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terminally to the catalytically inactive Cas9 (dCas9) from Streptococcus pyogenes to create the dCas9-

TET1 molecular tool. I have also tested the activity of N-terminal fusion of TET1-dCas9. The TET1 

protein is a methylcytosine dioxygenase involved in active demethylation of 5-methylctosines to 5-

hydroxymethylcytosines. In context of gene expression, methylated CpG dinucleotides within gene 

promoters are usually associated with gene silencing, and unmethylated CpGs with active gene 

transcription. Constructed molecular tools were successfully used for targeted CpG demethylation in 

promoter regions of two candidate genes, MGAT3 and LAMB1. I also showed that following 

demethylation the MGAT3 gene changed expression level. I have compared MGAT3 gene activation 

rates achieved following demetlylation using dCas9-TET1 with a more conservative approach of 

VPR-dCas9 mediated direct activation. For this approach, I used an N-terminal fusion of VPR 

activation domain and dCas9 from Staphylococcus aureus (dSaCas9).  
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1. Introduction 
 

    Regulation of gene transcription is a complex process controlled at several hierarchical 

levels. Transcription occurs upon binding of transcription factors (TFs) which recruit RNA 

polymerase to the gene promoter region, but many complexes of different proteins are also 

involved in the process, needed for optimal chromatin remodelling via recruitment of various 

components of the large epigenetic machinery and optimal DNA folding and positioning (1). 

Maintenance of specific gene expression patterns defines cell identity and function. 

Epigenetic mechanisms, encompassing DNA methylation, posttranslational histone 

modifications, chromatin remodelling, positional information, action of non-coding RNAs 

and histone variants regulate and maintain gene expression patterns through cell divisions and 

development (2–4). 

     Epigenetic mechanisms have been recognized as crucial mediators of gene expression 

related to developmental biology (5), nevertheless only recently along with development of 

engineered molecular tools for targeted epigenome editing the straightforward approaches are 

available for unravelling these mechanisms in more detail. This was achieved by repurposing 

of platforms for targeted genome engineering for targeted manipulation of epigenetic marks. 

Most common strategies in construction of molecular tools for genome editing to date have 

been based on programmable nucleases created with Zinc finger (ZF) and Transcription 

activator-like effector (TALE) proteins. These systems possess the required ability to target 

and cleave a specific DNA sequence, but the assembly is quite tedious and tools have 

significant off-target activity (6–9). A novel technology based on CRISPR/Cas9 (clustered 

regularly interspaced palindromic repeats/CRISPR associated protein 9) system has recently 

emerged offering a potential for (epi)genome editing due to its programming simplicity 

(10,11).  

Repurposed CRISPR/Cas9 systems, using the inactivated Cas9 nuclease (dCas9) for 

targeting by small single guide RNA (sgRNA) molecule, have been successfully used for 

delivery of various effector domains to any sequence of interest, acting as epigenome editing 

tools. Several dCas9-based tools have been developed for targeted gene activation by 

recruitment of activation domains in mechanism called CRISPR activation (CRISPRa) and for 

targeted gene repression by steric interference or recruitment of repressor domains in so called 
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CRISPR interference (CRISPRi) (12). Fusions of dCas9 and catalytic domains of various 

epigenetic writers (enzymes that put on epigenetic marks) and erasers (enzymes that put off 

epigenetic marks) have also been developed for more specific epigenetic manipulations. 

Fusion of dCas9 and the catalytic core of the human acetyltransferase p300 successfully 

acetylyzed histone H3 lysine 27 (H3K27) at targeted sites and activated gene expression from 

promoters and enhancers (13). Through previous efforts of my group, we successfully 

repurposed the CRISPR/Cas9 system for targeted DNA methylation by fusing dCas9 with a 

catalytic domain of human DNA methyltransferase 3A (DNMT3A) and achieved gene 

repression through targeted promoter CpG methylation (14).  

     Hypothesis of this doctoral thesis is that demethylation of certain CpG sites regulates gene 

expression. Therefore, the aim was construction of CRISPR/dCas9 molecular tool for targeted 

cytosine demethylation, which would enable interrogation of the functional relevance of 

individual CpG sites within promoters of the candidate genes for transcriptional regulation.  

DNA methylation is a process in which a methyl group (-CH3) is added to the fifth carbon 

atom of cytosine generating 5-methylcytosine (5mC) base. In mammals, more than 98% of 

DNA methylation occurs in CpG dinucleotides in somatic cells. It is an important epigenetic 

mechanism regulating gene expression, embryonic development, genomic imprinting, 

maintenance of genome stability and chromatin structure (3). Establishment and maintenance 

of genome methylation pattern plays an important role in normal cell function. Aberrant 

methylation status leads to development of various multifactorial diseases, including 

inflammation, diabetes and cancer (15). Protein glycosylation is believed to be epigenetically 

regulated and it could be an important source of variability in a population and act as adaptory 

mechanism (16), while epigenetic deregulation of glyco-genes results in aberrant protein 

glycosylation and can lead to disease (17,18). Immunoglobulin G (IgG) is known to have 

different properties depending on its N-glycome, changing the immune response it mediates 

(19). Our group is primarily interested in epigenetic regulation of IgG glycosylation in 

inflammatory diseases and epigenetic deregulation in diabetes. In the context of gene 

expression, methylated CpG dinucleotides within gene promoters and other regulatory 

regions, such as enhancers, are usually associated with gene silencing, and unmethylated 

CpGs with gene transcription (3,20). Gene repression is achieved either through the 

interference of methyl group with TF binding or through recruitment of methyl-CpG binding 
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domain (MBD) proteins, which are part of repressive transcription complex consisting of 

histone deacetylases (HDACs) and histone methyltransferases (HTMs), responsible for 

repressive histone modifications, as well as of chromatin remodelers involved in formation of 

closed chromatin conformation (4). CpG demethylation associated with transcription 

activation can occur by active 5mC oxidation to 5-hydroxymethylcytosine (5hmC) catalysed 

by the TET enzymes or by replication-dependent passive CpG demethylation promoted by TF 

binding (21,22).  

     General goal was to develop CRISPR/dCas9-based molecular toolbox which would be 

modular and easily reconfigured for a range of applications in direct gene regulation and 

epigenome editing. Primary focus was on construction and validation of CRISPR/Cas9-TET1 

molecular tool for targeted cytosine demethylation. 

Specific goals were:  

i. Construction of expression cassette comprising Cas9 protein fused to functional domain 

targeted to specific genomic loci, with desired selection marker (fluorescent protein or 

antibiotic resistance). Functional domains chosen for delivery will be domains for 

activation, repression and DNA methylation and demethylation. Promoter choice will 

allow for inducible expression. 

 

ii. Construction of plasmid vector for expression of TET1 catalytic domain fused with dCas9 

nuclease. 

 

iii. Choice of DNA regions in genes of interest suitable for validation of constructed 

molecular tools. 

 

iv. Vector delivery to HEK293 and HEK293 FreeStyle cell lines, and optionally to B-

lymphocytes. 

 

v. Determining the methylation status of targeted DNA regions with bisulfite 

pyrosequencing tests designed for methylation status analysis of single, specific CpG 

sites. 
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vi. Analysis of hydroxymethylation status of targeted DNA region with bisulfite 

pyrosequencing tests designed for hydroxymethylation analysis. 

 

vii. Functional analysis (of gene expression levels) after epigenetic modulation with 

constructed molecular tool.  

 

     Here I have constructed a plasmid vector for expression of the TET1 catalytic domain 

fused with dCas9 nuclease from Streptococcus pyogenes for targeted DNA demethylation. 

This construct catalyses oxidation of 5-methylcytosines (5mCs), creating 5-

hydroxymethylcytosines (5hmCs) which are then turned to unmethylated cytosines via 

subsequent oxidation and repair. For purpose of the negative control, the catalytically inactive 

TET1 was generated by site-directed mutagenesis of the active site motif and inserted into 

CRISPR/dCas9 expression vector. Selection markers PuroR and EGFP were inserted 

downstream of T2A peptide linker at the C-terminus of the dCas9-TET1 fusion to allow for 

either puromycin selection or GFP screening of transfected cells. For delivery of the dCas9-

TET1 tool to specific CpG sites within promoters of the candidate genes, MGAT3 and 

LAMB1, I have designed several specific sgRNAs. Regions within promoters of the MGAT3 

and LAMB1 genes which are highly methylated in HEK293 cells were selected based on the 

previous pyrosequencing results. Designed sgRNAs were synthesized by oligo annealing and 

subsequently inserted in the vector downstream of the human U6 promoter. The genes 

MGAT3 and LAMB1 were chosen as candidate genes because both genes are GWAS hits for 

IgG glycosylation and inflammatory bowel disease (IBD) (23). Direct manipulation of 

MGAT3 and LAMB1 using CRISPR/dCas9-based tools would contribute to understanding of 

mechanisms involved in regulation of IgG glycosylation, and possibly revealing how aberrant 

IgG glycosylation contributes to inflammation.  

HEK293 cell line was used as a basic model in research and development of method for 

targeted DNA demethylation. I also tried to use the CRISPR/dCas9-based molecular tools in 

suspension cell line HEK293 FreeStyle transient system (24), which is an excellent 

biologically relevant model cell line because it secretes IgG molecules. I also tried to import 

the CRISPR/dCas9 constructs to primary B-lymphocyte culture by lentiviral delivery. 
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However, the optimization of the delivery method to HEK293 FreeStyle and primary B-cells 

turned out to be an incredibly tedious task and the scope of these experiments surpassed the 

extent of this research.  

     DNA from crude cell lysates of dCas9-TET1 transfected cells was bisulfite converted and 

purified for methylation analysis at targeted regions, and for analysis of hydroxymethylation 

status. CpG methylation status was determined using pyrosequencing after bisulfite 

conversion. However, conventional bisulfite sequencing methods are not precise in base 

definition when it comes to 5mC and 5hmC. Bisulfite treatment causes deamination of 

unmethylated cytosines to uracils, while both 5mCs and 5hmCs remain resistant to 

deamination during treatment and are therefore both sequenced as cytosines (25). Therefore, 

the method was not sensitive enough for determination of hydroxymethylation status, for 

which an oxidative bisulfite conversion approach was used followed by bisulfite 

pyrosequencing tests for targeted genes. Activity profile of dCas9-TET1 molecular tool was 

analysed on MGAT3 locus, and I have also tested the activity of N-terminal fusion of TET1 

catalytic domain and dCas9 from Streptococcus pyogenes (TET1-dCas9) on the same locus. 

     For gene expression analyses using quantitative real-time PCR (RT-qPCR), total RNA was 

isolated from transfected cells at the same time as DNA. Changes in gene expression were 

determined using ddCt relative quantification method. I have also compared MGAT3 gene 

activation rates achieved following demethylation using dCas9-TET1 with a more 

conservative approach of VPR-dCas9 mediated direct activation. VPR is a chimeric activation 

domain composed of the activation domains of VP64, p65 and Rta (26). I used a construct 

containing an N-terminal fusion of catalytically inactive Cas9 from Staphylococcus aureus 

(SaCas9) and VPR activation domain. The VPR-dCas9 construct was targeted to specific 

region in the MGAT3 gene using specific sgRNAs.   
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2. Literature review 

2.1 Genome editing  

With discovery of restriction endonucleases in the 1970s (27,28), first advances were 

made in the so called recombinant DNA technology, which gradually evolved to a point were 

targeted genome editing is broadly used for modifications of virtually any targeted DNA 

sequence in living cells and organisms. Targeted genome engineering is the modification of 

the genome at a precisely chosen locus. Selectively inactivating specific genes and measuring 

following effects on a phenotype could provide a direct insight into gene functions (29). The 

simplest form of genome editing is gene knockout by introducing a double stranded break 

(DSB) to targeted DNA sequence which results in recruitment of endogenous repair 

mechanisms of the cell. DSBs are repaired by homology-directed repair (HDR) or non-

homologous end joining (NHEJ). HDR requires a homologous DNA template to guide the 

high fidelity repair and can be used for insertion of specific sequence flanked with homology 

arms at the target site resulting in gene correction (30,31), reporter insertion, etc., while NHEJ 

happens randomly and is error-prone, resulting in small insertions-deletions (INDELs) and 

can be used for targeted gene disruption (32) (Figure 1).  

 

Figure 1. DNA DSB repair and possible outcomes. Chromosomal DNA DSB results in 

either NHEJ leading to indel mutations and gene disruption or HDR leading to precise gene 

editing. Taken from Adli, M. (33). 
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Synthesized short interfering RNAs (siRNAs) were used for targeted gene silencing, 

but validation of several thousand siRNAs used to target various genes demonstrated that 

many targets were difficult to knock down as the approach seriously lacked efficiency (34). 

Homing nucleases or meganucleases, which are rare-cutting endonucleases capable of 

recognizing long stretches of DNA, have also been used for targeted genome editing (35). For 

this approach, meganucleases for targeted cleavage have to be selected from libraries of 

variants (36). First sophisticated genome editing tools were programmable nucleases inducing 

targeted DSBs based on Zinc finger (ZF) proteins and Transcription Activator-like Effectors 

(TALEs), which both possess the required ability to target a specific DNA–binding site. These 

programmable nucleases both have the FokI nuclease domain C-terminally fused to differing 

DNA binding domains.  

First engineered programmable nucleases were zinc-finger nucleases (ZNFs) with ZF 

protein domains, which were observed in transcription factor TFIIA form Xenopus laevis as 

DNA-binding motifs (37). ZF structural motifs consist of around 30 amino acids that fold into 

a specific structure where the Zinc ion stabilizes conserved Cys2His2 residues (2 Cys residues 

in β-sheets, and 2 His residues in α-helix). Each ZF interacts with a specific triplet it 

recognizes in the DNA sequence when its α-helix is inserted into the major groove of the 

double-helix (38). Since ZFs bind independently they can be linked in a peptide designed to 

bind a specific target site. ZFNs are fusions of zinc finger protein domains with C-terminal 

domain of FokI endonuclease from Flavobacterium okeanokoites which has a nonspecific 

DNA-cleavage activity (39). FokI nuclease dimerizes and dimers bind opposite DNA chains 

so two different ZFNs binding in close proximity (left and right ZFN) are required for 

targeted cleavage of one specific site (40) (Figure 2). Each of the monomeric ZFNs contains 

ZF modules recognizing specific triplets and binds to one of the two target half-sites separated 

by a 5–6 bp spacer sequence. Multiple monomeric ZFNs with different sets of ZFs can be 

designed for a single half-site (6). Individual pre-selected ZF domains have to be assembled 

when constructing ZFNs. Both natural ZFs with known triplet specificities and synthetic 

fingers targeting ANN, TNN, CNN and GNN are used (7,41). ZFNs usually have between 3 

and 6 ZF motifs connected in a manner that enables them to bind target sequences from 9 to 

18 base pairs in length (Figure 2). The success rate of modular assembly of ZF domains has 

been reported to be low and that remains a huge difficulty in construction of molecular tools 
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based on ZF proteins (42). Validation of 315 ZFN pairs targeting 33 sites in the CCR5 gene 

showed that 44% ZFNs successfully cleaved target DNA in vitro, but only around 7% were 

efficient in cell-based reporter system. Higher success rates were observed for ZFN pairs in 

which each monomer contained four ZFs in comparison with pairs of ZFN monomers 

containing 3 ZFs each (6). ZFNs have been successfully used for silencing of the long non-

coding RNA (lncRNA) MALAT1 in a manner that was more specific and 300x more efficient 

than before tried RNA interference approaches (43). ZFN off-target binding is a serious 

challenge and increasing the number of ZF motifs in modular assembly results in improved 

binding specificity, but makes the construction even more laborious.  

 

Figure 2. ZFN binding and DNA cleavage. A pair of ZFN monomers, each containing 3 

ZFs (1-2-3) linked to the cleavage domain of FokI nuclease via short linker. Each finger 

interacts with a specific triplet, so each ZFN binds 9 bp within the target site. When both 

ZFNs bind, FokI can dimerize into active nuclease and cleave DNA at indicated spacer 

sequence, separating two target half-sites (L) and (R). Taken from Cathomen and Joung (44). 

Significant step forward from ZFNs were Transcription activator-like effector 

nucleases (TALENs), which are fusions of TAL effector DNA-binding domains and FokI 

nuclease DNA cleavage domains (45). TALEs were identified from pathogenic bacteria 

Xanthomonas, which secrete these proteins to alter transcription of certain targeted genes in 

host plant cells to promote infection (46). Most investigated and commonly used TALE in 

genome editing is AvrBs3 from Xanthomonas campestris pv. Vesicatoria (47). TAL effector 

DNA-binding domain consists of repeats of conserved 33-34 amino acid sequence with 

variable 12th and 13th amino acids called Repeat Variable Diresidue (RVD). Each TALE 
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repeat recognizes a single nucleotide, its specificity determined by RVD (Figure 3). 

Secondary structure of TAL effector is predicted as two α-helixes flanking a loop domain in 

each repeat, RVD being inside the loop domain and accessing the DNA helix (46). TALE 

repeats are modularly assembled, like ZF domains, to target a specific DNA sequence (9). 

 

Figure 3. A pair of TALENs binding to the target site to enable FokI dimerization and 

DNA cleavage. Each TALEN is a fusion of TALEs at N-terminus (different coloured beads) 

and the FokI nuclease domain at C-terminus (blue shapes). Every TALE repeat consists of 33-

35 amino acids, its specificity for base recognition determined by RVD at positions 12 and 13 

(highlighted in red boxes). Total length of target sequence is typically 30-40 bp and for 

successful binding it must be preceded by T on each side (Ts in red boxes). When both 

TALENs bind, FokI can dimerize into active nuclease and cleave DNA inside the indicated 

spacer sequence. Taken from Kim and Kim (29).  

Two common types of TALEs were tested in comparison with ZFN controls in a 

yeast-based LacZ reporter system and showed similar levels of targeted cleavage (45). 

Although TALENs and ZFNs might have comparable activity, TALENs are a better tool 

because of much looser targeting requirements since each TALE repeat recognizes a single 

base instead of a triplet (48). Because of this one-to-one correspondence between RVD 

modules and the four bases, TALENs can be designed to target almost any given DNA 

sequence which gives them a great advantage over ZFNs as many DNA sequences may lack 

targetable sites for ZFs (29). The only targeting limitation seems to be that target sites must be 

preceded by a thymine for TAL effector activity (49). Modular assembly of TALENs is time-

consuming as they often consist of up to 20 RVDs, and even the most sophisticated methods 
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for Golden Gate assembly of TALENs developed require several cloning and selection steps 

in which fragments with specific compatible overhangs must be assembled for multiple RVDs 

in precise order (50).  

 

2.2 CRISPR/Cas9 system 

New systems recently emerged which greatly simplify the development of 

programmable nucleases, and these are the Clustered regularly interspaced short palindromic 

repeats (CRISPR)/CRISPR-associated (Cas) systems (10,51). The CRISPR/Cas systems play 

an important role in adaptive immunity of bacteria and archaea through guided cleavage of 

foreign nucleic acids. CRISPR loci consist of short palindromic repeats of CRISPR repetitive 

sequences and variable spacer sequences, next to cas genes. CRISPR spacer sequences are 

homologous to foreign DNA elements which CRISPR/Cas system recognizes and integrates 

in this form via cas genes, so the system works as a surveillance mechanism which recognizes 

foreign DNA, targets these homologous sequences with guide RNAs transcribed from the 

integrated spacer sequences and cleaves them through endonuclease activity (52–54). 

Discovered CRISPR/Cas systems can be roughly divided in two main classes and six types, 

differing in mechanisms of guide RNA processing, mature guide RNA length and Cas protein 

interactions. The class I CRISPR system is divided into types I, III and IV, which consist of 

large complexes of several coordinated proteins. The class II CRISPR system is divided into 

types II, V and VI, and these systems cleave foreign DNA with one RNA-guided nuclease 

(55,56). CRISPR-associated protein 9 (Cas9) is a part of class II CRISPR/Cas systems which 

works as an endonuclease guided by a short RNA molecule targeting a specific 20 bp 

sequence where it introduces a DSB. The Cas9 also requires a conserved sequence motif 

directly downstream of the targeted sequence, called protospacer-adjacent motif (PAM). 

CRISPR spacer sequences are transcribed into precursor CRISPR RNA (pre-crRNA) which is 

then cleaved into short CRISPR RNAs (crRNAs) targeting complementary protospacer 

sequences in foreign targets. For successful guidance of CRISPR/Cas systems, mature crRNA 

has to pair with a trans-activating crRNA (tracrRNA) to form a protein-RNA complex needed 

for targeted cleavage. In class II systems, pre-crRNA has to pair with tracrRNA in the 

presence of the Cas9 for its processing by endoribonuclease RNase III to occur (57,58) 
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(Figure 4), and it has been shown that fusing crRNA and tracrRNA into a single guide RNA 

molecule (sgRNA) successfully guides Cas9 as well (10).  

The Cas9 protein from Streptococcus pyogenes SF370 type IIA CRISPR/Cas system 

(SpCas9) is the most commonly used in engineered CRISPR/Cas9 systems, as it has been 

studied in detail (57). This CRISPR/Cas9 locus consists of four cas genes, six spacer 

sequences flanked by repeats and a gene encoding a tracrRNA (Figure 4). SpCas9 recognizes 

a 5'-NGG-3' PAM sequence, which is quite frequent within the human genome (occurs every 

8 bp). However, since both sense and antisense strands can be targeted for inducing a DSB, a 

possible PAM recognition sequence can be found once in every 4 bp, what makes the system 

ideal for genome editing in human cells. It is incredibly convenient to construct a 

programmable nuclease based on CRISPR/Cas9 system since one must simply design a 

sgRNA complementary to sequence of interest and deliver it together with Cas9, while for 

ZFNs and TALENs a new set of proteins must be engineered for each new target. Therefore, 

engineered CRISPR/Cas9 systems finally provide an affordable and easy approach to genome 

editing.  

 

Figure 4. Streptococcus pyogenes SF370 CRISPR/Cas locus and CRISPR/Cas9 DNA 

cleavage. Streptococcus pyogenes SF370 CRISPR/Cas locus contains 4 cas genes (blue; cas9, 

cas1, cas2, csn2), tracrRNA gene (yellow; tracr), repeats (white boxes) and spacer sequences 

(coloured boxes 1-6). Spacer sequences are transcribed into pre-crRNA which pairs with 
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tracrRNA bound by Cas9. RNase III is recruited for cleavage of pre-crRNA forming Cas9-

tracrRNA-crRNA complexes. These complexes scan dsDNA molecules for the presence of a 

PAM sequence (NGG). Following PAM binding, crRNA pairs with its homologous sequence 

and the Cas9 unwinds the DNA duplex and cuts the recognized foreign DNA. HNH nuclease 

domain cleaves the complementary strand (target strand) and RuvC nuclease domain cleaves 

the noncomplementary strand (non-target strand). Taken from Marraffini, L. (58).  

