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Perturbativna stabilnost topoloski uredenih
sustava s lokalnim defektima

Sazetak

Kvantni spinski sustavi donose uvijek nove izazove u modernoj fizici prote-
klih nekoliko desetljeca; teorijski opis topoloskog kvantnog uredenja je otkrio
novo poglavlje u razumijevanju faznih prijelaza u kvantnim sustavima.
Novoopazena svojstva topoloski uredenih sustava zaokupila su pozornost
i znanstvenika iz polja kvantne teorije informacija, ¢ime je zapocelo
istrazivanje njihovoga potencijala u kvantnom racunarstvu. Od nedavno,
korisnost topoloski uredenih sustava detaljno se istrazuje u podrucju to-
poloskog kvantnog racunarstva.

Sustavi u kojima se pojavljuje topolosko uredenje imaju vrijedne moguénosti
za kvantno racunarstvo — koriStenjem globalnih opservabli koje ostaju ro-
bustne kada se na sustav djeluje lokalnom perturbacijom. Pod ovim uvje-
tima, informacije pohranjene u sustavu ostaju stabilne, sto pruza jedinstven
nacin zaobilaZenja problema koji zaokupljaju standardne sheme koristene u
kvantnom racunarstvu.

U svrhu bolje primjenjivosti ovih sustava u kvantnom rac¢unarstvu otpornom
na pogreske, potrebno je razumjeti to¢no ponasanje pohranjenih informacija
pod utjecajem vanjske perturbacije. Ovaj rad predstavlja vazne matematicke
metode koje se koriste pri istrazivanju dinamike lokalnih kvantnih sustava
— kvazi-adijabatsko produljenje, Lieb-Robinsonove granice, i razvoj vlastite
energije — te prikazuje njihovu primjenu pri unaprjedivanju razumijevanja
utjecaja slabih lokalnih perturbacija na informacije pohranjene u topoloski
uredenim sustavima.

Specifi¢no, istrazen je utjecaj perturbacije na topoloski uredene sustave s
lokalnim defektima tipa rupe te su izvedene opce granice za stabilnost to-
poloskog uredenja u takvim sustavima.



Perturbative Stability of Topologically Ordered
Systems with Local Defects

Abstract

Quantum spin systems have been providing modern physics with ever new
challenges to tackle in the past several decades; from the theoretical pos-
tulation of topological quantum order, a new chapter was revealed in the
understanding of phase transitions in quantum systems.

The novel properties of topologically ordered systems had caught the inter-
est of quantum information scientists, and research into their potential in
the field of quantum computing soon began. Nowadays, this utility of topo-
logically ordered systems is thoroughly researched in the field of topological
quantum computing.

Systems that exhibit topological order present a valuable resource for quan-
tum computing — by use of the global observables that remain robust when
such a system is acted on by a local perturbation. Under these conditions, the
information stored in the system remains stable, providing a unique modus
of circumventing the problems that plague standard quantum computing
schemes.

To improve on the applicability of such systems in fault-tolerant quantum
computation, there exists a need to understand the exact behavior of the
encoded information under perturbation. To this end, this thesis presents
critical mathematical methods used to research the dynamics of local quan-
tum systems — the quasi-adiabatic continuation, the Lieb-Robinson bounds,
and the self-energy expansion — and utilizes them to further the understand-
ing of the effect of weak local perturbations on the information stored in a
topologically ordered system.

In particular, the influence of perturbation on topologically ordered systems
with local puncture defects is examined, and general bounds on the stability
of topological order in such systems are derived.
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1 Introduction

Quantum information and quantum computation are terms that denote the study of
the information processing tasks that can be accomplished using quantum mechan-
ical systems [1] — and they are quantum mechanical counterparts of the classical
fields of the same name. The story of the birth of these fields is long and it follows
the discovery of the underlying quantum structure of the world. The property of su-
perposition of quantum states enables a view of information that is vastly different to
the one of classical information theory. While the states of classical bits are defined
as Z, = {0,1}, quantum bits — or qubits — are represented by C* = C[Z,], which
implies that classical bit states can be seen as mere basis vectors for qubits [2].

In 1982, Richard Feynman, a reputed physicist, had shown that a standard com-
puting machine that does not rely on quantum mechanics for its operation, would not
be able to efficiently simulate quantum phenomena [3]. In fact, it would be expected
to experience an exponential slowdown, while a universal quantum simulator that he
proposed in the same publication — would not. Following this leading thought, re-
search into quantum simulators and quantum computers truly began. In 1996, Seth
Lloyd proved Feynman’s conjecture to be correct [4].

Ever since its modest beginnings, classical computing has experienced an unbri-
dled expansion in the sense that its capabilities and availability have soared beyond
any initial prediction. However, practical limitations exist to the actual computing
power of classical computers, and they cannot be expected to reach the capabilities
of quantum computers. In 1965, Gordon Moore presented a hypothesis (later known
as Moore’s law) based on the observation of the development of integrated elecron-
ics. He claimed that the power of computer hardware (the number of components
on integrated circuits) would double for constant cost roughly every year in the fore-
seeable future — and has later been reported to increase that period to two years [5].
Time has shown that he was approximately right with this statement. However, as the
computing power rises, the size of manufactured hardware components diminishes —
as processors grow smaller, quantum effects gain a non-negligible role in their physi-
cal properties. Moore’s law is expected to hit a fundamental wall and fail in the near
future. One way of addressing the interfering quantum effects in classical computing
hardware is to accept the fall of its advancement and turn to quantum computing — a
flagship project for many scientific and technological research institutions that focus
on the frontier of science (for examples of experimental achievements in topological
quantum computing, see Subsection 2.5).

