzorke i standard se doda 10 μ L svježe priređene enzimske otopine. Pločica se potom ponovo prekrije aluminijskom adhezivnom folijom te se zatim inkubira 18h na 37 °C.

3.3.7. Obilježavanje slobodnih glikana i njihovo pročišćavanje

Prilikom svakog obilježavanja korištena je svježa otopina fluorescentne boje prokainamida. Otopina za obilježavanje po uzorku sadrži: 25 μ L octene kiseline volumnog udjela 30% u dimetil sulfoksidu, 1,08 mg prokainamida te 1,12 mg 2-pikolin-borana. Otopina se priprema tako da se prvo priredi otopina octene kiseline volumnog udjela 30% u dimetil-sulfoksidu koja se doda na izvagani prokainamid. Sve se pomiješa na tresilici te se tako priređena otopina doda na izvagani 2-pikolin-boran koji se otopi na tresilici.

U svaki uzorak i standard dodaje se 25 μ L svježe priređene otopine fluorescentne oznake prokainamida. Pločica se prekrije s adhezivnom aluminijskom folijom te se inkubira 2h na 65 °C. Nakon inkubacije pločica se hladi na sobnoj temperaturi ~ 30 min.

Pročišćavanje slobodnih glikana je rađeno na GHP pločici, ekstrakcija na čvrstoj fazi, uz pomoć vakuum manifolda. GHP pločica se ispere 200 μ L svježe pripremljenom otopinom etanola volumnog udjela 70%, 200 μ L ultračiste vode te 200 μ L hladne otopine acetonitrila volumnog udjela 96%, svaka otopina je odsisana u otpad prije nanošenja sljedeće.

U jažicu s uzorcima se doda 700 μ L 100%-tnog hladnog acentonitrila te se sav volumen prebaci na GHP pločicu, inkubira 2 min te odsisa u otpad. Uzorci se ispiru 4 puta s 200 μ L hladne otopine acetonitrila volumnog udjela 96% koji se potom odsisana u otpad poslije svakog dodatka otopine acetonitrila. Potom se na GHP pločicu doda se 200 μ L hladnog acetonitrila volumnog udjela 96% te se pločica centrifugira 5 min na 170 g.

Prilikom elucije, GHP pločica se postavi iznad nove pločice za prikupljanje uzorka, doda se 90 µL ultra-čiste vode te se sve zajedno stavi na tresilicu u trajanju od 15 min. Nakon toga, GHP pločica se centrifugira 5 min na 200 g. Ovaj postupak se još jednom ponovi. Konačni volumen obilježenih i pročišćenih glikana iznosi 180 uL.

Uzorci s HMLE-Twist stanične linije su dodatno pročišćeni na C18 obrnutoj fazi. Po uzorku se priredi 200 μ L masene koncentracije 50 mg mL⁻¹ C18 obrnute faze u acetonitrilu volumnog udjela 80% te se doda 200 μ L obrnute faze u jažice *Orochem* filtarske pločice koja je postavljena iznad vacuum manifolda. Obrnuta faza je aktivirana i kondicionirana ispiranjem faze prvo tri puta s 200 μ L acetonitrila volumnog udjela 80%, nakon svakog dodatka acetonitril je odsisan u otpad. Potom je tri puta isprana s 200 μ L trifluoroctene kiseline volunog udjela 0,1%, nakon svakog dodatka kiselina je odsisana u otpad. Uzorci su razrijeđeni deset puta s trifluoroctenom kiselinom volunog udjela 0,1%. Nadalje, razrijeđeni uzorci su ispirani tri puta s 200 μ L otopine trifluoroctene kiseline volunog udjela 0,1%, nakon svakog dodatka kiselina in sobnoj temperaturi 2 min. Uzorci su ispirani tri puta s 200 μ L otopine trifluoroctene kiseline volunog udjela 0,1%, nakon svakog dodatka kiselina je odsisana u otpad. Potom se na uzorke doda otopina acetonitrila volunog udjela 20% te se inkubira 2 min na sobnoj temperaturi. Glikani su eluirani u čistu pločicu centrifugiranjem sa stepenastim povećavanjem brzine centrifugiranja od 15 g do 108 g u trajanju od 5 min. Eluat je osušen u vakuumskom uparivaču te potom resuspendiran u 100 μ L ultra-čiste vode.

3.3.8. Separacija i analiza slobodnih glikana te njihovih fragmenata

Uzorci su analizirani na vezanom sustavu tekućinske kromatografije hidrofilnih interakcija (eng. *"hydrophilic interaction liquid chromatography*" (HILIC)) ultravisoke djelotvornosti i spektrometrije masa (HILIC – UPLC – MS). Pomoću HILIC – UPLC-a glikani su separirani te fluorescentno detektirani, a pomoću MS-a im je određena masa. Uzorci su pripremljeni u plastičnim vialama tako da konačni volumni udjeli budu: 25% vodene faze uzorka te 75% organske faze, acetonitrila. Priređivan je volumen od ukupno 60 μ L te je injektirano 50 μ L na kolonu. Prilikom elucije korišten je gradijentni program, tj. promjena brzine protoka i udjela otapala u vremenu, kako je prikazano u Tablici 1. uz uporabu dva otapala: otapalo A (vodena otopina amonijeva formijata koncentracije 100 mmol dm⁻³) te otapala B (100% ACN).

<i>t</i> / min	protok / mL min ⁻¹	A / %	B / %
0,00	0,561	30,0	70,0
1,47	0,561	30,0	70,0
24,81	0,561	47,0	53,0
25,50	0,250	100,0	0,0
28,00	0,250	100,0	0,0
29,00	0,250	30,0	70,0
32,50	0,561	30,0	70,0
45,00	0,400	0,0	100,0
55,00	0,000	0,0	100,0

Tablica 1. Kromatogramski program korišten prilikom separacije gllikana na hidrofilnoj koloni (eng. "*hydrophilic interaction liquid chromatography*" (HILIC)). Korištena su dva otapala: otapalo A je vodena otopina amonijeva formijata koncentracije 100 mmol dm⁻³ te otapala B, 100% ACN.

Kolona je termostatirana tijekom cijele kromatografije na 25 °C, a uzorci se prije injektiranja nalaze na 10 °C. Glikani su detektirani pomoću fluoresentne boje prokainamida koji je ekscitiran pri 310 nm te je emisija detektirana pri 370 nm.

Po eluiranju glikana s kolone, tj. nakon separacije, mjereni su spektri masa za svaki uzorak. Mjerene su mase u rasponu 50 – 3700 m/z pomoću hibridnog analizatora: kvadrupol i vrijeme leta te je brzina akvizicije spektara iznosila 0,50 Hz. Za izvor iona je korišten IonBooster u pozitivnom modu. Napon na izlasku s ionizatora iznosio je 4000 V dok je napon na kapilari iznosio 6000 V. Dušik je korišten za raspršivanje i sušenje. Tlak plina za raspršivanje iznosio je 10000 Pa, a protok plina za sušenje iznosio je 5 L min⁻¹. Temperatura sušenja bila je 220 °C.

Tandemna spektrometrija masa (MS/MS) je snimana u rasponu masa 50 – 3700 m/z. Za izvor iona je korišten IonBooster u pozitivnom modu te su ostali uvjeti snimanja jednaki kao i kod snimanja MS spektara. Fragmentacija glikana provodila se nakon detekcije i odabira 3 najintenzivnija prekursora pri brzini akvizicije spektara od 0,50 do 2 Hz. Fragmentacija je izvršena u kvadrupolu kao kolizijskoj ćeliji uz argon kao kolizijski plin.

3.3.9. Obrada podataka

Dobiveni kromatogrami su integrirani i modificirani pomoću softverskog alata unutar programskog paketa *Compass DataAnalysis (Bruker*). Ekstrahirane su vrijednosti omjera signala prema šumu, retencijska vremena, apsolutne i relativne površine kromatografskih pikova za koje je izračunata standardna devijacija i centralna varijacija za sve uzorke. Standardna devijacija je izračunata pomoću računalnog programa *Prism 5*, a centralna varijacija je izračunata u *Microsof Office Excel 2007*. Numeracija pikova između kontrola i tretiranih kultura je rađena ručno u *Microsof Office Excel 2007*

Programskim paketom *Compass DataAnalysis* analizirani su MS spektri. Analizom snimljenih m/z vrijednosti i fragmentacijskih spektara određeni su sastav i osnovne strukturalne karakteristike detektiranih glikana pomoću GlycoMod alata pri ExPASy²⁷ bioinformatičkom portalu i programa *GlycoWorkbench*.²⁸

§4. REZULTATI

4.1.1. Razlika u koncentraciji proteina iz sekretoma HMLE-pBp i HMLE-Twist staničnih linija

Koncentracija proteina iz sekretoma HMLE-pBp i HMLE-Twist staničnih linija je određivana kako bi se normalizirala količina proteina koja je naknadno deglikozilirana. Koncentracija je određivana u četiri zasebna eksperimenta (Slika 9 i 10).

Za izradu baždarnog dijagrama i kasnije određivanje nepoznate koncentracije proteina korištene su standardne BSA te je dobivena linearna ovisnost masene koncentracije BSA o apsorbanciji kako je to prikazano na Slici 9. te slikama D1 – D3.

Slika 9. Primjer baždarnog dijagrama dobiven mjerenjem poznatih masenih koncentracija albumina iz goveđeg seruma (BSA) prema tablici D1. te pripadajuća jednadžba pravca prema kojoj je određena nepoznata koncentracija proteina u sekretomu stanične linije HMLE-pBp i HMLE-Twist.

Slika 10. Usporedba masenih koncentracija proteina sekretoma iz staničnih linija HMLE-pBp i HMLE-Twist. Rimskim brojevima je označen broj eksperimenta.

Slika 11. Odnos masenih koncentracija proteina netretiranih (kontrola) i salinomicin tretiranih staničnih kultura iz obje stanične linije nakon filtriranja kroz Amicon filter kolone. Plave točke označavaju koncentraciju nakon pojedinog mijerenja, plava linija označava prosječnu koncentraciju te crne linije označavaju raspon standardne devijacije.

Filip Kliček

4.1.2. Analiza profila N-glikoma iz sekretoma HMLE-pBp i HMLE-Twist staničnih linija

Slobodni glikani su separirani tekućinskom kromatografijom ultravisoke djelotvornosti (UPLC) u analitičkim triplikatima iz sekretoma staničnih linija HMLE-pBp i HMLE-Twist nakon tretmana sa salinomicinom (SAL) i monenzinom (MON) te bez tretmana, (kontrola, CTRL). (Slika D4 – D9). Jedan uzorak u triplikatu HMLE-Twist nakon tretmana monenzinom je uništen, najvjerojatnije u postupku pročišćavanja slobodnih glikana te rezultat kromatografije za taj uzorak nije prikazan. Kromatogram je vremenski omeđen između 180 i 1300 sekundi, u čijem rasponu se pojavljuju separirani glikani. Integracijom kromatograma definirano je 47 kromatografskih pikova za kontrolni uzorak HMLE-Twist stanične linije (Slika 12. i 13.)

Slika 12. Kromatogram slobodnih glikana obilježenih prokainamidom iz sekretoma kontrolnog uzorka HMLE-pBp stanične linije. Fluorescentna detekcija je ostvarena pri valnoj duljini od 370 nm.

Slika 13. Kromatogram slobodnih glikana obilježenih prokainamidom iz sekretoma kontrolnog uzorka HMLE-Twist stanične linije. Fluorescentna detekcija je ostvarena pri valnoj duljini od 370 nm. I = intenzitet

Kromatogrami glikana nakon tretmana staničnih linija sa SAL i MON imaju manji broj pikova u usporedbi s kontrolnim uzorkom, ali međusobno jednak broj pikova. Definirana su 42 pika u HMLE-pBp te 44 pika u HMLE-Twist staničnoj liniji nakon tretmana sa SAL i MON (Slika 14 i 15, samo SAL). Kromatogrami glikana iz sekretoma staničnih kultura nakon tretmana monenzinom su u dodatku (Slika D10 – D11).