First successful genome editing of human cells with engineered CRISPR/Cas9 system 

was done in HEK293 cells and the target was the EMX1 gene (59). EMX1 was disrupted by 

indel mutations resulting from NHEJ after Cas9 targeted cleavage, but Cas9 was also 

successfully converted into a nickase which facilitates HDR and specific point mutations were 

introduced to EMX1 coding sequence resulting from HDR with a donor template with a 

specific single nucleotide mutation. Human codon-optimized Cas9 protein was developed and 

cloned into a mammalian expression system with a C-terminal SV40 nuclear localization 

signal (NLS). This system was successfully used for targeted cleavage in cell-based reporter 

system in HEK293T cells and for targeting of endogenous loci in K562 cells and PGP1 

human induced pluripotent stem cells (iPSCs) (60). Purified Cas9 protein was successfully 

delivered to human leukaemia K562 cell line, embryonic stem cells (ESCs) and fibroblasts 

together with sgRNA in a RNP complex and efficiently induced targeted mutations. Primary 

cells are usually difficult to transfect, so direct delivery of RNP complexes might be a way to 

overcome the problem as it seems less stressful to sensitive cells. Such approach simplifies 

the construction and delivery of genome editing tools because simply replacing the sgRNA in 

the RNP complex makes the system ready for new targeting (61).  

All three described types of programmable nucleases have been proved successful in 

targeted chromosomal DNA cleavage, but they differ in composition, targeting requirements, 

binding properties and limitations, off-target issues and other respects (29).  

 

2.3 Epigenome editing 

Disrupting genes by introducing indels followed by DSBs is precarious as it can 

potentially lead to off-target mutations, which is still a major concern in genome editing. 
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Epigenetic silencing can have the same repressive effect as gene disruption and 

CRISPR/dCas9 is a great platform for targeting of epigenetic effectors. Most of the complex, 

multifactorial diseases have a strong epigenetic component, so targeted epigenome editing is 

fundamental for elucidating their pathology. Targeted manipulation of epigenetic marks is 

also imperative for understanding the complexities of gene regulation in the context of 

responses to environmental stimuli, development and pluripotent stem cell self-renewal and 

differentiation (62). Direct functional studies of epigenetic modulation of gene expression 

have been limited by the lack of methods for targeted manipulation of epigenetic marks until 

development of platforms for DNA targeting. For example, effects of DNA methylation on 

gene expression could only be analysed after treatment of cells with non-specific methylation 

inhibitors, which is not a good approach as it results in global CpG demethylation of treated 

cells. ZFs, TALEs and CRISPR/Cas9 system, have been successfully repurposed in the last 

few years for recruitment of transcription factors and epigenome-modifying enzymes for 

targeted chromatin modifications. dCas9-based tools are becoming the most widely used 

platform due to its superior efficiency, specificity, versatility and ease of use (62). Epigenome 

editing might be necessary for downregulation of certain genes as it has been documented 

that, in some cases, successful gene targeting and knockout using TALENs was possible only 

after DNA methylation marks were removed from target sites using an inhibitor of DNA 

methyltransferase (50). Development and use of newly designed epigenome editing tools will 

provide information on how specific epigenetic marks are established and maintained through 

cell divisions. Fusions of catalytic domains of DNMTs and TET enzymes with ZFs, TALEs 

and dCas9 enabled targeted manipulation of methylation marks and have given new insights 

into the causal effects of specific CpG sites for gene expression regulation. Apart from 

DNMTs and TET CDs for targeted manipulation of DNA methylation, any activation or 

repression domain can be used in these systems for targeted modulation of transcription, as 

well as CDs of various epigenetic effectors for targeted chromatin modifications.  

Recent studies include several successful examples of direct epigenome modification with 

molecular tools based on ZF proteins and TALEs. In one study, 223 yeast chromatin regulator 

proteins were fused to programmable ZFs and tested in a yeast reporter system, and also later 

recruited in combination with the VP16 transactivator to provide an even deeper insight into 

transcriptional mechanisms (63). Fusion of ZFs with DNMT3a catalytic domain has been 
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successfully used for targeted methylation of SOX2 (TF implicated as oncogene in breast 

cancer) and Maspin (tumor suppressor usually methylated and silenced in metastatic breast 

cancer cells) gene promoters in human breast cancer lines SUM159 and MCF7 (64). Fusion of 

ZFs with DNMT3a CD successfully increased methylation levels of EpCAM gene promoter 

up to 26% in transiently transfected human ovarian cancer cells SKOV3 cells and reduced its 

expression levels, which are usually elevated in ovarian cancer cells (65). In another study, 7 

different ZF proteins were fused with the transcriptional activator VP64 (a tetramer of the 

herpes simplex virus VP16 activator domain) creating artificial transcription factors (ATFs) 

used for targeting of p16 locus in p16-active 293T cells and several of them successfully 

activated p16 expression. Interestingly, stable genomic integration of one selected p16ATF 

into H1299 cells resulted in demethylation of p16 CGI and trimethylation of histone H3K4, 

while trimethylation of H3K9 and H3K27 in the p16 promoter were noted absent (66). This is 

a great example of how direct epigenome editing studies provide insights into interrelatedness 

and interdependence of epigenetic marks.  

TALEs have a natural activation domain, but can be fused with more potent activation 

domains such as VP16 activation domain or VP64. Fusions of designed TALEs and VP64 

activation domain significantly increased VEGF-A (vascular endothelial growth factor A) 

gene expression in HEK293 and primary BJ fibroblasts (67). Designer TALEs were 

synthesized and used for specific modulation of endogenous genes expression in 293FT cells 

and targeting of SOX2 and KLF4 gene promoters with these tools upregulated their expression 

by 5.5 ± 0.1 and 2.2 ± 0.1 folds, respectively (68). In a study by Maeder and collaborators, 

designer TALEs were fused with TET1 protein and TET1 CD and used for targeted 

demethylation of CpG sites within promoter region of KLF4 gene in human K562 cells. 

Fusions with TET1 CD induced significantly higher demethylation changes than those with 

full length TET1 protein. One of the tested TALE-TET1-CD fusions reduced the methylation 

of CpGs located 10 and 16 bp from the 3’ end of the construct binding site by 21% and 30%, 

respectively. Such designer TALE-TET1-CD fusions induced significantly higher levels of 

RHOXF2/2B homeobox and HBB (human beta-globin) genes when targeted to their promoter 

regions (69).  

     Streptococcus pyogenes CRISPR/Cas9 system has been repurposed for epigenome 

editing by inactivating Cas9 nuclease with induced mutations in active sites of both RuvC 
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(D10A) and HNH (H840A) cleavage domains generating the catalytically inactive dCas9. 

With abolished nuclease activity, CRISPR/dCas9 guided by sgRNA molecule can easily serve 

as a platform for delivery of various functional domains to gene promoters and enhancers, and 

any other regions of interest (Figure 5). Fusions of dCas9 and domains of different repressive 

chromatin modifiers such as KRAB (Krüppel associated box) effector domain and CS 

(Chromo Shadow) domain delivered with sgRNAs expressed from a murine RNA polymerase 

III U6 promoter enabled efficient transcriptional repression in human and yeast cells (12). In 

the same study, fusions of dCas9 and various activators such as VP64 or p65AD activated 

gene expression in HEK293 cells (12). In another study, a dCas9-VP64 expression plasmid 

was co-transfected with expression plasmids for 4 sgRNAs (individually and combined) 

targeting the IL1RN gene promoter in HEK293T cells and induced substantial gene activation. 

Combination of sgRNAs showed to be most efficient in gene activation, suggesting that 

targeting multiple sites in the promoter might provide most efficient gene activation (70). In 

our group, we successfully repurposed the CRISPR/Cas9 system for targeted DNA 

methylation by fusing dCas9 with a catalytic domain of human DNA methyltransferase 3A 

(DNMT3A) and achieved gene repression through targeted promoter CpG methylation (14). 

In a study by Stepper et al., dCas9 was fused with a Dnmt3a-Dnmt3l construct and this tool 

was successfully used for targeted DNA methylation at the EpCAM, CXCR4 and TFRC gene 

promoters and subsequent gene repression. Methylation peaks were observed 25 bp upstream 

and 40 bp downstream of the PAM recognition sites (71). This is a nice example of how 

multimerization of protein complexes and such fusion design might provide an elegant way of 

achieving potent gene activation or repression effects. 

TALE fusion with histone demethylase LSD1 successfully removed marks of active 

chromatin from targeted enhancers which resulted in downregulation of proximal genes (72). 

This is an interesting approach for unravelling the enhancer-target gene relationships. Fusion 

of dCas9 and the catalytic core of the human acetyltransferase p300, successfully acetylyzed 

histone H3 lysine 27 at targeted sites and activated gene expression from promoters and 

enhancers. Interestingly, for dCas9-p300 no synergistic activation effects were observed with 

multiple sgRNA targeting (13), which suggests different mechanisms of activation than in 

classic CRISPRa targeting. Development of epigenetic tools for targeting of different 
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chromatin modifiers to any cell model of interest, individually or in combination, will allow 

dissection of complex relationships between different chromatin marks.  

sgRNA component of CRISPR/dCas9 system can also be repurposed for ncRNA delivery, 

in a manner that ncRNA sequence gets incorporated in sgRNA sequence without altering its 

DNA binding and dCas9 recruitment (62). Shechner and collaborators developed a platform 

named CRISPR-Display which incorporates large RNA segments in its sgRNA part and can 

be used for lncRNA function studies (73). 

 

Figure 5. CRISPR/dCas9 systems for targeted epigenome editing. Chromatin modifiers 

and fluorescent proteins are modularly assembled with dCas9 for targeted manipulation of 

epigenetic marks or chromatin visualization. Grey dotted shapes indicate effector domains 

that can be replaced with modules of interest. A) various transcriptional activators or 

repressors (or their CDs) can be fused to dCas9 for transcriptional regulation; B) histone 
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modifiers (or their CDs) such as histone demethylase (HDM), histone methyltransferase 

(HMT), histone acetyltransferase (HAT); histone deacetylase (HDAC); histone ubiquitin 

ligase (HUbq) can be fused to dCas9 for inducing covalent histone modifications; C) enzymes 

responsible for DNA methylation and demethylation (or their catalytic domains) can be fused 

to dCas9 for targeted DNA methylation and demethylation; D) chromatin-interacting ncRNAs 

can be fused to dCas9 for RNA relocation; E) fluorescent proteins can be fused to dCas9 for 

targeted chromatin visualization. Taken from Pulecio et al. (62). 

 

2.4 Epigenetic regulation of gene expression  

Genetic information i.e. the nucleotide sequence in the DNA molecule, cannot be 

solely responsible for the multi-layered informational structure that makes a functional living 

organism. Epigenetics presents an additional layer of information, defining and ordering the 

underlying nucleotide sequence. Epigenetic mechanisms run gene regulation, determining 

when, where and in what manner will genes be expressed. The term epigenetics originates 

from the greek word epigenesis originally referring to differentiation processes in 

development and was created in 1942 by Conrad H. Waddington who described the 

epigenotype as a compilation of developmental processes between genotype and phenotype 

(74). Epigenetics is usually defined as mitotically and meiotically heritable changes in gene 

expression not encoded in the DNA sequence. These changes result from epigenetic 

mechanisms, encompassing DNA methylation, posttranslational histone modifications, 

chromatin remodelling, positional information, action of non-coding RNA molecules 

(ncRNAs) and histone variants. Epigenetic mechanisms are cooperative and interdependent. 

In animals, more than half of the genome is repressed in every cell of the organism, which 

suggests a sophisticated strategy for gene regulation and global mechanisms being in charge 

of maintaining gene expression patterns through cell divisions and development (4). DNA 

methylation refers to a covalent modification of cytosines in DNA molecule - an epigenetic 

modification important for the normal regulation of transcription, embryonic development, 

genomic imprinting, genome stability and chromatin structure. It was first proposed as a 

stably inherited epigenetic modification altering gene expression in 1975 (75,76) and it is the 

best known epigenetic mechanism since it has been easy to analyse even decades ago as there 
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were many known restriction endonucleases sensitive to cytosine methylation. DNA 

methylation in gene promoters is usually associated with gene repression, either through the 

interference of methyl group with transcription factor (TF) binding or through recruitment of 

methyl-CpG binding domain (MBD) proteins, which are part of repressive transcription 

complex consisting of histone deacetylases (HDACs) and histone methyltransferases (HTMs), 

responsible for repressive histone modifications, as well as of chromatin remodelers involved 

in formation of closed chromatin conformation (4). Covalent modifications of histones 

(acetylation, methylation, phosphorylation, sumoylation, ubiquitination, ADP-ribosylation 

and O-GlcNAcylation) are known to alter chromatin conformations and affect transcriptional 

states (77). Specific histone modifications are correlated with active and repressive chromatin 

states. For example, acetylation of histone H3 at position of lysine 27 (H3K27ac) is known as 

a mark of transcriptionally active chromatin, and tri-methylated histone H3 at position lysine 

27 (H3K27me3) is associated with repressive chromatin states (78). Histone modifications are 

mostly readily reversible, while DNA methylation marks are considered more stable. Micro 

RNAs (miRNAs), siRNAs and lncRNAs can also modify chromatin and act as co-

transcriptional silencing mechanisms (79). siRNAs guide Argonaute (AGO) and PIWI family 

of proteins to complementary RNA scaffolds and help recruit endogenous repressive 

mechanisms which induce DNA methylation and/or repressive histone modifications (79,80). 

The ENCyclopedia Of DNA Elements (ENCODE) project aims to identify and catalogue 

functional elements of the genome by using a variety of high-throughput methods (81). So far, 

ENCODE project discovered many novel non-protein-coding transcripts as well as previously 

unrecognised TSSs, and showed that histone modification patterns are predictive of presence 

and activity of TSSs (82). These, and other findings provided invaluable insights into the 

complex and dynamic epigenome. 

 

2.5 DNA methylation and demethylation 

DNA methylation is a process in which a methyl group (-CH3) is added to the fifth carbon 

atom of cytosine generating 5-methylcytosine (5mC). In plants, cytosines can be methylated 

in CG, CHG or CHH contexts (H being A, T or C) (83). In mammals, more than 98% of DNA 

methylation occurs in CpG dinucleotides in somatic cells. Interestingly, in embryonic stem 
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cells (ESCs) nearly 25% of all methylation occurs in non-CpG sites (84). CpG dinucleotides 

are not equally distributed along the genome but are clustered into CpG islands (CGIs) which 

are on average 1000 bp long and usually unmethylated. Mammalian genomes are CpG-

deficient because of the mutagenicity of 5mC itself (85), and most CGIs are kept 

hypomethylated, through not sufficiently understood mechanisms. High-throughput DNA 

sequencing of mouse and human genomes revealed similar CGI numbers per haploid genome 

(86). In both genomes around 50% of detected CGIs associated with annotated transcriptional 

initiation sites, the remaining 50% distributed equally between genes and within gene bodies. 

Those intergenic and intragenic CGIs are referred to as orphan CGIs due to their “mysterious” 

functional significance (86). Most CGIs are probably sites of transcriptional control, including 

orphan CGIs quite remote from annotated promoters (87). CpG methylation within gene 

promoters is usually correlated with gene transcription. 5mCs can directly interfere with 

transcription factor binding or they can be specifically bound by MBD proteins following 

recruitment of the machinery responsible for other epigenetic modifications, usually histone 

modifications, which create a transcriptionally repressive chromatin state (20,87). Some of the 

co-repressors recruited to methylated CpG sites are histone deacetylases, histone 

methyltransferases, as well as chromatin remodelling complexes (88). 

     DNA methylation is catalysed by specific enzymes called DNA-methyltransferases 

(DNMTs). In mammals, there are 3 main DNMTs: DNMT1, DNMT3A and DNMT3B. 

DNMTs catalyse the transfer of methyl group from the main donor of 5-mC - molecule S-

adenosylmethionine (SAM) - to the 5th carbon atom of cytosine (Figure 6). DNMT3A and 

DNMT3B are essential for genome-wide de novo DNA methylation during development, 

while DNMT1 acts on hemi-methylated DNA and maintains the methylation pattern through 

DNA replication (90–92). DNMT3A and DNMT3B show equal affinity for hemi-methylated 

and non-methylated DNA (93). In living cells there is also DNMT3L, which is enzymatically 

inactive, however essential for establishment of methylation as it activates DNMT3A and 

DNMT3B by binding to their catalytic domains (94). DNMT3L recognizes unmethylated 

histone H3 lysine 4 and recruits and activates DNMT3 for de novo DNA methylation. 

DNMT2 is also a member of this protein family and is capable of cytosine methylation, but 

seems to act on tRNA rather than on DNA (95). Some insulator/boundary proteins (96,97) 
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and the RNAi repression system, are probably also involved in establishing and maintaining 

DNA methylation patterns, as well as MBD proteins and other chromatin-remodelling factors.  

 

 

Figure 6. DNA methylation by DNMTs. DNMTs methylate the fifth carbon atom of 

cytosine generating 5mC. S-adenosylmethionine (SAM) is a main donor of methyl group 

which is then converted to S-adenosylhomocysteine (SAH). Adapted from Li et al. (89).  

Establishment and maintenance of genomic methylation pattern plays an important role in 

organism development and normal cell function, with aberrant methylation status leading to 

development of various multifactorial diseases, including inflammatory and autoimmune 

diseases, diabetes and cancer (15,98). In mammals, DNA methylation pattern is established 

during embryogenesis and is maintained through DNA replications. DNA methylation and 

demethylation are part of the epigenetic reprogramming which happens in two waves, during 

pre-implantation development and during gametogenesis (99). Differential methylation of 1% 

of the genome in male and female gametes in mammals, called genomic imprinting, creates 

differing expression of so called imprinted alleles during development and results in 

functional differences between paternal and maternal genomes. DNA methylation pattern 

inherited from gametes is erased in pre-implantation development through genome-wide 

demethylation events. De novo methylation happens during the implantation of the embryo 

and the new pattern is established and maintained through future cell divisions (100).  

In female mammals, one of the two X chromosomes is silenced during early 

embryogenesis during the X-chromosome inactivation process in order to assure dosage 

compensation of X-linked genes. Process is controlled by Xic, the X-chromosome-

inactivation centre, and it includes coating the X chromosome by Xist RNA, DNA 
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methylation and histone modification (76,101). Another important function of DNA 

methylation is the silencing of transposons, which is crucial for genomic stability (102). 

Aberrations in the DNA methylation mechanisms have an important role in human disease. 

DNA methylation patterns are globally disrupted in cancer, with genome-wide 

hypomethylation and gene-specific hypermethylation events (especially in promoters of 

tumor-suppressor genes) occurring simultaneously in the same cell (103). Loss of normal 

imprinting leads to several human inherited genetic diseases (104,105) and mutations in MBD 

proteins can also alter methylation patterns and cause disease (106).  

The cytosine residues methylated by DNMTs after DNA replication can be demethylated by 

passive “dilution” during subsequent replication or by active modification of the 5mC base. 

Passive DNA demethylation results from the errors which DNMT1 makes through 

maintenance of the methylation pattern during replication, which leads to the loss of some 

methyl groups (107). Active DNA demethylation requires enzymatic activity. There are 

several proposed mechanisms responsible for active DNA demethylation, involving various 

deaminases, DNA glycosylases which excise bases, enzymes involved in DNA repair and 

DNA-methyltransferases, but the pathways are not well understood and are actively 

investigated. Genome-wide demethylation was observed at specific moments of early 

development and gene-specific demethylation was observed in cells responding to various 

signals (99,108). First genome-wide demethylation occurs in the male pronucleus and it is 

rapid and independent of DNA replication, supporting the hypothesis that it happens actively. 

During this process, some genomic regions such as paternally imprinted genes and 

retrotransposons are protected from demethylation (99). Active DNA demethylation was first 

observed in extracts from murine erythroleukemia cells nuclei in 1982. Also, it seems that 

DNA demethylation can occur in cell-free environment with no DNA synthesis (109). Many 

mechanisms have been proposed as responsible for active DNA demethylation and it seems as 

it happens through cooperation of many different enzymes. MBD2 protein was proposed to be 

a DNA demethylase responsible for rapid DNA demethylation (110,111). Study by Metivier 

et al. proposed that DNMT3A and DNMT3B cyclically methylate Cs into 5mCs and 

demethylate 5mC through deamination (112). Discovery of a TET enzyme family has shifted 

the research focus to oxidation-mediated demethylation, and it seems that oxidation and DNA 

repair may be the key players in active DNA demethylation (21,113,114). 
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2.6 TET enzymes  

The mammalian TET protein family contains TET1, TET2 and TET3. These are large 

multidomain enzymes with highly conserved C-terminal catalytic domains (115) (Figure 7). 

TET1, TET2 and TET3 were discovered as DNA demethylases through computational search 

for homologs of trypanosome enzymes JBP1 and JBP2 (21). JBP1 and JBP2 are members of 

2-oxoglutarate- (2OG- or α-KG)- and Fe (II)-dependent oxygenase superfamily of enzymes 

found in trypanosomes which catalyse hydroxylation of the methyl group of T leading to a 

specific base J (β-D -glucosyl hydroxymethyluracil) formation. First, a specific T is converted 

into hydroxymethyldeoxyuridine (HOMedU), and then HOMedU is glycosylated to J (116), 

JBP1 and JBP2 are predicted to catalyse the first step (21). J is, like 5mC, associated with 

repressive chromatin states (116). Human TET1 (ten-eleven translocation 1) protein is 

capable to covert 5mC to 5hmC, and its overexpression in HEK293 cells results in reduced 

5mC levels (21). TET1 also further oxidizes 5hmC to 5-formylcytosines (5fmC) and 5-

carboxylcytosines (5caC), as well as TET2 and TET3 enzymes (Figure 8). Before the 

discovery of its role in DNA demethylation, TET1 was detected in fusions with MLL in acute 

myeloid leukaemia (117). 

 

 

Figure 7. Schematic representation of TET enzymes. A) Human TET1 consists of CXXC-

type zinc-binding domain which binds CGIs, the C-terminal catalytic domain (CD) containing 

cysteine-rich region (Cys-rich, C) and the double stranded β-helix domain (DSBH, D) which 
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have 2-oxoglutarate(2OG)- and iron(III)-dependent methylcytosine dioxygenase activity, and 

three nuclear localization sequences (NLSs). Taken from Tahiliani et al. (21). B) TET1, TET2 

and TET3 have almost identical CDs, differing only in small spacer region length. TET2 

differs from TET1 and TET3 because it does not have a N-terminal CXXC DNA-binding 

domain. Taken from Kao et al. (25).  

TET-mediated demethylation of 5mC is an enzymatic reaction which requires Fe(II) 

and 2OG as substrates. TET1 actively removes 5mC via oxidation leaving 5hmC which can 

be turned into unmethylated cytosine by subsequent oxidation and repair. 5hmCs are further 

oxidized by TET proteins to 5fmC and 5caC, which are turned in to unmethylated cytosines 

after thymine-DNA-glycosylase (TDG) recognizes G:5fC and G:5caC, excises them in the 

base excision repair (BER) process and leaves an abasic site (118) (Figure 8). 5hmC, 5fC and 

5caC could facilitate replication-dependent DNA demethylation. UHRF1 recognizes 

hemimethylated CpG sites after replication and interacts with DNMT1 which restores 

symmetrical CpG methylation. Modified cytosines - 5hmC, 5fC and 5caC - could interfere 

and block UHRF1 binding and therefore lead to loss of CpG methylation through replication 

(119). 