It is not only classical hardware that is expected to fold next to quantum comput-
ing, many core classical algorithms (such as the famed RSA cryptosystem — see [6])
are outshined by innovative quantum algorithms, most notably Peter Shor’s factoring
algorithm [7] and Lov Grover’s search algorithm [8]. Some of the invented quantum
algorithms outperform their classical equivalents, possibly making previously unfea-



sible calculations simplified and approachable, given that there exists a quantum
computer that could run them (for example, a new field of post-quantum cryptogra-
phy [9] is currently in the making).

Analogously to the way a classical computer is built to contain electrical circuits
that contain logic gates used to perform computational tasks, a quantum computer is
built of quantum circuits that contain quantum gates. These schemes can be utilized
to build quantum algorithms.

An important facet of quantum computing is the possibility to store quantum
information in a system, and use it at a later time for computing protocols — this
involves creating reliable quantum memories (for example, see [10]). A troublesome
issue with any quantum systems is the prospect of decoherence, which would destroy
the information stored in the system and render any computational process useless.
Additionally, as quantum systems are much more sensitive to outside disturbances
than is the case with classical computing components, the stability of such systems
comes into question. A good overviev of the general requirements for a physical
implementation of quantum computation can be found in [11].

One of the most reliable ways of combating the problems inherent to quantum
computing systems is quantum error correction, in a quest for fault-tolerant quantum
computing (see Subsection 3.1). The methods developed under these denomina-
tors focus on the development of setups and procedures in quantum computing that
would allow for the correction of any errors that may arise in such systems, allowing
for a confident use of quantum computing protocols. The threshold theorem [12],
formulated by Dorit Aharonov and Michael Ben-Or in 1999, confirms that quantum
computation can be made robust against errors and inaccuracies when the error rate
is smaller than some threshold value, by use of quantum error correcting methods.
A comprehensive introduction to quantum error correction can be found in [13]
and [1], and a short overview is presented in [14].

An innovative approach to the problem of instability of quantum computing se-
tups is the use of systems that exhibit topological quantum order. The research on
such systems focuses on the global invariants that are robust against local perturba-
tion. This means that discovering and tracking errors in topological quantum comput-
ers becomes a much easier task than that which is faced by other venues of quantum
computing [15].

Topologically ordered systems are most famously observed in fractional quantum
Hall liquids [16] (see other experimental realizations in Subsection 2.5), and they are
not yet well understood at temperatures above absolute zero — a topological phase of
matter is a state of matter whose low-energy effective theory is a topological quantum
field theory [2].

An interesting characteristic of topologically ordered systems is that they support



the existence and creation of anyons — indistinguishable quasiparticles that may only
occur in two-dimensional systems, and that do not follow bosonic, or fermionic ex-
change statistics. They were first mathematically described by Jon Magne Leinaas
and Jan Myrheim in 1977 [17], and named by Frank Wilczek in 1982 [18]. Anyons
may be observed that obey exchange statistics of the form |¥;¥,) = ¢ | U, ¥, ), where
¥, and ¥, are the quantum states of the two anyons, and 6 has any value. This equa-
tion is exactly valid only in one direction of exchange (i.e. either counterclockwise
or clockwise), because of the existence of nonabelian anyons, for which the direction

[u]
X y

J

of exchange matters.

()

Figure 1.1: A representation of anyon braiding in a 2-dimensional z-y system. The
anyons are represented as points on a 2-dimensional sheet, and the vertical axis is
the time axis, t. They are braided in time-space by rotating one around the other, as
denoted by arrows and blue lines.

Logical gates in topological quantum computation are constructed by braiding
anyons in (2+1)-dimensional space-time (see Figure 1.1 for a visual representation).
Separating the strings of the braid is non-trivial, which makes the manipulation of
the observables in such systems appropriate for topological quantum computation.
Much more on the topic of anyons and the braiding of anyons can be found in [19].

In this thesis, the focus was given to the perturbative stability of topologically or-
dered systems. In 2010, Sergey Bravyi, Matthew Hastings, and Spyridon Michalakis
had proven that the zero-temperature topological phases of matter remain robust
against small and local time-independent perturbations [20]. This is a very important
result for topological quantum computation, as it indicates that topological invariants
of such systems can be considered as such, under the conditions of little noise. To
understand precisely how a topologically ordered system is affected by perturbation,
it is necessary to examine the exact consequences of the introduction of perturbation
to such a system. This thesis presents results on the perturbative stability of topo-
logically ordered systems, and additionally topologically ordered systems with local
puncture defects (for a description, see Subsection 5.2. This work concludes with the
derivation and interpretation of general bounds on the stability of topological order

3



in systems with local puncture defects.

The contents of this thesis are as follows.

In Section 2 the basics of topologically ordered quantum spin systems are pre-
sented, covering an introduction to the mathematical description and basic proper-
ties of quantum spin systems (Subsection 2.1) and the concept of quantum phase
transitions (Subsection 2.2). The section provides several equivalent descriptions of
topological quantum order (Subsection 2.3, Subsection 2.4), and a short overview of
the experimental realizations of topologically ordered systems, from the viewpoint of
quantum computing (Subsection 2.5).

