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Chapter 1

Introduction

Inverse limits have played a crucial role in the development of the theory of

continua in the past half century. They have also been important in dynamical

systems. One reason for this is that inverse limits with simple spaces and

simple bonding maps can produce very complicated spaces as their inverse

limits. In dynamical systems, inverse limits are used to “code”, in a sense,

complicated dynamical systems. The branched one-manifolds introduced by

Robert Williams form a prime example of this. These inverse limits are used

to model dynamical systems on solenoids, the Lorenz attractor (in the famous

Lorenz system), the Plykin attractor (in the Plykin system).

Inverse limits of inverse sequences with upper semicontinous set-valued

bonding functions (abbreviated generalized inverse limits) were introduced in

2004 by W. S. Mahavier [31] as inverse limits with closed subsets of the unit

square and later in 2006 in [28] by Mahavier and W.T. Ingram. Since then,

great emphasis has been placed on the generalized inverse limits over closed

intervals with upper semicontinous set-valued functions (abbreviated u.s.c.)

as bonding functions because even in that simple case, with same bonding

u.s.c. functions, there is much that is not understood, and many kinds of

interesting new spaces have emerged as these inverse limits, giving researchers

much to investigate. Surprisingly, although many new and interesting spaces

have emerged, it has also been shown that many types of spaces cannot occur.

This new form of inverse limit has also shown up in applications to economics
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and in dynamical systems. For instance, certain models in economics, notably

in backward economics, can involve two mappings, and the flexibility to study

the effects of using either function at each stage in the model is a valuable

feature of generalized inverse limits.

Most of the examples that demonstrate important properties of gener-

alized inverse limits are on the closed unit interval and there one can see

the important differences between standard and generalized inverse limits.

For example, the subsequence theorem, the closed subset theorem, the full

projection property, etc., all do not hold in the new setting, while they do in

the standard setting [22].

In the first part of a thesis we investigate some categorical properties of

generalized inverse systems and generalized inverse limits. In Chapters 2 and

3 we introduce basic notions we need in Chapter 4 where we give all results

of the first part.

We introduce a category CHU with compact Hausdorff spaces as objects

and u.s.c. functions as morphisms. Then we introduce the category CU , a

full subcategory of CHU with compact metric spaces as objects. We also

introduce the category ICU , a subcategory of inv - CU which consists of

inverse sequences and level morphisms.

Let (Xn, fn)∞n=1 and (Yn, gn)∞n=1 be inverse sequences in CU , let X =

lim←− (Xn, fn)∞n=1 and Y = lim←− (Yn, gn)∞n=1 be their generalized inverse limits,

respectively and let (ϕn)∞n=1 be a sequence of u.s.c. functions from Xn to

2Yn . In Chapter 4 we study which u.s.c. function from X to 2Y can be

interpreted as induced by the given sequence (ϕn)∞n=1 . The special case when

all ϕn, n ∈ N are mappings was studied in [14, 28], therefore we generalize the

definition of the induced function with some mild condition and in Example

4.17 it is shown that the condition is indeed necessary. In Theorems 4.13,

4.14 and Corollary 4.15 we give the necessary and sufficient conditions for

an existence of induced function and that it is an u.s.c. function i.e. it is a

morphism in the category CU which we denote by lim←− (ϕn). Then we study

2



Chapter 1. Introduction

a rule F : ICU → CU defined by

(Xn, fn)∞n=1

F7−→ lim←− (Xn, fn)∞n=1

(ϕn)
F7−→ lim←−(ϕn) .

We show that it is not a functor but very close to being one. Finally, in the

Section 4.3 we give an application of the mentioned results.

The theory of dynamical systems is a mathematical theory connected

with most of main areas of mathematics. It describes phenomena that are

common to physical and biological systems throughout science. The impetus

for advances in dynamical systems has come from many sources: mathematics,

theoretical science, computer simulation, and experimental science.

This theory is inseparably connected with several other areas, primarily

ergodic theory, symbolic dynamics, and topological dynamics. Some would

say the theory is also deeply connected with the topological area of continuum

theory. The modern theory of dynamical systems derives from the work of

H.J.Poincare on the three-body problem of celestial mechanics, in the 1890’s.

The next major progress was due to G.D. Birkoff who early in his career had

proved Poncare’s “last geometric theorem“ on fixed points of the annulus map

in the 1920’s. In the late 1950’s, S. Smale brought a topological approach

to the study of dynamical system, defining gradient-like flows that are now

called Morse-Smale systems.