 

Figure 8. Active DNA demethylation by TET enzymes. DNMTs methylate the fifth carbon 

atom of cytosine generating 5mC, using SAM as methyl group donor which is converted to 
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SAH. 5mC can be sequentially oxidised by TET proteins to generate 5hmC, 5fC and 5caC, 

which can be lost through passive demethylation through cell division or 5fC and 5caC can be 

excised by TDG, which will then be repaired by the base excision repair mechanisms and 

converted to unmethylated C. Taken from Rasmussen and Helin (120). 

DNA demethylation is more complex to study than DNA methylation because 

conventional bisulfite sequencing methods are not precise in base definition when it comes to 

C, 5fC, 5caC, 5hmC and 5mC. Bisulfite conversion is treatment of DNA with sodium 

bisulfite, which causes cytosine deamination to uracil, while 5mC does not react with bisulfite 

and remains resistant to deamination during treatment. Cytosine, 5fC and 5caC are all 

deaminated to uracil during sodium bisulfite treatment and are later converted to, and 

sequenced as T, while both 5hmC and 5mC are sequenced as C (25). Specific product of 

5hmC reacting with bisulfite is called cytosine 5-methylenesulfonate (CMS), and although 

there is no difference between sequencing of 5mC and 5hmC after conversion (both are read 

as C), it has been found that CMS rich DNA regions were less efficiently amplified than 

regions containing only 5mC or U after conversion. CMSs may stall DNA polymerases in 

PCR, therefore 5hmC rich DNA regions might be underrepresented in quantitative 

methylation analyses (121). Without fine distinction between modified bases which are 

intermediates and products of DNA demethylation it is impossible to precisely study their 

possible regulatory roles. Development of oxidative bisulfite (oxBS) conversion methods 

provides the best available approach for 5hmC detection (122). These methods aim to 

selectively oxidize 5hmC to 5fC, which is then bisulfite converted to uracil in later sodium 

bisulfite treatment. Exact role of 5hmC remains unclear, although several studies imply on 

specific regulatory functions (i.e. the 6th base in the DNA; 5mC being the 5th base), rather than 

being just an intermediate residue in DNA demethylation pathways. 5hmC was discovered as 

a modification in genomes of bacteriophages, making the viral DNA unsusceptible to 

degradation by host defence mechanisms (123), therefore it seems likely that this base has an 

important function in complex genomes as well. Stable isotope labelling of modified C bases 

in mammalian DNA paired with liquid-chromatography mass spectrometry showed that most 

of 5hmC might be an independent stable modification, as it takes 30 hours following DNA 

synthesis for 5hmC to form, while 5mC form during replication (124). 5hmC is thought to be 

tissue specific - it was found to be around 40% as abundant as 5mC in DNA of Purkinje 
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neurons (125). TET1 was found to be critical for neuronal activity and memory functions via 

regulation of DNA methylation levels at promoter regions of crucial genes involved in the 

transcriptional regulation of cognitive processes (126).  

TET enzymes and 5hmCs have important roles in differentiation during development, 

and although their presence and function in placental epigenome were thoroughly investigated 

by several studies, there are still many unanswered questions. One study identified around 21 

000 loci with higher levels of 5hmC in the placental genome. 5hmC was found to be absent in 

CGIs and depleted in CpG shores, but enrichment of 5hmC was noted in CpG open sea and 

shelf regions (127). A genome-wide map of 5hmC in human ESCs was created by 

hydroxymethyl-DNA immunoprecipitation followed by deep sequencing (hmeDIP-seq), and 

5hmC enrichment was detected in enhancers and gene bodies (128). 5hmC was found in 

undifferentiated ES cells, but not in dendritic cells or T cells, and the same differentiated 

ESCs showed a 40% decrease in 5hmC levels. Same study showed that TET1-depleted ESCs 

experienced a significant decline in 5hmC levels TET1 mRNA levels and that TET1 mRNA 

levels drop drastically in ESCs when differentiation is induced (21). Tet1 transcripts have 

been detected in mouse ESCs at similar levels as pluripotency factor Oct4, Tet2 being 5-fold 

less abundant and Tet3 at very low levels, suggesting that TET1 and TET2 produce majority 

of 5hmC and guide ESCs differentiation (129). TET1 was implied to be crucial in mouse 

ESCs self-renewal through maintaining the expression of Nanog pluripotency factor (130). 

Tet1 mutant mice and mutant mouse ESCs were generated to investigate the role of Tet1 in 

pluripotency and development. Such ESCs had reduced levels of 5hmC and certain global 

gene expression changes, but remained pluripotent although with slightly altered 

differentiation patterns. Tet1 mutant mice were a bit smaller than controls, but were viable 

and fertile (131). Since all TET proteins have similar enzymatic activity, their roles can be 

considered redundant and loss of one TET member might show significant phenotype-level 

changes only in tissues unavailable to other TET enzymes (132). A Tet1/Tet2/Tet3 knockout 

mouse ESCs were generated and showed depleted 5hmC levels and poor differentiation (133). 

5hmC levels were found to be drastically changing in gene bodies during T-cell 

differentiation, higher levels of 5hmC correlating with higher gene expression and loss of 

5hmC correlating with decrease in gene expression (134).  
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TET1, TET2, and TET3 also catalyse the subsequent conversion of 5hmC to 5fC and 

5caC and these bases are present in 10–100-fold lower amounts than 5hmC (120), but it is 

possible that 5fC and 5caC might have specific regulatory roles as well. Proteins which 

specifically bind to 5fC have been discovered, suggesting its regulatory significance (135). Jin 

et al. suggest that in differentiated cells TET1 might work as a maintenance DNA 

demethylase, not purposely decreasing 5mC levels for transcriptional changes, but rather 

preventing de novo methylation spreading from the edges of methylated CGIs into 

surrounding regions. This would suggest that TET1 has a role in maintenance of normal 

methylation pathways post-development, and it sheds a new light on methylation deregulation 

in certain diseases and aging (136). Aberrant DNA demethylation has an important role in 

human diseases. Loss of 5hmC has been observed in cancers, as well as mutations in all three 

TET genes (137). Tet2 was found to be a critical tumor suppressor in myeloid malignancies in 

mice (138), and TET2 is known as one of the genes mutated in the early development of 

hematopoietic malignancies (120). Aberrant DNA demethylation of certain oncogenes can 

lead to their activation and carcinogenesis. For example, synuclein gamma (SNCG) gene is 

overexpressed in gastric cancers and advanced-stage breast and ovarian cancers, and its 

protein product stimulates proliferation of cancer cells and metastasis. The underlying 

mechanism of this aberrant expression is promoter CGI demethylation (139). 
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3. Materials and methods 
 

3.1 Materials 
 

Commercial kits:  

Charge Switch PCR Clean-Up Kit (Invitrogen, Carlsbad, California, USA), Gel Elute Gel 

Extraction Kit (Sigma-Aldrich, Saint Louis, Missouri, USA), Quick Ligation Kit (NEB, 

Ipswich, Massachusetts, USA), QIAprep  Spin Miniprep Kit (Qiagen, Venlo, Netherlands), 

QuikChange Lightning Multi Site-Directed Mutagenesis Kit (Agilent Technologies, Santa 

Clara, California, USA), Emerald Amp HS PCR Master Mix (Takara, Kusatsu, Shiga, Japan), 

DNeasy Blood & Tissue Kit (Qiagen), PyroMark PCR Kit (Qiagen), PyroMark Q24 

Advanced CpG Reagents (Qiagen), EZ DNA Methylation‐Gold Kit (Zymo Research Europe, 

Freiburg, Germany), RNA/DNA Purification Kit (Norgen Biotek, Thorold, Canada), RNeasy 

Mini Kit (Qiagen), TURBO DNA‐free Kit (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA), 2x TaqMan  Gene  Expression Master Mix (Applied biosystems, Foster 

City, California, USA), TaqMan Gene Expression Assays: Hs02379589_s1 (MGAT3), 

Hs01369240_m1 (MGAT3), Hs02800695_m1 (HPRT1) and Hs00609297_m1 (HMBS) 

(Applied Biosystems), Mini Quick Spin Columns (Roche, Basel, Switzerland) 

  

Enzymes and buffers: 

DNA polymerase Herculase II fusion DNA polymerase (Agilent Technologies), EcoRI 

(NEB), SphI (NEB), T4 DNA ligase (Takara); T4 DNA ligase Buffer (Takara), BamHI-HF 

(NEB), FseI (NEB), T4 Polynucleotide Kinase (NEB), BbsI (BpiI) (Thermo Scientific), 

Buffer G (NEB), RecBCD (NEB), PrimeScript Reverse Transcriptase (Takara) 

 

Chemicals used in cell culture: 

Trypsin – EDTA 0.25% solution (Sigma-Aldrich), OptiMEM (Thermo Fisher Scientific), 

Lipofectamine 3000 Transfection Reagent (Invitrogen), 1 × PBS (137 mM NaCl, 2.7 mM 

KCl, 4.3 mM Na2HPO4, 1.47 mM K2HPO4, pH 7.4), puromycin (Thermo Fisher Scientific) 
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Other chemicals: 

Ampicillin (Sigma-Aldrich), Luria-Bertani (LB) liquid media (10 g/L NaCl, 5 g/L tryptone,10 

g/L yeast extract), MassRuler DNA Ladder Mix (Thermo Fisher Scientific), 100  bp DNA 

Ladder Ready to Load (Solis Biodyne, Tartu, Estonia), GelPilot DNA Loading Dye 5× 

(Qiagen), Sybr Green Gel Stain (Sigma-Aldrich), PyroMark Denaturation Buffer (Qiagen), 

PyroMark Wash Buffer (Qiagen), Streptavidin Sepharose High Performance Beads (GE 

Healthcare, Chicago, Illinois, USA), Random hexamer primers (Invitrogen), 10 mM dNTP 

Mixture (Sigma-Aldrich), Recombinant RNase Inhibitor (Takara), Potassium perruthenate 

KRuO4 (Alfa Aesar, Haverhill, Massachusetts, USA) 

 

Bacterial strain: 

XL10GOLD chemically competent E. coli strain (Agilent Technologies) 

 

Model cell line: 

HEK293  
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3.2  Construction of dCas9-TET1 molecular tool for targeted CpG 

demethylation 

    pJFA344C7 (plasmid #49236, Addgene plasmid repository), a TET1-catalytic domain 

expression vector for TALE-TET1 fusion protein to induce targeted demethylation in 

mammalian cells was used as a source of TET1 catalytic domain of human TET1 gene (tet 

methylcytosine dioxygenase 1) (69). TET1 catalytic domain was PCR amplified from 

pJFA344C7 using primers which contain restriction enzyme sites for BamHI and EcoRI 

(forward primer) and FseI and SphI (reverse primer), as well as additional overhangs (5 bp on 

5' end of forward primer and 3 bp on 3' end of reverse primer) to ensure efficient digestion 

(Table 1). For this PCR amplification a high-fidelity DNA polymerase Herculase II fusion 

DNA polymerase (Agilent Technologies) was used, with following cycling conditions: initial 

denaturation at 95°C for 2 min; 30 cycles of denaturation at 95°C for 20 s, annealing at 60°C 

for 20 s, elongation at 72°C for 2 min; final elongation at 72°C for 3 min. Unique PCR 

product of 2188 bp was confirmed with agarose gel electrophoresis and Sybr Green (Sigma-

Aldrich) staining and purified using Gel Elute Gel Extraction Kit (Sigma-Aldrich).  

    PCR product and plasmid pUC19 were cut with EcoRI and SphI (NEB), products were 

purified from double digestion reaction mixtures using Charge Switch PCR Clean-Up Kit 

(Invitrogen), ligated with Quick Ligation Kit (NEB) for 10 min at room temperature in 3:1 

molar ratio of insert to vector, and transformed into XL10GOLD chemically competent E. 

coli strain (Agilent Technologies). Briefly, XL10GOLD were thawed on ice for 10 min, 5 µL 

of ligation mixtures were added and suspensions were gently mixed and then heat-shocked at 

42°C for 35 s and briefly cooled on ice. Warm LB media was added to transformed 

XL10GOLD and they were incubated at 37°C for 30 min while shaking at 350 rpm. Bacterial 

suspensions were plated on warm LB plates containing 100 µg/mL ampicillin. Plates were 

incubated for 16 h at 37°C.  

    Colony PCR was performed with Emerald Amp HS PCR Master Mix (Takara) and primers 

TET1_BamHI_Fw and TET1_FseI_Rev under cycling conditions: initial denaturation at 98°C  

for 2 min; 30 cycles of denaturation at 98°C for 10 s, annealing at 60°C for 30 s, elongation at 

72°C for 3 min; final elongation at 72°C for 2 min. Plasmids, named pUC19-TET1_CD, were 

isolated from several positive transformants cultured for 16 h in 4 ml of liquid LB-Amp (100 
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µg/mL) cultures, using QIAprep Spin Miniprep Kit (Qiagen) and verified by Sanger 

sequencing.  

    TET1 catalytic domain originally contains 2 BbsI restriction sites, which would interfere 

with subsequent cloning, so they were mutated using 2 pairs of mutagenic primers (Table 1) 

and QuikChange Lightning Multi Site-Directed Mutagenesis Kit (Agilent Technologies), in a 

way that TET1 protein sequence remains unchanged.  

    Catalytically inactive version of TET1 catalytic domain named DED1 variant was created 

by introducing two mutations, H1671Y, D1673A, into TET1 active site with one pair of 

mutagenic primers (Table 1) in the same reaction with 2 pairs of mutagenic primers designed 

to eliminate BbsI sites. These substitutions have been found to abolish TET1 demethylation 

activity (21), most likely by impairing iron binding to active site. Successful mutageneses of 

pUC19-TET1_CD and pUC19-DED1_CD were confirmed by Sanger sequencing of entire 

catalytic domains with 4 designed sequencing primers (Table 1).   

    Plasmid pSpCas9n(BB)-2A-Puro (plasmid #48141, Addgene plasmid repository) (11) with 

additional mutation in HNH domain of Cas9 was used as backbone for this modified 

CRISPR/Cas9 system. Mutated pSpCas9n(BB)-2A-Puro, with substitutions in active sites of 

both RuvC (D10A) and HNH (H840A) domains of Cas9, expresses Cas9 in completely 

catalytically inactive form, “dead” Cas9 (dCas9). Finally, a short Gly4Ser linker with BamHI 

and FseI restriction sites was added to the C-terminus of the dCas9 gene as described in 

previous work from our lab (17), and such plasmid variant, named pdCas9-GS, was used as 

backbone for insertion of TET1(DED1) catalytic domain.  

    Both pdCas9-GS and pUC19-TET1(DED1) _CD were cut with BamHI-HF and FseI 

(NEB), digestion reaction mixtures were visualized by agarose gel electrophoresis with Sybr 

Green (Sigma-Aldrich) staining and fragments of correct size were purified using Gel Elute 

Gel Extraction Kit (Sigma-Aldrich). Vector and inserts were ligated with Quick Ligation Kit 

(NEB) for 10 min at room temperature in 3:1 molar ratio of insert to vector, and transformed 

into XL10GOLD chemically competent E. coli strain (Agilent Technologies). To select for 

positive clones, colony PCR was performed with Emerald Amp HS PCR Master Mix (Takara) 

and primers TET1_BamHI_Fw and TET1_FseI_Rev as described previously. Plasmids, 

named dCas9-GS-TET1_CD and dCas9-GS-DED1_CD, were isolated from positive 
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transformants using QIAprep Spin Miniprep Kit (Qiagen) and verified by Sanger sequencing. 

It was essential to check for any possible changes in open reading frame, as BamHI triplet 

acts as a start codon for expression of TET1/DED1 catalytic domain and GS-linker-seq primer 

was used for this verification (Table 1).  

    Finally, selection markers were cloned at the C-terminus of the dCas9-GS-TET1(DED1) 

fusion to allow for future successful manipulation of cells transfected with this molecular tool. 

Plasmid pSpCas9n(BB)-2A-GFP (plasmid #48140, Addgene plasmid repository) (11) was cut 

with EcoRI (Thermo Scientific) and used as source of T2A-EGFP fragment. Mutation H166R 

was introduced into puromycin resistance gene of pSpCas9n(BB)-2A-Puro using a pair of 

mutagenic primers (Table 1) and QuikChange Lightning Site-Directed Mutagenesis Kit 

(Agilent Technologies), to achieve improved puromycin selection like the one in plasmid 

pSpCas9n(BB)-2A-Puro V2.0 (plasmid #62987, Addgene plasmid repository) (11). 

Successful mutagenesis was confirmed by Sanger sequencing of puromycin gene with BGH-

R sequencing primer (Table 1). EcoRI fragment encoding this T2A-Puro_H166R was cut 

from mutated pSpCas9n(BB)-2A-Puro, visualized on agarose gel and gel purified as 

described previously. Vectors dCas9-GS-TET1_CD and dCas9-GS-DED1_CD were cut with 

EcoRI (Thermo Scientific), purified from digestion reaction mixtures using Charge Switch 

PCR Clean-Up Kit (Invitrogen), and dephosphorylated to prevent vector re-circularization 

using Fast AP (Thermo Scientific) according to manufacturer's instructions. EcoRI T2A-

EGFP and T2A-Puro_H166R fragments were ligated with dephosphorylated EcoRI cut 

vectors dCas9-GS-TET1_CD and dCas9-GS-DED1_CD using Quick Ligation Kit (NEB) as 

described previously and transformed into XL10GOLD (Agilent Technologies). Colony PCR 

was performed with Emerald Amp HS PCR Master Mix (Takara) and primers TET1_seq3 and 

GFP-in-rev or PuroR-in-rev (Table 1) under cycling conditions: initial denaturation at 98°C 

for 2 min; 30 cycles of denaturation at 98°C for 10 s, annealing at 55°C for 30 s, elongation at 

72°C for 1 min; final elongation at 72°C for 1 min. Plasmids, named dCas9-TET1(DED1)-

T2A-EGFP and dCas9-TET1(DED1)-T2A-PuroR, were isolated from positive transformants 

using QIAprep Spin Miniprep Kit (Qiagen) and verified by Sanger sequencing.    

    Maps of constructed tools dCas9-TET1(DED1)-T2A-PuroR and dCas9-TET1(DED1)-

T2A-EGFP are shown in Figure 12. Maps of vectors used as source material and shuttle 

vectors are shown in Appendix 1. Sequences of all primers used in cloning (PCR 
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amplifications, mutageneses and sequencing reactions) are listed in Table 1. All primers were 

commercially synthesized and purified by Macrogen Oligo DNA synthesis service. All 

Sanger sequencing reactions were performed by Macrogen DNA sequencing service. All 

sequencing results were analysed with SnapGene (GSL Biotech, Illinois, USA).  

 

Table 1. Primers used in pdCas9-TET1(DED1)-T2A-PuroR and pdCas9-TET1(DED1)-

T2A-EGFP construction 

Name Sequence (5' 3') Use 

TET1_BamHI_Fw ATCTAGAATTCGGATCCCTGCCCACCT

GCAG 

PCR amplification of TET1 CD from 

pJFA344C7, introducing restriction 

sites and overhangs TET1_FseI_Rev TCAGCATGCGGCCGGCCGACCCAATGG

TTATAGGGCCCCGC 

TET1_no1stBbsI_S CTTCTCCTGGTCCCCAAAGACTGCTTCA

GCC 

mutagenesis of 1st BbsI restriction site 

in TET1(DED1) CD 

TET1_no1stBbsI_AS GGCTGAAGCAGTCTTTGGGGACCAGGA

GAAG 

TET1_no2ndBbsI_S GATGCCTTCGGGAAGGCTCAGTGGTGC

CAAT 

mutagenesis of 2nd BbsI restriction 

site in TET1(DED1) CD 

TET1_no2ndBbsI_AS ATTGGCACCACTGAGCCTTCCCGAAGG

CATC 

TET1toDED1_S GACTTCTGTGCTCATCCCTACAGGGCC

ATTCACAACATGAATAA 

mutagenesis of active site in TET1 

CD, introducing H1671Y, D1673A 

TET1toDED1_AS TTATTCATGTTGTGAATGGCCCTGTAG

GGATGAGCACAGAAGTC 

TET1_seq1 GTTTGGCTACACGATTAGCTCC sequencing of entire TET1(DED1) CD 

TET1_seq2 CTTATTCGCTGATGCCATCCG 

TET1_seq3 GCACCCCAACCGTAATCATC 

TET1_seq4 CATGTAAGGGAGAGCTTGGATC 

GS-linker-seq GAAGAGGTACACCAGCACCAAAG sequencing of NLS, Gly4Ser linker 

and first codons of TET1(DED1) CD 

PuroR_H166R_S GAGACCTCCGCGCCCCGGAACCTCCCC

TTCTAC 

mutagenesis of puromycin resistance 

gene, introducing H166R 
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PuroR_H166R_AS GTAGAAGGGGAGGTTCCGGGGCGCGG

AGGTCTC 

BGH-R TAGAAGGCACAGTCGAGG sequencing of puromycin resistance 

gene 

GFP-in-rev TGGTGCAGATGAACTTCAGG colony PCR; verification of successful 

cloning of T2A-EGFP or T2A-

Puro_H166R in right orientation at the 

C-terminus of the dCas9-GS-

TET1(DED1) 

PuroR-in-rev CGTGAGGAAGAGTTCTTGCAG 

 

 

3.3   Selection of loci for targeting with dCas9-TET1 and sgRNA design 

Highly methylated promoter regions of targeted MGAT3 and LAMB1 genes in 

HEK293 cells suitable for targeted DNA demethylation were selected based on previous 

pyrosequencing results obtained in our lab. For the MGAT3 gene two assays for bisulfite 

sequencing were used, MGAT3-A1 and MGAT3-A2, covering a total of 14 individual 

CpG sites (111 bp span). For the LAMB1 gene assay LAMB1-A1 was used for analysis of 

6 CpG sites (38 bp span). Assay sequences are listed in Table 2, assay maps are shown in 

Figures 10 and 11.  

Guide sequences targeting the MGAT3 and LAMB1 loci were manually selected. Few 

parameters were crucial in guide selection: (i) sequences had to be highly specific, (ii) 

length of 20 bp was desired, (iii) sequences had to be followed by an immediate NGG 

PAM sequence on 3' end. Positions of selected sgRNAs are shown in Figures 9 and 10. 

Non-targeting (NT) control guide, non-homologous to any sequence in the human 

genome, was taken from the Human GeCKOv2 Library (140).  
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Table 2. Sequences of pyrosequencing assays used for methylation analysis of the 

MGAT3 and LAMB1 fragments. 

Assay name Assay sequence 5'3' (analysed CpG sites are underlined) 

MGAT3-A1 GCTGGGATATAGAATAGGTAGCGCATCCCTGCACCTTCGACGATGGCGGCGCAG

AGATGTCTGCTGCGTACCCACAATGCCTTGTGCCTCGCACCGCGGGAGGAAGTG

GCTGCTCTGTAGGCCCCAGAACGGAACCACTTGAAAGGCGGGAAACACGTGGGG

GACGCCTCTGAGCCCTGAGAGGAATGGC 

 

MGAT3-A2 GCCTCTGAGCCCTGAGAGGAATGGCCTAGAGCAAGGCCACGAGGAGCCA

GGGCACGACACGGTGGGCCCTCGGAGAACCGCTGGTGGGCAAGTGGCA

GGAGAGTAGGCTCAAGAGGGT 

 

LAMB1-A1 GAAGTGGAGGGTCTACACATCCACCCTTTGTTGGGGGAGCTGCTCCCCGG

GGCTGATCAGGGTGGGCGCGAGCGTCGGTGGGTTTCCCGGGAGGGAGG

CTCTCGCTGCTGGACAGACCTGAT  
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A)

 

B) 

 

C)

 

 

Figure 9. MGAT3 gene location, scheme and sequence assayed for CpG methylation. 