Section 3 is an introduction to fault-tolerant quantum computation, covering the
relevant topics in quantum error correction (Subsection 3.1), presenting the stabi-
lizer formalism (Subsection 3.2), defining the toric code (Subsection 3.3) and con-
sidering the perturbative stability of topologically ordered systems in general terms
(Subsection 3.4).

The mathematical tools used for the analysis of the setups discussed in this work
are described in Section 4. Subsection 4.1 provides a description and a characteriza-
tion of the properties of the quasi-adiabatic continuation, Subsection 4.2 serves as an
introduction to the Lieb-Robinson bound, and Subsection 4.3 presents an overview
of Kitaev’s self-energy expansion.

The main analysis and results of this work are contained in Section 5. The goal
of this section is the investigation of the stability of qubits encoded in the punctured
toric code. Subsection 5.1 examines the application of a small perturbation onto a
system described by the toric code, and provides a relation that bounds the trunca-
tion error for the evolved logical operator in such a system. Subsection 5.2 introduces
local defects — punctures — in the toric code, and provides an overview of the prop-
erties of a punctured system. The following subsections focus on the calculations of
the effect of a small perturbation applied to a punctured toric code setup — Subsec-
tion 5.3 approaches the punctured toric code by use of Kitaev’s self-energy expansion,
while Subsection 5.4 analyses such a system by use of quasi-adiabatic continuation
and the Lieb-Robinson bounds. A summary and interpretation of the results is found
in Subsection 5.5.

Section 6 is a compilation of the properties of topologically ordered quantum spin
systems and tools used in the analysis of the related problems in quantum informa-
tion theory that were presented in this thesis, as well as the accomplished results.
It is an overview of the topics that were discussed in this work, and it provides a
short summary and interpretation of the calculated bounds. This section finalizes the
thesis by presenting a summary of the introduced topic, and providing an outlook for
the direction of future work.

An expanded Croatian abstract, of the length of a minimum of 20% of the textual
content in the thesis, can be found in Section 7.



2 Quantum Spin Systems and Topological Order

A quantum spin system [21] is a term denoting a toy model that is most commonly
used to examine a nonrelativistic quantum system with some number of degrees of
freedom that each have a finite-dimensional state space. Quantum spin systems are
one of the types of systems that are investigated under the denominator of the the-
ory of quantum many-body systems, and they may exhibit macroscopically unusual
properties that challenge the understanding of the underlying mechanisms that are
observed in such systems, providing a relatively fresh challenge for many areas of
modern physics.

This section serves as an introduction to the topic of topological order. The first
part of the section (Subsection 2.1) explains the concept of quantum many-body sys-
tems in the context of quantum spin systems, followed by an introduction to the
topic of quantum phase transitions (Subsection 2.2). In the second part of the sec-
tion, topological order is described by a definition relating to a topologically ordered
system’s Hamiltonian (Subsection 2.3), as well as two alternative and equivalent ap-
proaches relating to the system’s phases and its states (Subsection 2.4), and finally,
some examples on the experimental realization of topologically ordered systems are
given (Subsection 2.5) to round off the introduction to the underlying setup for the
remainder of the thesis.

2.1 Quantum Many-Body Systems

In general, the field of quantum many-body systems [22] is concerned with models
that can be used to investigate problems relating to the states and dynamics of sys-
tems that consist of a large number of interacting particles, in which the principles
of quantum mechanics are necessarily used to reach sufficiently accurate results. Its
classical equivalent is known as N-body systems, and the approach to solving these
is straightforward in the statistical limit. The particles in quantum many-body sys-
tems are usually very small so that quantum effects play a relevant (and commonly
complicated) role in the dealing with the system.

One of the types of systems that quantum many-body systems deal with are quan-
tum spin systems. These systems feature some number of degrees of freedom spread
out on a graph, with each having a finite-dimensional state space, commonly asso-
ciated with spin. Additionally, there exists a notion of distance between the spin
particles in such graphs, providing a concept of locality [23,24].

This subsection provides a short introduction to quantum spin systems, as they
are approached in the theory of quantum many-body systems.

Instead of dealing with the properties and states of the individual elements of



the system, the research on quantum many-body systems deals with the states and
observables on a macroscopic level — commonly expanding, also, the systems to the
thermodynamic limit, where they consist of an infinite number of subsystems [25].
An important area of interest in quantum many-body systems are the phase tran-
sitions that may occur; an introduction to quantum phases is given in Subsection
2.2.
The Hilbert space of a quantum spin system A can be described using a tensor
product,
H=QH.,  dimH,=0(1), 2.1)

u€eA

where H,, refers to the Hilbert spaces of all the individual degrees of freedom in

the system, u. The time evolution of such a system is uniquely described by its

Hamiltonian, H;, and the Schrédinger equation, and it is commonly — as is true for
this thesis — approached in the Heisenberg picture, such that

d o

oY (¢)
SV (1) = Z[HY (1)) + (T)H (2.2)

where Y} is an operator or observable in the system, H is the system’s Hamiltonian,
and ¢ stands for time. That is, the state vectors of the examined system are handled
as time-independent, while all of the time-dependency is transferred to the operators
acting in the system:

Y(t) = eitlt/hye=itit/n, (2.3)

for simplicity of calculation.