A dynamical system is a state space S, a set of times T and a rule R for

evolution, R : S × T → S that gives the consequent(s) to a state s ∈ S . A

dynamical system can be considered to be a model describing the temporal

evolution of a system. The central object of a study in topological dynamics

is a topological dynamical system, i.e. a topological space, together with a

continuous transformation, a continuous flow, or more generally, a semigroup

of continuous transformations of that space. So, let (X,T ) be a topological

dynamical system, i.e., let X be a nonempty compact Hausdorff space and

T : X → X a continuous function. Topological entropy is a nonnegative

number which measures the complexity of the system. Roughly speaking, it

measures the exponential growth rate of the number of distinguishable orbits

3



Chapter 1. Introduction

as time advances.

The original definition was introduced by Adler, Konheim and McAndrew

in 1965 [1]. Their idea was to assign a number to an open cover of a space to

measure its size, and was inspired by Kolmogorov and Tihomirov (1961). To

define a topological entropy for continuous maps they strictly imitated the

definition of Kolmogorov-Sinai entropy of a measure preserving transforma-

tion in ergodic theory. In metric spaces a different definition was introduced

by Bowen in 1971 [12] and independently by Dinaburg in 1970. It uses the

notion of ε-separated points. Equivalence between the above two notions was

proved by Bowen [12] in 1971.

The goal in the second part of the thesis is to generalize the notion of

topological entropy so it can be used for u.s.c. functions, using the new tool,

the Mahavier product defined in [19]. Mahavier products are a convenient

way to study subsets of a generalized inverse limit space. They also make it

easier to study “finite” generalized inverse limits – which are not interesting

at all in inverse limits, but are interesting in their own right in generalized

inverse limits.

In Chapter 5 we generalize the definition of topological entropy due to

Adler, Konheim, and McAndrew [1] to set-valued functions from a closed

subset of the interval to closed subsets of the interval. We view these set-

valued functions, via their graphs, as closed subsets of [0, 1]2. Motivation

for observing graphs and their Mahavier products is that when set-valued

functions are iterated in the usual sense, information is lost - and often lost

very fast.

In the Sections 5.1 and 5.2 we review Mahavier product and traditional

version of topological entropy, together with their properties. In the Section

5.3 first we introduce some background information on the closed sets and

open covers we are using and then, in several steps, finalizing with Theorem

5.44 we define the topological entropy of a closed subset of [0, 1]2. In Theorem

5.52 we show that, given a continuous function f : [0, 1]→ [0, 1] and a closed

subset G of [0, 1]2 as the graph of f−1, then the topological entropy of G is the

same as that of the traditional definition of topological entropy of the function

f . We further compare the properties of the new definition of topological

4
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entropy with those of the traditional one, in Remarks 5.45, Theorem 5.48,

and in Theorem 5.57 after generalizing our definition to subsets of [0, 1]N ,

for arbitrary N ∈ N, in Section 5.4. Finally, in Section 5.5 we compute the

topological entropy for various closed subsets G of [0, 1]2.

5



Chapter 2

Preliminaries

In this section we outline basic concepts which we use throughout the thesis.

Definition 2.1 A topological space X is said to be disconnected if there exists

separation of X-a pair U, V of disjoint, nonempty open subsets of X whose

union is X. If X is not disconnected, we say it is connected.

Definition 2.2 A topological space is said to be compact if every open cov-

ering U of X contains finite subcovering.

We state some properties of topological spaces related to the compactness

and connectedness in the following theorem.

Theorem 2.3

1. The continuous image of a connected space is connected.

2. The continuous image of a compact space is compact.

3. Every closed subspace of a compact space is compact.

4. Every compact subspace of a Hausdorff space is closed.

5. A subspace A of euclidean space Rn is compact if and only if A is closed

and bounded.
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6. A Cartesian product
∏

α∈AXα with product topology is connected if and

only if each Xα, α ∈ A is connected.

7. (Tychonoff theorem) A Cartesian product
∏

α∈AXα with product topol-

ogy of compact spaces is compact if and only if each Xα, α ∈ A is

compact.

8. A Cartesian product
∏

α∈AXα with product topology is metrizable space

if and only if cardA ≤ ℵ0 and each Xα, α ∈ A is metrizable.

Proof. See [16, p. 108, 109, 224] and [34, p. 165, 173, 234] .

On a given metric space X with metric d we define new metric d defined

by the equation d(x, y) = min {d(x, y), 1} . Metrics d and d induce the same

topology on X. The metric d is called standard bounded metric corresponding

to d.

On the product space
∞∏
n=1

Xn, where (Xn, dn) is a compact metric space for

each n, and the set of all diameters of (Xn, dn) is majorized by 1, we use the

metric

D(x, y) = sup
n∈N

{
dn(xn, yn)

2n

}
,

where x = (x1, x2, x3, . . .), y = (y1, y2, y3, . . .). It is well known that the

metric D induces the product topology on
∞∏
n=1

Xn.