A) MGAT3 gene position on human chromosome 22 is marked with a red line on the 

chromosome scheme (q13.1). Representation taken from www.genecards.org., bands 

according to Ensembl. B) MGAT3 gene scheme is shown with its 2 exons (red boxes) and 

intron (blue line) and 2 CGIs, as represented in GRCh38/hg38. C) Assays MGAT3-A1 

and MGAT3-A2 are located immediately upstream and in the beginning of the first CGI 

(as indicated in the enlarged picture below, arrow indicating the transcript orientation). In 
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GRCh38.p12 primary assembly, this CGI stretches from chr22 39456201 – 39457987 (+). 

In additionally enlarged picture, assays MGAT3-A1 and MGAT3-A2 with 9 analysed 

CpG sites in MGAT3-A1 (orange lines, CpG 1-CpG 9) and 5 analysed CpG sites in 

MGAT3-A2 (pink lines, CpG 1-CpG 5) are shown with indicated positions of sgRNAs 

chosen for dCas9-TET1 targeting (MGAT3-sg01-MGAT3-sg08; red arrows indicating 

their position and orientation).  

A)

 

B) 

 

C)

 

 

Figure 10. LAMB1 gene location, scheme and sequence assayed for CpG methylation. 

A) LAMB1 gene position on human chromosome 7 is marked with a red line on the 

chromosome scheme (q31.1). Representation taken from www.genecards.org., bands 
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according to Ensembl B) LAMB1 gene is shown with its 32 exons (red boxes) and 31 

introns (blue lines), with CGI in its promoter region, as represented in GRCh38/hg38. C) 

Assay LAMB1-A1 is located within this CGI, stretching through the initial part of the first 

exon (as indicated in the enlarged picture below, arrow indicating the transcript 

orientation). In GRCh38.p12 primary assembly, this CGI stretches from chr7 108001351 

– 108003613 (-). Note that LAMB1 gene is orientated on (-) strand and it is represented in 

that way in these schemes. In the additionally enlarged picture, assay LAMB1-A1 with 6 

analysed CpG sites (blue lines, CpG 1-CpG 6) is shown with indicated positions of 2 

sgRNAs chosen for dCas9-TET1 targeting (LAMB1-sg01 and LAMB1-sg02; red arrows 

indicating their position and orientation).  

 

3.4  Cloning of sgRNAs into dCas9-TET1 constructs 

All sgRNAs were synthesized as single stranded oligonucleotides (sense and antisense) by 

Macrogen Oligo DNA synthesis service. Additional G was added at 5' end to chosen guide 

sequences not containing it originally to enhance future transcription from U6 promoter (141), 

and 5' overhangs were added to make annealed oligonucleotides compatible with future 

cloning into expression vector via BbsI restriction sites. Oligonucleotides were annealed and 

phosphorylated in 1x T4 DNA ligase Buffer (Takara) with 5U of T4 PNK (NEB) in following 

conditions: 37°C for 30 min; 95°C for 5 min, followed by ramp-down cooling to 25°C. 

Annealed oligonucleotides were diluted and cloned into constructed dCas9-TET1 (and dCas9-

DED1) tools using BbsI (BpiI) (10U, Thermo Scientific) and T4 DNA ligase (350U, Takara) 

in one-step digestion-ligation in 1x Buffer G (NEB), in 6 cycles of 37°C for 5 min and 23°C 

for 5 min. Ligation reactions were treated with RecBCD (5U, NEB) and 2 of each ligation 

reaction was transformed into XL10GOLD chemically competent E. coli strain (Agilent 

Technologies). Successful insertion of sgRNAs into dCas9-TET1 and dCas9-DED1 

constructs was confirmed by Sanger sequencing with U6-Fw sequencing primer; 5'-

GAGGGCCTATTTCCCATGATTCC-3'. Sequences of cloned sgRNAs are listed in Table 3. 
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Table 3. sgRNAs cloned into dCas9-TET1(DED1) constructs 

Name Sequence (5'  3'), including PAM 
(underlined) 
 

Target 

MGAT3-sg01 CATTCGCTGGGATATAGAATAGG 
 

MGAT3 promoter (within CGI) 
 

MGAT3-sg02 CCCTGCACCTTCGACGATGGCGG 
 

MGAT3 (within CGI) 

MGAT3-sg03 ATGCCTTGTGCCTCGCACCGCGG 
 

MGAT3 (within CGI) 

MGAT3-sg04 CTGCTCTGTAGGCCCCAGAACGG 
 

MGAT3 (within CGI) 

MGAT3-sg05 GGACGCCTCTGAGCCCTGAGAGG 
 

MGAT3 (within CGI) 

MGAT3-sg07 
 

CGGCACCGTGCACACATCACAGG MGAT3 (within CGI) 

MGAT3-sg08 
 

AATCCCGGCCCAGGTTCACGCGG MGAT3 (within CGI) 

LAMB1-sg01 ACACATCCACCCTTTGTTGGGGG 
 

LAMB1 promoter (within CGI) 

LAMB1-sg02 AGCAGCGAGAGCCTCCCTCCCGG 
 

LAMB1 exon 1/32 (within CGI) 

NT GTAGGCGCGCCGCTCTCTAC 
 

none   

 

3.5 Cell culture conditions and transfection  

    Human embryonic kidney cells HEK293 were maintained in Dulbecco’s Modified Eagle 

Medium (Sigma-Aldrich) supplemented with 10% heat inactivated fetal bovine serum 

(Sigma-Aldrich), 4 mM L–glutamine (Sigma-Aldrich), 100 U/ml penicillin and 100 µg/ml 

streptomycin (Sigma-Aldrich). Cells were cultured at 37°C in a 5% CO2 humidified 

incubator. 

    All transient transfections were done with Lipofectamine 3000 Reagent (Invitrogen), either 

in 24-well plates or 6-well plates, according to manufacturer's instructions. OptiMEM 

(Thermo Fisher Scientific) was used for preparation of transfection mixtures.  
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3.6 Titration of plasmid DNA for subsequent experiments 

    Cells were seeded into a 24–well plate and transfected the next day at 70% confluence 

using Lipofectamine 3000 (Invitrogen), 1.5 μl of Lipofectamine and 1 μl of P3000 Reagent 

were used for each well. Transfections were done with either 20 ng, 30 ng, 40 ng, 50 ng, 75 

ng or 100 ng of plasmids co–expressing dCas9-TET1-PuroR and sgRNA LAMB1-sg01 

(Table 3), in biological duplicates. Control groups were cells transfected with dCas9-DED1-

PuroR co–expressing sgRNA LAMB1-sg01, cells transfected with dCas9-TET1-puroR and 

the non-targeting sgRNA (Table 3) and mock-transfected cells (underwent transfection 

procedure without plasmid DNA).    

    One day after transfection, cells were passaged to 6–well plates and selected for 48 h with 

1.5 μg/ml puromycin. Eight days after transfection, cells were harvested and incubated at 

37°C overnight in lysis buffer (50 mM Tris pH 8.5, 1 mM EDTA, 0.5% Tween 20) with 

proteinase K (400 μg/ml) yielding crude cell lysates.  

    DNA from cell lysates was bisulfite converted and purified using EZ DNA Methylation-

Gold Kit (Zymo Research Europe) according to the manufacturer's protocol. Briefly, DNA 

was mixed with CT Conversion Reagent, followed by 10 min of denaturation at 98°C, and 2.5 

hours of incubation at 64°C, followed by desulphonization, washing and elution. Fragments 

of interest were amplified from bisulfite converted DNA with PyroMark PCR kit (Qiagen) 

according to the manufacturer's instructions. The cycling was performed as follows: initial 

denaturation for 15 min at 95°C; 50 cycles of 30 s at 95°C, 30 s at 54°C (MGAT3–A1 

fragment), 60°C (MGAT3–A2 fragment) or 64°C (LAMB1-A1 fragment) and 30 s at 72°C; 

final extension for 10 min at 72°C. PCR amplicons were sequenced using the PyroMark Q24 

Advanced pyrosequencing system (Qiagen). Sequences of PCR primers and pyrosequencing 

primers are listed in Table 4. 
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Table 4. Sequences of the PCR primers and pyrosequencing primers 

Primer name Sequence (5'  3') 
 

Use 

MGAT3-A1-Fw GTTGGGATATAGAATAGGTAG PCR amplification of MGAT3-A1 

fragment, forward primer was used for 

pyrosequencing  

MGAT3-A1-Rev [Btn]ACCATTCCTCTCAAAACTCA 

MGAT3-A2-Fw GTTTTTGAGTTTTGAGAGGAATGG PCR amplification of MGAT3-A2 

fragment, forward primer was used for 

pyrosequencing  

MGAT3-A2-Rev [Btn]ACCCTCTTAAACCTACTCTCCTAC 

LAMB1-A1-Fw GAAGTGGAGGGTTTAT PCR amplification of LAMB1-A1 

fragment LAMB1-A1-Rev [Btn]ATCAAATCTATCCAACAA 

LAMB1-A1-seq  TTGATTAGGGTGGG Pyrosequencing of LAMB1-A1 

 

 

3.7 Obtaining an activity profile of dCas9-TET1 molecular tool 

    40 000 cells per well were seeded into a 24–well plate and transfected the next day using 

Lipofectamine 3000 (Invitrogen), 1.5 μl of Lipofectamine and 1 μl of P3000 Reagent were 

used for each well. Transfections were done with 100 ng of plasmids co–expressing dCas9-

TET1-PuroR and a chimeric sgRNA, in biological duplicates. All sgRNAs used in this 

experiment were targeting MGAT3 promoter; MGAT3-sg01 – MGAT3-sg08 (Table 3, Figure 

9). Control groups were cells transfected with either dCas9-DED1-PuroR co–expressing 

targeting sgRNAs, cells transfected with dCas9-TET1-puroR and the non-targeting sgRNA 

(Table 3) and mock-transfected cells. 

One day after transfection, cells were passaged to 6–well plates and selected for 48 h with 

1.5 μg/ml puromycin. Eight days after transfection, cells were harvested and incubated at 

37°C overnight in lysis buffer with proteinase K as described before. Methylation of the 

MGAT3-A1 and MGAT3-A2 was assayed as described above.  
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3.8 Obtaining an activity profile of TET1-dCas9 molecular tool 

     TET1 catalytic domain prepared as described in section 3.2 was inserted N-terminally to 

dCas9 from Streptococcus pyogenes into a backbone for assembly of modular epitoolbox 

created in our lab (unpublished data) and TET1-dCas9 tool was generated (construct scheme 

shown in Figure 14). 40 000 cells per well were seeded into a 24–well plate and transfected 

the next day in the same way as described in section 3.7. Plasmids co–expressing TET1-

dCas9 (TET1-dCas9-PuroR) and a chimeric sgRNA were used, in biological duplicates. All 

sgRNAs used in this experiment were targeting MGAT3 promoter; MGAT3-sg01 – MGAT3-

sg05 (Table 3, Figure 9). Control groups were cells transfected with either TET1-dCas9 co–

expressing targeting sgRNAs, cells transfected with TET1-dCas9 and the non-targeting 

sgRNA (Table 3) and mock-transfected cells. 

One day after transfection, cells were passaged to 6–well plates and selected for 48 h with 

puromycin. Eight days after transfection, cells were harvested and incubated at 37°C 

overnight in lysis buffer with proteinase K as described before. Methylation of the MGAT3-

A1 and MGAT3-A2 was assayed as described above.  

 

3.9  Time Course evaluation of dCas9-TET1 induced effects on MGAT3 

and LAMB1 promoter methylation 

    500 000 cells per well were seeded into 6-well plates 24 h prior to transfection with 800 ng 

of dCas9-TET1-PuroR plasmids encoding MGAT3-sg03 or LAMB1-sg01 (Table 3) and 

Lipofectamine 3000 (Invitrogen), 7.5 μl of Lipofectamine and 5 μl of P3000 Reagent were 

used for each well in triplicates. Control groups were cells transfected with either dCas9-

DED1-PuroR co–expressing targeting sgRNAs and mock-transfected cells. One day after 

transfection, triplicates were pooled in total 15 ml suspensions from which 1 ml was re-plated 

per well in new 6-well plates. Cells were selected as described above. Aliquots of the 

transfected cells were collected daily until the 8th day and after that on 10th, 13th, 15th, 20th, 

24th and 30th day. On the 9th day cells reached 80-90% confluence and were collected and re-

plated in p10 plates. On the 15th day cells reached 90% confluence and were collected, diluted 

1:5 and re-plated in new p10 plates, same was done on 24th day. Harvested cells were 

incubated at 37°C overnight in lysis buffer with proteinase K as described before. Methylation 
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of the MGAT3-A1, MGAT3-A2 and LAMB1-A1 for each of the 14 time points was assayed 

as described above.   

 

3.10 Analysis of hydroxymethylation level  

        500 000 cells per well were seeded into a 6–well plate and transfected the next day using 

Lipofectamine 3000 (Invitrogen), 1.5 μl of Lipofectamine and 1 μl of P3000 Reagent were 

used for each well. Transfections were done with 800 ng of plasmids co–expressing dCas9-

TET1-PuroR and sgRNA MGAT3-sg01, plasmids co–expressing dCas9-DED1-PuroR and 

sgRNA MGAT3-sg01, plasmids co–expressing dCas9-TET1-PuroR and non-targeting 

sgRNA in biological triplicates. Control group were mock-transfected cells. Cells were 

selected for 48 h with puromycin as described before.  

    8th day after transfection cells were collected from wells and DNA was isolated with 

DNeasy Blood&Tissue Kit (Qiagen), according to manufacturer's protocol. Isolated DNA was 

selectively chemically oxidized to achieve 5-hydroxymethylcytosine (5hmC) to 5-

formylcytosine (5fC) conversion which enables bisulfite conversion of 5fC to uracil. General 

denaturation and oxidation protocol was adapted from previously published work on 

hydroxymethylation level analysis, following instructions for genomic DNA manipulation 

(122).            

Briefly, one microgram of each isolated DNA sample was denatured with 0.05 M NaOH 

in total 24 μl reaction followed by oxidation with 1 μl of 15 mM potassium perruthenate 

(KRuO4). Total 25 μl of each oxidation reaction was purified using Mini Quick Spin Columns 

(Roche). Oxidized DNA was bisulfite converted, amplified and methylation of the MGAT3-

A1 and MGAT3-A2 was assayed by bisulfite pyrosequencing as described above. Same 

procedure (bisulfite conversion, amplification and pyrosequencing) was done with the same 

amount of unoxidized isolated DNA for each sample and methylation levels of oxidized and 

unoxidized samples were subtracted to gain information about hydroxymethylation levels. 
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3.11 Targeting the MGAT3 promoter with dCas9-TET1 and pooled

 sgRNAs 

        40 000 cells per well were seeded into a 24–well plate and transfected the next day using 

Lipofectamine 3000 (Invitrogen), 1.5 μl of Lipofectamine and 1 μl of P3000 Reagent were 

used for each well. Transfections were done with 100 ng of equimolar mixtures of five 

plasmids co–expressing dCas9-TET1-PuroR and a chimeric sgRNA, in biological triplicates. 

All sgRNAs used in this experiment were targeting the MGAT3 promoter; MGAT3-sg01 – 

MGAT3-sg05 (Table 3). Control groups were cells transfected with either equimolar mixtures 

of five dCas9-DED1-PuroR plasmids co–expressing targeting sgRNAs, cells transfected with 

dCas9-TET1-PuroR and the non-targeting sgRNA (Table 3) and mock-transfected cells.   

    One day after transfection, cells were passaged to 6–well plates and selected for 48 h with 

1.5 μg/ml puromycin. Eight days after transfection, cells were collected and DNA and RNA 

were isolated with RNA/DNA Purification Kit (Norgen Biotek). DNA was bisulfite 

converted, amplified and methylation of the MGAT3-A1 and MGAT3-A2 was assayed as 

described above.  

 

3.12 Gene expression analysis 

One microgram of total isolated RNA was treated with TURBO DNase (2U, Invitrogen) 

and used as a template for reverse transcription using the PrimeScript RTase (100U, Takara) 

and random hexamer primers (Invitrogen) with use of Recombinant RNase Inhibitor (20U, 

Takara). Quantitative real-time PCR (RT–qPCR) was performed on cDNA from cells 

transfected with pooled sgRNAs co–expressing dCas9-TET1-PuroR and all three control 

groups. RT–qPCR was done with TaqMan hydrolysis probes in the 7500 Fast Real-Time PCR 

system (Applied Biosystems), in technical duplicates with TaqMan Gene Expression Master 

Mix and the following TaqMan Gene Expression Assays: Hs02379589_s1 (MGAT3), 

Hs01369240_m1 (MGAT3), Hs02800695_m1 (HPRT1) and Hs00609297_m1 (HMBS) 

(Applied Biosystems). Hs02379589_s1 and Hs01369240_m1 expression assays were used for 

MGAT3 as they differ in detection; Hs02379589_s1 detects two transcripts of MGAT3 gene 

but has a drawback as it does not span exons and detects genomic DNA as well. 

Hs01369240_m1 spans exons, but detects only the longer transcript. The expression of the 
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target gene MGAT3 was normalized to the reference genes HPRT1 and HMBS and analysed 

using the comparative ddCt method (142).  

 

3.13 Targeting the MGAT3 gene with VPR-dCas9 and pooled sgRNAs 

For VPR-dCas9 mediated activation of MGAT3 a construct containing an N-terminal 

fusion of VPR activation domain with catalytically inactive Cas9 from Staphylococcus aureus 

(SaCas9) previously constructed in our lab (data not shown) was used. Construct scheme is 

shown in Figure 14. Different sgRNAs were designed for VPR-dCas9 (VPR-d(Sa)Cas9-

PuroR) targeting because of two important differences in the approach; (i) recommended 

targeting regions for VPR targeted activation are short stretches of bases upstream of 

predicted TSSs, (ii) sgRNAs had to meet design requirements for SaCas9. SaCas9 requires a 

5'-NNGRRT-3' PAM immediately downstream of the target sequence. Positions of chosen 

sgRNAs are shown in Figure 11. Designed sgRNAs were cloned into VPR-dCas9 construct as 

described in section 3.4. Sequences of cloned sgRNAs are shown in Table 5.  

500 000 cells per well were seeded into 6-well plates 24 h prior to transfection with 1 

μg of equimolar mixture of three plasmids co–expressing VPR-dCas9 construct and a 

chimeric sgRNA, in biological duplicate. Transfections were also done with 1 μg of each 

VPR-dCas9 construct expressing a single sgRNA, in duplicates. Control group were mock-

transfected cells. Cells were selected as described before, and total RNA was isolated 5 days 

after transfection using RNeasy Mini Kit (Qiagen). RNA was treated with TURBO DNase 

(Invitrogen) and reverse transcribed as described earlier. RT–qPCR was performed on cDNA 

from cells transfected with pooled sgRNAs co–expressing VPR-dCas9, cells transfected with 

each single sgRNA co-expressed with VPR-dCas9 and mock-transfected cells. RT–qPCR was 

done with TaqMan hydrolysis probes, in technical duplicates with TaqMan Gene Expression 

Master Mix and the following TaqMan Gene Expression Assays: Hs02379589_s1 (MGAT3), 

Hs01369240_m1 (MGAT3) and Hs00609297_m1 (HMBS) (Applied Biosystems). The 

expression of the target gene MGAT3 was normalized to the reference gene HMBS and 

analysed using the comparative ddCt method (142).   
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Figure 11. Positions of sgRNAs for VPR-dCas9 targeting of the MGAT3 gene. In the first 

picture, the MGAT3 gene scheme is shown with its 2 exons (red boxes) and 1 intron (blue 

box) and 2 CGIs, as represented in GRCh38/hg38. Assays MGAT3-A1 and MGAT3-A2 are 

located immediately upstream and in the beginning of the first CGI (indicated by orange and 

pink lines). In the enlarged picture below, sgRNAs chosen for VPR-dCas9 activation of 

MGAT3, MGAT3-sg_INT-1f, MGAT3-sg_INT-2r and MGAT3-sg_INT-3f, are shown in 

alignment with MGAT3 gene and CGI 2 sequence (sgRNA positions and orientations are 

indicated with red arrows). Black arrow represents MGAT3 transcript orientation. 

 

Table 5. sgRNAs cloned into VPR-dCas9 constructs 

Name Sequence (5'  3'), including PAM 
(underlined) 
 

Target 

MGAT3-sg_INT-1f CCTCAGCCTCTGAAGGTGTTGGGAT 
 

MGAT3 – intron 1/1  

MGAT3-sg_INT-2r CACTGCTAGGCTTGGCTCCAGGAGT 
 

MGAT3-sg_INT-3f TGCAGCCGCACAGTCAGGGTGGGGT 
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3.14 Data analysis and statistics 

Sequence analysis: 

Sequencing data was analysed with SnapGene software (GSL Biotech, Chicago, Illinois, 

USA). 

Plasmid maps and pyrosequencing assays schemes were created with SnapGene software. 

 

Methylation data analysis: 

Data is shown as arithmetic means of two or three biological replicas. Standard deviations 

between replicas are indicated in each figure.  

 

Gene expression data analysis:  

Statistical analyses were done with SPSS software (IBM Analytics, Armonk, New York, 

USA). Different biological groups were compared among each other using a one-way analysis 

of variance (ANOVA) followed by post hoc Tukey test of multiple comparisons. P values of 

≤ 0.05 were considered statistically significant.  
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4. Results 

4.1 Construction of dCas9-TET1 molecular tool 

    I have developed the molecular tool dCas9-TET1 for targeted DNA demethylation in 

human cells. It is a fusion of the human codon optimized S. pyogenes dCas9 (4101 bp, 1367 

aa) and the human TET1 CD (2163 bp, 721 aa), which retains the original TET1 catalytic 

activity. dCas9 was created by introducing the H841A mutation to the HNH nuclease domain 

of human codon optimized S.pyogenes nickase Cas9n already containing the D10A silencing 

mutation in RuvC nuclease domain in plasmid pSpCas9(BB)-2A-Puro (plasmid #48141, 

Addgene plasmid repository) (11). Human TET1 CD was PCR amplified from plasmid 

pJFA344C7 (plasmid #49236, Addgene plasmid repository), which is an expression vector for 

TALE-derived DNA binding domain fused C-terminally via Gly4Ser linker to synthesized 

minimal TET1 CD expression driven by EF1a promoter, successfully used for targeted CpG 

demethylation and gene activation (69). TET1 CD is fused to C-terminus of dCas9 via 

Gly4Ser linker, one of the most commonly used flexible linkers which offers fused domains a 

certain level of movement favourable for desired interactions (143). Catalytically inactive 

version of TET1 catalytic domain named DED1 variant was created by introducing two 

substitutions, H1671Y, D1673A, known to abolish enzymatic activity of TET1 by making its 

active site inaccessible for iron ion binding (21).  