The most common mathematical setup when it comes to exploring the properties
of these systems is a distribution of spin degrees of freedom on an integer lattice, with
local Hamiltonians, which means that the full Hamiltonian of the system, H, can be
written as the sum of Hamiltonians describing interactions between geometrically
local elements in the system, such that

H=Y "> Hgin, (2.4)

r<rg t€A

where B(7, ) denotes a ball of radius r that is smaller than some r(, around the point ¢
on the lattice describing the system, and Hp;,) is an operator that has support only
on this region. Most commonly, the systems in which || Hp(; )| decays rapidly with r
are considered. The quantum spin system models are a mathematical simplification
of complicated many-particle systems with high utility — they provide a strictly de-
fined enviroment for the calculation of the systems’ spectra, eigenstates, stationary
states, dynamics, and much more.

For a concise overview of the historical approach to quantum spin systems and the
important properties that such systems exhibit, see [21]. The quantum information
approach to quantum many-body systems is comprehensibly presented in a recently
composed manuscript [26].



2.2 Quantum Phase Transitions

For a very long time, the generally accepted description of phase transitions [27]
in condensed matter physics was given by Lev Landau’s symmetry-breaking theory
(and later expanded on in collaboration with Vitaly Lazarevich Ginzburg, dubbing it
the Ginzburg-Landau theory), and it described with satisfactory accuracy the phase
transitions in thus far observed orders of matter. However, the observation of the frac-
tional quantum Hall effect [28,29] changed the absolute prevalence of this paradigm.
In systems that exhibit the fractional quantum Hall effect several quantum Hall states
emerge, which are associated to certain filling factors, v, and characterized by differ-
ent physical properties, which can be regarded as different phases in a phase diagram
— but cannot be classified via the use of a local order parameter, as in the classical
Ginzburg-Landau phase transition theory. At temperatures sufficiently close to zero,
these properties can be described by the notion of topological quantum order (for an
overview, see [30] and [31]).

This subsection presents the basic ideas and concepts of quantum phases and
quantum phase transitions. Topological quantum order is described in more detail in
the following subsections — Subsection 2.3 and Subsection 2.4.

In the Ginzburg-Landau theory of phase transitions, the phase transitions between
different orders in matter are explained by a change of the physical symmetries in
the system. The occurrence of such symmetries in matter is described by a parameter
of order, which depends on temperature — as, for example, is commonly observed
in the transition between ferromagnetic and paramagnetic states in a material. The
basic notion of this theory is that a phase transition in a system occurs when it is in
the minimum of its free energy, which depends on the parameter of order.

Phase transitions in the systems that exhibit the fractional quantum Hall effect
cannot be accurately described by use of the Ginzburg-Landau symmetry-breaking
theory, as the same classically recognized symmetry may be observed for two differ-
ing phases. The observations of such phases marked the discovery of a new type of
order in matter — topological order (or topological quantum order), named after topo-
logical quantum field theory, which was primarily used to describe chiral spin states,
also found to exhibit this novel type of order [31]. Nowadays, topological order is
described and characterized by several approaches (see Subsection 2.3 and Subsec-
tion 2.4), but the systems that exhibit topological order are not yet well understood
at temperatures above absolute zero. For quantum computing and quantum informa-
tion theory, one of the most interesting properties of these systems is their robustness
against perturbations [20], as they are described by non-local observables — topolog-
ical invariants.

Quantum phases are phases of matter at zero temperature [32] — they correspond
to the degenerate ground states of the Hamiltonians of topologically ordered systems.

7



Let a quantum spin system on a lattice be described by a Hamiltonian H(g) with an
energy gap above the ground state space of the system, where ¢ is a dimensionless
coupling parameter, such that g couples only to a conserved quantity — for example,
have H(g) = Hy + gH,, where [Hy, H,] = 0, so that H, and H; can be diagonalized
simultaneously. The eigenfunctions of the Hamiltonian do not depend on the param-
eter g, even though the corresponding eigenvalues do. This means that there can
exist a value g = g. for which the ground state energy is non-analytic, such that an
excited state becomes the ground state (see Figure 2.1). The point of non-analyticity

) ) \/
/\

g g
(a) (b)

v

N
L

Figure 2.1: A representation of the eigenvalues of the ground state and first excited
state of a Hamiltonian H(g) = H, + gH; which depends on a dimensionless coupling
constant g, and where H, and H; commute and are independent of g. Figure (a)
shows a level-crossing, Figure (b) shows an avoided level-crossing. (Image taken
from [32].)

in a finite sized lattice presents a level-crossing, where such a point in an infinite
lattice may represent either a level-crossing or an avoided level-crossing (see Figure
2.1) in the infinite lattice limit. Any non-analytic point in the ground state energy
of an infinite lattice system is identified as a quantum phase transition [32]. In other
words, for a quantum phase transition to occur, the spectral gap above the ground
state of a quantum spin system must close. Such phase transitions may happen nat-
urally at the temperature of absolute zero, where quantum effects that warrant such
transitions become predominant. When a system goes through a quantum phase
transition, the nature of the correlations in its ground state usually changes.

The quantum phases in which a quantum spin system can be found represent spe-
cific long-range quantum entanglement patterns — or, topological order. The following
subsections provide concise descriptions of topological order.