Slika 14. Kromatogram slobodnih glikana obilježenih prokainamidom iz sekretoma HMLE-pBp stanične linije nakon tretmana salinomicinom. Fluorescentna detekcija je ostvarena pri valnoj duljini od 370 nm

Slika 15. Kromatogram slobodnih glikana obilježenih prokainamidom iz sekretoma HMLE-Twist stanične linije nakon tretmana salinomicinom. Fluorescentna detekcija je ostvarena pri valnoj duljini od 370 nm.

Tablice s retencijskim vremenima, apsolutnim i relativnim površinama te pripadajućim omjerom signala i šuma svakog pika se nalaze u dodatku (Tablica D4 – D20).

Prema vrijednostima relativnih površina pojedinog kromatograma unutar triplikata je izračunata standardna devijacija (SD) kako bi se odredila reproducibilnost cijelog postupka od uzorkovanja do analize. Rasap podataka, srednja vrijednost i pripadajuća SD je prikazana na Slici 16 za kontrolni uzorak HMLE-pBp te na Slici 17 za kontrolni uzorak HMLE-Twist stanične linije. Općenito, vrijednost SD-a je mala što ukazuje na dobru reproducibilnost cijelog postupka. Međutim, nekoliko pikova ima velike vrijednost SD-a: HMLE-pBp kontrola, pikovi 3, 6, 11 te HMLE-Twist kontrola, pikovi 14 – 16, uzrok tomu je ko-elucija

nečistoće kojima nije poznato podrijetlo (Slike 11 i 12 te D10 - D11). Ova nečistoća ko-eluira uz glikane te također fluorescira i stoga utječe na intenzitet i oblik kromatografskih pikova. Pregledom masenih spektara uočena je m/z vrijednost od 801,4 jakog intenziteta koja predstavlja molekulu koja je izvor onečišćenja.

Slika 16. Odnos relativnih površina unutar triplikata kontrolnih uzoraka za HMLE-pBp staničnu liniju.

Slika 17. Odnos relativnih površina unutar triplikata kontrole za HMLE-Twist staničnu liniju.

4.1.3. Analiza utjecaja salinomicina i monenzina na glikozilaciju sekretoma HMLE-pBp i HMLE Twist staničnih linija

Uspoređivani su kromatogrami glikana za kontrolne uzorke i kromatogrami glikana nakon tretmana salinomicinom odnosno monenzinom u obje stanične linije. Slika 18. prikazuje usporedbu kromatograma glikana dobivenih iz sekretoma u staničnoj liniji HMLE-pBp te Slika 19. prikazuje usporedbu u kromatograma glikana dobivenih iz sekretoma u staničnoj liniji HMLE-Twist.

Slika 18. Usporedba kromatograma triplikata sekretiranih N-glikana HMLE-pBp stanične linije kontrole (crveno) te HMLE-pBp stanične linije nakon tretmana salinomicinom (plavo) i monenzinom (zeleno).

Slika 19. Usporedba kromatograma triplikata sekretiranih N-glikana HMLE-Twist stanične linije kontrole (crveno) te HMLE-Twist stanične linije nakon tretmana salinomicinom (plavo) i duplikata tretiranih monenzinom (zeleno).

Kromatografski profili kontrolnih uzoraka i onih tretiranih sa salinomicinom pokazuju vrlo sličan sastav glikanskih struktura koji se očituje u pikovima identičnih retencijskih vremena. Značajna razlika se međutim vidi u intenzitetima i relativnim površinama velikog broja pikova između kontrolnih i tretiranih staničnih linija. Izraženija razlika je vidljiva na HMLE-Twist staničnoj liniji nego na HMLE-pBp. Kod manjih retencijskih vremena pikovi u tretiranim staničnim linijama su većeg intenziteta u odnosu na kontrolne uzorke te kako se pomičemo prema većim retencijskim vremenima dolazi do obrata u odnosu intenziteta gdje su sada pikovi u kontrolnim uzorcima većeg intenziteta nego u tretiranim staničnim linijama. Utjecaj tretmana salinomicinom i monenzinom ima sličan utjecaj na obje stanične linije u vidu promjene intenziteta pojedinih struktura. Za razliku od netretiranih stanica, u uzorcima HMLE-pBp tretman salinomicinom odnosno monenzinom dovodi do manjeg broja pikova. S druge strane, u uzorcima HMLE-Twist nakon tretmana dolazi do pojave dodatnog pika u odnosu na kontrolni uzorak.

4.1.4. Usporedba glikozilacijskih profila HMLE-pBp i HMLE Twist staničnih linija

Usporedbom kromatografskih profila kontrolnih uzoraka obiju staničnih linija uočene su značajne razlike u relativnim omjerima glikanskih struktura, a pokazalae su se i razlike, u manjoj mjeri, u sastavu glikana između sekretoma dviju staničnih linija. Razlika u glikomu definitivno reflektira razliku u glikozilacijskom aparatu u kompleksnom spletu enzima involviranih u sintezu glikana. Također, ukazuje i na razlike u sekretomu između dviju staničnih linija s obzirom da povećanje ili smanjenje određenog glikoproteina može utjecati i na relativne omjere detektiranih struktura (Slika 20.)

29

Opažena je promjena u sastavu glikana te njihovim strukturama u sekretomima obiju staničnih linija (vidi gore). Kako se povećava retencijsko vrijeme glikanskih struktura, povećava se i njihova veličina, a time i kompleksnost. Dobiveni N-glikom sekretoma staničnih linija pokazao je veliku kompleksnost i detektirali smo izuzetno veliki broj pikova pod kojima se eluira veliki broj jednostavnih i kompleksnih N-glikana. Kako se radi o kompleksnom biološkom uzorku s mnoštvo srodnih struktura te izoformi, određivanje sastava i strukture svake od njih je predstavljalo veliki izazov. Glavnina pikova odnosno glikana uspješno je anotirana dok za pojedine pikove nismo imali dovoljno podataka za određivanje sastava ili strukture (Slika 21 i 22). Osnovni problem je bio u intenzitetu signala, odnosno u količini eluirane strukture, a koja nije bila dovoljna za kvalitetnu analizu spektrometrijom masa.

Slika 21. Glikanske strukture u profilu N-glikoma sekretoma HMLE-pBp stanične linije

§ 5. RASPRAVA

Ovim radom je istraživan utjecaj salinomicina na kromatografski profil N-glikana sekretoma staničnih linija HMLE-pBp te HMLE-Twist koji predstavljaju stanični model za istraživanje tumorskih matičnih stanica. Indukcija transkripcijskog faktora Twist u stanicama pokreće molekularni program epitelno-mezanhimalne tranzicije (EMT) te stanice nakon EMT-a imaju markere koji su asocirani s TMS. Stoga smo u ovom istraživanju koristili HMLE-Twist staničnu liniju kao model tumorskih matičnih stanica. Inače se EMT aktivira u procesu organogeneze te je proces nužan za pravilno prostorno smještanje stanica u organizmu.³ Prethodno je pokazano da salinomicin selektivno negativno djeluje na rast TMS (HMLE-Twist linije).² Gupta i suradnici su pokazali da osim salinomicina i neki drugi prirodni ionofori (nigericin, monenzin) pokazuju selektivnost spram TMS, no još do danas sam mehanizam njihovog djelovanja nije razjašnjen. S obzirom na to da je za monenzin i nigericin poznato da negativno djeluju na funkciju Golgijevog aparata te da je GA iznimno bitan za sekreciju i glikozilaciju velikog broja staničnih proteina, odlučili smo istražiti profile N-glikoma u modelu TMS-a nakon tretmana salinomicinom i monenzinom.

Svaki analizirani uzorak je sadržavao 30 µg proteina s kojim se išlo u reakciju deglikozilacije. Normalizacija prema količini proteina je izvršena kako bi se mogle usporediti relativne količine glikana između HMLE-pBp te HMLE-Twist staničnih linija, te nakon tretmana. Usporedbom njihovih glikanskih profila zapaža se relativno više glikana u uzorcima iz sekretoma HMLE-Twist nego u uzorcima sekretoma HMLE-pBp stanične linije. Opažena je i veća koncentracija proteina u HMLE-pBp nego u HMLE-Twist staničnoj liniji (Slika 10.). Objašnjenje za navedena opažanja smo pronašli u razlici transkriptoma pojedinih staničnih linija. U radu, Haihui i suradnici, su odredili translacijski profil HMLE staničnih linija te je otkrivena promjena u ekspresiji 460 membranskih i izvanstaničnih proteina.²⁹

Već na razini apsolutnih površina kromatograma N-glikoma kontrolnih uzoraka, a koje reflektiraju količinu detektiranih glikana, uočena je velika razlika između staničnih linija. Ukupna količina glikana oslobođenih iz proteina stanične linije HMLE-Twist veća je u svim triplikatima u odnosu na staničnu liniju HMLE-pBp (Slika 20). Uzevši u obzir da je reakcija deglikozilacije normalizirana na količinu proteina, i da se u svaku reakciju išlo sa količinom

od 30 µg, ovaj rezultat upućuje na to da postoji značajna razlika u sastavu sekretoma uočljiva i na razini ukupnog glikoma. Povećana razina glikozilacije na istoj količini proteina može se objasniti jedino velikim razlikama u sastavu glikoproteina između dviju staničnih linija. Ta razlika može biti u omjerima određenih glikoproteina ili u ekspresiji potpuno drugačijih glikoproteina. S obzirom da glikoproteini mogu imati od jednog pa do vrlo često 5 glikozilacijskih mjesta (moguće je i daleko više), očito je da različita ekspresija proteina ili promjena u njihovim omjerima može rezultirati u značajno različitoj količini glikanskih struktura.

Uz osnovnu informaciju o razlikama u apsolutnim količinama oslobođenih glikana, detaljna analiza N-glikoma tretiranih i netretiranih staničnih linija otkrila je veliku razliku u relativnom odnosu glikana, ali i razliku u njihovom sastavu. Određeno je 47 kromatografskih pikova u profilu i 38 glikanskih struktura u kontroli HMLE-pBp stanične linije. Glikani su separirani prema naboju, veličini i strukturi. S kromatografske kolone su prvo eluirane male, neutralne i jednostavne glikanske strukture te potom negativno nabijene, velike i razgranate strukture (Slika 23). Nabrojene karakteristike glikanskih struktura za posljedicu određuje vrijeme zadržavanja pojedinog glikana na koloni. Vrlo razgranati, a time i veliki glikani ostvaruju veći broj interakcija s hidrofilnom kolonom u odnosu na manje i jednostavnije glikane. Nadalje, nosioc negativnog naboja na glikanima je sijalinska kiselina koja ima acetatnu skupinu. Acetat lako disocira na proton te negativno nabijenu karboksilnu skupinu koja ostvaruje jaku ion-trajni dipol interakciju te se eluira tek pri visokim udjelima pufera za eluiranje.

Slika 23. Promjena naboja, veličine i strukture glikana s povećanjem retencijskog vremena. Nosioc negativnog naboja na glikanima je sijalinska kiselina, ostale monosaharidne jedinice su neutralne. *ProA* označava fluorescentnu boju prokainamid.

Kromatogram tj. profil N-glikana HMLE-pBp stanične linije ima tri dominantna pika (Slika 18 i 24) (pikovi 26, 27 i 29) koji predstavljaju 26,96% površine u ukupnom kromatogramu. Navedeni pikovi odgovaraju biantenarnim sijaliniziranim kompleksnim glikanima te su u piku 27 koeluirane dvije glikanske strukture, oligomanozna (M8) te sržno fukozilirana biantenarna struktura s dvije sijalinske kiseline (FA2G2S2) (sastav i predložene strukture su prikazane na slici 24). Disijalinizirani kompleksni glikani ispod pika 27 i 29 su

Slika 24. Sastav i predložene strukture N-glikana eluiranih ispod dominantnih pikova u kromatogramu slobodnih i prokainamidom obilježenih N-glikana HMLE-pBp stanične linije. Kod pika 27 koeluira jedan oligomanozni glikan dok ostali glikani pripadaju kompleksnim glikanima. *ProA* označava fluorescentnu boju prokainamid

identični po sastavu, ali je došlo do njihovog razdvajanja. Uzrok separacije sastavom identičnih glikana može se objasniti u različitom načinu povezivanja sijalinske kiseline s galaktozom, a koja može biti α -2,3 ili α -2,6 vezana.³¹

U slučaju HMLE-Twist stanične linije definirano je 46 kromatografskih pikova te 50 glikanskih struktura. Elucija glikana s kolone prati istu raspodjelu kao i kod HMLE-pBp stanične linije, eluiraju se prvo jednostavnije i neutralne strukture te potom složenije i nabijene. U profilu se ističu tri izrazito dominantna kromatografska pika (20, 24 i 28) (Slika 25) koji predstavljaju 36,72% površine u ukupnom kromatogramu. Svi navedeni pikovi su digalaktozilirani, sržno fukozilirani biantenarni glikani te se ispod pika 28 koeluira oligomanozni (M8) te disijalinizirani sržno fukozilirani glikan (FA2G2S2) (Slika 25). Detektirana kontaminacija se pri našim kromatografskim uvjetima izrazito razvlači preko nekoliko glikanskih pikova, a zbog činjenice da fluorescira, onemogućava kvalitetnu rezoluciju u tom dijelu kromatograma.