    T2A-PuroR (Figure 12A) and T2A-eGFP (Figure 12B) fragments were inserted C-

terminally of TET1(DED1) CD in dCas9-TET1(DED1) fusion for successful manipulation of 

transfected cells – either puromycin selection, or visualization of transfected cells. EcoRI 

fragment containing T2A-eGFP was isolated from plasmid pSpCas9n(BB)-2A-GFP (plasmid 

#48140, Addgene plasmid repository) (11). Mutation H166R was introduced into puromycin 

resistance gene of pSpCas9n(BB)-2A-Puro (plasmid #48141, Addgene plasmid repository), to 

achieve improved puromycin selection like the one in plasmid pSpCas9n(BB)-2A-Puro V2.0 

(plasmid #62987, Addgene plasmid repository) (11), and EcoRI fragment encoding T2A-

Puro_H166R was isolated from selected successfully mutated pSpCas9n(BB)-2A-

Puro_H166R clone. T2A is a short self-cleaving peptide isolated from thosea asigna virus, 

it mediates a ribosome skipping effect, co-translational cleavage of polyproteins 

transcribed from the same promoter as a single transcript (144). Fusion protein scheme is 
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shown in Figure 13. Polypeptide sequences of constructed fusion proteins are listed in 

Appendix 2. 

 

 

Figure 12. Maps of expression vectors for created dCas9-TET1 molecular tools and 

chosen sgRNA molecules. A) Map of dCas9-TET1-PuroR and sgRNA expression plasmid. 
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Total size of dCas9-TET1-PuroR expression plasmid is 11 373 bp, and it contains several 

distinctive features. Expression of Cas9 from S. pyogenes containing inactivating mutations in 

RuvC and HNH cleavage domains (D10A; H841A) (dSpCas9) fused with catalytic domain of 

human TET1 (TET1 CD) via short Gly-Gly-Gly-Gly-Ser (GS) linker is driven by chicken β-

actin (CBh) promoter. Restriction enzyme sites used for TET1 CD insertion are indicated 

(BamHI and FseI RSs). Nucleotide sequence of CBh is 799 bp long, dSpCas9 is 4101 bp, 

short GS linker is 15 bp, and TET1 CD is 2163 bp. TET1 CD Active Site is marked, which is 

mutated (H1671Y; D1673A) in catalytically dead construct variant dCas9-DED1-PuroR. 

Resistance marker for puromycin (PuroR, 600 bp) is cloned C-terminally of TET1 CD, 

downstream of self-cleaving T2A (54 bp) peptide. Site of puromycin resistance gene mutation 

H166R is indicated. EcoRI restriction sites used for cloning of PuroR are highlighted in 

yellow (EcoRI RSs). There is an epitope tag, 3xFLAG sequence of 66 bp, downstream of 

CBh promoter, immediately followed by SV40 nuclear localization signal (SV40 NLS, 21 bp) 

and a nucleoplasmin NLS of 48 bp is cloned immediately downstream of dSpCas9. Plasmid 

backbone contains bacterial origin of replication (ori) and a resistance marker for ampicillin 

(AmpR, 861 bp) under its own promoter (AmpR promoter, 105 bp). Expression of cloned 

sgRNA followed by sgRNA scaffolds of 766 bp is driven by human U6 polymerase III 

promoter (U6 promoter, 249 bp), this transcript ends with U6 terminator (66 bp). B) Map of 

dCas9-TET1-eGFP and sgRNA expression plasmid. Total size of dCas9-TET1-eGFP 

expression plasmid is 11 484 bp, and it contains the same described features as dCas9-TET1-

PuroR and sgRNA expression vector, except for the eGFP selection marker (714 bp) instead 

of PuroR. 

 

Figure 13. Domains of the fusion protein dCas9-TET1. Silencing substitutions (D10A and 

H840A) in Streptococcus pyogenes Cas9 nuclease domains are indicated. Catalytic domain of 
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human TET1 (TET1 CD) is fused C-terminally to dCas9 via short Gly4Ser (GS) linker. 

dCas9-TET1 is expressed as a bicistronic mRNA, along with puromycin resistance gene or 

eGFP (PuroR/EGFP), allowing selection of transfected cells. PuroR/EGFP module is 

efficiently released after translation due to a self-cleaving 2A peptide (T2A) from Thosea 

asigna virus 2A. Nuclear localization signals (NLSs) are located at both ends (N- and C-

terminus) of the dCas9 part of the fusion protein, while the fusion domains are connected with 

a flexible Gly4Ser linker (GS). 

 

4.2 Insertion of TET1 and VPR into the modular epitoolbox backbone 

     TET1 catalytic domain (TET1 CD) prepared as described in section 3.2 was inserted N-

terminally to dCas9 from Streptococcus pyogenes (TET1-dCas9) into a backbone for 

assembly of modular epitoolbox created in our lab (unpublished data).  

   The VPR-dCas9 construct used for VPR-mediated activation of MGAT3 was generated by 

insertion of VPR activation domain into the same modular epitoolbox backbone N-terminally 

to dCas9 from Staphylococcus aureus. Construct schemes are shown in Figure 14. 

 

 

Figure 14. Backbone of the modular epitoolbox for N-terminal dCas9 fusions. TET1 CD 

and VPR activation domain were inserted into a plasmid backbone along with other specific 
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modules using Golden Gate cloning strategy. Each position for insertion of modules into the 

backbone has ends compatible with certain type of module ends. The first position (“B” to 

“A”) receives a gRNA expression module with SaCas9 or SpCas9 scaffold, an empty module 

for gRNA cloning with red-white selection, or a multi-guide module for a second step 

insertion of up to 6 gRNAs. Position “A” to “I” is for insertion of a eukaryotic promoter, 

followed by the effector domain (“I” to “II”) containing an N-terminal NLS and a short G4S 

linker to a dCas9 ortholog (“II” to “III”), followed by a selection marker (fluorescence or 

antibiotic resistance, “III” to “IV”) linked via the self-cleaving T2A peptide, which can be 

substituted with the dual-marker system. Finally, a module for eukaryotic transcription 

terminator is inserted between ends “IV” and “Z”. The TET1-dCas9 construct contains the 

following modules: SpCas9 compatible sgRNA (one MGAT3 targeting sgRNA inside position 

“B” to “A”; constructs with sgRNAs MGAT3-sg01-sg05 were created), CAG promoter (“A” 

to “I”), TET1 CD (“I” to “II”), dSpCas9 (“II” to “III”), puromycin resistance marker (“III” to 

“IV”) and a Bgh transcription terminator (“IV” to “Z”). The VPR-dCas9 construct contains 

the following modules: SaCas9 compatible sgRNA (one MGAT3 targeting sgRNA inside 

position “B” to “A”; constructs with sgRNAs sg_INT-1f, sgRNA_INT-2r and sgRNA_INT3f 

were created), CAG promoter (“A” to “I”), VPR activation domain (“I” to “II”), dSaCas9 

(“II” to “III”), puromycin resistance marker (“III” to “IV”) and a Bgh transcription terminator 

(“IV” to “Z”). Blank modules indicated above position “I” to “II” can be filled with any CD 

of choice and inserted into the backbone, and blank modules indicated above position “III” to 

“IV” can be filled with any selection marker of choice and inserted into backbone. NLS = 

nuclear localization signal; EFS = short EF1alpha promoter, CAG = cytomegalovirus (CMV) 

enhancer fused to the chicken beta-actin promoter; AmpR = ampicillin resistance marker; ori 

= origin of replication. 

 

4.3 Titration of plasmid DNA for subsequent experiments  

   In the initial transfections of HEK293 cells with dCas9-TET1 molecular tool, the optimal 

amount of plasmid DNA was determined for subsequent experiments. On-target and off-target 

effect, as well as transfection efficiency were analysed. LAMB1-sg01 was used for this 

optimization. Methylation status of 6 CpG sites in LAMB1-A1 assay was determined by 

bisulfite pyrosequencing for the following experimental groups: i) cells transfected with either 
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20 ng, 30 ng, 40 ng, 50 ng, 75 ng or 100 ng of dCas9-TET1-PuroR and LAMB1-sg01 

expression plasmid; ii) cells transfected with the same amounts of dCas9-DED1-PuroR and 

LAMB1-sg01 expression plasmid; iii) cells transfected with the same amounts of dCas9-

TET1-PuroR and non-targeting (NT) sgRNA expression plasmid and iv) mock transfected 

cells (Figure 15). In subsequent experiments, 100 ng of plasmid DNA was used in 24-well 

plates and 800 ng in 6-well plates (data from optimization experiments not shown). 

 

 

Figure 15. Figure is continued and described on the following page. 
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Figure 15. Titration of dCas9-TET1-PuroR and sgRNA expression plasmid DNA for 

subsequent experiments. A) Methylation levels of individual CpG sites within LAMB1-A1 

assay are shown for HEK293 cells transfected with tested amounts (20ng, 30ng, 40ng, 50ng, 

75ng, 100ng) of the dCas9-TET1-LAMB1-sg01 expression plasmid as lines connecting 

individual CpG sites (presented as dots). Each dot represents an arithmetic mean of two 

replicas, with indicated standard deviation bars. Methylation levels of mock transfected cells 

are shown in comparison. Most drastic methylation change is achieved in cells transfected 

with 100 ng of plasmid DNA (48% and 47% at first two CpG sites). B) Methylation levels of 

individual CpG sites within LAMB1-A1 assay are shown for cells transfected with tested 

amounts (20ng – 100ng) of dCas9-DED1-LAMB1-sg01 expression plasmid as lines 

connecting individual CpG sites (presented as dots), in comparison with mock transfected 

cells. Each dot represents an arithmetic mean of two replicas, with indicated standard 

deviation bars. No significant methylation changes were observed for any of the tested DNA 

amounts. C) Methylation levels of individual CpG sites within LAMB1-A1 assay are shown 

for cells transfected with tested amounts (20ng – 100ng) of dCas9-TET1-sgNT as lines 

connecting individual CpG sites (presented as dots), in comparison with mock transfected 

cells. Each dot represents an arithmetic mean of two replicas, with indicated standard 

deviation bars. Significant off-target effect was observed for all tested DNA amounts. No 

significant difference in off-target activity was observed for cells transfected with 30 ng, 40 

ng, 50 ng, 75 ng and 100 ng of plasmid DNA.  
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4.4 Activity profile of dCas9-TET1 molecular tool 

    Methylation levels on CpG sites covered by MGAT3-A1 and MGAT3-A2 assays were 

analysed in HEK293 cells: (i) transfected with plasmids co–expressing dCas9-TET1-PuroR 

using 7 sgRNAs which targeted MGAT3 promoter; (ii) transfected with dCas9-DED1-PuroR 

co–expressing targeting sgRNAs, (iii) transfected with dCas9-TET1-PuroR and non-targeting 

(NT) sgRNA and mock transfected cells. dCas9-TET1 targeting the MGAT3 promoter 

resulted in decrease of methylation level at CpG sites covered by assays MGAT3-A1 and 

MGAT3-A2 in comparison with both dCas9-TET1-sgNT and mock transfected cells.  

    Each sgRNA induced variable levels of demethylation at specific CpG sites, depending on 

the sgRNA binding site (Figure 16). Methylation levels of individual CpG sites between cells 

transfected with dCas9-TET1-sgNT did not significantly differ from those of mock 

transfected cells (+/- 0.7 – 5.5%) except for the first CpG site within MGAT3-A2 assay 

(18.5% methylation decrease for dCas9-TET1-sgNT transfected cells). dCas9-TET1-

MGAT3-sg01 transfection resulted in peak demethylation activity of 48% at third CpG site of 

the MGAT3-A1 assay (22 bp downstream from PAM recognition sequence) and 51% at first 

CpG site of the MGAT3-A2 assay (186 bp downstream from PAM) in comparison with 

mock-transfected cells. MGAT3-sg02 guided demethylation resulted in peak demethylation 

activity of 51.9% at sixth CpG site of MGAT3-A1 (17 bp downstream from PAM recognition 

sequence) and 36.4% at first CpG site of MGAT3-A2 (155 bp downstream from PAM). 

dCas9-TET1-MGAT3-sg03 transfection resulted in peak demethylation activity of 22.7% at 

third CpG site of MGAT3-A1 (57 bp upstream from PAM) and 51% at first CpG site of the 

MGAT3-A2 assay (105 bp from PAM). dCas9-TET1-MGAT3-sg04 transfection resulted in 

peak demethylation activity of 18.8% at 9th CpG site of MGAT3-A1 (34 bp upstream from 

PAM) and 47.6% at first CpG site of the MGAT3-A2 assay (72 bp from PAM). MGAT3-

sg05 guided demethylation resulted in peak demethylation activity of 68.3% at first CpG site 

of the MGAT3-A2 assay (20 bp from PAM) in comparison with mock-transfected cells. 

dCas9-TET1-MGAT3-sg07 and dCas9-TET1-MGAT3-sg08 transfected cells had no 

observable methylation changes for analysed CpG sites. Their respective binding sites are 236 

bp and 296 bp downstream of the last analysed CpG site in the assay MGAT3-A2. These 

results indicate that distance above 230 bp surpasses the activity range of dCas9-TET1 

molecular tool.  
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Figure 16. Targeted demethylation of the MGAT3 promoter with dCas9-TET1 and 7 

individual sgRNAs. Activity of dCas9-TET1 fusion protein, reflected on methylation level, 

guided by each individual sgRNA (MGAT3-sg01 – MGAT3-sg08) is shown as line 

connecting individual CpG sites (presented as dots). Same values for non-targeting control 

group (blue) and mock transfected cells (black) are shown in comparison to each sgRNA 
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(red). Methylation status of each individual CpG site within the assays MGAT3-A1 and 

MGAT3-A2 was determined by bisulfite pyrosequencing. Relative CpG position and distance 

is plotted on X-axis (the assays MGAT3-A1 and MGAT3-A2 with total coverage of 111 bp 

are shown together). Each dot represents an arithmetic mean of two replicas, with indicated 

standard deviation bars.  

     Summary demethylation activity profile of dCas9-TET1 was obtained from correlating 

upstream and downstream demethylation activity values for analysed CpG sites of MGAT3-

A1 and MGAT3-A2 assays for each tested sgRNA with distance from sgRNA binding 

sequence, 1st base downstream of PAM sequence counted as base 0 (Figure 17). 

 

 

Figure 17. Summary profile of the dCas9–TET1 activity. Absolute methylation fraction 

decrease (compared to mock–transfected cells) is shown relative to the distance of each CpG 

site from the PAM sequence. Peak demethylation activity (purple dotted line) was observed 

26 bp downstream from PAM recognition sequence (fraction indicated by red lines). 

Significant demethylation activity was also observed around 180-200 bp downstream of PAM 

sequence. 
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4.5 Activity profile of TET1-dCas9 molecular tool 

     Methylation levels on CpG sites covered by MGAT3-A1 and MGAT3-A2 assays were 

analysed in HEK293 cells: (i) transfected with plasmids co–expressing TET1-dCas9-PuroR 

using 5 sgRNAs which targeted MGAT3 promoter; (ii) transfected with DED1-dCas9-PuroR 

co–expressing targeting sgRNAs, (iii) transfected with TET1-dCas9-PuroR and non-targeting 

(NT) sgRNA and mock transfected cells. TET1-dCas9 targeting the MGAT3 promoter 

resulted in decrease of methylation level at CpG sites covered by assays MGAT3-A1 and 

MGAT3-A2 in comparison with DED1-dCas9 and targeting sgRNAs, TET1-dCas9-sgNT and 

mock transfected cells.  

    Each sgRNA induced variable levels of demethylation at specific CpG sites, depending on 

the sgRNA binding site (Figure 18). TET1-dCas9-MGAT3-sg01 transfection resulted in peak 

demethylation activity of 76.4% at third CpG site of the MGAT3-A1 assay (22 bp 

downstream from PAM recognition sequence) and 78.3% at first CpG site of the MGAT3-A2 

assay (186 bp downstream from PAM) in comparison with mock-transfected cells. MGAT3-

sg02 guided demethylation resulted in peak demethylation activity of 76.6% at eighth CpG 

site of MGAT3-A1 (45 bp downstream from PAM recognition sequence) and 78.3% at first 

CpG site of MGAT3-A2 (155 bp downstream from PAM). TET1-dCas9-MGAT3-sg03 

transfection resulted in peak demethylation activity of 76.9% at first CpG site of the MGAT3-

A1 assay (76 bp upstream from PAM) and 70.1% at first CpG site of the MGAT3-A2 assay 

(105 bp downstream from PAM). MGAT3-sg04 guided demethylation resulted in peak 

demethylation activity of 69.5% at eighth CpG site of the MGAT3-A1 assay (36 bp upstream 

from PAM) and 64.7% at first CpG site of the MGAT3-A2 assay (72 bp downstream from 

PAM). MGAT3-sg05 guided demethylation resulted in peak demethylation activity of 40.8% 

at 9th CpG site of MGAT3-A1 (86 bp upstream from PAM) and 87.1% at second CpG site of 

the MGAT3-A2 assay (20 bp downstream from PAM) in comparison with mock-transfected 

cells. Methylation levels of individual CpG sites between cells transfected with TET1-dCas9-

sgNT did not significantly differ from those of mock transfected cells (+/- 0.7 – 5.5%) for 

MGAT3-A1 assay. TET1-dCas9-sgNT transfection resulted in 23.8%, 9.6% and 11.5% 

methylation decrease at first, second and third CpG site of MGAT3-A2, respectively. 

    Summary demethylation activity profile of TET1-dCas9 was obtained from correlating 

upstream and downstream demethylation activity values for analysed CpG sites of MGAT3-
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A1 and MGAT3-A2 assays for each tested sgRNA with distance from sgRNA binding 

sequence, 1st base downstream of PAM sequence counted as base 0 (Figure 19). 

 

 

 

Figure 18. Targeted demethylation of the MGAT3 promoter with TET1-dCas9 and 5 

individual sgRNAs. Activity of TET1-dCas9 fusion protein, reflected on methylation level, 

guided by each individual sgRNA (MGAT3-sg01 – MGAT3-sg05) is shown as line 

connecting individual CpG sites (presented as dots). Same values for non-targeting control 

group (blue) and mock transfected cells (black) are shown in comparison to each sgRNA 

(red). Methylation status of each individual CpG site within the assays MGAT3-A1 and 

MGAT3-A2 was determined by bisulfite pyrosequencing. Relative CpG position and distance 

is plotted on X-axis (the assays MGAT3-A1 and MGAT3-A2 with total coverage of 111 bp 
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are shown together). Each dot represents an arithmetic mean of two replicas, with indicated 

standard deviation bars. 

     

 

Figure 19. Summary profile of the TET1-dCas9 activity. Absolute methylation fraction 

decrease (compared to mock–transfected cells) is shown relative to the distance of each CpG 

site from the PAM sequence. Methylation fraction is indicated by orange line. Peak 

demethylation activity (red dotted line) was observed 30 bp downstream from PAM 

recognition sequence. Significant demethylation activity was also observed around 180-200 

bp downstream of PAM sequence. Dotted orange line represents the absolute methylation 

fraction decrease for cells transfected with DED1-dCas9 in comparison with mock-transfected 

cells.  

 

4.6 Time Course analysis of dCas9-TET1 demethylation 

    Methylation levels at CpG sties covered by the MGAT3-A1, MGAT3-A2 and LAMB1-A1 

assays were analysed in HEK293 cells transfected with: (i) dCas9-TET1-MGAT3-sg03-

PuroR, (ii) dCas9-DED1-MGAT3-sg03-PuroR, (iii) dCas9-TET1-LAMB1-sg01-PuroR, (iv) 

dCas9-DED1-LAMB1-sg01-PuroR, and (v) mock transfected cells. CpG methylation level 

was analysed at following time points: 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 10th, 13th, 15th, 20th, 24th 

and 30th day post-transfection (transfection = day 0).  
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    dCas9-TET1-MGAT3-sg03 targeting the MGAT3 promoter resulted in methylation 

decrease for analysed CpG sites in the assays MGAT3-A1 and MGAT3-A2 in comparison 

with dCas9-DED1-MGAT3-sg03, dCas9-TET1-LAMB1-sg01 transfected cells and mock 

transfected cells. Methylation values for 9 CpG sites analysed within the MGAT3-A1 assay 

changed significantly between analysed time points (Figure 20). First significant methylation 

decrease (>5% methylation change at CpG sites 3-9) in comparison to mock transfected cells 

was observed on 3rd day post transfection, which correlates with complete 48 hours of 

puromycin selection and indicates a successfully enriched transfected cell population. 

Maximum demethylation activity was observed on 6th day after transfection for all analysed 

CpG sites (Figure 23). Highest methylation change of 29% was observed at third analysed 

CpG site of the MGAT3-A1 assay (6th day). Methylation changes dropped by 2-4% per CpG 

sites already on 7th day and slight increase in methylation was notable in every later time 

point. On 30th day, some CpG sites were still significantly demethylated in comparison to 

mock transfected cells; third CpG site had 19% lower methylation level, fifth CpG site had 

9.6% and eight CpG site had 5.9% lower methylation level. 

    Methylation levels at 5 individual CpG sites analysed within the MGAT3-A2 assay 

changed significantly between analysed time points (Figure 21). First significant methylation 

decrease in comparison to mock transfected cells (>5%) was observed on the second day, still 

during puromycin selection, at third CpG site (7.9%). On the third day (immediately after 

complete puromycin selection) first three CpG sites all had >10% lower methylation levels. 

Maximum demethylation activity was observed on 6th day after transfection, with similar 

values observed for the seventh day. Highest methylation change of 54.3% at first analysed 

CpG site in the MGAT3-A2 assay was observed on the 7th day (Figure 23). Methylation is 

already slightly increased (around 2% per each CpG site) on the 8th day, and gradual increase 

in methylation is notable in every later time point. First and third CpG sites in the MGAT3-

A2 assay remained significantly demethylated in comparison to mock transfected cells even 

on the 30th day (10.6% and 17.3% methylation changes). 

    dCas9-TET1-LAMB1-sg01 targeting the LAMB1 promoter resulted in decrease of 

methylation level at 6 analysed CpG sites in the LAMB1-A1 assay in comparison with dCas9-

DED1-LAMB1-sg01, dCas9-TET1-MGAT3-sg03 transfected cells and mock transfected 

cells. Methylation levels of individual analysed CpG sites significantly changed between 
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analysed time points (Figure 22). First significant methylation decrease (>5%) was observed 

on the second day with 5.74% methylation decrease at first CpG site and 6.94% at second 

CpG site in the LAMB1-A1 assay. Similar maximum methylation changes were observed on 

the 7th and 8th day, with greatest methylation change of 49.4% observed at first CpG site on 

the 8th day (Figure 23). Methylation level was already slightly increased (around 2% per each 

CpG site) on the 10th day, and gradually increased at every later time point. All 6 analysed 

CpG sites remained significantly demethylated (11.1% - 30.4%) in comparison with mock 

transfected cells even on the 30th day. 

    In this experiment, a different approach was used for assessment of non-specific, off-target 

construct activity. Instead of using dCas9-TET1-sgNT transfected cells as a control group, 

off-target activity was assessed by methylation analysis of the MGAT3-A2 assay for cells 

transfected with dCas9-TET1-LAMB1-sg01 (Figure 24) and by methylation analysis of the 

LAMB1-A1 fragment for cells transfected with dCas9-TET1-MGAT3-sg03 (Figure 25). 