2.3 Topological Quantum Order

Topologically ordered phases in quantum spin systems are a phenomenon most com-
monly described by comparison with the classical Ginzburg-Landau theory of ordered
phases in materials. Whereas the parameters of order that govern the symmetry
states of materials that can be accurately described by the Ginzburg-Landau theory



have been studied in detail and are fairly well understood (such as its polarization,
magnetization, crystal lattice deformation, or the wave function of electron pairs in
superconductors [33]), the theoretical approach to topologically ordered phases is
still not sufficiently conclusive. The concept of topological order is tied to the ex-
istence of global variables which are robust to local perturbations of the system’s
Hamiltonian. This ordering is not yet well understood at temperatures above abso-
lute zero, and it is currently approached from a number of different angles. In this
subsection, the description of topological order found in the recent works of Sergey
Bravyi, Matthew Hastings, and Spyridon Michalakis [20,34] will be presented in con-
junction with the general notions and implications of topological order.

We observe a system of quantum particles distributed on the sites of an /NV-dimen-
sional lattice A of linear dimension L, with periodic boundary conditions, for which
its Hilbert space is represented as stated in (2.1). If S(r) is defined as the set of
all blocks A C A with linear size r, where r > 0 (see Figure 2.2), it is valid that
S(L) = A, and S(r) = 0 for r > L. Considering a coarse-grained lattice, such that the

=N

-

Figure 2.2: An example of particles (shown as dots) distributed on the sites of a 2-
dimensional lattice of linear dimension L, with periodic boundary conditions, on a
torus. The green square on the enlarged image represents an example of a block A
with linear size 2, as described in the paragraph preceeding equation (2.5).

unperturbed Hamiltonian of the system, Hy, involves only interactions between par-
ticles inside of blocks A € S§(2) (an example is shown in Figure 2.2), the Hamiltonian
of the system can be written as:

Hy= Y Qa, (2.5)
)

AES(2

where ()4 is an interaction with support on A, and with the following properties:

Q% = Qa, QaQp = RpQa, for all A, B € 5(2). (2.6)

The commuting property of the Hamiltonian, as stated in (2.6), imposes a strong
restriction on it, and even though this holds as a requirement for the following def-
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inition, it is possible to describe topological order in more general terms, as in Sub-
section 2.4. Defining the Hamiltonian H, to have zero ground state energy, and a
finite spectral gap between the ground state energy and the energy of the first ex-
cited state, the projectors onto the ground subspace and the excited subspace of H,
can be defined as P and (@, respectively, as:

P= [ t-Qu, @=1-P (2.7)
AeS(2)
where [ is the identity operator. Similarly, the local versions of these operators, for
any block B € S(r > 2) are:

Ps= [ I-Qu) Qp=1— Pg. (2.8)

AeS(2)
ACB

To define the existence of topological order, the following two properties de-
scribed in detail in [20] (commonly known as TQO-1 and TQO-2) need to hold true,
assuming that there exists an integer L* > «L for some constant o > 0 and suffi-
ciently large L:

1. TQO-1: For any block A € S(r) with r < L*,
POLP =cP, ceC, (2.9)
for any operator O, acting on A.

2. TQO-2: For blocks A € S(r) with » < L* and B € S(r + 2), where B is the
block that contains A and all nearest neighbors of the sites in A, define reduced
density matrices p4 = Trsc(P) and p(AB) = Trsc(Pp), where A° = A\ A. Then

ker p4 = ker pi‘B). (2.10)

The integer L* is chosen to depend on the size of the lattice, L, in a linear fashion
so that it defines a length scale for local operations in the system. Its dependence on
L ensures that the stated properties of a system with topological order do not refer
only to strictly local subsystems, but describe global properties of the system instead.

The first condition (TQO-1) is commonly thought of as the chief definition of
topological order, and it states that it is impossible for a local operator to induce
a transition between orthogonal ground states of the system, or to distinguish be-
tween two such states. Consequently, it is coloquially known as the condition of
local indistinguishability of ground states of a topologically ordered system. From
the statement of the condition, it straightforwardly follows that for a system with an
orthonormal basis of ground states {|¢;) }, the local operator O 4 acts in the following
manner:

const. if i =7,

O N — (2.11D)
Vil Oaly) 0 it
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Therefore, it can be said that any information encoded in the ground state space of a
topologically ordered system is not affected by local perturbations.

The second condition defining the existence of topological order (TQO-2) states
that the projectors Pg and P must act equivalently on the subset A C B, certifying
that the local ground subspace of the system Py will be consistent with its global
ground subspace P, on subsets which are sufficiently far from the boundary of B.
This consistency may be violated in the cases where the observed region possesses a
non-trivial topology, e.g. a hole — then, the local ground subspace may include areas
with a non-trivial topological charge inside the hole, whereas this will not be the case
for the global ground subspace.

2.4 Other Definitions of Topological Quantum Order

In Subsection 2.3, one approach to describing a system exhibiting topological order
was presented. Generally speaking, topological order describes equivalence classes
in a system with long-range entanglement. However, the efforts to define topological
order are by no means complete; many different methods are used to tackle this prob-
lem. In this section, additional prominent approaches will be concisely described, as
also compiled in [30].

Topological quantum order can be described through the phases of Hamiltonians
of topologically ordered systems.