Slika 25. Sastav i pretpostavljena struktura N-glikana eluiranih ispod dominantnih pikova u kromatogramu slobodnih i prokainamidom obilježenih N-glikana HMLE-Twist stanične linije. Kod pika 28 koeluira jedan oligomanozni glikan dok ostali glikani pripadaju kompleksnim glikanima. *ProA* označava fluorescentnu boju prokainamid

U N-glikomima staničnih linija detektirali smo i strukture koje sadrže Nglikolilneuraminsku kiselinu (Neu5Gc). Ona je strukturno izrazito slična Nacetilneuraminskoj kiselini (Neu5Ac). S obzirom da su ljudi evolucijski izgubili mogućnost sinteze Neu5Gc-a, dok ostalih kralješnjaci sintetiziraju Neu5Gc te se ona može naći na površini stanica kao i u citosolu.³⁰ postavlja se pitanje kako je moguće da se nalazi u humanim staničnim linijama. Detaljnim skeniranjem naših protokola uočili smo da su stanične kulture uzgajane u mediju koji je suplementiran ekstraktom goveđe hipofize bez kojeg stanice nisu mogle proliferirati u kulturi. Ekstrakt hipofize sadrži proteine (glikoproteine) te hormone neophodne za rast stanica u kulturi. Postupak izolacije proteina za reakciju deglikozilacije ne diskriminira proteine sekretirane iz staničnih linija i proteine iz ekstrakta hipofize, pa je stoga uočena glikanska kontaminacija čije podrijetlo je iz ekstrakta hipofize. Sastav i struktura glikanske kontaminacije su prikazani na slici 26. Navedena struktura je dominantna u piku 35 (1,67% je udio površine pika u ukupnom kromatogramu) kod HMLE-pBp stanične linije te u piku 37 (1,46% je udio površine pika u ukupnom kromatogramu) kod HMLE-Twist stanične linije. Spomenute glikanske strukture koje potječu iz suplementa nismo mogli odstraniti. U teoriji, ove strukture su mogle uzrokovati veliki šum i prekriti razlike između tretiranih i netretiranih staničnih linija, no analiza same hranjive podloge pokazala je nizak intenzitet u odnosu na analizu N-glikoma sekretoma te je time predstavljala slabi pozadinski šum. S obzirom da je kontaminacija suplementom identična u svim provedenim eksperimentima postojala je samo opasnost da efekt tretmana ne bude uočen. To se nije dogodilo, efekt je bio izrazito jak te je unatoč pozadinskom šumu uočena ♦ N—glikolilneuraminska kiselina N-acetilglukozamin promjena u N-glikomu nakon tretmana salinomicinom. Manoza 🔵 Galaktoza

Slika 26. Sastav i struktura glikanske kontaminacije u profilu N-glikana u obje stanične liniju. Struktura je dominantna u piku 35 kod HMLE-pBp te piku 37 kod HMLE-Twist stanične linije. ProA označava fluorescentnu boju prokainamid.

Uz tri glavne skupine N-glikana (kompleksni, oliomanozni te hibridni glikani⁴) u N-glikomu staničnih linija detektirali smo paukimanoznu strukturu Man₃₋₄GlcNAc₂.⁴ Karakterizira ih mali broj manoznih jedinica u strukturi do maksimalno četiri manoze. Prema literaturi kralježnjaci ne mogu sintetizirati paukimanozne glikane jer ne eksprimiraju gen koji kodira enzim β-N-acetilheksosaminidazu, ključan enzim u sintezi paukimanoznih glikana. Unatoč tome. Lee i suradnici su detektirali paukimanozne glikanske strukture prilikom određivanja profila N-glikana iz sekretoma u više staničnih linija karcinoma dojke.³¹ (Slika 27.). Nadalje, u svom radu, Maszczak-Seneczko i suradnici su prilikom supresije UDP-GlcNAc transportera uočili pojavu paukimanoznih glikana. UDP-GlcNAc je transporter koji unosi aktivirani oblik GlcNAc-a preko membrane Golgijevog aparata.³² N-acetilglukozamin Galaktoza **F**ukoza

Manoza

Slika27. Sastav i potencijalne strukture paukimanoznih glikana. Strukture su određene u HMLE-pBp i HMLE-Twist staničnoj liniji. Smatra se da kralješnjaci nisu enzimski u stanju sintetizirati paukimanozne glikane. ProA označava fluorescentnu boju prokainamid

Prilikom određivanja profila N-glikana i njihovih struktura nađena je disaharidna jedinica GalNAc-B-1-4-GlcNAc odnosno LacdiNAc. U radu Lee i suradnika je određivan profil i strukture N-glikana u tumorskim stanicama dojke te je nađeno da se LacdiNAc eksprimira u staničnim linijama koje pripadaju bazalnom B molekularnom tipu karcinoma dojke te u zdravom epitelnom tkivu. Ekspresija LacdiNAc-a je dvostruko veća u staničnim linijama karcinomima nego u zdravom epitelnom tkivu zbog čega je LacdiNAc potencijalni

marker za bazalni B tip karcinom dojke.³¹ Ista disaharidna jedinica je pronađena u obje istraživane stanične linije te je dodatno sulfonirana. LacdiNAc u staničnim linijama bi mogao upućivati na kancerogena svojstva TMS, što je potrebno detaljnije istražiti na većem broju staničnih linija i karcinoma. Kod HMLE-pBp stanične linije su određene tri strukture koje u svom sastavu imaju LacdiNAc, dok je u HMLE-Twist staničnoj liniji detektirana jedna struktura (Slika 21 i 22).

Slika 28. N-glikan kojem je određena disaharidna jedinica GalNAc- β -1-4-GlcNAc (LacdiNAc), označena je crvenim pravokutnikom. Struktura je određena u obje stanične linije. *S* označava sumpor, *ProA* označava fluorescentnu boju prokainamid.

Proces glikozilacije je raspodijeljen unutar Golgijevog aparata, tj. enzimi koji kataliziraju modifikaciju glikana su lokalizirani unutar različitih dijelova Golgijevog aparata.⁴ Golgijev aparat je podijeljen na *cis-, medial-* i *trans-*Golgijevu cisternu te *trans* Golgijevu mrežu. Unutar *cis-*Golgijeve cisterne manozidaze modificiraju Man₈GlcNAc₂ do Man₅GlcNAc₂ koji je ključan intermedijer za sintezu kompleksnih i hibridnih glikana. *Medial-*Golgijeva cisterna je mjesto inicijacije sinteze kompleksnih i hibridnih glikana. Na kraju glikoproteini prelaze u *trans-*Golgijevu cisternu gdje se odvija fukozilacija, sijalinizacija te dodatak galaktoze na antenarni GlcNAc.⁴ Uz enzime lokalizirane u cisternama Golgijevog aparata, za proces glikozilacije značajni su i transporteri koji prenose aktivirani oblik monosaharida. Transporteri su transmembranski proteina. Djeluju kao antiporteri, izmjenjuju nukletotid-difosfat monosaharid za nukleotid-monofosfat.³³

Usporedbom profila N-glikana netretirane i salinomicinom tretirane stanične kulture HMLE-pBp i HMLE- Twist uočavaju se značajne razlike. Velike složene glikanske strukture su u potpunosti izostale nakon tretmana salinomicinom, konkretnije sijalinizirani tetraantenarni glikani uopće nisu detektirani u staničnim linijama nakon tretmana. Također je došlo do smanjivanja relativnog udjela biantenarnih kompleksnih struktura s galaktozom i sijalinskom kiselinom dok se relativni udio jednostavnijih struktura (G0, visoko manozne strukture) povećao. Mogući razlog navedenih promjena može se objasniti narušavanjem funkcionalnosti *medial*-Golgijeve cistrene gdje se odvija početak sinteze razgranatih

kompleksnih glikana. Pokazano je da supresijom UDP-N-acetilglukozamin transportera u Golgijevom aparatu izostaju tri- i tetraatenarne glikanske strukture. Zbog izostanka aktiviranog supstrata za sintezu početka antene dolazi do nakupljanja jednostavnijih struktura pri čemu se ne uočavaju promjene u bianternarnim glikanskim strukturama.³² Autori navode da je izostanak promjene na bi-antenrnim glikanima posljedica više faktora: postojanje alternativnog transportera koji transportira UDP-GlcNAc enzimima za sintezu mono- i biantenarnih glikana; različita aktivnost enzima koji sintetiziraju mono-/biantenarne te tri-/tetraantenarne glikanske strukture, što u slučaju nedostatka supstrata usmjerava katalizu prema biantenarnim strukturama glikana.³² Pod utjecajem salinomicina mijenja se morfologija Golgijevog aparata (neobjavljeni rezultati M. Marjanović), pa pretpostavljamo da također dolazi do promjene u lipidnom dvosloju što za posljedicu ima moguću promjenu u funkcionalnosti UDP-N-acetilglukozamin transportera koji je sastavni dio dvosloja. Promjena u funkcionalnosti bi se u tom slučaju reflektirala na koncentraciju UDP-GlcNAc u lumenu Golgijevog aparata prije i nakon tretmana, što u sklopu ovog istraživanja nije mjereno. Mora se uzeti u obzir da je salinomicin ionofor te uslijed promjene pH lumena Golgijevog aparata dolazi do promijene pH vrijednosti i citosola što moguće narušava razne sintetske procese, stoga je moguće da je u citolsolu u nekoj mjeri inhibirana sinteza UDP-GlcNAc-a. Nadalje, poznato je da promjena pH, tj. povećanje pH vrijednosti lumena Golgijevog aparata. pod utjecajem monenzina, izaziva fragmentaciju Golgijevog aparata,⁷ pa se izostanak visoko razgranatih glikanskih struktura može pojasniti delokalizacijom esencijalnih proteina za ovaj proces. S obzirom da je efekt tretmana monezinom i salinomicinom gotovo identičan, za pretpostaviti je i da su mehanizmi u pozadini slični ili čak identični.

U profilima HMLE-Twist stanične linije uočava se izražena razlika u relativnoj količini glikanskih struktura dominantnih pikova među profilima. Primijećen je jači efekt salinomicina na HMLE-Twist nego na HMLE-pBp staničnu liniju. HMLE-Twist je dobiven *in vitro* indukcijom epitel-mezenhimalne tranzicije ekspresijom transkripcijskog faktora Twist.² Na oko vidljiva promjena prilikom indukcije Twista je promjena fenotipa i morfologije stanice, tj. stanice poprimaju mezenhimalni fenotip. Literaturno je poznat izraženiji utjecaj monenzina na Golgijev aparat u slučaju kada membrana ima veći udio kolesterola.⁶ Uzimajući u obzir pretpostavku da su mehanizmi djelovanja monezina i

HMLE-Twist (u odnosu na HMLE-pBp) bi mogao objasniti jače izraženi efekt oba agensa na ovu staničnu liniju.