Relatively high off-target activity was observed at certain CpG sites at certain time points. 

    For the MGAT3-A1 assay, first significant off-target demethylation change (>5%) was 

observed at third CpG site already on the 2nd day. On the 3rd day, first three CpG sites all had 

>7% lower methylation levels in comparison with mock transfected cells. Highest off-target 

demethylation of 26.7% was observed for first CpG site on the 7th day. First and third CpG 

sites remained significantly demethylated till the 24th day, with third CpG site having 5.2% 

lower methylation level in comparison with mock transfected cells even on the 30th day 

(Figure 24).  

    Within the LAMB1-A1 assay, first significant off-target methylation change (>5%) was 

observed the 3rd day at first, second, third and fifth CpG site. On fourth day, all analysed CpG 

sites showed >10% of methylation level decrease. Highest off-target demethylation was 

observed on 7th day (24.6% for second CpG site and 25.1% for fifth CpG site), with similar 

values observed on the 6th, 8th and 10th day. First four CpG sites remained significantly 

demethylated on 30th day (5.5%-11.2% methylation changes) (Figure 25). 

    CpG methylation in the MGAT3-A2 and LAMB1-A1 assays was analysed for cells 

transfected with dCas9-DED1 and targeting sgRNA expression plasmids in all 14 time points. 

No significant methylation changes were observed at any time point at any CpG site analysed 
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within the LAMB1-A1 assay. First and third CpG site in the MGAT3-A2 assay experienced 

significant demethylation at certain time points; first CpG site having 7.8% methylation 

change at the 6th day and remaining significantly demethylated till the 13th day (5.7%) and 

third CpG site having 5.3% methylation change at the 8th day and remaining demethylated till 

the 30th day (6.9 %) (Figure 26). 

 

 

Figure 20. Time course evaluation of dCas9-TET1-MGAT3-sg03 induced demethylation 

effect on individual CpG sites within the MGAT3-A1 assay. A) Methylation level per 

analysed CpG site in the MGAT3-A1 assay was analysed at 14 time points between the 1st 
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and the 30th day after transfection with dCas9-TET1-MGAT3-sg03 expression plasmid. 

Methylation levels are presented as lines connecting individual time points (presented as 

dots). Each dot represents an arithmetic mean of methylation values of two replicas in a single 

time point, with indicated standard deviation bars. B) Methylation levels for each analysed 

CpG site in mock transfected cells are shown for comparison. Each dot represents an 

arithmetic mean of methylation values of two replicas in a single time point, with indicated 

standard deviation bars. 

 

 

Figure 21. Time course evaluation of dCas9-TET1-MGAT3-sg03 induced demethylation 

effect on individual CpG sites within the MGAT3-A2 assay. A) Methylation level per 
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analysed CpG site in the MGAT3-A2 assay was analysed at 14 time points between the 1st 

and the 30th day after transfection with dCas9-TET1-MGAT3-sg03 expression plasmid. 

Methylation levels are presented as lines connecting individual time points (presented as 

dots). Each dot represents an arithmetic mean of methylation values of two replicas in a single 

time point, with indicated standard deviation bars. B) Methylation levels for each analysed 

CpG site in mock transfected cells are shown for comparison. Each dot represents an 

arithmetic mean of methylation values of two replicas in a single time point, with indicated 

standard deviation bars.  

 

 

Figure 22. Time course evaluation of dCas9-TET1-LAMB1-sg01 induced demethylation 

effect on individual CpG sites within the LAMB1-A1 assay. A) Methylation level per 
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analysed CpG site in LAMB1-A1 assay was analysed at 14 time points between 1st and 30th 

day after transfection with dCas9-TET1-LAMB1-sg01 expression plasmid is shown. 

Methylation levels are presented as lines connecting individual time points (presented as 

dots). Each dot represents an arithmetic mean of methylation values of two replicas in a single 

time point, with indicated standard deviation bars. B) Methylation levels for each analysed 

CpG site in mock transfected cells are shown for comparison. Each dot represents an 

arithmetic mean of methylation values of two replicas in a single time point, with indicated 

standard deviation bars. 

 

 

Figure 23. Figure is continued and described on the following page. 
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Figure 23. Methylation change per each CpG site in all analysed fragments (assays) at 

respective time points correlating with the highest observed demethylation activity. A) 

Methylation change per each CpG site within the MGAT3-A1 assay in comparison to mock 

transfected cells at sixth day after dCas9-TET1-MGAT3-sg03 transfection is shown. Highest 

methylation change of 29% at third CpG site is indicated (*). Bp distance between individual 

CpG sites is plotted on X-axis. B) Methylation change per each CpG site within the MGAT3-

A2 assay in comparison to mock transfected cells at seventh day after dCas9-TET1-MGAT3-

sg03 transfection is shown. Greatest observed methylation change of 54.3% at first CpG site 

is indicated (*). Bp distance between individual CpG sites is plotted on X-axis. C) 

Methylation change per each CpG site within the LAMB1-A1 assay in comparison to mock 

transfected cells at eighth day after dCas9-TET1-LAMB1-sg01 transfection is shown. Highest 

observed methylation change of 49.4% at first CpG site is indicated (*). Bp distance between 

individual CpG sites is plotted on X-axis.  
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Figure 24. Comparison of on-target and off-target dCas9-TET1 demethylation activity 

at the MGAT3-A2 assay. A) On-target activity is represented as absolute methylation 

fraction decrease per CpG site in dCas9-TET1-MGAT3-sg03 transfected cells compared to 

mock transfected cells. First significant on-target methylation decrease of 7.9% at third CpG 

site was observed on second day. On the 3rd day, first three CpG sites exhibited >10% 

methylation change. Highest methylation change (54.3% at first CpG site) was observed on 

the 7th day after transfection, with similar values observed for sixth and eighth day. Gradual 

decrease in methylation level is observed in every later time point, with first and third CpG 

sites remaining significantly demethylated on the 30th day. B) Off-target activity is 
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represented as absolute methylation fraction decrease per CpG site in dCas9-TET1-LAMB1-

sg01 transfected cells compared to mock transfected cells. First significant off-target 

demethylation change (>5%) was observed for third CpG site on second day. First three CpG 

sites exhibit >7% methylation change on the 3rd day. Highest off-target demethylation of 

26.7% was observed for first CpG site on 7th day. Third and first CpG sites remained 

significantly demethylated until the 24th day, with third CpG remaining significantly 

demethylated on the 30th day. 

 

 

Figure 25. Comparison of on-target and off-target dCas9-TET1 demethylation activity 

observed for the LAMB1-A1 assay. A) On-target activity is represented as absolute 

methylation fraction decrease per CpG site in dCas9-TET1-LAMB1-sg01 transfected cells 
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compared to mock transfected cells. First significant on-target methylation decrease of 5.74% 

at first CpG site and 6.94% at second CpG site was observed on second day. Greatest 

methylation change (49.4% at first CpG site) was observed on 8th day after transfection. 

Gradual decrease in methylation is notable in every later time point. All 6 analysed CpG sites 

remained significantly demethylated (11.1% - 30.4%) in comparison with mock transfected 

cells even on the 30th day. B) Off-target activity is represented as absolute methylation 

fraction decrease per CpG site in dCas9-TET1-MGAT3-sg03 transfected cells compared to 

mock transfected cells. First significant off-target demethylation change (>5%) was observed 

on third day at first, second, third and fifth CpG site. All analysed CpG sites had >10% 

methylation change by fourth day. Greatest off-target demethylation was observed on 7th day 

(24.6% for second CpG site and 25.1% for fifth CpG site). First four CpG sites remained 

significantly demethylated on 30th day. 

 

 

Figure 26. Figure is continued and described on the following page. 
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Figure 26. Methylation change per individual CpG sites in the MGAT3-A2 and LAMB1-

A1 assays in cells transfected with dCas9-DED1 and sgRNA expression plasmids. 

Methylation change is represented as absolute methylation fraction decrease per CpG site in 

transfected cells compared to mock transfected cells. A) First and third CpG site of the 

MGAT3-A2 assay experienced significant demethylation at certain time points; first CpG site 

having 7.8% methylation change at the 6th day and remaining significantly demethylated till 

the 13th day (5.7%); third CpG site having 5.3% methylation change at the 8th day and 

remaining demethylated till 30th day (6.9%). B) No significant methylation changes were 

observed at any time point at any CpG site analysed within the LAMB1-A1 assay. Most of the 

methylation values obtained for dCas9-DED1-LAMB1 samples were either 1-2% higher or 

lower than those for mock transfected cells, thus those points were excluded from the 

representation.  
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4.7 Analysis of hydroxymethylation level 

    Methylation level at CpG sites within the MGAT3-A1 assay was analysed by bisulfite 

pyrosequencing for cells transfected with plasmids co–expressing dCas9-TET1-PuroR and 

sgRNA MGAT3-sg01, plasmids co–expressing dCas9-DED1-PuroR and sgRNA MGAT3-

sg01, plasmids co–expressing dCas9-TET1-PuroR and non-targeting sgRNA and 

untransfected cells. One microgram of genomic DNA from each sample was selectively 

chemically oxidized to achieve 5-hydroxymethylcytosine (5hmC) to 5-formylcytosine (5fC) 

conversion which enables bisulfite conversion of 5fC to uracil. General denaturation and 

oxidation protocol was adapted from previously published work on hydroxymethylation level 

analysis, following instructions for genomic DNA manipulation (122). Oxidized DNA was 

bisulfite converted, amplified and methylation in the MGAT3-A1 assay was assayed as 

described above. Same procedure (bisulfite conversion, amplification and pyrosequencing) 

was done with the same amount of unoxidized isolated DNA for each sample and methylation 

levels of oxidized and unoxidized samples were subtracted to gain information about 

hydroxymethylation levels. Detection of any methylation difference after oxBS between 

samples of untransfected cells would indicate 5hmC deposition at this genomic region.   

     No significant methylation level changes were observed between oxidized and unoxidized 

DNA from dCas9-TET1 transfected cells, as well as between oxidized and unoxidized 

genomic samples from untransfected HEK293 cells (Figure 27). Unusual differences were 

observed in methylation levels for certain technical replicas (PCR products amplified from the 

same sample) between pyrosequencing runs on oxidized samples, which might imply 

inadequate sample purification between different steps of the oxBS procedure or that the 

oxidation procedure resulted in sample degradation in some extent.  
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Figure 27. Methylation levels of oxidized and unoxidized samples determined by 

bisulfite pyrosequencing. A) DNA from cells transfected with dCas9-TET1-MGAT3-sg01 

was analysed in its oxidized and unoxidized form. Methylation levels per each CpG site (dots) 

of MGAT3-A1 are shown as a line connecting individual sites. Each dot represents a mean of 

three replicas, each pyrosequenced two times, with bars indicating standard deviations. TET1-

MGAT3-sg01 = DNA isolated from cells transfected with dCas9-TET1-MGAT3-sg01; OX-

TET1-MGAT3-sg01 = oxidized DNA isolated from cells transfected with dCas9-TET1-

MGAT3-sg01. B) Methylation levels per each CpG site of the MGAT3-A1 assay are shown 

for DNA from the untransfected cells analysed in its oxidized and unoxidized state with 
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bisulfite pyrosequencing. Each dot represents a mean of 3 replicas, each pyrosequenced two 

times, with bars indicating standard deviations. OX-UTF = oxidized DNA isolated from 

untransfected cells; UTF = DNA isolated from untransfected cells. 

 

4.8 Targeting the MGAT3 promoter with dCas9-TET1 and pooled

 sgRNAs 

    DNA and RNA were simultaneously isolated 8th day after transfection from the same cell 

pools. Biological groups were: i) HEK293 cells transfected with equimolar mixtures of five 

plasmids co-expressing dCas9-TET1 and a targeting sgRNA (MGAT3-sg01-sg05); ii) cells 

transfected with equimolar mixtures of five plasmids co-expressing dCas9-DED1 and a 

targeting sgRNA (MGAT3-sg01-sg05); iii) cells transfected with equal amount of plasmid co-

expressing dCas9-TET1 and sgNT; iv) mock transfected cells. Isolated genomic DNAs were 

used for methylation analysis using the MGAT3-A2 assay and isolated total RNAs were 

reverse transcribed and used for MGAT3 gene expression analysis. 

    Targeting of the MGAT3 promoter with dCas9-TET1 and pooled sgRNAs resulted in 

methylation decrease at analysed CpG sites in the MGAT3-A2 assay in comparison with 

dCas9-DED1 and pooled sgRNAs transfected cells, dCas9-TET1-sgNT transfected cells and 

mock transfected cells (Figure 28). It is noticeable that targeting of MGAT3 promoter with 

dCas9-TET1 and pooled sgRNAs resulted in higher demethylation activity in comparison 

with previous experiments where dCas9-TET1 was guided by any individual sgRNA. Highest 

methylation change was observed at first CpG site (77%).  

MGAT3 mRNA levels were determined by qRT-PCR and normalized to endogenous 

control HPRT1 using the comparative ddCt method (142). Changes in MGAT3 gene 

expression within separate biological groups are expressed as fold change values in 

comparison to mock transfected cells (Figure 29). Transfection with dCas9-TET1 and pooled 

MGAT3 targeting sgRNAs resulted in statistically significant increase (P=0.00004) of MGAT3 

mRNA of around 5-fold in comparison with mock transfected cells. Transfection with dCas9-

DED1 and pooled MGAT3 targeting sgRNAs also resulted in statistically significant increase 

(P=0.002) of MGAT3 mRNA of around 3-fold in comparison with mock transfected cells, as 

well as transfection with dCas9-TET1-sgNT (P=0.004). Notably, there is a statistically 
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significant difference between dCas9-TET1 transfected cells and cells transfected with either 

dCas9-DED1 (P=0.012) or dCas9-TET1-sgNT (P=0.007).  

 

 

Figure 28. Targeted MGAT3 promoter demethylation with dCas9-TET1 and pooled 

sgRNAs. Methylation levels at individual CpG sites within the MGAT3-A2 assay were 

determined by bisulfite pyrosequencing. Values for dCas9-TET1 and pooled sgRNAs, dCas9-

DED1 and pooled sgRNAs, dCas9-TET1-sgNT and mock transfected cells are shown as lines 

connected by individual dots (CpG sites). Each dot represents an arithmetic mean of 

biological triplicates with indicated standard deviation. Bp distance between individual CpG 

sites is plotted on X-axis.  
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Figure 29. MGAT3 gene expression changes after dCas9-TET1 targeted promoter 

demethylation. MGAT3 mRNA expression levels were determined by qRT-PCR and 

normalized to endogenous control (HPRT1). Relative expression levels of MGAT3 mRNA are 

shown as fold change values. Fold changes are shown relative to mock transfected cells (fold 

change=1). Mean values for biological triplicates are shown with indicated standard errors. 

Biological groups were compared among each other with ANOVA test followed by post hoc 

Tukey multiple comparisons test (***P ≤ 0.001; * P≤ 0.05). 

 

4.9 Targeting the MGAT3 gene with VPR-dCas9 and pooled sgRNAs 

For VPR-dCas9 targeting of MGAT3 gene, N-terminal fusion of VPR activation domain 

and dSaCas9 (pN-VPR-d(Sa)Cas9-PuroR) previously constructed in our lab was used with 

three different sgRNAs. Biological groups were: i) HEK293 cells transfected with VPR-

dCas9 and each individual sgRNA (MGAT3-sg_INT-1f, MGAT3-sg_INT-2r and MGAT3-

sg_INT-3f) expression plasmids; ii) HEK293 cells transfected with equimolar mixture of 

three plasmids co-expressing VPR-dCas9 and a targeting sgRNA (MGAT3-sg_INT-1f, 

MGAT3-sg_INT-2r and MGAT3-sg_INT-3f); iii) mock transfected cells. Total RNA from 

transfected cells was isolated 5 days after transfection, reverse transcribed and used for 

MGAT3 gene expression analysis. 
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MGAT3 mRNA levels were determined by qRT-PCR and normalized to endogenous 

control HMBS using the comparative ddCt method (142). Changes in MGAT3 gene expression 

within separate biological groups are expressed as fold change values in comparison to mock 

transfected cells (Figure 30). Transfection with VPR-dCas9 and pooled MGAT3 targeting 

sgRNAs resulted in statistically significant increase (P=0.0003) of MGAT3 mRNA of around 

2-fold in comparison with mock transfected cells. Transfections with VPR-dCas9 and each 

individual MGAT3 targeting sgRNA did not result in statistically significant increase in 

MGAT3 expression. VPR-dCas9 and MGAT3-sg_INT-1f transfection resulted in statistically 

significant decrease (P=0.002) of MGAT3 expression, VPR-dCas9 and MGAT3-sg_INT-2r 

transfection resulted in non-significant (P=0.216) slight decrease in MGAT3 expression and 

VPR-dCas9 and MGAT3-sg_INT-3f transfection resulted in non-significant (P=0.556) slight 

increase in MGAT3 expression.  

 

 

Figure 30. MGAT3 gene expression changes following VPR-dCas9 targeting. MGAT3 

mRNA expression levels were determined by qRT-PCR and normalized to endogenous 

control (HMBS). Relative expression levels of MGAT3 mRNA are shown as fold change 

values. Fold changes are shown relative to mock transfected cells (fold change=1). Mean 

values for biological triplicates are shown with indicated standard errors. Biological groups 

were compared among each other with ANOVA test followed by post hoc Tukey multiple 

comparisons test (***P ≤ 0.001; * P≤ 0.05).  
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5. Discussion 

     The aim of this doctoral thesis was development of flexible and easily reconfigurable 

molecular tools for targeted epigenetic manipulation and direct gene regulation. Special focus 

was given to development of CRISPR/dCas9-TET1 molecular tool for targeted DNA 

demethylation in mammalian genomes. Developed tools were validated on candidate loci 

MGAT3 and LAMB1, genes associated with IgG glycosylation and inflammatory bowel 

diseases (18,23). I have validated the demethylation activity of both C-terminal and N-

terminal fusions of TET1 catalytic domain (CD) and dCas9 from Streptococcus pyogenes. C-

terminal dCas9-TET1 tool was generated by insertion of TET1 CD amplified from plasmid 

pJFA344C7 (map shown in Appendix 1) at the C-terminus of dCas9 via Gly4Ser linker, and 

by addition of selection markers at the C-terminus of TET1 CD via short T2A peptide. N-

terminal TET1-dCas9 tool was generated by insertion of TET1 CD amplified from 

constructed C-terminal dCas9-TET1 into a backbone for assembly of modular epitoolbox 

designed and created in our lab (Figure 14). VPR activation domain was inserted into the 

same backbone, resulting in VPR-dCas9 tool for CRISPRa. This tool was used for 

comparison of effects of the MGAT3 promoter CpG demethylation on MGAT3 expression and 

the effects of direct MGAT3 gene activation with CRISPRa. TET1 CD sequence was 

amplified from TALE-TET1 fusion constructed and validated by Maeder et al (69). In their 

study, TALE fusions with both full length TET1 protein and TET1 CD were constructed and 

analysed, and those bearing minimal TET1 CD (Cys rich region and DSBH domain, as shown 

in Figure 7A) induced greatest CpG methylation changes. Different linkers were also tested in 

their study, with no significant variations in demethylation efficiency, so simple Gly4Ser 

linker was applied. I used the same Gly4Ser linker in construction of dCas9-TET1 and the 

fusion demonstrated strong demethylating activity. However, I did not test other linker 

lengths for dCas9-TET1 and TET1-dCas9 constructs, which may result in different profiles of 

construct catalytic activity. Nevertheless, the dCas9-TET1 tool constructed using Gly4Ser 

linker showed strong demethylation activity varying from 18.8% to 68.3%, depending on a 

locus and/or a specific CpG site. The N-terminal TET1-dCas9 also induced demethylation, 

but with a remarkably stronger effect in comparison with dCas9-TET1. TET1-dCas9 

exhibited strong demethylation activity varying from 40.8% to 87.1%, depending on a 

specific CpG site. Constructed tools are modular so that distinctive selection markers can 



 

78 
 

easily be cloned C-terminally of catalytic domain instead of PuroR and EGFP, such as 

hygromycin resistance gene or other fluorescent proteins. Due to the properties of the modular 

backbone used for insertion of TET1 and VPR domains in creation of TET1-dCas9 and VPR-

dCas9 tools (Figure 14), these tools are highly modular and different sgRNAs, promoters, 

dCas9 orthologues, selection markers and terminators can be easily introduced in a single 

golden-gate reaction. Different effector domains can also be incorporated into the backbone in 

the same manner, so the system has an incredible potential for epigenetic editing. 

     Initial dose-response experiment showed greater demethylation levels in HEK293 cells 

transfected with more plasmid DNA, while non-specific demethylation activity remained 

similar for cells transfected with all tested plasmid amounts. An amount of 100 ng of plasmid 

DNA for transfections in 24-well plates (800 ng for 6-well plates) was chosen as optimal 

because it showed the greatest demethylation activity, best cell viability after transfection and 

minimal non-specific demethylation activity. The dCas9-TET1-EGFP construct was only 

used for assessment of transfection efficiency in initial experiments (data not shown), but it 

can be useful in transfections of sensitive cells which would not endure puromycin selection.  

     Several different sgRNAs were designed and cloned into dCas9-TET1 and TET1-dCas9 

for MGAT3 and LAMB1 promoter targeting, as well as for VPR-dCas9 mediated MGAT3 gene 

activation. There are specific guidelines for sgRNA design depending on the application of 

the CRISPR/Cas9 system (gene knockout, specific base editing, gene activation or repression 

and epigenetic modifications). For CRISPRa, which would be the use of VPR-dCas9, it is 

recommended to target a 100-200 bp window upstream of TSS (26). For targeted CpG 

demethylation with dCas9-TET1 and TET1-dCas9, it was necessary to pick sgRNAs 

providing a good coverage of the promoter fragments analysed by bisulfite pyrosequencing.    

          The MGAT3 gene is encoded by two exons flanked by CGIs (Figure 9). Guide 

sequences for dCas9-TET1 targeting of MGAT3 promoter were selected from all possible 

sequences that met obvious sgRNA design criteria (length of 20 bp, immediate downstream 

PAM sequence and confirmed high specificity with GT-Scan web-based tool (145) in a way 

to enable „targeting walking“ of promoter region that is covered by MGAT3-A1 and 

MGAT3-A2 pyrosequencing assays (Figure 9). Selected sgRNAs MGAT3-sg01 – MGAT3-

sg05 were chosen to be all in close proximity of analysed CpG sites, but distant enough to 

cover a 190 bp region quite densely. MGAT3-sg07 and MGAT3-sg08 were located 260 bp 
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and 320 bp from last analysed CpG site in MGAT3-A2, and distance between MGAT3-sg01 

and MGAT3-sg08 respective binding sites is 550 bp. Such sgRNA design enabled precise 

profiling of dCas9-TET1 activity and the same sgRNAs were used for profiling of N-terminal 

TET1-dCas9 fusion.   