For a local quantum system whose Hamiltonian has a spectral gap above the
ground state space, and a smooth dependence on a parameter g, H(g), let |®(g;))
be a ground state of H(g;). For the ground state average of any local operator O,
(O)(g) (local in the same sense as the local operator O, in TQO-1 (2.9)), to be a
smooth function, the Hamiltonian of the system must remain gapped for all g. If
the gap closes for some g,., there exists a local operator such that its ground state
average reaches a singularity at g.. Defining |®(0)) as the ground state of H(0) and
|®(1)) as the ground state of H (1), it is possible to describe a quantum phase as an
equivalence class. If there exists a smooth path connecting the Hamiltonians H(0)
and H(1), H(0 < g < 1), such that no phase transition exists in the system along the
path, then the two ground states |¥(0)) and |¥(1)) belong to the same phase. If all
excitations above |¥(0)) have a gap, then for small enough g, the systems described
by H(g) is also gapped, and |¥(g)) is in the same phase as |¥(0)). Therefore, for
gapped systems, a quantum phase transition can happen if and only if the energy
gap closes through an adiabatic evolution. The reverse is also true: if two ground
states of a system that has a spectral gap above the ground state energy, |¥(0)) and
|¥(1)), are in the same phase, there always exists a family of Hamiltonians H(g),
such that the energy gap is finite for all g € [0, 1], and |¥(0)) and |¥(1)) are ground
states of H(0) and H(1), respectively.
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A system with non-trivial topological order is one that can be described with a
Hamiltonian that doesn’t lie in the same phase as the Hamiltonian with a product
state as its ground state.

An alternate, equivalent way to describe topological order found in quantum
states can be reached by employing a relation between quantum phases and quantum
circuits with finite depth.

A piece-wise local unitary operator with range [ is defined as U,,; = [ [, U;, where
U; is a set of unitary operators that act on disjunct regions with size smaller than
some finite number /. In this case, a quantum circuit with depth M is the product of
M piece-wise local unitary operators, such that U, = [[, U, pwl A visual representa-
tion of a quantum circuit can be found in Figure 2.3. Two ground states are said to
belong to the same phase if and only if one can be transformed into the other by use
of a quantum circuit with finite depth. A phase is topologically trivial if it contains a
product state.

Figure 2.3: A visual representation of a quantum circuit. The rectangles represent
unitary operators on regions of finite size /, and the lines represent their multiplica-
tion. The shading explains the causality in the system.

In [30] it is shown that the two definitions of topological quantum phases ex-
plained in this subsection are related in the following manner. For two gapped Hamil-
tonians that are in the same phase, H(0) and H (1), it follows from quasi-adiabatic
continuation (see Subsection 4.1) that their ground states, respectively |¥(0)) and
|¥(1)), belong to the same phase if and only if they are related by a local unitary
evolution. A local unitary evolution is an unitary operation generated by the finite
time evolution of a local Hamiltonian. Stated clearly,

W) ~ (O ff[¥(1)) = T [ B 97@] [3(0)), (2.12)

where 7 is the path-ordering operator, and H(g) = >, Oi(g) is a sum of local Hermi-
tian operators. As any local unitary evolution can be approximately simulated with a
constant depth quantum circuit, it follows that:

[T(1)) ~ [W(0)) iff [¥(1)) = Ugr, [T(0)), (2.13)

where M is a constant that is independent of the size of the system.
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For a quantitative measure of the global entanglement in the ground state of a
topologically ordered system, topological entanglement entropy is commonly used
[35]. For a system exhibiting topological order, topological entanglement entropy
is a constant that provides a measure of the long-range entanglement and the von
Neumann entropy of the system, which quantifies the entanglement of a bipartite
pure state. For more on this topic, see [35] and [36].

2.5 Experimental Realizations of Topologically Ordered Systems

The prospects of possible experimental realizations of topologically ordered systems
have slowly become a promising lead toward the construction of fault-tolerant quan-
tum computers. In this subsection, examples of the current reaches and prospects
of the experimental achievements in the field of topologically ordered systems will
be presented, with an accent on their potential application in topological quantum
computing.

Firstly, the relevant systems that naturally exhibit topological quantum order will
be presented, followed by an overview of the experimental approaches to the con-
truction of topologically ordered systems.

Historically, the most relevant type of systems that naturally exhibit topological
order is that in which the fractional quantum Hall effect can be observed (for example,
see [37], or the original publications [28,29]). In the fractional quantum Hall effect
experiments, a two-dimensional electron gas may be created on the interface of two
different semiconductors. Under strong magnetic fields, the Hall conductance of
the two-dimensional system shows quantized plateaus that can be found at specific
fractional values of e*/h, where e is the elementary electron charge, and 1 is the
Planck constant. The discovery and partial interpretation of these plateaus earned
Robert Laughlin, Horst Stormer, and Daniel Tsui the Nobel Prize in Physics in 1998
(see [16]), and the full explanation of the mechanism by which the fractional quatum
Hall effect comes to be contiues to be an unsolved problem.

Other notable examples include Majorana wires [38], (p, + ip,)-type supercon-
ductors [39,40] and superfluids [41]. An overview can be found in [42] and [43].

On the other hand, there exists a wave of different approaches to specifically en-
gineer microscopic interactions in systems that would then exhibit controlled topo-
logical order that would enable quantum computation, such as with optical lattices
(a comprehensive introduction to these can be found in [44]). Several academic
and technological research groups have been tackling this challenge; the following
paragraphs give a short introduction to some of these groups and their successes.

The first example is the group of John Martinis (currently affiliated with the Uni-
versity of California, Santa Barbara, and Google Inc.), where so-called Xmon qubits
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are created as part of a surface code (for an introduction to surface codes, see Sub-
section 3.3 and Subsection 5.2). Their recent relevant publications include [45]
and [46].

The group of Jerry Chow of the IBM Corporation has built a surface code that
consists of one sole plaquette, by use of Josephson junctions [47].