§6. ZAKLJUČAK

- HMLE-pBp stanična linija sekretira veću količinu proteina od HMLE-Twist stanične linije. Profili N-glikoma sekretoma obiju staničnih linija nakon tretmana salinomicinom se ne razlikuju značajno od tretmana monenzinom što upućuje na sličan mehanizam djelovanja ova dva kemijska spoja na stanice.
- Tretman salinomicinom dovodi do izostanka kompleksnih više-antenarnih glikanskih struktura te do povećanja udjela jednostavnijih glikanskih struktura u sekretomima HMLE-pBp i HMLE-Twist staničnih linija iz čega se zaključuje da salinomicin prvenstveno negativno utječe na pravilan rad Golgijevog aparata.
- Efekt salinomicina na N-glikom sekretoma je izraženiji kod HMLE-Twist nego kod HMLE-pBp stanične linije, što možda proizlazi iz mogućih različitih udjela kolesterola u membranama organela ovih staničnih linija.

§ 7. POPIS OZNAKA, KRATICA I SIMBOLA

BSA	Albumin iz goveđeg seruma
CTRL	Kontrola
EMT	Epitelno-mezenhimalna tranticija
ER	Endoplazmatski retikulum
ERAD	Razgradnja proteina u endoplazmatskom retikulumu
ERGIC	Endoplasmatski retikulum – Gilgijev aparat intremedijalna cisterna
GA	Golgijev aparat
HILIC	Razdjelna tekućinska kromatografija normalnih faza na koloni
HMEC	Ljudske epitelne stanice dojke
HMLE	HMEC stanice transformirane za beskonačnu propagaciju u staničnoj kulturi
MET	Mezenhimalno-epitelna tranticija
MON	Monenzin
MS	Masena spektrometrija
pBp	Stanice su transficirane plazmidom bez ekspresije ijednog proteina
SAL	Salinomicin
TGM	trans-Golgijeva mreža
TMS	Tumorske matične stanice
Twist	Transkripcijski faktor Twist
UPLC	Tekućinska kromatografija ultravisoke djelotvornosti

§ 8. LITERATURNI IZVORI

- M. Al-Hajj, M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, M. F. Clarke, *Proc. Natl. Acad. Sci. U. S. A.* 100 (2003) 3983–3988.
- P. B. Gupta, T. T. Onder, G. Jiang, K. Tao, C. Kuperwasser, R. A. Weinberg, E. S. Lander, *Cell* 138 (2009) 645–659.
- 3. R. Kalluri, R. A. Weinberg, J. Clin. Invest. 119 (2009) 1420-1428.
- A. Varki, *Essentials of Glycobiology*, Cold Spring Harbor, New York, 2009 (<u>https://www.ncbi.nlm.nih.gov/books/NBK1917/?report=classic</u> (datum pristupa 25.7.2018.)).
- 5. H. Lodish, Molecular Cell Biology, W. H. Freeman, New York, 2004, str. 701–707.
- 6. A. Dinter, E. G. Berger, Histochem. Cell Biol. 109 (1998) 571–590.
- 7. S. Kellokumpua, R. Sormunenb, I. Kellokumpuc, FEBS Lett. 516 (2012) 217–224.
- 8. S. H. Hassanpour, M. Dehghani, *Journal of Cancer Research and Practice* **4** (2017) 127–129.
- 9. <u>http://hlpr.hr/images/uploads/RAK_DOJKE_za_web.pdf</u> (datum pristupa 18.11.2018).
- 10. M. Ghoncheh, Z. Pournamdar, H Salehiniya, Asian Pac. J. Cancer Prev. 17 (2016) 43-46.
- 11. O. Yersal, S. Barutca, World J. Clin. Oncol. 5 (2014) 412-424.
- M. A. Velasco-Velázquez, N. Homsi, M. De La Fuente, R. G. Pestell, Int. J. Biochem. Cell Biol. 44 (2012) 573–577.
- 13. U. Karsten, S. Goletz, SpringerPlus 2 (2013).
- 14. C. D. May, N. Sphyris, K. W. Evans, S. J. Werden, W. Guo, S. A Mani, Breast Cancer Res. 13 (2011).
- 15. S. Kotiyal, S. Bhattacharya, Biochem. Biophys. Res. Commun. 453 (2014) 112–116.
- 16. T. N. Seyfrie, L. C. Huysentruyt, Crit. Rev. Oncog. 18 (2013) 43-73.
- T. T. Onder, P. B. Gupta, S. A. Mani, J. Yang, E. S. Lander, R. A. Weinberg, *Cancer Res* 68 (2008) 3645–3654.
- J. Yang, S. A. Mani, J. L. Donaher, S. Ramaswamy, R. A. Itzykson, C. Come, P. Savagner, I. Gitelman, A. Richardson, R. A. Weinberg, *Cell* 177 (2004) 927–939.
- 19. C. Naujokat, R. Steinhart, J. Biomed. Biotechnol. 2012 (2012).

45

- 20. A. Piperno, A. Marrazzo, A. Scalaa, A. Rescifinab, DOI: http://dx.medra.org/10.17374/targets.2016.19.177 (datum pristupa 6.8.2018.).
- 21. D. L. Nelson, M. M. Cox, *Lehninger principles of biochemistry*, W H. Freemanand Company, New York, 2008.
- 22. <u>http://www.chemspider.com/Chemical-Structure.2342058.html</u> (datum pristupa 17.8.2019).
- 23. <u>https://pubchem.ncbi.nlm.nih.gov/compound/monensin#section=Names-and-Identifiers</u> (datum pristupa 8.8.2018).
- 24. <u>http://www.chemspider.com/Chemical-Structure.389937.html?rid=baf7af92-f1e3-4bcd-92c0-c619257ba461</u> (datum pristupa 17.8.2019).
- 25. L. Ellgard, A. Helenius, Nat. Rev. Mol. Cell Biol. 4 (2003) 181-191.
- D. A. Skoog, *Principles of Instrumental Analysis*, Thomson Brooks/Cole, Belmont, 2009, str. 550–562 i 762–764.
- 27. https://web.expasy.org/glycomod/ (datum pristupa 9.8.2018).
- A. Ceroni, K. Maass, H. Geyer, R. Geyer, Anne Dell, S. M. Haslam, J. Proteome Res. 7 (2008) 1650 – 1659.
- 29. H. Lu, K. R. Clauser, W. L. Tam, J. Fröse, X. Ye, E. N. Eaton, Ferenc Reinhardt, V. S. Donnenberg, R. Bhargava, S. A. Carr, R. A. Weinberg, *Nat. Cell Biol.* 16 (2014) 1105–1117.
- 30. A. Varki, Yearb. Phys. Anthropol. 44 (2001) 54-69.
- L. Y. Lee, M. Thaysen-Andersen, M. S. Baker, N. H. Packer, W. S. Hancock, S. Fanayan J. Proteome Res. 13 (2014) 4783–4795.
- D. Maszczak-Seneczko, P. Sosicka, T. Olczak, P. Jakimowicz, M. Majkowski, M. Olczak, J. Biol. Chem. 288 (2013) 21850–21860.
- 33. B. Hadley, A. Maggioni, A. Ashikov, C. J. Day, T. Haselhorst, J. Tiralongo, *Comput. Struct. Biotechnol. J.* **10** (2014) 23–32.

§9. DODATAK

9.1. Slike

Slika D1. Baždarni dijagram dobiven mjerenjem poznatih masenih koncentracija albumina iz goveđeg seruma (BSA) prema tablici 2. te pripadajuća jednadžba pravca prema kojoj je određena nepoznata koncentracija proteina u sekretomu stanične linije HMLE-pBp i HMLE-Twist.

Slika D2. Baždarni dijagram dobiven mjerenjem poznatih masenih koncentracija albumina iz goveđeg seruma (BSA) prema tablici 3. te pripadajuća jednadžba pravca prema kojoj je određena nepoznata koncentracija proteina u sekretomu stanične linije HMLE-pBp.

Slika D3. Baždarni dijagram dobiven mjerenjem poznatih masenih koncentracija albumina iz goveđeg seruma (BSA) prema tablici 4. te pripadajuća jednadžba pravca prema kojoj je određena nepoznata koncentracija proteina u sekretomu stanične linije HMLE-Twist.

Slika D4. Kromatogrami tehničkih triplikata slobodnih glikana obilježenih prokainamidom iz sekretoma kontrole HMLE-pBp stanične linije uz fluorescentnu detekciju pri 370 nm

Slika D5. Kromatogrami tehničkih triplikata slobodnih glikana obilježenih prokainamidom iz sekretoma HMLE-pBp stanične linije nakon tretmana salinomicinom uz fluorescentnu detekciju pri 370 nm

Slika D6. Kromatogrami tehničkih triplikata slobodnih glikana obilježenih prokainamidom iz sekretoma HMLE-pBp nakon tretmana monenzimom stanične linije uz fluorescentnu detekciju pri 370 nm

Slika D7. Kromatogrami tehničkih triplikata slobodnih glikana obilježenih prokainamidom iz sekretoma kontrole HMLE-Twist stanične linije uz fluorescentnu detekciju pri 370 nm

Slika D8. Kromatogrami tehničkih triplikata slobodnih glikana obilježenih prokainamidom iz sekretoma HMLE-Twist stanične linije nakon tretmana salinomicinom uz fluorescentnu detekciju pri 370 nm

Slika D9. Kromatogrami tehničkih duplikata slobodnih glikana obilježenih prokainamidom iz sekretoma HMLE-Twist stanične linije nakon tretmana monenzinom uz fluorescentnu detekciju pri 370 nm

Slika D10. Kromatogram slobodnih glikana obilježenih prokainamidom iz sekretoma nakon tretmana monenzinom HMLEpBp stanične linije. Fluorescentna detekcija pri valnoj duljini od 370 nm

Slika D11. Kromatogram slobodnih glikana obilježenih prokainamidom iz sekretoma nakon tretmana monenzinom HMLE-Twist stanične linije. Fluorescentna detekcija pri valnoj duljini od 370 nm

Slika D12. Odnos relativnih površina unutar triplikata za HMLE-pBp staničnu liniju nakon tretmana salinomicinom.

Slika D13. Odnos relativnih površina unutar triplikata za HMLE-pBp staničnu liniju nakon tretmana monenzinom.

Slika D14. Odnos relativnih površina unutar triplikata za HMLE-Twist staničnu liniju nakon tretmana salinomicinom.

Slika D15. Odnos relativnih površina unutar triplikata za HMLE-Twist staničnu liniju nakon tretmana monenzinom.

Slika D16. Relativne površine kromatograma slobodnih glikana u sekretomu HMLE-Twist stanične linije, nakon tretmana salinomicinom, izračunate nakon što su iz ukupne površine isključeni pikovi 14-16 u kojima se koeluira fluorescirajuće nečistoća te pripadajuće standardne devijacije.

Slika D18. Relativne površine kromatograma slobodnih glikana u sekretomu HMLE-Twist stanične linije, nakon tretmana monenzinom, izračunate nakon što su iz ukupne površine isključeni pikovi 14-16 u kojima se koeluira fluorescirajuće nečistoća te pripadajuće standardne devijacije.

9.2. Tablice

Tablica D1. Izmjerene apsorbancije nepoznate masene koncentracije proteina u sekretomu staničnih linija HMLE-pBp i HMLE-Twist u kontroli (CTRL) te nakon tretmana salinomicinom (SAL) i monezinom (MON) pri valnoj duljini od 570nm. Albumin iz goveđeg seruma (BSA) je korišten za standard te su prikazane apsorbancije poznatih koncentracija BSA. Za slijepu probu (SP) korištena je Milli Q voda.

	DC 4							Вр	Tv	CD	
			I	55A		SAL	CTRL	SAL	CTRL	SP	
A_1	1,185	0,985	0,713	0,479	0,35	0,253	0,686	0,745	0,618	0,627	0,186
A_2	1,27	0,98	0,721	0,472	0,35	0,261	0,717	0,781	0,652	0,663	0,201
Prosjek	1,2275	0,9825	0,717	0,4755	0,35	0,257	0,7015	0,763	0,635	0,645	0,1935
Prosjek – SP	1,034	0,789	0,5235	0,282	0,1565	0,0635	0,508	0,5695	0,4415	0,4515	0
γ / mg mL ⁻¹	2	1,5	1	0,5	0,25	0,125	0,961	1,081	0,831	0,850	

Tablica D2. Izmjerene apsorbancije nepoznate masene koncentracije proteina u sekretomu stanične linije HMLE-pBp u kontroli (CTRL) te nakon tretmana salinomicinom (SAL) i monezinom (MON) pri valnoj duljini od 570nm . Albumin iz goveđeg seruma (BSA) je korišten za standard te su prikazane asporbancije poznatih koncentracija BSA. Za slijepu probu (SP) korištena je Milli Q voda.