     When targeting a 100 bp window upstream of TSS for CRISPRa (using VPR-dCas9), there 

were not so many potential sgRNAs to choose from. It was previously described for TALE-

based activators that multiple targeting of endogenous genes results in stronger, synergistic 

gene activation (67). Same principle applies to CRISPR/Cas9 gene activation, most efficient 

activation is observed when combinations of sgRNAs binding in close proximity within the 

promoter region, thus covering a larger DNA region, are simultaneously expressed in the 

same cell (146,147). Same approach of multiple targeting was adopted for this study. 

Considering that SaCas9 has a PAM sequence of 5'-NNGRRT-3', which is less frequent than 

SpCas9 PAM (5'-NGG-3'), sgRNA design was even more difficult. Several sgRNAs were 

designed and cloned into the VPR-dCas9 tool for targeted MGAT3 gene activation. First 

sgRNA picks were all in a 100 bp window from potential TSSs predicted around first CGI 

and the beginning of the first exon, but none of them showed any effect on MGAT3 gene 

expression. So, MGAT3 gene sequence was further screened for predicted regulatory 

elements, like promoters predicted by FANTOM database. A study by Radzisheuskaya and 

collaborators recently demonstrated that the FANTOM database provides the most reliable 

source of TSSs annotations (148). Several potential TSSs were predicted inside the intron of 

MGAT3 gene, so several sgRNAs targeting separate intronic regions were designed and 

tested. Three sgRNAs finally selected and presented in this study gave a modest MGAT3 gene 

activation effect of ≈2 fold, but tested best from all considered options. They all bind within 

the MGAT3 intron, around 280 bp from the beginning of second exon and 450 bp upstream of 

the second CGI (Figure 11). Further screening of MGAT3 gene for VPR-dCas9 induced gene 

activation would be needed. Interestingly, when tested individually, MGAT3-sg_INT-1f and 

MGAT3-sg_INT-2r resulted in a decrease of MGAT3 expression, but when used together with 

MGAT3-sg_INT-3f (which resulted in a slight MGAT3 activation when tested individually) 

gave a stronger, synergistic activation effect (Figure 28.)  

     Each sgRNA used for dCas9-TET1 targeting of MGAT3 promoter induced variable 

demethylation of specific analysed CpG sites, depending on its binding site (Figure 16). All 
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five of the proximal sgRNAs targeting the MGAT3 promoter induced a ≈50% decrease in 

methylation at certain CpG sites, and maximal demethylation effect of 68% for dCas9-TET1 

targeting with an individual sgRNA was observed at the first CpG site of MGAT3-A2 for 

MGAT3-sg05. Much stronger synergistic demethylation was observed for combined targeting 

of MGAT3 promoter with all five targeting sgRNAs, with maximal effect of 77% observed at 

first CpG of MGAT3-A2, but all of the analysed CpG sites were significantly more 

demethylated than in any case of individual sgRNA targeting (Figure 26). 

     N-terminal fusion of TET1 and dCas9 induced stronger demethylation effects for each of 

the tested sgRNAs (MGAT3-sg01 – MGAT3-sg05) in comparison with dCas9-TET1, with a 

similar activity profile. Average peak demethylation effect for each sgRNA targeting with 

TET1-dCas9 was around 76% for CpG sites 30 bp downstream from PAM, which is 

comparable to 77% demethylation effect observed with combined targeting of MGAT3 

promoter with all five targeting sgRNAs and dCas9-TET1. TET1-dCas9 also induced stronger 

demethylation activity upstream from PAM sequence, up to 76.9% for the CpG site 76 bp 

upstream from PAM of MGAT3-sg03, while C-terminal fusions also had considerable 

upstream demethylation activity but with maximal effect of 22.7% demethylation for the CpG 

site 57 bp upstream from PAM of MGAT3-sg03.  

     Summary activity profiles of dCas9-TET1 and TET1-dCas9 fusions were quite similar 

with TET1-dCas9 exhibiting approximately 20-40% stronger demethylation for the same CpG 

sites downstream from respective PAM recognition sequences and 20-54% stronger effects 

for the same CpG sites upstream from respective PAM sequences. Peak demethylation 

activity seemed to occur a bit further away from PAM for TET1-dCas9, both downstream (4-

5 bp) and upstream (2-19 bp) in comparison with dCas9-TET1. N-terminal fusion also 

exhibited 5.5% stronger off-target effects for the same CpG sites than C-terminal dCas9-

TET1 fusion. It would be interesting to analyse the activity of TET1-dCas9 and pooled 

sgRNAs (MGAT3-sg01 – MGAT3-sg05) and check for synergistic demethylation effect and 

MGAT3 expression changes.  

     Another study demonstrated a successful fusion of the mouse Tet1 CD and dCas9 protein 

which was additionally empowered by sgRNA2.0-guidance strategy and MS2-Tet1-CD 

construct (149). Konermann and collaborators first introduced the sgRNA2.0 concept for 

improved CRISPRa. By analysing the previously determined crystal structure of the dSpCa9 
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in complex with sgRNA and targeted DNA (150) they observed and further demonstrated that 

some sgRNA loop structures do not affect dSpCas9 functions and could tolerate the addition 

of RNA hairpin aptamers which could facilitate the recruitment of additional effector domains 

to the Cas9 complex. They added two copies of bacteriophage MS2 RNA elements to two 

sgRNA loop structures. MS2 bacteriophage coat proteins (MCPs) can dimerize and bind 

specific RNA hairpin aptamers, so effector domains fused to MCPs can bind dCas9-

sgRNA2.0 complexes for more efficient activation (151). Xu and collaborators demonstrated 

that sgRNA2.0, dCas9-Tet1-CD and MS2-Tet1-CD (Tet1 CD fused to MCP) targeting can 

induce specific demethylation at promoter regions of target genes and achieve substantial 

activation of gene expression (149). For sgRNA2.0 and dCas9-Tet1-CD and MS2-Tet1-CD 

targeting with simultaneously expressed multiple sgRNAs no synergistic demethylation 

activity was observed, in contrast with previous observations for CRISPRa tools (146) and in 

contrast with results obtained in this study for both dCas9-TET1 and VPR-dCas9 targeting. 

The authors have attributed this result to mechanistic differences between demethylation 

events catalysed by Tet1 CD and recruitment of transcription complexes by activators such as 

VP64. In my work, I did not observe such difference as both dCas9-TET1 and VPR-dCas9 

experienced synergistic effects when simultaneously targeted with multiple sgRNAs. But then 

again, intentions with creating sgRNA2.0 systems were to achieve robust up-regulation with a 

single sgRNA. In some cases in the initial study, targeting with a single sgRNA2.0 and 

dCas9-VP64 paired with MS2-p65-HSF1 (activation domain from human heat-shock factor 1 

fused to MCP) demonstrated more robust activation activity than targeting with dCas9-VP64 

combined with a pool of eight classic sgRNAs (151).  

     The peak demethylation activity of the dCas9-TET1 tool constructed in this work was 

observed 26 bp downstream from PAM recognition sequence and significant demethylation 

activity was also observed around 180-200 bp downstream of PAM (Figure 17). Maeder and 

collaborators observed a quite similar profile for their TALE-TET1 fusions, with greatest 

decrease in methylation within 30 bp of end of the TALE target binding site and significant 

CpG demethylation around 150-200 bp away from the target site. They attribute this effect to 

TET1 CD accessing regions of open chromatin located at least a nucleosome away (69), 

which seems plausible and probably explains the similar effect observed with dCas9-TET1. A 



 

82 
 

slight peak in demethylation is noticeable approximately 25 bp upstream of PAM for dCas9-

TET1, so this construct demethylates on both sides from its binding site (Figure 17).        

     Methylation levels of individual CpG sites between cells transfected with dCas9-TET1-

sgNT did not significantly differ from those of mock transfected cells except for the first CpG 

site within the MGAT3-A2 assay, which was 18.5% demethylated in dCas9-TET1-sgNT 

transfected cells. Two sgRNAs, located more than 230 bp downstream of last analysed CpG 

site in MGAT3-A2 assay, which had no observable methylation changes for any of the 

analysed CpG sites, showed a methylation decrease for the first CpG site of MGAT3-A2 

(20.8% for MGAT3-sg07 targeting and 13.2% for MGAT3-sg08 targeting). All of the other 5 

sgRNAs used for dCas9-TET1 targeting of the MGAT3 promoter experienced peak activity 

(36%- 68.3% methylation change) for MGAT3-A2 assay at first analysed CpG site. When 

taken together, these results suggest that this CpG site might be in a most accessible 

chromatin conformation for TET1 CD to act. It would be interesting to develop a 

pyrosequencing assay which would encompass 4 CpG sites located in a 106 bp region 

between the last analysed CpG site of MGAT3-A1 assay and first CpG site of MGAT3-A2 

and assay the methylation level. Sometimes differential methylation of as little as four CpG 

sites can play a major role in gene expression regulation (152–154) so targeting and 

methylation analysis of these sites in particular might provide some interesting findings.  

     CpG methylation within promoter regions correlates with gene silencing, and 

unmethylated CpG dinucleotides within those regions usually indicate sites of active 

transcription (155). In this work, I have demonstrated that targeted CpG demethylation of 

specific CpG sites within MGAT3 promoter resulted in ≈5-fold increase in its transcriptional 

expression (Figure 27). For this experiment, RNA from transfected cells was isolated 8 days 

after transfection. This time point was chosen because the previous time course experiment of 

dCas9-TET1 activity had shown the peak demethylation activity on either 6th, 7th or 8th day 

after transfection. It might be informative to analyse the MGAT3 gene expression in the earlier 

and later time points as well as to perform a complete expression analysis profile. 

Interestingly, the MGAT3 gene expression was also increased by ≈3.3-fold in cells transfected 

with dCas9-DED1 targeted with the same pool of sgRNAs and by ≈3-fold in cells transfected 

with dCas9-TET1-sgNT. These observations might indicate that a decrease in methylation at 

first CpG site of MGAT3-A2 assay (9.3% for dCas9-DED1 targeted cells and 18.7% for 
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dCas9-TET1-sgNT transfected cells) has an impact on the MGAT3 gene regulation. Effects 

observed for dCas9-DED1 targeting could not be explained undoubtedly, as one might expect 

a slight decrease in gene expression due to CRISPR interference in such case (156). The 

MGAT3 gene is normally expressed in HEK293 cells at very low levels so I would expect 

such effect would not be noticeable. Increase in MGAT3 expression after dCas9-DED1 

targeting might be explained by recruitment of other activators which could normally interact 

with TET1 CD after its binding to DNA. A study by Jin and collaborators demonstrated that 

overexpression of both TET1 CD and its catalytically inactive variant changed gene 

expression profiles in a similar manner, even though only TET1 CD overexpression resulted 

in massive DNA demethylation. These findings suggest that even the catalytically inactive 

CD influences gene expression by its binding in a demethylation-independent way (136).  

     Both dCas9-TET1 and VPR-dCas9 approaches resulted in the MGAT3 gene activation. It 

should be noted that RNA from VPR-dCas9 transfected cells was isolated on the 5th day after 

transfection and from the dCas9-TET1 transfected cells on the 8th day after transfection (when 

peak demethylation was expected). An additional time-course experiment would be needed 

for analysis of the MGAT3 gene expression for both approaches, as such time-course analysis 

might provide information on which minimal methylation level changes at this locus are 

sufficient to alter gene expression. It would also be interesting to analyse methylation levels 

of the MGAT3 promoter from cells transfected with VPR-dCas9 to see what effects this 

CRISPRa might have on promoter demethylation by endogenous proteins.  

     The dCas9-TET1 has all of the previously discussed advantages CRISPR/Cas9 system 

offers in comparison with ZF- and TALE-based tools, such as simplicity of programming and 

construction. For example, previously mentioned TALE-TET1 fusions of comparable activity 

(69) were also designed to bind 20 bp target sequences (like sgRNAs designed for dCas9-

TET1 and TET1-dCas9), since this is the length considered long enough to provide specificity 

in human genome. However, construction of such sequence-specific proteins is much more 

laborious and time-consuming in comparison with simple sgRNA selection and cloning into 

once constructed dCas9-TET1 expression plasmid. Also, in vitro transcribed sgRNAs can be 

used (rather than sgRNAs expressed from plasmids) – an approach which omits cloning from 

Cas9 targeting (157). One of the disadvantages of CRISPR/dCas9 system is the relatively 

large size of the expression vectors (e.g. dCas9-TET1-PuroR is 11 373 bp large and dCas9-
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TET1-EGFP is 11 484 bp large) which is a limiting factor for cell transfections. Although 

plasmid features of dCas9-TET1 tools, such as promoters and linkers, as well as a minimal 

catalytic domain of TET1, are quite compact and truncated to maximum, there are still size-

limiting elements which cannot be omitted or truncated. For example, dSpCas9 itself is 4101 

bp or 1367 aa large. Usage of T2A self-cleaving peptide is an elegant way of eliminating the 

need for two separate promoters and a nice vector minimizing strategy. However, an 

expression vector still contains a 4101 bp large dSpCas9 sequence, which make a construct 

very large when fused to a catalytic domain, even the smallest one such as that of TET1 

which totals 2163 bp (seen in Figures 13 and 14). Size of the (d)SpCas9 is also an important 

limiting concern in therapeutic delivery due to packaging capacity of Adeno-associated 

viruses (AAV). Smaller orthologues of Cas9 protein can be used to circumvent this issue, for 

example Cas9 from Neisseria meningitides (NmCas9) which is 1082 aa large, or 

Staphylococcus aureus Cas9 which is 1053 aa large (59,158). However, these smaller Cas9 

orthologues require more complicated PAM recognition sequences - NmCas9 recognizes a 5'-

NNNNGATT-3' PAM and SaCas9 a 5'-NNGRRT-3' PAM, sequences which are harder to 

find in the genome than 5'-NGG-3'. Therefore, this factor limits the targeting capability of 

tools which use Cas9-orthologs. On the other hand, the Cas9 orthologues which recognize 

more complex and rare PAM sequences might provide reduced off-target effects. PAM 

sequence for NmCas9 occurs once every 128 bases in a random sequence, and it has been 

demonstrated that NmCas9 exhibited lower off-target effects on endogenous loci than 

SpCas9, while achieving similar on-target activities (158).   

          In this study, HEK293 cells were only transiently transfected with dCas9-TET1 and 

targeting sgRNA expression plasmids. Cells were selected with puromycin for 48 h to achieve 

a relatively homogenous population of cells successfully expressing dCas9-TET1, but in such 

transfections expression plasmids are lost from the cell pool with subsequent cell divisions. 

This was observed in a time-course experiment with a gradual increase in methylation from 

10th till 30th day after transfection. It would also be interesting to correlate the presence of the 

plasmid DNA in cell populations over the time-course period with the level of the methylation 

changes, which I have not analysed. Plasmid quantification during a 30 day period was done 

with a previous dCas9-DNMT3A tool developed in our group (17) and I would expect for 

dCas9-TET1 to have a similar retention period in cell pools due to similar plasmid features. 
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Peak demethylation activity was observed on the 6th or 7th day in case of the MGAT3 gene and 

on the 8th day (but with similar values for 7th day) in case of the LAMB1 gene targeting. First 

significant demethylation in some of the CpG sites in both promoters was observed on 2nd and 

3rd day after transfection, correlating with 24 h or 48 h of puromycin selection, when dCas9-

TET1 expressing cells should be prevalent in cell pools. Slight decrease in demethylation was 

observed on 10th day, with a gradual decrease in every later time point for both analysed 

genes. These findings suggest similar dCas9-TET1 demethylation pattern in different loci. 

However, for precise profiling more endogenous loci should be targeted with this molecular 

tool and analysed for methylation level in additional time-course studies. Interestingly, for 

analysed MGAT3 fragments several CpG sites remained significantly demethylated in 

comparison to mock transfected cells even on the 30th day after transfection (3rd, 5th and 8th 

CpG of MGAT3-A1 and 1st and 3rd CpG site of MGAT3-A2). Also, all of the analysed CpG 

site within LAMB1-A1 assay had 11.1-30.4% lower methylation levels than mock transfected 

cells on 30th day. Maeder and collaborators performed a time-course evaluation of the effect 

of TALE-TET1 tool on CpG methylation level in HBB gene promoter region on 4th, 7th, 14th 

and 30th day after transfection. They observed a peak demethylation activity on the 4th day, 

with a gradual increase in methylation till 30th day (69). This can also be attributed to the loss 

of expression plasmid through cell divisions, but all CpG sites they analysed reverted to 

methylation levels of control cells by 30th. Kungulovski and collaborators analysed the 

stability of individual DNA and histone methylation changes induced by targeting with DNA 

and histone methyltransferases and found that methylation, chromatin conformations and gene 

expression levels returned to their original state after methyltransferases were lost from cell 

pools. They suggested that several distinctive epigenetic marks should be introduced to the 

target site for epigenetic reprogramming to be stable or epigenome editing tools should be 

expressed in cells for a longer period of time (159). Rivenbark and collaborators generated 

stable cell lines containing the gene of the targeted methyltransferase and induced DNA 

methylation and repression of Maspin gene stable over multiple generations (64). Xu and 

collaborators noted much higher gene activation rates (10- to 20-fold) with stable expression 

of the sgRNA2.0, dCas9-Tet1-CD and MS2-Tet1-CD system compared to transiently 

transfected system (2-fold) (149).  
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     Two different sequencing-based approaches have been developed for 5hmC detection. Yu 

and collaborators described a Tet-assisted bisulfite sequencing (TAB-seq) method for 

detection of 5hmC at single-base resolution. This method relies on β-glucosyltransferase- 

mediated protection of 5hmC by glucosylation and recombinant mouse Tet1-mediated 

oxidation of 5mC to 5caC, followed by bisulfite conversion and PCR amplification. In this 

approach, 5hmC reads as C, while all unmethylated cytosines and 5mC (turned to 5caC) are 

converted and read as T (160). Alternative approach is oxidative bisulfite sequencing (oxBS-

seq), in which 5hmC is selectively oxidized to 5fC by chemical treatment with an oxidant like 

KRuO4, followed by bisulfite conversion and amplification. In this approach, 5mC is read as 

C, while all unmethylated cytosines and 5mhC (turned to 5fC) are bisulfite converted and read 

as T (122). In this study the oxBS-seq approach was adopted as it is cheaper than TAB-seq for 

it does not require recombinant Tet1 enzyme. I have followed the instructions for genomic 

DNA oxidation with KRuO4 as detailed in the work of Booth et al. (122). Authors claim that 

the oxBS-seq workflow can be used to modify DNA for analyses by Sanger sequencing, 

pyrosequencing, high-throughput sequencing and methylation arrays such as Illumina 450K 

arrays. Hydroxymethylation levels would be determined by subtracting the methylation levels 

of unoxidized and oxidized genomic DNA after bisulfite conversion, amplification and 

pyrosequencing.  

     I have observed no significant changes in methylation level between oxidized and 

unoxidized DNA from dCas9-TET1 transfected cells, but these findings must be taken with 

precaution because applied method has many possibilities for improvement and requires 

additional optimization. For example, I have used commercially available KRuO4 from Alfa 

Aesar as described by Booth and collaborators (122), but the authors noted in the later work 

that they would recommend using a formulated KRuO4 solution made by Cambridge 

Epigenetix for improved consistency and reproducibility in oxBS-seq (161). Also, 5fC does 

not convert to U as quickly as C does, so longer incubation times for bisulfite treatment might 

be required. I did not test different extended bisulfite treatments for dCas9-TET1 samples. 

Most striking issue I encountered in this analysis were differences in methylation levels for 

certain technical replicas (PCR products amplified from the same sample) between 

pyrosequencing runs on oxidized samples, which might imply that samples were not 

adequately purified between different steps of the oxBS procedure or that the oxidation 
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procedure resulted in sample degradation in some extent. I had issues with obtaining 

appropriate controls for this experiment which would confirm successful 5hmC to 5fC 

conversion and its detection. For further development of this method for dCas9-TET1 5hmC 

production assessment, I would consider implementing both oxidation and pyrosequencing 

controls in form of synthetic DNA substrates containing 5mc, 5hmC and C, which would be 

subjected to oxidation followed by bisulfite treatment and pyrosequencing. No detected 

methylation difference after oxBS between untransfected cells can be expected, considering 

that basal 5hmC levels in HEK293 cells are very low (113). Residue 5hmCs are known to be 

further oxidized to 5fC and 5caC residues by TET enzymes. Any difference in methylation 

levels between oxidized and unoxidized samples from dCas9-TET1 transfected cells would 

only be detectable if 5hmC generated by TET1 CD were present in such form in the moment 

of DNA isolation and not already further oxidized. It would be interesting to check for 5hmC 

production in transfected cells with a DNA dot blot assay at different time points after dCas9-

TET1 transfection.  

     Off-target activity is a major concern when considering CRISPR/Cas9-based tools for 

clinical applications. Fu and collaborators found that off-target CRISPR/Cas9 cleavage 

activity can occur in DNA sequence with up to 5 mismatches in the 5’ part of the sgRNA, and 

therefore imperfect pairing of CRISPR/Cas9 systems with endogenous loci is clearly a huge 

targeting issue (162). It is important to think of CRISPR/Cas9 DNA binding dynamics when 

analysing possible factors which might contribute to off-target activity. When expressed, Cas9 

and the sgRNA form a RNP complex for which sgRNA scaffold folding is responsible. Cas9 

changes its conformation upon sgRNA binding and takes an active DNA-binding 

conformation. Guide region of the sgRNA in such complex conformation is free to interact 

with its target sequence (10,59,163). The PAM sequence recognition is essential for the 

initiation of the Cas9 binding, but homology of the so called “seed” sequence in the sgRNA is 

critical for subsequent Cas9 binding and activity (10,59). Eight to 10 bases at the 3’ end of 

sgRNA are considered to be the sgRNA “seed” sequence. After the “seed” sequence anneals 

to its target, sgRNA will continue to bind its target toward its 5’ end. Such binding dynamics 

might explain why off-target activity is observed for sgRNAs with up to 5 mismatches outside 

their seed sequences. Strategies for reducing the off-target activity by sgRNA shortening have 

been employed. Fu and collaborators constructed a series of truncated sgRNAs (15, 16, 17, 18 
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and 19 bases) and validated their on-target and off-target activity. The sgRNAs of 15 nt to 16 

nt had significantly decreased or undetectable activity, but sgRNAs of 17 and 18 nt had 

comparable on-target activity with classic 20 nt sgRNAs and exhibited less off-target activity 

(164). They reasoned that tolerating 5’ mismatches in the sgRNA sequence might be a 

beneficial mechanism in naturally occurring CRISPR/Cas systems to tolerate the introduction 

of alternations in the target sequence. With dCas9-TET1, it is important to consider the 

catalytic domain activity as a contributing factor to off-target demethylation as well as the 

dCas9 binding properties. Overexpression of TET1 CD might be responsible for unwanted 

off-target activity; therefore, titration of the plasmid amount was done in this study to help 

minimize such off-target effect.  