At the University of Innsbruck, the group of Rainer Blatt has constructed qubits via
ion traps and performed quantum error correction (for an introduction to quantum
error correction, see Subsection 3.1) on the smallest possible example of the two-
dimensional color code [48] (the color code is a stabilizer code — see Subsection 3.2
— not unlike the toric code — Subsection 3.3 — the introduction to which can be
found in [49]).

Many groups centered around the Delft University of Technology (also funded
by the Intel Corporation) are working on the experimental realization of surface
codes; the group of Leonardo DiCarlo has recently reported on the use of stabilizer
measurements on superconducting qubits [50].
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3 Fault-Tolerant Quantum Computation

Inasmuch as quantum mechanics has become an invaluable resource in the problem-
solving of modern physics, the theory of quantum information processing does have
its practical limitations, with ones of the most notable problems being those of quan-
tum decoherence and the instability of the used systems to perturbation. Because
of its quantum nature, the information that is encoded in quantum spin systems or
transferred through quantum circuits suffers from a relevant loss of reliability when
compared to its classical equivalent. For this reason, it is of immense use to develop
methods of fault-tolerant quantum computation. These methods provide a measure
to the extent of information lost, as well as techniques to increase its accurate preser-
vation when transferred or changed.

In this section, the basic principles of quantum error correction are presented
(Subsection 3.1), with the accent on the manner in which they apply to the stabilizer
formalism (Subsection 3.2). Finally, the toric code is introduced (Subsection 3.3),
and its stability under perturbation is discussed (Subsection 3.4).

3.1 Quantum Error Correction

Error correction is a concept in information processing that describes the methods
used to reliably protect some information being transferred or stored in the presence
of noise. Unlike classical information, quantum information suffers a great threat
of becoming corrupted because of the inherent properties owing to the principles of
quantum mechanics. For example, there exists the risk stemming from decoherence,
but also, potential leakage errors — as quantum information tends to be encoded
in systems that can attain more than the two levels of the binary system used for
classical information — run the risk of becoming relevant. This subsection covers
the basics of the theory of quantum error correction, its relevance and utility. Unless
otherwise stated, the chief literature source used in this section will be the compre-
hensive textbook on quantum computation and quantum information by Michael A.
Nielsen and Isaac L. Chuang [1].

In the theory of error correction, the main challenge consists of two steps — en-
coding some state containing the desired information, followed by decoding it suc-
cessfully. In classical computation this does not present a great practical problem,
as the failure rate of modern binary systems is negligibly small (less than one error
in 107 operations [1]). Because the probability of noise affecting classically stored
or transferred information is so small, the methods of preserving it are standardly
quite simple. A modest example is the repetition code. In this coding scheme, the
information is encoded by increasing the number of bits in the string by repeating
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the original bit (at least two times), as can be seem in Table 3.1. These bit strings

Original bit | Encoded bit

0 000
1 111

Table 3.1: The standard three bit repetition code.

are commonly called the logical 0 and logical 1. If a bit in the encoded message gets
changed (for example, from 000 to 100), the message will get decoded following the
principle of majority voting — choosing the decoded bit to be the one whose copies
appear most often in the encoded message, given that the probability of a bit flip is
not too high, which is to be expected of any reliable information processing scheme
(for the case of 100 that would be 0, as it appears twice, compared to the one ap-
pearance of the bit with the error, 1). Naturally, if the majority of the bits in the
encoded string experience a bit flip due to the presence of noise, the decoded bit will
be wrong, but for classical computation this is not a likely outcome, and it is eas-
ily tended to by increasing the number of copies of the original bit in the encoding
scheme. As for quantum information, the complexity and relevance of error correct-
ing codes increases because of the principles of quantum mechanics that govern the
processing mechanisms of quantum information.

Compared to the straightforward classical error correction, which relies on mea-
surement to decode information, quantum error correction suffers the issue of de-
stroying the quantum state upon observation, which makes the direct recovery of
the original state from the encoded state impossible. In addition, simple repetition
codes cannot be implemented in quantum computation because of the no-cloning
theorem [51], which testifies to the impossibility of duplicating a quantum bit. Fi-
nally, the errors encountered in quantum computation are continuous, which makes
an error correcting procedure much more difficult than the one used on classical in-
formation. A simple example of a quantum error correction code is the three qubit
bit flip code, which will be presented in short in the following paragraph.

The bit flip code may be used in a situation where there is a desire to protect the
information carried by qubits that are being sent through a bit flip channel, which
performs a bit flip on them with a probability p —i.e. [¢)) — o |¢)), where o = (})
is the Pauli X operator, while leaving them unchanged with the probability of 1 —p. If
the basis states of a qubit are defined as in Table 3.2, where |0;) and |1;) denote the
logical |0) and |1) states (as opposed to the physical ones!), the state of a single qubit
|Y) = a|0)+b|1) can be encoded as @ [000) +-b|111). Following this, the encoded state
is passed through the bit flip channel, after which the error correcting decoding pro-
cedure can be implemented. This is done in two steps: first an error-detection (also
called syndrome diagnosis) is performed, and after that the state can go through re-
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’ Original state ‘ Encoded state ‘
10) |0,) = [000)
1) 1.) = [111)

Table 3.2: The three qubit flip code.

covery. Similarly to the classical majority voting implemented on the repetition code,
what is considered here is a state in which an error — the bit flip — has occurred on
at most one of the qubits. A measurement is performed via four projection operators,
the result of which gives a specific error syndrome, as seen in Table 3.3. For example,