			R	2.4			pl	Вр	SP
			DC	A	SAL	CTRL	51		
A ₁	1,238	0,977	0,714	0,474	0,321	0,236	0,548	0,847	0,175
A ₂	1,145	0,971	0,709	0,444	0,308	0,241	0,536	0,832	0,162
Prosjek	1,192	0,974	0,712	0,459	0,315	0,239	0,542	0,840	0,169
Prosjek – SP	1,023	0,806	0,543	0,291	0,146	0,070	0,374	0,671	0,000
γ / mg mL ⁻¹	2,000	1,500	1.000	0,500	0,250	0,125	0,688	1,271	

Tablica D3. Izmjerene apsorbancije nepoznate masene koncentracije proteina u sekretomu stanične linije HMLE-Twist u kontroli (CTRL) te nakon tretmana salinomicinom (SAL) i monezinom (MON) pri valnoj duljini od 570nm . Albumin iz goveđeg seruma (BSA) je korišten za standard te su prikazane asporbancije poznatih koncentracija BSA. Za slijepu probu (SP) korištena je Milli Q voda.

			B	SA	Tv	SP			
					SAL	CTRL			
A_1	1,210	0,949	0,728	0,437	0,321	0,232	0,510	0,589	0,159
A_2	1,295	1,034	0,704	0,446	0,333	0,234	0,549	0,521	0,156
Prosjek	1,253	0,992	0,716	0,442	0,327	0,233	0,530	0,555	0,158
Prosjek – SP	1,095	0,834	0,559	0,284	0,170	0,076	0,372	0,398	0,000
γ / mg mL ⁻¹	2,000	1,500	1,000	0,500	0,250	0,125	0,657	0,704	

#	RT / s	Površina	S/N	Relativna površina / %	#	RT / s	Površina	S/N	Relativna površina / %
1	194,4	93,8519	1392,8	0,673	30	736,3	118,9565	132,8	0,853
2	224,6	2,7516	3,9	0,02	31	762,1	444,1786	3153,2	3,185
3	233,2	24,854	298,3	0,178	32	782,2	162,2651	1715,8	1,164
4	271,6	122,4742	165,4	0,878	33	797,5	41,7607	604	0,299
5	290	22,0112	229,6	0,158	34	810,1	39,7926	523,7	0,285
6	306,7	7,6042	121,5	0,055	35	828	204,1658	1951	1,464
7	321,9	20,2332	245,1	0,145	36	845,5	128,6264	1432,2	0,922
8	330,4	25,6999	356,8	0,184	37	856	176,1692	1557,4	1,263
9	349,5	44,4362	552,2	0,319	38	893,8	539,3397	3354,6	3,868
10	371,7	148,3163	1114,9	1,064	39	927,3	36,8065	399,8	0,264
11	393,8	216,5908	2746,9	1,553	40	945	408,9239	3202,2	2,933
12	410,8	281,2265	3399,2	2,017	41	968	19,6212	250,6	0,141
13	428,3	2,0694	4,9	0,015	42	984,9	0,6563	18,5	0,005
14	461,9	1712,0377	7973,5	12,278	43	999,5	241,0388	2402,3	1,729
15	473,3	869,0107	684,9	6,232	44	1015,1	10,6168	143,5	0,076
16	483	573,9288	373,8	4,116	45	1030,2	44,165	494,1	0,317
17	508,9	518,6564	4654,9	3,72	46	1054,6	224,1532	2212,8	1,608
18	521,3	263,1716	2566,2	1,887					
19	539,7	129,0063	1329,1	0,925					
20	565,6	1766,8805	2040,2	12,671					
21	578	8,7234	24,6	0,063					
22	595,8	112,797	1443,1	0,809					
23	609,3	179,0529	1608,8	1,284					
24	638,2	1837,9911	18354,8	13,181					
25	654,2	87,5694	1084	0,628					
26	672	40,5062	531,8	0,29					
27	685,5	300,5912	2959,2	2,156					
28	709,6	1515,4048	1471,2	10,868					
29	722,4	175,2012	176,1	1,256					

Tablica D4. Retencijska vremena (RT), površina, omjer signala i šuma (S/N) te relativna površina dobivenih integracijom kromatograma glikana iz sekretoma kontrole HMLE-Twist stanične linije. Jedan od tri unutar triplikata. Integracija je odrađena pomoću algoritma unutar programa *Compass DataAnalisys*.

				1			1		1
#	RT / s	Površina	S/N	Relativna površina / %	#	RT / s	Površina	S/N	Relativna površina / %
1	194,6	112,569	1656	0,6	30	734,8	121,3526	117,3	0,65
2	224,7	4,656	5,3	0,02	31	762,4	666,1393	4571,2	3,56
3	233,1	37,3186	440,8	0,2	32	782,6	288,0011	2850	1,54
4	271,8	174,4066	2182,9	0,93	33	797,6	99,3113	1105,9	0,53
5	289,3	31,0973	345,2	0,17	34	810,4	125,3902	1214,2	0,67
6	306,9	17,0504	219,3	0,09	35	828,2	393,5193	3134,7	2,1
7	322	39,0965	407,7	0,21	36	845,5	242,9491	2423,6	1,3
8	330,4	54,8629	611,8	0,29	37	856,3	301,386	2468,9	1,61
9	349,5	73,4832	697,5	0,39	38	893,8	801,9817	4762,7	4,28
10	371,9	225,1661	1507,9	1,2	39	931	33,118	29,7	0,18
11	393,5	289,6879	3097,5	1,55	40	945,1	586,1978	357,7	3,13
12	410,9	438,5728	5043,9	2,34	41	967,7	23,7415	321,4	0,13
13	428,7	5,596	109	0,03	42	985,9	1,7532	31,4	0,01
14	462	1394,0454	7211	7,44	43	999,5	355,0868	3296,4	1,9
15	473,7	797,7106	6098,2	4,26	44	1014,8	18,9071	225,8	0,1
16	486,5	436,1469	2864	2,33	45	1030,4	53,0834	545,1	0,28
17	509	638,517	6066,5	3,41	46	1054,6	283,211	2630	1,51
18	521,5	377,8571	3624,3	2,02					
19	539,7	194,8067	1975,4	1,04					
20	565,7	2568,7507	2170	13,72					
21	578,5	10,5388	25,8	0,06					
22	595,7	183,671	2231,6	0,98					
23	609,4	269,0564	2337	1,44					
24	638,6	2756,6499	26510,9	14,72					
25	654,1	144,5658	1653,1	0,77]				
26	672	66,1688	781,3	0,35]				
27	685,8	450,3516	4185,8	2,4]				
28	709,6	2249,7788	20228,6	12,01]				

Tablica D5. Retencijska vremena (RT), površina, omjer signala i šuma (S/N) te relativna površina dobivenih integracijom kromatograma glikana iz sekretoma kontrole HMLE-Twist stanične linije. Dva od tri unutar triplikata. Integracija je odrađena pomoću algoritma unutar programa *Compass DataAnalisys*.

29

722,7

290,5474

198,5

1,55

#	RT / s	Površina	S/N	Relativna površina / %	#	RT / s	Površina	S/N	Relativna površina / %
1	194,6	74,5348	1308,7	0,74	30	736,1	85,1624	1200	0,84
2	225	2,4904	4,1	0,02	31	762,5	369,123	3159,8	3,64
3	233,3	23,4094	322	0,23	32	782,6	152,1863	1894,4	1,5
4	272,1	107,5504	1677	1,06	33	797,8	47,7469	704	0,47
5	290,3	19,6415	252,3	0,19	34	810,5	60,3072	760,5	0,6
6	307,2	7,1417	131,6	0,07	35	828,2	204,3814	2079,1	2,02
7	322,5	18,5136	261,1	0,18	36	845,7	127,9826	1596,7	1,26
8	330,9	22,6066	373,1	0,22	37	856,5	158,2746	1673,7	1,56
9	350	38,8121	562,5	0,38	38	894,2	435,4952	3244	4,3
10	372,3	136,1778	1182	1,34	39	928	22,5881	334,2	0,22
11	394,4	179,7648	2638,7	1,77	40	945,3	327,1805	3056,4	3,23
12	411,4	260,1358	3801,8	2,57	41	968,2	13,924	222,1	0,14
13	429,2	6,5106	117,5	0,06	42	985,3	0,616	17,7	0,01
14	462,4	538,7357	3928,6	5,32	43	999,8	181,4539	2157,5	1,79
15	474,3	322,821	3426,3	3,19	44	1016	8,0148	125,5	0,08
16	487,6	159,1154	1388,5	1,57	45	1030,8	30,5895	411,1	0,3
17	509,5	319,4432	4101,1	3,15	46	1055	155,5857	1811,9	1,54
18	521,9	174,6323	2316,1	1,72					
19	540,1	91,8881	1266,8	0,91					
20	566,2	1578,8657	2221,3	15,59					
21	578,5	7,0305	23,7	0,07					
22	596,2	95,3956	1485,1	0,94					
23	609,6	165,5474	1809,4	1,63					
24	638,6	1577,363	18977	15,57					
25	654,4	79,3522	1144,5	0,78					
26	672,3	35,4049	539,6	0,35					
27	685,8	263,5793	3054,9	2,6					
28	710,1	1273,64	14416,2	12,58					
29	722,9	167,5313	1949,1	1,65]				

Tablica D6. Retencijska vremena (RT), površina, omjer signala i šuma (S/N) te relativna površina dobivenih integracijom kromatograma glikana iz sekretoma kontrole HMLE-Twist stanične linije. Tri od tri unutar triplikata. Integracija je odrađena pomoću algoritma unutar programa *Compass DataAnalisys*.
Tablica D7. Retencijska vremena (RT), površina, omjer signala i šuma (S/N) te relativna površina dobivenih integracijom kromatograma glikana iz sekretoma HMLE-Twist stanične linije nakon tretmana salinomicinom. Jedan od tri unutar triplikata. Integracija je odrađena pomoću algoritma unutar programa *Compass DataAnalisys*. Broj pika je usklađen s numeracijom u kontroli HMLE-Twist. Pikovi obilježeni slovima se ne pojavljuju u kromatogramu kontrole dok se pik sa praznim poljima se ne pojavljuje u tretiranoj kulturi.

#	RT / s	Površina	S/N	Relativna površina / %	#	RT / s	Površina	S/N	Relativna površina / %
2	224,6	3,6752	11,6	0,04	31	762,2	348,118	2240	3,64
3	233,4	68,7045	977,4	0,72	32	784,8	84,4054	990,3	0,88
4	272,2	284,8506	3218,4	2,98	33	799,5	56,0646	124,1	0,59
5	289,3	24,9246	380,2	0,26	34	810,5	301,3127	350,1	3,15
6	307,2	20,3887	315,2	0,21	35				
7	322	113,4648	1489,5	1,19	36	845,3	111,1947	1217,1	1,16
8	330,6	52,6084	804,7	0,55	37	857,3	279,4311	2834,9	2,92
9	349,9	63,2459	826,7	0,66	38	896,8	277,307	1662,6	2,9
10	372,8	286,7311	2222,5	3	39				
11	394	335,0178	4123,9	3,5	40	946,9	170,407	1299,6	1,78
12	411,5	677,5006	1361,1	7,08	41	967,5	3,3221	51,4	0,03
13	418,5	246,56	326,8	2,58	42	985,6	30,6337	277,5	0,32
14	462,3	945,7299	6017,4	9,89	43	999,7	23,2797	216,3	0,24
15	474	425,1631	4256,8	4,44	44	1015	1,2605	19,7	0,01
16	487,3	178,8789	1713,4	1,87	45	1033,9	20,2515	204,8	0,21
17	509,4	558,2006	5774,7	5,84	46	1054,6	18,7479	205,2	0,2
18	521,5	158,6905	1850	1,66					
19	541,4	53,2891	594	0,56					
20	565,8	857,5187	10398,4	8,96					
21	580,9	2,2521	8,4	0,02					
21a	588,4	1,39	35,3	0,01					
22	596,8	24,1213	435,9	0,25					
23	613,5	518,979	4797,7	5,43					
24	638,7	395,1062	3998,2	4,13					
25	655,1	42,7752	458,2	0,45]				
26	673,1	11,4513	182,2	0,12]				
27	687,5	298,0114	2980,5	3,12]				
28	711,5	953,752	1439	9,97]				
29	722,5	145,402	223,9	1,52]				

Tablica D8. Retencijska vremena (RT), površina, omjer signala i šuma (S/N) te relativna površina dobivenih integracijom kromatograma glikana iz sekretoma HMLE-Twist stanične linije nakon tretmana salinomicinom. Dva od tri unutar triplikata. Integracija je odrađena pomoću algoritma unutar programa *Compass DataAnalisys*. Broj pika je usklađen s numeracijom u kontroli HMLE-Twist. Pikovi obilježeni slovima se ne pojavljuju u kromatogramu kontrole dok se pik sa praznim poljima se ne pojavljuje u tretiranoj kulturi.