Definition 2.4 A continuum is a nonempty, compact, connected, metric

space. Subcontinuum is a continuum that is a subspace of a continuum.

Following theorem is consequence of the previous theorem.

Theorem 2.5 Metric space which is homeomorphic to some continuum is

also continuum.

Some basic examples of continua:

Example 2.6 (Arcs) An arc is any space which is homeomorphic to the

closed interval [0, 1]. Since [0, 1] is continuum, an arc is continuum.

7



Chapter 2. Preliminaries

Example 2.7 (Hilbert cube) A Hilbert cube is a space which is homeomorphic

to the countable product
∏∞

i=1[0, 1] equipped with product topology. It follows

from Theorem 2.3 (6., 7. and 8.) and Theorem 2.5 that a Hilbert cube is a

continuum.

Many other important continua will be mentioned in the second chapter.

Definition 2.8 Let X and Y be topological spaces, f : X → Y continuous

function and let f(X) be subspace of Y . If f : X → f(X) is a homeomor-

phism, we say that f is an embedding of X in Y.

An important property of a Hilbert cube is that every continuum can be

embedded in a Hilbert cube as a closed subset. It is consequence of Urysohn

metrisation theorem.

2.1 Hyperspaces

Many properties of continua can be studied using sequences of sets and their

convergence in topological spaces called hyperspaces. In this section we define

those spaces, state their properties which we will use throughout the thesis.

All the details and proofs in this sections can be found in [21].

Let (X, T ) be a topological space. Let us denote

CL(X) = {A ⊆ X : A is nonempty and closed in X} .

We equip the set CL(X) with Vietoris topology defined as follows.

Definition 2.9 Let (X, T ) be a topological space. The Vietoris topology,

TV , for CL(X) is the smallest topology for CL(X) having the following prop-

erties:

(i) {A ∈ CL(X) : A ⊆ U} ∈ TV whenever U ∈ T ;

(ii) {A ∈ CL(X) : A ⊆ B} is TV -closed whenever B is T -closed.

Definition 2.10 Let (X, T ) be a topological space and H ⊆ CL(X). A sub-

space (H, TV |H) of the space (CL(X), TV ) is called hyperspace of the space

X.

8
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We have the following theorem about the topological invariance of CL(X).

Theorem 2.11 If X and Y are homeomorphic, then the hyperspaces CL(X)

and CL(Y ) are homeomorphic.

We introduce some hyperspaces that consist of sets having some elementary

topological properties such as connectedness, compactness:

(i) CLC(X) = {A ∈ CL(X) : A is connected};

(ii) 2X = {A ∈ CL(X) : A is compact};

(iii) C(X) =
{
A ∈ 2X : A is connected

}
.

Statement analog to the Theorem 2.11 holds for the spaces defined above.

Note that 2X = CL(X) when X is compact because each closed subset of X is

compact. Further, ifX is a Hausdorff space, we have 2X = {A ⊆ X : A is non

empty and compact} , because every compact subset of a Hausdorff space is

closed. In particular, both of the above hold when X is the unit segment

[0, 1] with standard metric.

Proposition 2.12 Let X be a connected T1-space. Then CL(X) is con-

nected.

Let (X, d) be metric space. For any r > 0 and any A ∈ CL(X), let Nd(r, A) =

{x ∈ X : d(x,A) < r} .

Theorem 2.13 Let (X, d) be a bounded metric space and Hd : CL(X) ×
CL(X)→ R function defined as follows: for any A,B ∈ CL(X),

Hd(A,B) = inf {r > 0 : A ⊆ Nd(r, B) and B ⊆ Nd(r, A)} .

Then Hd is metric on CL(X) called Hausdorff metric for CL(X) induced

by d.

In the previous theorem we assumed that (X, d) is bounded. We can do that

without loss of generality as noted in the first section of this chapter.

9
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Theorem 2.14 If (X, T ) is a metrizable topological space, then
(
2X , TV

)
is

metrizable. Moreover, if d is any metric for X that induces T , then TV = THd .

Theorem 2.15 Let (X, T ) be a T1-space. Then we have the following:

(i) (CL(X), TV ) is metrizable if and only if (X, T ) is a compact, metrizable

space.

(ii)
(
2X , TV

)
is metrizable if and only if (X, T ) is metrizable.