’ Projection operator ‘ Error syndrome
Py =000) (000] 4 |111) (111] no error
P, = |100) (100] + |011) (011] | bit flip on the first qubit
P, =|010) (010] + |101) (101] | bit flip on the second qubit
P; =1001) (001| +|110) (110| | bit flip on the third qubit

Table 3.3: The three qubit flip code error-detection projectors, with corresponding
error syndromes.

if the error occurred on the third qubit, the corrupted state is «|001) + b|110), and
(| Ps3|¢) = 1, with the corrupted state not being changed. The projective measure-
ment gives merely the syndrome — the information on which qubit experienced a bit
flip — but does not divulge anything about the original state. The principle of the
recovery process involves simply flipping the qubit that is recognized as having the
error, which gives the original state again: a |000) + b|111).

Many kinds of errors can occur to qubits, so this procedure is far from uniform,
but it is a clear example of a quantum error correcting code, and others process the
state information in a similar manner.

In general, any quantum error correction procedure on a quantum state can be
summarized as follows:

1. Encoding the quantum state into a quantum error correcting code, defined as a
subspace C of some larger Hilbert space, by a unitary operation, and commonly
referred to as the code space, or code subspace.

2. The system is exposed to noise.
3. A syndrome measurement is performed.

4. Arecovery procedure is performed depending on the error syndrome, returning
the system to the original state of the code.

17



To ensure a reliable measurement of the error syndrome, the chosen subspaces of
the total Hilbert space need to be orthogonal, and they must be defined as the un-
deformed versions of the original code space. This is crucial so that the errors that
occur on the system map the encoded states to orthogonal states, thus making the
recovery procedure more successful.

As the possible errors that may occur in quantum systems are many and varied,
and the same holds true to the employed error correcting codes, the full quantum
error correction procedures as such are commonly investigated in general terms.
For a system influenced by some noise that is described by a quantum operation &,
and whose recovery error correction operation can be written as a trace-preserving
quantum operation R, the error correction is considered successful if for any state p
with support in the code subspace C, the following is true:

(Ro&)p=np. (3.1)

The presented expression would be a trivial equality if the noise operator £ were a
unitary operator — this may not always be the case.

Additionally, the conditions that show whether a quantum error correcting code
protects against some noise £ can be summarized in the following theorem.

Theorem 3.1. Let C' be a quantum code, P the projector onto C, and £ a quantum
operation with operation elements — errors — {FE;}. An error correction operation R
that corrects £ on C' exists if and only if the following equality is true for some Hermitian
matrix ~ of complex numbers:

PE'E;P = ~,;P. (3.2)
Then, the set {E;} is called a correctable set of errors.

A proof of this theorem and further details on specific quantum error correcting
codes can be found in [1].

A notable example of quantum error correcting codes is the widely used CSS-type
(Calderbank-Shor-Steane) quantum code family (see [52] and [53]).

3.2 Stabilizer Formalism

The stabilizer formalism is a widely used and very powerful setting utilized to inves-
tigate various quantum error correcting codes in quantum mechanics. As the name
implies, it relies on the property of the stability of certain quantum states when some
operations are performed on them. In simple terms, for a state |¢), if by acting on
it with an operator P it is left unchanged, P |¢)) = |¢), it can be said that the state
|1) is stabilized by the operator P. The approach of working with operators that act
in a quantum state space instead of the states themselves often comes out as more
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convenient, presenting problems that are otherwise difficult to grasp in a clear and
concise manner. This subsection covers the basic definitions and descriptions of the
facets of the stabilizer code theory, as well as the conditions set on the construction
of stabilizer codes, laying out the base to enable the introduction of the toric code in
Subsection 3.3. Unless otherwise noted, the main reference for this subsection is [1].

Stabilizer codes are quantum error correcting codes which utilize the stabilizer
formalism in order to reach conclusions about the effect of noise in quantum infor-
mation processing.

The key idea of stabilizer codes lies in the utilization of the Pauli groups G under
matrix multiplication, defined as

G = {£], +il, £0%, +ic”®, 0¥, tic?, +0*, +ioc*} (3.3)

for a single qubit, where o%, 0¥, o* are the Pauli operators. The Pauli group for n
qubits consists simply of all n-fold tensor products of the elements of the Pauli groups
G of the considered qubits.

Definition 3.1. Let S be a subgroup of the Pauli group for n qubits, G,. For a vector
subspace Vs of all n-qubit states for which it is valid that (V¢ € Vi)A(VSe € S) @ Se |¥) =
|1), the subgroup S is called the stabilizer of the space V.

The motivation of this definition is easy to see — every element of the group Vy is
stable when acted on by the elements of S. Therefore, it can be said that Vg is the
vector space stabilized by the group S.

The choice of subgroup of the Pauli group is not arbitrary, as not all subgroups
can stabilize a non-trivial vector space — e.g. (—1I) |¥) = |¥) gives only |V) = 0. Two
trivial conditions arise: first, the subgroup cannot contain —I, and second, the ele-
ments of the stabilizer group must commute. It follows that, for a stabilizer group S
that is a subgroup of the Pauli group for an n-qubit system, G,, all of the generators
of the subgroup, ¢1, ... ,g,, will commute. The generators are chosen so that they
exhibit mutual independence — removing one generator would make the generated
group smaller.

The final important property of stabilizer codes touches upon the dimensionality
of the stabilized vector spaces