#	RT / s	Površina	S/N	Relativna površina / %	#	RT / S	Površina	S/N	Relativna površina / %
1	194,9	95,8903	1617,2	1,03	30				
2	224,7	3,6693	11,1	0,04	31	762,9	354,099	2313,3	3,8
3	233,5	67,9931	1028,8	0,73	32	785,5	88,2404	1050,5	0,95
4	272,2	288,7188	3400,5	3,1	33	803	76,6403	147	0,82
5	289,4	24,9692	384,4	0,27	34	810,9	322,3122	358,7	3,46
6	307,4	21,9597	340,8	0,24	35				
7	322,2	119,3243	1605	1,28	36	845,8	122,3315	1369,6	1,31
8	330,7	53,4785	833,9	0,57	37	857,8	282,255	2919,8	3,03
9	350,1	65,2359	937,3	0,7	38	897,5	271,7004	1732,1	2,91
10	372,9	274,7057	2341,9	2,95	39				
11	394,6	336,9128	4513,4	3,61	40	947,5	173,1551	1373,7	1,86
12	411,8	681,5362	1330,6	7,31	41	968,1	2,8031	51,5	0,03
13	420	89,7466	192,9	0,96	42	986,1	31,3828	312,1	0,34
14	462,8	765,9253	5697,8	8,22	43	1000,1	24,3479	32,5	0,26
15	474,6	374,0659	4037,7	4,01	44	1011,5	1,6037	4,4	0,02
16	488	144,1212	1529,1	1,55	45	1034,2	21,4819	233,2	0,23
17	509,9	558,5753	6161,9	5,99	46	1055,1	18,2953	30,7	0,2
18	522	159,4877	1938,8	1,71					
19	542,1	50,7571	594,5	0,54					
20	566,5	881,3951	11241,7	9,45					
21	581,6	1,2373	39,1	0,01					
21a	589,1	1,0767	32,5	0,01					
22	597,5	19,3978	401,1	0,21					
23	614	527,2305	5094,4	5,66					
24	639,2	393,0752	4116,5	4,22					
25	655,7	44,6091	491,4	0,48]				
26	674,1	15,2076	228,3	0,16	1				
27	688,1	317,7222	3173,5	3,41	1				
28	712,1	973,7349	1422,3	10,44	1				
29	722	180,4419	259,2	1,94	1				

Tablica D9. Retencijska vremena (RT), površina, omjer signala i šuma (S/N) te relativna površina dobivenih integracijom kromatograma glikana iz sekretoma HMLE-Twist stanične linije nakon tretmana salinomicinom. Tri od tri unutar triplikata. Integracija je odrađena pomoću algoritma unutar programa *Compass DataAnalisys*. Broj pika je usklađen s numeracijom u kontroli HMLE-Twist. Pikovi obilježeni slovima se ne pojavljuju u kromatogramu kontrole dok se pik sa praznim poljima se ne pojavljuje u tretiranoj kulturi.

#	RT / s	Površina	S/N	Relativna površina / %	#	RT / S	Površina	S/N	Relativna površina / %
1	194,9	65,3776	1155,6	1	30				
2	224,6	2,4875	10,4	0,04	31	762	268,2058	1792,3	4,1
3	233,4	52,5608	762	0,8	32	784,5	58,5083	732,9	0,89
4	272,2	219,5464	2642,1	3,36	33	802,5	47,9679	128,1	0,73
5	289,3	19,7266	309,5	0,3	34	810,1	212,9433	337,8	3,26
6	307,1	15,367	249,2	0,23	35				
7	322,2	89,4625	1244,4	1,37	36	845,2	83,2268	959,6	1,27
8	330,6	40,266	643,5	0,62	37	857,2	199,0482	2155,5	3,04
9	349,9	48,4886	707,4	0,74	38	896,7	191,3298	1263,7	2,92
10	372,6	212,1706	1842,9	3,24	39				
11	394	247,5642	3416,6	3,78	40	946,7	116,8597	957,8	1,79
12	411,5	534,9545	1383,1	8,18	41	967,5	2,1473	36,8	0,03
13	420,5	101,4311	251	1,55	42	985,6	22,1174	213,8	0,34
14	462,3	400,3868	3648,1	6,12	43	999,9	17,9445	33,3	0,27
15	474,1	214,8306	2565,4	3,28	44	1012,5	1,1609	3,7	0,02
16	487,6	55,7381	762,6	0,85	45	1034,2	13,4959	153,4	0,21
17	509,3	364,2546	4366,4	5,57	46	1055	12,6807	29,5	0,19
18	521,4	120,7649	1482	1,85					
19	541,2	37,5812	459,8	0,57					
20	565,5	675,6501	8689,8	10,33					
21	580,6	6,4777	116,7	0,1					
21a	588	5,7333	107,1	0,09					
22	596,4	24,9834	415,1	0,38					
23	613,1	378,9997	3724,3	5,79					
24	638,2	294,5096	3174	4,5					
25	654,8	35,1856	394,4	0,54					
26	672,5	6,5679	112,8	0,1					
27	687,1	215,9203	2332,9	3,3					
28	711,3	679,447	1369,7	10,39					
29	721,5	127,819	253,5	1,95					

Tablica D10. Retencijska vremena (RT), površina, omjer signala i šuma (S/N) te relativna površina dobivenih integracijom kromatograma glikana iz sekretoma HMLE-Twist stanične linije nakon tretmana monezinom. Jedan od tri unutar triplikata. Integracija je odrađena pomoću algoritma unutar programa *Compass DataAnalisys*. Broj pika je usklađen s numeracijom u kontroli HMLE-Twist. Pikovi obilježeni slovima se ne pojavljuju u kromatogramu kontrole dok se pik sa praznim poljima se ne pojavljuje u tretiranoj kulturi.

#	RT / s	Površina	S/N	Relativna površina / %	#	RT / S	Površina	S/N	Relativna površina / %
1	194,7	36,4752	735,2	1,02	30				
2	224,6	1,3498	7,6	0,04	31	761,7	147,3806	1207,9	4,11
3	233,3	31,9563	550,8	0,89	32	784,6	34,5674	509,3	0,96
4	272	117,7641	366,5	3,29	33	802	26,7609	98,1	0,75
5	289	10,4983	200,5	0,29	34	810,2	128,53	272	3,59
6	306,9	8,7201	160	0,24	35				
7	321,8	44,5804	739,1	1,24	36	844,9	50,6198	648,6	1,41
8	330,6	22,91	411,5	0,64	37	857,1	124,283	1520,7	3,47
9	349,9	26,7625	440	0,75	38	897,2	132,0272	922	3,69
10	372,5	119,0397	1154,5	3,32	39				
11	393,9	134,8937	2078,9	3,77	40	946,5	84,863	818,1	2,37
12	411,3	256,7901	889,6	7,17	41	967,6	3,4437	58,6	0,1
13	420	52,8423	164,1	1,48	42	986,1	15,5325	176,6	0,43
14	462,2	207,3079	2285,1	5,79	43	1000,1	11,9815	25,7	0,33
15	474,1	118,5834	1653,5	3,31	44	1016,1	0,7003	3,7	0,02
16	487,3	28,5464	444,1	0,8	45	1034	10,4436	126,3	0,29
17	509,3	194,6456	2771	5,43	46	1054,8	8,8074	114,1	0,25
18	521,3	62,5821	902,2	1,75					
19	541,2	22,0605	293,5	0,62					
20	565,5	328,9231	1116,3	9,18					
21	580,2	0,8543	5,7	0,02					
21a	588,4	0,2471	10,8	0,01					
22	596,4	9,3853	217,1	0,26					
23	613,3	220,322	2535,8	6,15					
24	638,3	143,2301	1794,2	4					
25	654,5	16,1224	219,4	0,45					
26	672,1	2,8369	61,4	0,08					
27	687,4	100,1738	1321	2,8					
28	711,3	418,4	1130	11,68					
29	722,5	63,6481	180,2	1,78					

Tablica D11. Retencijska vremena (RT), površina, omjer signala i šuma (S/N) te relativna površina dobivenih integracijom kromatograma glikana iz sekretoma HMLE-Twist stanične linije nakon tretmana monezinom. Dva od tri unutar triplikata. Integracija je odrađena pomoću algoritma unutar programa *Compass DataAnalisys*. Broj pika je usklađen s numeracijom u kontroli HMLE-Twist. Pikovi obilježeni slovima se ne pojavljuju u kromatogramu kontrole dok se pik sa praznim poljima se ne pojavljuje u tretiranoj kulturi.

#	RT / s	Površina	S/N	Relativna površina / %	#	RT / S	Površina	S/N	Relativna površina / %
1	194,7	114,4517	1898	1,127	30				
2	224,5	3,8211	81,8	0,038	31	762,4	368,2454	2406,8	3,627
3	233,2	83,4252	1225,2	0,822	32	785	90,0137	1091,9	0,887
4	272	345,4441	4049,6	3,403	33	803	71,7822	122,6	0,707
5	289,1	25,4014	400,6	0,25	34	810,8	312,5102	321,1	3,078
6	307	25,091	389,4	0,247	35				
7	321,9	146,4375	1889,8	1,442	36	845,9	124,1443	1317	1,223
8	330,4	61,3346	950,5	0,604	37	857,8	296,0734	3003,4	2,917
9	349,9	72,0124	1036,5	0,709	38	898	318,8062	1820,8	3,14
10	372,5	295,7238	2731,9	2,913	39				
11	394,2	342,9837	4699,8	3,379	40	947,1	196,3176	1556,8	1,934
12	411,3	719,149	1267,5	7,084	41	968,1	6,2783	98,6	0,062
13	420	102,1847	184,5	1,007	42	986,4	33,7061	321,5	0,332
14	462,1	762,0455	5965,5	7,507	43	1001,3	27,1458	30,3	0,267
15	474	462,459	4909,8	4,556	44	1012	1,8352	6,1	0,018
16	487,2	155,9346	1638,8	1,536	45	1034,6	21,7951	235,9	0,215
17	509,4	615,5948	6689,3	6,064	46	1055,2	19,2449	215,1	0,19
18	521,4	176,2289	2150,3	1,736					
19	541,1	52,9155	590,1	0,521					
20	565,6	1004,8633	1700,4	9,899					
21	580,9	4,0838	12,4	0,04					
21a	587,9	0,4653	2,6	0,005					
22	596,6	26,5694	476,2	0,262					
23	613,2	613,3806	5726,9	6,042					
24	638,5	391,1598	3991,4	3,853					
25	654,9	49,3328	517,8	0,486]				
26	673,1	8,842	145,7	0,087]				
27	687,7	286,1228	2958,1	2,818]				
28	711,6	1113,8082	1510,4	10,972]				
29	721,5	202,4863	266,3	1,995]				