     One strategy for reducing the off-target activity used in genome editing applications of 

CRISPR/Cas9 relies on using two sgRNAs targeting adjacent sites on opposite DNA strands, 

each guiding a Cas9 nickase variant (Cas9n; Cas9 with D10A mutation only). It has been 

demonstrated that paired nickase targeting can reduce off-target cleavage activity by 50- to 

1500-fold (165). However, this strategy cannot be used for dealing with the off-target activity 

of dCas9-based tools as epigenome editing appears to be a much more complex approach. Wu 

and collaborators generated mouse ESCs with a stably integrated vector encoding HA-tagged 

dCas9 and performed chromatin immunoprecipitation followed by sequencing (ChIP-seq) 

after transfections with several sgRNAs to create a genome-wide binding map of dCas9. They 

found that “seed” sequence as short as 5 bases followed by 5’-NGG-3’ is sufficient for dCas9 

binding, although less efficient than binding to the on-target site. They defined chromatin 

accessibility as the major determinant of dCas9 binding in vivo, which suggests that most of 

the dCas9 off-target binding might occur at active genes (163). They defined chromatin 

accessibility as the major determinant of in vivo dCas9 binding, which suggests that most of 

the dCas9 off-target binding might occur at active genes (163). Kim and collaborators 

demonstrated that delivery of the purified Cas9 protein and sgRNA not only circumvented the 

issue of transfection for hard-to-transfect fibroblasts and pluripotent stem cells, but also 

reduced the off-target cleavage activity (61). Using the RNP complexes as delivery method 

might be a nice way to temporally limit off-target activity because the RNPs are rapidly 

degraded in cells. However, this approach cannot be used for dCas9-based tools which have 

to be expressed for a longer period of time. Perhaps delivery of several epigenome editing 
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RNP complexes, inducing distinctive, synergistic epigenetic modifications at the single target 

site, might provide stability of the induced change in expression of target gene, so quick RNP 

degradation won’t be a problem in such case and might even be beneficial for reducing the 

off-target effect.  

     Cas9 variants with broad PAM recognition and higher DNA specificity were developed to 

improve versatility and reduce off-target binding in a study performed by Hu and 

collaborators (166). This was achieved with Phage-assisted continuous evolution (PACE) 

system which enables hundreds of generations of directed evolution to occur weekly. Cas9 

variants that accept an expanded range of PAM sequences, named xCas9s, were generated in 

this system under selective pressure to recognize different PAMs and maintain compatibility 

with different target DNA sequences. Generated xCas9 variants were analysed in contexts of 

transcriptional activation, genomic DNA cutting and base editing, and certain variants (xCas9 

3.6 and xCas9 3.7) outperformed the SpCas9-based tools. Improved specificity of xCas9 3.6 

and xCas9 3.7 was confirmed by genome-wide unbiased identification of DSBs enabled by 

sequencing (GUIDE-seq) after targeting of five endogenous genomic loci in HEK293T cells 

and two endogenous genomic loci in U2OS cells. Off-target modification was reduced by 43-

fold in comparison with “classic” SpCas9. Also, transcriptional activation of endogenous 

genes using dxCas9-VPR tool was more precise and potent in comparison with classic dCas9-

VPR-mediated activation, showing that dxCas9-VPR has compatible architecture with dCas9-

based tools and can easily be used for gene activation at a substantially expanded set of PAMs 

(166). Using xCas9 in fusions with TET1 CD might be a nice way to reduce the observed off-

target activity. 

     In this study, efforts have been made in dCas9-TET1 and TET1-dCas9 construction and 

validation to help minimize potential off-target effect. Chosen sgRNAs were validated with 

before mentioned GT Scan web-based tool and showed high specificity scores and initial 

dose-response experiment helped to determine optimal construct DNA amount with minimal 

off-target effect. Off-target activity of dCas9-TET1 was analysed by bisulfite pyrosequencing 

of MGAT3 and LAMB1 promoter regions in cells transfected with dCas9-TET1 and a non-

targeting sgRNA. Some of the analysed CpG sites were significantly demethylated in such 

conditions and conclusion from these experiments would be that off-target activity of dCas9-

TET1 is still a major concern. During the time-course experiment, off-target activity of 



 

90 
 

dCas9-TET1 was assessed by methylation analysis of CpG sites covered by MGAT3-A2 

assay for cells transfected with dCas9-TET1-LAMB1-sg01 (Figure 24) and by methylation 

analysis of CpG sites covered by the LAMB1-A1 assay for cells transfected with dCas9-

TET1-MGAT3-sg03 (Figure 25). Relatively high off-target activity was observed at certain 

CpG sites at certain time points. Since I have only analysed methylation levels of small 

fragments in promoter regions of these two genes (111 bp for MGAT3 and 38 bp for LAMB1 

promoter) there is a possibility that dCas9-TET1 demethylates some other distal DNA 

regions, which come in proximity to the targeted region due to chromatin looping in a 3D 

DNA structure. For precise assessment of dCas9-TET1 on-target and off-target activity 

profiles, whole genome bisulfite sequencing (WGBS) or reduced representation bisulfite 

sequencing (RRBS) analyses should be done.  

           Targeted dCas9-based epigenome editing already greatly helps in elucidating causal 

relationships between epigenetic marks and genome regulation, with novel dCas9-based tools 

rapidly emerging with new potential applications. An ongoing effort is to apply the 

constructed dCas9-TET1 tools in biologically relevant contexts and to estimate induced 

physiologically relevant effects. Genome-wide association studies (GWAS) have identified 

genetic variants in the MGAT3 and LAMB1 loci to be associated with both IgG glycosylation 

and inflammatory bowel disease (23). MGAT3 encodes the 1-4 N-acetylglucosaminyl 

transferase III, which adds bisecting N-acetyglucosamins (GlcNAcs) to N-glycans and 

LAMB1 encodes the beta chain isoform laminin beta 1, which is one of the chains constituting 

the extracellular matrix glycoprotein laminin 1. Klasić and collaborators proposed that 

aberrant methylation of key glycosylation genes might lead to an increase in pro-

inflammatory properties of IgG through aberrant glycosylation (18). They analysed 

methylation level in the MGAT3 promoter from peripheral blood of several hundred IBD 

patients and healthy controls from two independent cohorts and found that differentially 

methylated CpG sites were hypermethylated in IBD patients compared to healthy individuals. 

The LAMB1 gene was excluded from further methylation analysis in their study because 

overall methylation levels within LAMB1 promoter were too low in both groups to detect 

differential methylation. They also suggested a direct functional role of MGAT3 in IBD 

pathogenesis (18). One of the goals scheduled in this doctoral thesis was optimisation of 

delivery of constructed molecular tools to suspension cell line HEK293 FreeStyle, which 
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stably produce IgG, and to primary B-lymphocyte culture. However, optimization turned out 

to be an incredibly tedious task and the scope of these experiments surpassed the point of this 

research. Nevertheless, this stays a future goal for dCas9-TET1 and TET1-dCas9 application 

because those cells would be excellent biologically relevant models in studies of epigenetic 

modulation of endogenous MGAT3 and LAMB1 genes and direct analysis of subsequent IgG 

glycan phenotype. Also, one of the interesting future applications for dCas9-TET1 and TET1-

dCas9 molecular tools might be targeted demethylation of enhancers and other DNA 

regulatory elements. It would also be interesting to see how would dCas9-TET1 and TET1-

dCas9 perform in demethylation outside of the CpG rich context such as CGIs. 

     The dCas9-TET1 and TET1-dCas9 tools could have a therapeutic use for re-activation of 

targeted genes, for example tumor suppressors silenced by aberrant promoter methylation. 

The dCas9-TET1 and similar epigenome editing tools have a potential to replace epigenetic 

drugs of which several have been approved by the Food and Drug Administration Agency 

(FDA) and European Medicines Agency (EMA) for cancer treatment. For example, decitabine 

(5-aza-2-deoxycytidine) and azacitidine (5-azacytidine, Vidaza) are FDA approved non-

specific methylation inhibitors in use for demethylation and re-expression of target genes in 

myelodysplastic syndromes and it would be great to replace them with much more specific 

tools for targeted demethylation (167,168). However, there are still issues to be solved in 

order to use CRISPR/dCas9 tools as epigenetic therapeutics, such as their off-target activity 

and their safe delivery to specific tissues (169). 
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6. Conclusions 
 

  dCas9-TET1 molecular tool can be used for successful demethylation of targeted CpG sites. 

  Different sgRNAs designed for MGAT3 promoter targeting induced variable demethylation 

in CpG sites, depending on the sgRNA binding sites. 

 Neighbouring CpG sites targeted with the same sgRNA differed in demethylation efficiency. 

 Peak demethylation activity of the dCas9-TET1 was observed ≈26 bp downstream of sgRNA 

PAM recognition sequence, but it also demethylated proximal CpG sites upstream of PAM. 

 Highest dCa9-TET1-induced methylation change observed at a single CpG site was 68% 

when targeted with a single sgRNA and 77% when targeted with a pool of 5 sgRNAs. 

 TET1 catalytic domain was successfully inserted into a backbone for modular epitoolbox 

and the N-terminal TET1-dCas9 fusion was generated. 

 The N-terminal TET1-dCas9 fusions exhibited a stronger demethylation activity both 

downstream and upstream from PAM recognition sequence, as well as stronger off-target 

activity than C-terminal dCas9-TET1 constructs. 

 Highest methylation change induced by TET1-dCas9 was 87.1% at the CpG site 35 bp 

downstream from PAM.  

 Peak demethylation activity was observed at 6th and 7th day after transfection for MGAT3 

and at 8th day for LAMB1 promoter, with steady gradual increase in methylation after 10th 

day. 

 The dCas9-TET1-induced CpG demethylation was not stable through cell divisions. 

 Targeted demethylation of the MGAT3 promoter with the dCas9-TET1 resulted in a 5-fold 

increase in MGAT3 gene expression. 

 VPR activation domain was successfully inserted into a backbone for assembly of modular 

epitoolbox and the VPR-dCas9 tool for CRISPRa was generated. 

 Modest MGAT3 gene activation effect (2-fold) was achieved with VPR-dCas9 targeting. 

 Synergistic demethylation effect was observed for dCas9-TET1 simultaneously targeted with 

pooled 5 sgRNAs. 

 Synergistic activation effect was observed for VPR-dCas9 simultaneously targeted with 

pooled 3 sgRNAs. 

 Off-target activity of the dCas9-TET1 and TET1-dCas9 is a major concern and it should be 

analysed by WGBS or RRBS. 
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8. List of abbreviations 
 

AAV – adeno-associated virus  

AGO – Argonaute family of proteins 

ANOVA – analysis of variance 

ATF – artificial transcription factor 

BER – base excision repair 

Cas9 – CRISPR associated protein 9 

Cas9n – Cas9 nickase 

CCR5 – C-C chemokine receptor type 5 

CD – catalytic domain  

CGI – CpG island 

CMS – cytosine 5-methylenesulfonate 

CpG – cytosine (C) followed by guanine (G) in DNA sequence, CpG dinucleotide 

CRISPR/Cas –clustered regularly interspaced palindromic repeats/CRISPR associated genes 

CRISPRa – CRISPR activation 

CRISPRi – CRISPR interference 

crRNA – mature CRISPR RNA transcript 

dCas9 – dead Cas9; nuclease-deficient Cas9 

DED1 - “dead” TET1; catalytically inactive variant of TET1 

DNMT3A –DNA methyltransferase 3A 

DNMT3B –DNA methyltransferase 3B 

DNMT1 – DNA methyltransferase 1 

DNMT3L –DNA methyltransferase 3-like  

DNMT2 – DNA methyltransferase 2 

DSB – double stranded break 

DSBH – double stranded β-helix domain 

EGFP – enhanced green fluorescent protein 

EMA –European Medicines Agency 
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EMX1 – Empty Spiracles Homeobox 1 

ENCODE- ENCyclopedia Of DNA Elements 

EpCAM - epithelial cell adhesion molecule  

ESCs – embryonic stem cells 

FDA – Food and Drug Administration  

GUIDE-seq – Genome-wide Unbiased IDentification of DSBs Enabled by sequencing  

GWAS – genome wide association study 

HDR – homology directed repair 

HEK293 – human embryonic kidney 293 cells 

HEK293FS – human embryonic kidney 293 FreeStyle cells 

hmeDIP-seq – hydroxymethyl DNA immunoprecipitation followed by deep sequencing 

HOMedU – hydroxymethyldeoxyuridine 

HSF1 – human heat-shock factor 1 

H3K4me0 – unmethylated histone H3 lysine 4  

H3K27 – histone H3 lysine 27 

H3K27ac – histone H3 lysine 27 acetylation 

H3K27me3 – trimethylated histone H3 lysine 27 

H3K9me –histone H3 lysine 9 methylation 

IBD – inflammatory bowel disease 

IgG – immunoglobulin G 

IL1RN – interleukin-1 receptor antagonist 

INDELs – small insertions/deletions 

iPSCs – induced pluripotent stem cells 

 J – β-D-glucosyl hydroxyuracil 

JBP1, JBP2 – thymine dioxygenase 1 and 2 

Klf4 – Kruppel Like Factor 4 

KRAB – Krüppel-associated box 

K562 – human erythroleukemia cell line K562 

VP16 - Herpes simplex virus protein vmw65 
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VP64 – VP16 tetramer 

VPR – VP64-p65-Rta synthetic activator domain 

lncRNA – long non-coding RNA 

LAMB1 – Laminin Subunit Beta 1 

MALAT1 – Metastasis Associated Lung Adenocarcinoma Transcript 1 

Maspin – mammary serine protease inhibitor 

MCF7 – human breast cancer cell line MCF7 

MCP – MS2 bacteriophage coat protein 

MS2-p65-HSF1 – activation domain from human heat-shock factor 1 fused to MCP 

MGAT3 –  Mannosyl (Beta-1,4-)-Glycoprotein Beta-1,4-N-Acetylglucosaminyltransferase 

MBD – methyl-binding domain 

MBD2 – methyl-binding domain 2 

MeCP2 – methyl-CpG-binding protein 2 

miRNA – microRNA 

NHEJ – non-homologous end joining 

NLS – nuclear localization signal 

NmCas9 – Neisseria meningitides Cas9 

Oct4 - octamer-binding transcription factor 4 

oxBS-seq – oxidative bisulfite sequencing 

PACE – Phage-Assisted Continuous Evolution 

PAM – protospacer adjacent motif 

PCR – polymerase chain reaction 

PGCs – primordial germ cells 

pre-crRNA – precursor CRISPR RNA  

p300 - p300 transcriptional co-activator 

qRT-PCR – quantitative reverse transcription polymerase chain reaction 

RRBS – reduced representation bisulfite sequencing 

RVD – repeat variable diresidue 

SaCas9 – Staphylococcus aureus Cas9 
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SAH – S-adenosylhomocysteine  

SAM - S-adenosylmethionine 

sgRNA – single guide RNA 

sgNT – non targeting sgRNA 

siRNA – short interfering RNA 

SKOV3 – human ovarian cancer cell line SKOV3 

SNCG – synuclein gamma 

SOX2 – (sex determining region Y)-box 2 

SpCas9 – Streptococcus pyogenes Cas9 

SUM159 – human breast cancer cell line SUM159 

TAB-seq – Tet-assisted bisulfite sequencing 

TALE – Transcription activator-like effector 

TALEN – Transcription activator-like effector nuclease 

TDG – thymine DNA glycosylase 

TET1 – Ten-eleven translocation 1 protein 

TF – transcription factor 

tracrRNA – transactivating CRISPR RNA 

TSS – transcription start site 

VEGF-A – Vascular endothelial growth factor A 

WGBS – whole genome bisulfite sequencing 

Xic – X-chromosome-inactivation-centre 

ZF – Zinc Finger  

ZFN – Zinc Finger nuclease 

2OG – 2-oxoglutarate 

5mC – 5-methylcytosine 

5hmC – 5-hydroxymethylcytosine 

5fC – 5-formylcytosine 

5caC – 5-carboxycytosine 
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9. Appendix 1 
 

Maps of plasmids used for dCas9-TET1 construction 

 

 

 

pJFA344C7. Addgene plasmid #49236. Used as source of TET1 CD. 
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pUC19. Addgene plasmid #50005. Used as shuttle vector for insertion of TET1 CD via 
indicated SphI and EcoRI sites and targeted mutageneses before subsequent cloning events. 
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pSpCas9n(BB)-2A-Puro. Addgene plasmid #48141. Used as source of puromycin resistance 
marker which was additionally mutated.  
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pSpCas9n(BB)-2A-GFP. Addgene plasmid #48140. Used as source of EGFP selection 
marker. 
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10. Appendix 2 
 

Amino acid sequences of constructed fusion proteins 

 

dCas9-TET1-PuroR (2376 aa): 

MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAADKKYSIGLAIGTNSV
GWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYT
RRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEK
YPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLV
QTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGL
TPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDIL
RVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYID
GGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAIL
RRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEV
VDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKP
AFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYH
DLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKR
RRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKA
QVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQ
TTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYV
DQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKN
YWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSR
MNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVG
TALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITL
ANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESI
LPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGI
TIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGN
ELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILA
DANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKE
VLDATLIHQSITGLYETRIDLSQLGGDKRPAATKKAGQAKKKKLEGGGGSGSLPTCS
CLDRVIQKDKGPYYTHLGAGPSVAAVREIMENRYGQKGNAIRIEIVVYTGKEGKSSH
GCPIAKWVLRRSSDEEKVLCLVRQRTGHHCPTAVMVVLIMVWDGIPLPMADRLYTE
LTENLKSYNGHPTDRRCTLNENRTCTCQGIDPETCGASFSFGCSWSMYFNGCKFGRS
PSPRRFRIDPSSPLHEKNLEDNLQSLATRLAPIYKQYAPVAYQNQVEYENVARECRLG
SKEGRPFSGVTACLDFCAHPHRDIHNMNNGSTVVCTLTREDNRSLGVIPQDEQLHVL
PLYKLSDTDEFGSKEGMEAKIKSGAIEVLAPRRKKRTCFTQPVPRSGKKRAAMMTEV
LAHKIRAVEKKPIPRIKRKNNSTTTNNSKPSSLPTLGSNTETVQPEVKSETEPHFILKSS
DNTKTYSLMPSAPHPVKEASPGFSWSPKTASATPAPLKNDATASCGFSERSSTPHCTM
PSGRLSGANAAAADGPGISQLGEVAPLPTLSAPVMEPLINSEPSTGVTEPLTPHQPNHQ
PSFLTSPQDLASSPMEEDEQHSEADEPPSDEPLSDDPLSPAEEKLPHIDEYWSDSEHIFL
DANIGGVAIAPAHGSVLIECARRELHATTPVEHPNRNHPTRLSLVFYQHKNLNKPQH
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GFELNKIKFEAKEAKNKKMKASEQKDQAANEGPEQSSEVNELNQIPSHKALTLTHDN
VVTVSPYALTHVAGPYNHWVGRPEFGSGEGRGSLLTCGDVEENPGPMTEYKPTVR
LATRDDVPRAVRTLAAAFADYPATRHTVDPDRHIERVTELQELFLTRVGLDIGK
VWVADDGAAVAVWTTPESVEAGAVFAEIGPRMAELSGSRLAAQQQMEGLLAP
HRPKEPAWFLATVGVSPDHQGKGLGSAVVLPGVEAAERAGVPAFLETSAPRNLP
FYERLGFTVTADVEVPEGPRTWCMTRKPGA* 

 

3xFLAG ; SV40 NLS ; dSpCas9 ; nucleoplasmin NLS ; Gly4Ser linker ; TET1 CD 
(substitutions present in DED1 variant are indicated; H  Y and D  A) ; T2A self-cleaving 
peptide ; PuroR ; STOP (*) 

 

dCas9-TET1-eGFP (2420 aa): 

MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAADKKYSIGLAIGTNSV
GWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYT
RRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEK
YPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLV
QTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGL
TPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDIL
RVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYID
GGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAIL
RRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEV
VDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKP
AFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYH
DLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKR
RRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKA
QVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQ
TTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYV
DQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKN
YWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSR
MNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVG
TALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITL
ANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESI
LPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGI
TIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGN
ELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILA
DANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKE
VLDATLIHQSITGLYETRIDLSQLGGDKRPAATKKAGQAKKKKLEGGGGSGSLPTCS
CLDRVIQKDKGPYYTHLGAGPSVAAVREIMENRYGQKGNAIRIEIVVYTGKEGKSSH
GCPIAKWVLRRSSDEEKVLCLVRQRTGHHCPTAVMVVLIMVWDGIPLPMADRLYTE
LTENLKSYNGHPTDRRCTLNENRTCTCQGIDPETCGASFSFGCSWSMYFNGCKFGRS
PSPRRFRIDPSSPLHEKNLEDNLQSLATRLAPIYKQYAPVAYQNQVEYENVARECRLG
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SKEGRPFSGVTACLDFCAHPHRDIHNMNNGSTVVCTLTREDNRSLGVIPQDEQLHVL
PLYKLSDTDEFGSKEGMEAKIKSGAIEVLAPRRKKRTCFTQPVPRSGKKRAAMMTEV
LAHKIRAVEKKPIPRIKRKNNSTTTNNSKPSSLPTLGSNTETVQPEVKSETEPHFILKSS
DNTKTYSLMPSAPHPVKEASPGFSWSPKTASATPAPLKNDATASCGFSERSSTPHCTM
PSGRLSGANAAAADGPGISQLGEVAPLPTLSAPVMEPLINSEPSTGVTEPLTPHQPNHQ
PSFLTSPQDLASSPMEEDEQHSEADEPPSDEPLSDDPLSPAEEKLPHIDEYWSDSEHIFL
DANIGGVAIAPAHGSVLIECARRELHATTPVEHPNRNHPTRLSLVFYQHKNLNKPQH
GFELNKIKFEAKEAKNKKMKASEQKDQAANEGPEQSSEVNELNQIPSHKALTLTHDN
VVTVSPYALTHVAGPYNHWVGRPEFGSGEGRGSLLTCGDVEENPGPVSKGEELFTG
VVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTL
TYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGD
TLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIE
DGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTA
AGITLGMDELYKEFNSN* 

 

3xFLAG ; SV40 NLS ; dSpCas9 ; nucleoplasmin NLS ; Gly4Ser linker ; TET1 CD 
(substitutions present in DED1 variant are indicated; H  Y and D  A) ; T2A self-cleaving 
peptide ; eGFP ; STOP (*) 

 

 

 

 

 

 

 

 

 

  



 

120 
 

11. Curriculum Vitae 
 

       Vanja Tadić, research and teaching assistant, was born on 12th December 1990. She 

finished the undergraduate studies in Molecular Biology at Faculty of Science, University of 

Zagreb with a Bachelor’s thesis “Alternative splicing in higher plants” in 2012. She finished 

the graduate studies in Molecular Biology at Faculty of Science, University of Zagreb with a 

Master’s thesis “DNA replication in secondary lymphoid tissue” in 2014.  

     From 2014 she works as a research and teaching assistant at Faculty of Science, University 

of Zagreb in Zoldoš group, which focuses on Epigenetics. She works on a Croatian Science 

Foundation’s project “Epigenetic regulation of IgG glycosylation”. She is a co-author on two 

scientific papers. She was a part of several international scientific conferences and workshops 

with poster presentations. In 2016 she did a brief professional training for two months at 

Sanquin Research and Landsteiner Laboratory in Amsterdam. 

     She was a teaching assistant in Molecular Diagnostics, Medical Genetics, Molecular 

Genetics, Laboratory skill practice and Epigenetics. She was assistant supervisor of two 

Master’s thesis at Faculty of Science, University of Zagreb and of one Master’s thesis 

currently in development. 

  

 

 

 

 

 

 

 