#	RT / s	Površina	S/N	Relativna površina / %	#	RT / S	Površina	S/N	Relativna površina / %
1	196,5	60,5995	847,3	0,66	30	767	179,8674	314,6	1,97
2	227,3	6,7377	66,8	0,07	31	789,8	87,5144	920,7	0,96
3	240,6	144,3545	1695,5	1,58	32	814,8	240,9227	1332,2	2,64
4	274,3	107,0346	1397,6	1,17	33	836,9	106,0794	1149,8	1,16
5	292,8	16,4387	187,8	0,18	34	851,4	28,3876	379,5	0,31
6	308,2	209,7317	2643,1	2,3	35	863,7	152,3225	1640,7	1,67
7	325,5	43,7874	422,9	0,48	36	875,1	29,2349	361,3	0,32
8	333,7	62,6479	600	0,69	37	901,9	339,6724	2025,1	3,72
9	353,4	71,8257	68,1	0,79	38	924,1	7,5236	120,3	0,08
10	377	123,9226	110,6	1,36	39	941,1	128,884	1353,7	1,41
11	382,1	207,9404	225,7	2,28	40	951,7	287,4656	2271,6	3,15
12	398,4	256,8985	3252,5	2,82	41	974,9	17,0187	179	0,19
13	413,7	331,8619	375,6	3,64	42	994	87,8423	693	0,96
14	465,6	271,009	2293,1	2,97	43	1006,8	175,244	1560,1	1,92
15	477,5	123,2123	1370,1	1,35	44	1025,8	14,1432	159,9	0,16
16	491,2	73,794	830,7	0,81	45	1044,5	123,1154	1040,7	1,35
17	512,3	257,3634	2474,9	2,82	46	1063	216,781	210,4	2,38
18	525,9	90,0129	881,6	0,99	47	1097,9	205,0324	1904,8	2,25
19	547,1	58,9879	571	0,65					
20	569,8	371,0842	4032,1	4,07					
21	585,9	19,6372	265,7	0,22					
22	602,2	160,3548	1248,9	1,76					
23	615,4	317,6257	2126,8	3,48					
24	637,5	94,2163	161,4	1,03					
25	644,5	536,5753	456,1	5,88					
26	691,2	846,0859	7285,9	9,27					
27	716,2	771,9492	6645	8,46]				

2,39

9,23

Tablica D12. Retencijska vremena (RT), površina, omjer signala i šuma (S/N) te relativna površina dobivenih integracijom kromatograma glikana iz sekretoma kontrole HMLE-pBp stanične linije. Jedan od tri unutar triplikata. Integracija je odrađena pomoću algoritma unutar programa *Compass DataAnalisys*.

28

29

730

761

218,0816

842,0778

1843,6

779,5

#	RT / s	Površina	S/N	Relativna površina / %	#	RT / S	Površina	S/N	Relativna površina / %
1	196,2	73,2824	1060,9	0,81	30	766,5	173,0694	327,6	1,92
2	226,2	6,7713	84,3	0,07	31	789,1	102,5921	1127	1,14
3	234,8	42,0233	524,5	0,47	32	814	241,8464	1426,3	2,68
4	273,8	117,0203	1623,4	1,3	33	835,9	101,5073	1177,6	1,12
5	292,3	18,3661	220,1	0,2	34	850,5	32,71	457,3	0,36
6	308,8	10,7446	181,6	0,12	35	862,5	158,9964	1776	1,76
7	324,9	27,5265	316,9	0,3	36	874	31,9646	410,8	0,35
8	333,5	43,0341	513,7	0,48	37	900,9	348,6939	2194,7	3,86
9	353,2	56,7566	69,3	0,63	38	923,3	10,2595	163	0,11
10	374,3	137,3394	124,4	1,52	39	940,1	136,1409	1497,9	1,51
11	377,5	62,779	88,6	0,69	40	950,7	297,4474	2477,8	3,29
12	398,3	296,966	3797,8	3,29	41	973,3	14,8395	171,8	0,16
13	413,5	377,7448	4550,9	4,18	42	992,8	84,0243	736	0,93
14	466,3	222,9295	2170,7	2,47	43	1005,3	180,8129	1725,6	2
15	477,5	141,2983	1580,9	1,56	44	1024	14,3476	172,6	0,16
16	491,1	89,1882	996,9	0,99	45	1043	125,8824	1132,1	1,39
17	512,2	304,5763	2965,8	3,37	46	1061,4	219,3325	228,4	2,43
18	525,5	112,0756	1106,1	1,24	47	1096,2	208,1045	196,9	2,3
19	546,7	46,5593	440,7	0,52					
20	569,6	404,104	4610,1	4,47					
21	585	13,4916	209,7	0,15					
22	601,8	127,5094	1149,6	1,41					
23	615,3	315,4271	2272,8	3,49					
24	637,5	110,0904	196,1	1,22					
25	644	567,6108	516,1	6,28					
26	690,5	898,8323	8160,5	9,95]				
27	715,5	793,5756	7298,8	8,78					
28	729,4	235,2118	2085	2,6					

Tablica D13. Retencijska vremena (RT), površina, omjer signala i šuma (S/N) te relativna površina dobivenih integracijom kromatograma glikana iz sekretoma kontrole HMLE-pBp stanične linije. Dva od tri unutar triplikata. Integracija je odrađena pomoću algoritma unutar programa *Compass DataAnalisys*.

29

760,1

898,1641

867,3

9,94

#	RT / s	Površina	S/N	Relativna površina / %	#	RT / S	Površina	S/N	Relativna površina / %
1	195,4	61,0274	968,1	0,74	30	765,5	102,6341	256,6	1,25
2	225,2	5,7837	69	0,07	31	786,2	89,6206	1050	1,09
3	233,9	25,0666	313	0,31	32	811,3	225,4591	1430,7	2,75
4	272,6	106,3571	1561,5	1,3	33	833,5	109,6092	1263,5	1,34
5	290,9	19,3824	237,7	0,24	34	847,9	40,561	541,5	0,49
6	307,4	8,255	149,7	0,1	35	860,1	157,3292	1871	1,92
7	323,2	29,7779	348,9	0,36	36	871,3	30,205	419,9	0,37
8	331,6	39,2493	492,5	0,48	37	898,5	335,3231	2253,4	4,09
9	351,4	52,4423	70,1	0,64	38	920,5	8,5038	145,9	0,1
10	372,2	130,7717	124,1	1,59	39	937,9	121,9674	1491,7	1,49
11	377	36,9966	59,6	0,45	40	948,1	278,7186	2516,5	3,4
12	396	255,1765	3601,8	3,11	41	971,9	16,5386	196,1	0,2
13	411,3	332,6179	4299,6	4,05	42	990,4	82,1851	743,4	1
14	463,8	181,2603	1968,7	2,21	43	1002,9	173,3629	1762,9	2,11
15	474,9	111,9875	1410,4	1,37	44	1021,9	12,0745	159,7	0,15
16	488,6	76,0279	953,8	0,93	45	1040,6	121,2048	1171,1	1,48
17	509,8	258,2776	2710,8	3,15	46	1059,3	223,6999	246,5	2,73
18	523,2	96,727	1032,8	1,18	47	1094,4	208,0826	2137,8	2,54
19	543,9	39,4888	428,1	0,48					
20	566,6	356,7891	4373,3	4,35					
21	582,3	13,5187	219,5	0,16					
22	599	118,4412	1162,1	1,44					
23	612,1	273,5963	2116,1	3,33					
24	635	112,3659	218,5	1,37					
25	641	504,7041	525,9	6,15					
26	687,6	820,7428	8036,9	10]				
27	712,6	726,6313	7142,1	8,86]				
28	726,6	206,0919	2019,3	2,51]				

Tablica D14. Retencijska vremena (RT), površina, omjer signala i šuma (S/N) te relativna površina dobivenih integracijom kromatograma glikana iz sekretoma kontrole HMLE-pBp stanične linije. Tri od tri unutar triplikata. Integracija je odrađena pomoću algoritma unutar programa Compass DataAnalisys.

757,2

867,2694

29

894,9

10,57

Tablica D15. Retencijska vremena (RT), površina, omjer signala i šuma (S/N) te relativna površina dobivenih integracijom
kromatograma glikana iz sekretoma HMLE-pBp stanične linije nakon tretmana salinomicinom. Jedan od tri unutar triplikata.
Integracija je odrađena pomoću algoritma unutar programa <i>Compass DataAnalisys</i> . Broj pika je usklađen s numeracijom u
kontroli HMLE-pBp. Pik sa praznim poljem se ne pojavljuje u tretiranoj kulturi.

#	RT / s	Površina	S/N	Relativna površina / %	#	RT / S	Površina	S/N	Relativna površina / %
1	195,8	78,3097	1167,7	0,91	30	764,9	254,9892	341,8	2,95
2	225,4	6,7657	90,5	0,08	31	786,9	58,4456	691	0,68
3	234,1	53,1852	89,9	0,62	32	812,9	668,2527	3511,6	7,73
4	272,8	190,4967	2161,3	2,2	33				
5	290,9	25,8766	350,4	0,3	34	848,3	164,2841	1468,6	1,9
6	307,8	17,6776	259,6	0,2	35	860,1	383,6656	3521,6	4,44
7	323,2	61,7346	662,6	0,71	36				
8	331,9	56,7213	683,9	0,66	37	900,8	353,5277	1877,6	4,09
9	351,6	78,8893	146	0,91	38				
10	372,5	227,0595	251,5	2,63	39	943	65,08	96,7	0,75
11	378	61,1549	125,1	0,71	40	950,1	183,4608	233,5	2,12
12	396,1	426,8157	5522,7	4,94	41	971	11,7632	157,8	0,14
13	411,7	743,4914	1171,4	8,6	42	988,9	49,6746	437,3	0,57
14	463,9	352,5796	3211	4,08	43	1009,7	15,294	161,8	0,18
15	475,1	184,0312	2057,5	2,13	44				
16	488,8	96,4494	1132,6	1,12	45	1037,2	33,4887	306,4	0,39
17	510,2	450,8124	4247,9	5,22	46	1057,7	9,2107	11,7	0,11
18	522,6	95,4746	928,6	1,1	47	1093,9	12,4709	98,8	0,14
19	545,4	61,7225	457,5	0,71					
20	566,8	461,4631	5074	5,34					
21	582,4	21,5639	307,3	0,25					
22	599,3	95,2284	854,1	1,1					
23	614,9	484,0292	4091	5,6					
24									
25	640,6	259,1023	1980,2	3					
26	689,1	659,1993	5827,4	7,63					
27	713,7	721,2672	6467	8,35]				
28	732,9	180,6012	1596,6	2,09]				
29	759	226,1047	307,4	2,62]				

Tablica D16. Retencijska vremena (RT), površina, omjer signala i šuma (S/N) te relativna površina dobivenih integracijom kromatograma glikana iz sekretoma HMLE-pBp stanične linije nakon tretmana salinomicinom. Dva od tri unutar triplikata. Integracija je odrađena pomoću algoritma unutar programa *Compass DataAnalisys*. Broj pika je usklađen s numeracijom u kontroli HMLE-pBp. Pik sa praznim poljem se ne pojavljuje u tretiranoj kulturi.

#	RT / s	Površina	S/N	Relativna površina / %	#	RT / S	Površina	S/N	Relativna površina / %
1	196,1	81,4385	1301	0,97	30	766,3	251,4382	346,1	3
2	225,9	6,6459	98,1	0,08	31	788,4	54,8701	699,8	0,66
3	234,5	55,0183	94,5	0,66	32	814,6	647,2457	3652,5	7,74
4	273,4	185,1414	2276,2	2,21	33				
5	291,5	23,8994	351,7	0,29	34	850,1	147,0049	1457,3	1,76
6	308,3	16,2459	259,9	0,19	35	862	372,1052	3642,3	4,45
7	323,9	58,41	669,2	0,7	36				
8	332,5	50,4402	702,2	0,6	37	902,6	345,5629	1946,9	4,13
9	352,4	76,3733	146	0,91	38				
10	373,3	226,2777	250,9	2,7	39	946	70,2261	103,7	0,84
11	379,5	51,8507	122,7	0,62	40	952,2	170,9828	235,2	2,04
12	397,1	421,4461	5779,8	5,04	41	973,1	10,9265	157,8	0,13
13	412,5	730,8053	1183,8	8,73	42	990,9	49,7626	468,4	0,59
14	464,8	314,6342	3159,8	3,76	43	1011,7	14,7267	167,7	0,18
15	475,9	161,9866	2034,6	1,94	44				
16	489,6	86,2753	1120	1,03	45	1039,3	29,9579	307,2	0,36
17	511	430,2247	4368,1	5,14	46	1060,6	6,7865	9,8	0,08
18	523,5	94,2262	1006,1	1,13	47	1096,6	9,4355	95,3	0,11
19	546,6	61,4841	489,9	0,73					
20	567,9	440,891	5238,3	5,27					
21	583,4	22,3108	334,7	0,27					
22	600,4	102,9336	955,9	1,23					
23	616	477,0024	4207,5	5,7					
24									
25	642	245,0542	2024,3	2,93					
26	690,3	629,1479	6005,9	7,52					
27	714,8	707,9783	6782,9	8,46					
28	734,1	191,5002	1743	2,29					
29	760,4	236,6873	317,7	2,83					

Tablica D17. Retencijska vremena (RT), površina, omjer signala i šuma (S/N) te relativna površina dobivenih integracijom kromatograma glikana iz sekretoma HMLE-pBp stanične linije nakon tretmana salinomicinom. Tri od tri unutar triplikata. Integracija je odrađena pomoću algoritma unutar programa *Compass DataAnalisys*. Broj pika je usklađen s numeracijom u kontroli HMLE-pBp. Pik sa praznim poljem se ne pojavljuje u tretiranoj kulturi.

				Relativna					Relativna
#	RT / s	Površina	S/N	površina /	#	RT / S	Površina	S/N	površina /
1	107.1	78 4215	1250.2	% 0.02	20	767 1	255 7208	251	% 2.02
1	226.0	70,4213 5 8050	02.6	0,93	21	707,4	233,7300	729.2	3,03
2	220,9	52.0618	92,0	0,07	22	789,5 915.6	50,070	25927	0,7
3	255,0	100.0582	94,7	0,02	22	813,0	044,9048	3385,7	7,04
4	2/4,4	26.0421	2270.2	2,20	24	850 8	162 6602	1524.0	1.02
5	292,3	16 0037	265.6	0,31	34	852.6	373 7582	3604.7	1,93
7	209,5	57 7951	203,0	0,2	26	802,0	0	0	4,43
/	324,7	40.4808	669.1	0,08	27	002.2	242 2502	1022.5	0
0	252.2	49,4808	140.2	0,39	20	905,2	343,2392	1925,5	4,07
9	333,3	75,9154	149,2	0,9	38	046.5	0	102.7	0 78
10	374,3	211,2808	252,2	2,5	39	946,5	66,2025	102,7	0,78
11	379	63,5961	134	0,75	40	953	1/3,/115	238,6	2,06
12	398,2	419,0343	5647,7	4,97	41	974	10,7972	156,3	0,13
13	413,6	736,0192	1201,6	8,72	42	991,8	48,0891	448,6	0,57
14	465,9	318,3915	3155,8	3,77	43	1012,5	13,5422	162,7	0,16
15	477,1	164,3128	2003,3	1,95	44		0	0	0
16	490,8	83,9967	1077	1	45	1039,9	29,7779	294,3	0,35
17	512,2	434,4977	4341,9	5,15	46	1061,1	6,7341	10	0,08
18	524,8	99,6614	1000,4	1,18	47	1097,1	9,9158	93,1	0,12
19	548,1	60,3483	472,4	0,72					
20	569,3	448,0127	5170,9	5,31					
21	584,5	17,0466	272,5	0,2					
22	601,8	79,2228	111,7	0,94					
23	617,2	469,5408	4194,8	5,56					
24		0	0	0					
25	643,4	252,2059	2020,5	2,99					
26	691,7	652,1044	5990,6	7,73					
27	716,1	746,8044	6884,8	8,85					
28	735,2	187,062	1702	2,22					
29	761,4	243,4011	326,4	2,88					

Tablica D18. Retencijska vremena (RT), površina, omjer signala i šuma (S/N) te relativna površina dobivenih integracijom kromatograma glikana iz sekretoma HMLE-pBp stanične linije nakon tretmana monezinom. Jedan od tri unutar triplikata. Integracija je odrađena pomoću algoritma unutar programa *Compass DataAnalisys*. Broj pika je usklađen s numeracijom u kontroli HMLE-pBp. Pik sa praznim poljem se ne pojavljuje u tretiranoj kulturi.

#	RT / s	Površina	S/N	Relativna površina / %	#	RT / S	Površina	S/N	Relativna površina / %
1	197,1	70,5526	1123,8	0,91	30	768,2	267,225	339,3	3,46
2	227,1	6,8649	97,9	0,09	31	790,1	55,0256	714	0,71
3	235,7	46,8853	82,3	0,61	32	816,4	585,5683	3275,9	7,59
4	274,8	171,7041	2221,6	2,23	33				
5	293,1	24,2166	355,5	0,31	34	851,6	157,4202	1500,7	2,04
6	309,8	16,2547	261,2	0,21	35	863,5	376,6747	3630,6	4,88
7	325,4	56,0093	639,6	0,73	36		0	0	0
8	334,1	62,1795	766	0,81	37	904,5	361,6948	264,5	4,69
9	354,1	104,8112	166,1	1,36	38				
10	375	237,5277	277,2	3,08	39	947	62,2637	102,9	0,81
11	380	60,0909	138,1	0,78	40	953,9	186,5549	253,3	2,42
12	399	403,1053	5525,7	5,22	41	975,1	13,9652	195,2	0,18
13	414,3	610,7036	1028,6	7,92	42	992,6	50,8653	478,2	0,66
14	466,7	298,8393	3123,4	3,87	43	1013,3	16,6431	188,4	0,22
15	478	166,9009	2085	2,16	44				
16	491,6	80,4834	1075,1	1,04	45	1040,7	28,7244	303,2	0,37
17	512,9	382,3162	3965,1	4,96	46	1062,4	5,6878	8,3	0,07
18	526,1	99,0953	974,1	1,28	47	1098,4	7,263	70,6	0,09
19	548,3	60,9927	477,3	0,79					
20	570,1	416,9816	4969,4	5,4					
21	585,1	18,3797	315	0,24					
22	602,5	43,7129	78,5	0,57					
23	618	419,9182	3833,3	5,44					
24									
25	644,5	205,3448	1699,6	2,66					
26	692,5	514,8757	5010,6	6,67]				
27	716,5	653,3809	6388,4	8,47]				
28	736	139,1311	1359	1,8]				
29	763	168,4137	282,5	2,18					

Tablica D19. Retencijska vremena (RT), površina, omjer signala i šuma (S/N) te relativna površina dobivenih integracijom kromatograma glikana iz sekretoma HMLE-pBp stanične linije nakon tretmana monezinom. Dva od tri unutar triplikata. Integracija je odrađena pomoću algoritma unutar programa *Compass DataAnalisys*. Broj pika je usklađen s numeracijom u kontroli HMLE-pBp. Pik sa praznim poljem se ne pojavljuje u tretiranoj kulturi.

				Relativna					Relativna
#	RT / s	Površina	S/N	površina /	#	RT / S	Površina	S/N	površina /
1	106.0	70.1276	1106 5	%	20	7.0.0	265 5426	241.1	%
1	196,9	/9,1376	1186,5	1,06	30	/68,6	265,5436	341,1	3,55
2	226,7	5,358	79,3	0,07	31	790,4	52,3974	649,1	0,7
3	235,5	44,3706	86,2	0,59	32	816,9	576,8723	3063,4	7,72
4	274,4	173,7684	2140,8	2,32	33				
5	292,6	22,9356	314,9	0,31	34	852	149,9819	1369,6	2,01
6	309,4	16,6924	248,3	0,22	35	863,9	360,2393	3320,7	4,82
7	325	51,5758	560	0,69	36				
8	333,9	47,5279	611,9	0,64	37	904,9	353,9384	271,3	4,73
9	353,7	72,5359	144,8	0,97	38				
10	374,9	211,1253	256,9	2,82	39	947,5	64,5785	108,7	0,86
11	381	41,6426	109,8	0,56	40	954,2	185,2356	266,2	2,48
12	398,9	389,1452	4964,5	5,21	41	975,3	13,0198	172,1	0,17
13	414,3	605,4659	1054,7	8,1	42	993	48,9414	432,2	0,65
14	466,8	288,9261	2849,4	3,86	43	1013,7	16,6116	172,8	0,22
15	478,2	154,324	1880,7	2,06	44				
16	491,9	78,0782	1007,4	1,04	45	1041,1	30,9579	296,1	0,41
17	513,2	364,4004	3638,3	4,87	46	1062,5	6,6884	8,9	0,09
18	526,3	84,6015	841,2	1,13	47	1098,7	7,8307	70,1	0,1
19	548,6	53,5848	414,3	0,72			•	•	•
20	570,5	411,472	4642,5	5,5					
21	585,8	20,6129	312,8	0,28					
22	602,9	60,834	637,8	0,81					
23	618,3	411,3278	3584,1	5,5					
24									
25	645	195,8083	1545,4	2,62					
26	693	506,3053	4680,2	6,77	1				
27	716,9	646,4827	5979,2	8,65	1				
28	736,2	153,78	1389,7	2,06	1				
29	767	151,2027	292,4	2,02	1				

				Relativna					Relativna
#	RT / s	Površina	S/N	površina /	#	RT / S	Površina	S/N	površina /
				%					%
1	196,8	90,6214	1379,1	1,13	30	767,5	265,4712	329,2	3,3
2	226,6	6,2232	92,4	0,08	31	789,2	54,151	676	0,67
3	235,3	49,8359	84,4	0,62	32	815,5	623,6144	3259,4	7,75
4	274,3	189,9792	2319,8	2,36	33				
5	292,4	25,4763	352,8	0,32	34	850,7	173,5347	1503,9	2,16
6	309,2	18,175	268,9	0,23	35	862,7	388,2292	3553,4	4,83
7	324,9	58,4347	624,7	0,73	36				
8	333,8	62,5231	717,6	0,78	37	903,6	376,1419	253,8	4,68
9	353,5	111,1863	164,1	1,38	38				
10	374,6	254,2464	263,8	3,16	39	945,5	61,2817	95,4	0,76
11	380	61,5711	127,4	0,77	40	952,9	202,0947	246,3	2,51
12	398,5	414,8821	5477,8	5,16	41	974,1	12,9755	173,3	0,16
13	413,9	572,5259	944,3	7,12	42	992	52,3053	470,5	0,65
14	466,1	330,942	3185,3	4,11	43	1012,6	16,0642	23,7	0,2
15	477,4	178,4939	2086,9	2,22	44				
16	491,1	86,3594	1083,7	1,07	45	1040,2	30,3976	295,6	0,38
17	512,3	382,3631	3852,4	4,75	46	1062,1	6,9383	8,9	0,09
18	525,4	89,5606	884,8	1,11	47	1098,1	7,6673	70,6	0,1
19	547,6	57,8299	448,3	0,72					
20	569,3	431,253	4852,3	5,36					
21	584,6	20,4938	315,3	0,25					
22	601,9	65,7187	679,5	0,82					
23	617,3	450,6587	3833,2	5,6					
24									
25	643,9	205,3371	1637	2,55					
26	691,9	548,5582	4942,5	6,82					
27	715,8	671,092	6217,8	8,34]				
28	735,5	149,2831	1367,4	1,86					
29	763	188,009	276,9	2,34					

§ 10. ŽIVOTOPIS

Osobni podatci

Ime i prezime: Filip Kliček Datum rođenja: 23. lipnja 1994. Mjesto rođenja: Zagreb

Obrazovanje

2001-2009	Osnovna škola Veliko Trgovišće, Veliko Trgovišće
2009–2013	Gimnazija Antuna Gustava Matoša, Zabok
2013-2016	Preddiplomski sveučilišni studij kemije, Prirodoslovno – matematički
	fakultet, Zagreb

Nagrade i priznanja

Sudjelovanja u popularizaciji znanosti

2014–2018	Otvoreni dan Kemijskog odsjeka
2015	Smotra sveučilišta u Zagrebu

Sudjelovanja na znanstvenim skupovima

1. F. Kliček, M. Novokmet, M. Marjanović, G. Lauc, M. Kralj, *Utjecaj salinomicina na N-glikom u modelu tumorskih matičnih stanica*, 2nd GlycoCom Conference and 1st Human Glycome Project Meeting, Dubrovnik, 2018, Knjiga sažetaka, str. 106