Definition 2.16 Let (X, T ) be a topological space, and let (Ai)
∞
i=1 be a se-

quence of subsets of X. We define the limit inferior of (Ai)
∞
i=1 , denoted

by lim inf(Ai), and the limit superior of (Ai)
∞
i=1 , denoted by lim sup(Ai) as

follows:

lim inf(Ai) = {x ∈ X : for any U ∈ T such that x ∈ U,U ∩ Ai 6= ∅

for all but finitely many i}

lim sup(Ai) = {x ∈ X : for any U ∈ T such that x ∈ U,U ∩ Ai 6= ∅

for infinitely many i} .

Obviously, lim inf(Ai) ⊆ lim sup(Ai).

Definition 2.17 Let (X, T ) be a topological space, let (Ai)
∞
i=1 be a sequence

of subsets of X and let A ⊆ X. TWe say that (Ai)
∞
i=1 converges to A in X

and write lim(Ai) = A if

lim inf(Ai) = A = lim sup(Ai).

Two final theorems of this section connect convergence of sets in X and

convergence in topological space CL(X).

Theorem 2.18 Let (X, T ) be a compact Hausdorff space, and let (Ai)
∞
i=1 be

a sequence in CL(X). Then (Ai)
∞
i=1 converges to A in X if and only if (Ai)

∞
i=1

converges to A in topological space CL(X).

Theorem 2.19 Let (X, T ) be a compact metrizable space, and let (Ai)
∞
i=1

be a sequence in CL(X). Then (Ai)
∞
i=1 converges to A in X if and only if

(Ai)
∞
i=1 converges to A in the metric space (CL(X), Hd).

10
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2.2 Categories

In this section we briefly state the basics about categories and functors which

we use in the following two chapters.

For more see [20].

A category C consists of:

1. a class Ob(C) of objects,

2. a class Mor(C) which consists of sets C(X, Y ), associated to each ordered

pair of objects X, Y of C, called morphisms from X to Y ,

3. a law of composition ◦, which associate to each triple of objects X, Y, Z

of C, unique function C(X, Y )× C(Y, Z)→ C(X,Z).

A category must satisfy following axioms:

A1: X 6= X ′ and Y 6= Y ′ implies that sets C(X, Y ) and C(X ′, Y ′) are

disjoint.

A2: Given f ∈ C(X, Y ), g ∈ C(Y, Z), h ∈ C(Z,W ), then

◦ (◦ (f, g) , h) = ◦ (f, ◦(g, h)) .

A3: To each object X there is a morphism 1X ∈ C(X,X), called identity

morphism, such that, for any f ∈ C(X, Y ), g ∈ C(Z,X),

◦(1X , f) = f, ◦(g, 1X) = g.

It is easy to see that the morphism 1X is uniquely defined. A morphism

f ∈ C(X, Y ) is usually denoted by f : X → Y, and call morphism from

domain X to codomain Y, and composition ◦ (f, g) with g ◦ f. We say that

a morphism f : X → Y in C is isomorphic (or is an isomorphism) if there

exists a morphism g : Y → X in C such that g ◦ f = 1X and f ◦ g = 1Y .

We now list several examples of categories:

• The category Set of all sets and all functions between sets;

11
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• the category Top of all topological spaces and all continuous functions

between topological spaces;

• the category Gr of all groups and homomorphisms between groups;

We say that a category C ′ is a subcategory of a category C if it satisfies the

following:

1. Ob(C ′) ⊆ Ob(C)

2. for every ordered pair of objects (X ′, Y ′) in C ′ we have C ′ (X ′, Y ′) ⊆
C (X ′, Y ′)

3. if f ∈ C ′ (X ′, Y ′) and g ∈ C ′ (Y ′, Z ′) then their composition g ◦ f in C ′

coincides with the composition g ◦ f in C.

In particular, if C ′ (X ′, Y ′) = C (X ′, Y ′) , for every pair (X ′, Y ′) in C ′, we say

that C ′ is full subcategory of C.
Full subcategories of the category Top, whose objects are metric spaces, com-

pact Hausdorff spaces, compact metric spaces are denoted withM, Cpt, cM,

respectively. The category Gr(Ab) whose objects are abelian groups is a full

subcategory of the category Gr.

Let C andD be categories. A functor F : C → D is a rule which associates

with every object X of C an object F (X) of D and with every morphism f

in C (X, Y ) a morphism F (f) in D(F (X), F (Y )), subject to the rules

F (f ◦ g) = F (f) ◦ F (g), F (1X) = 1F (X).

The inclusion of a subcategory C ′ in a category C is a functor. With 1C : C → C
we denote identity functor. If F : C → D is a functor and f is an isomorphism

in the category C, then F (f) is an isomorphism in D. We define a composition

of functors in a natural way. Composition is associative so we have invertible

functors and isomorphic categories.

Definition 2.20 Let (Xi : i ∈ I) be a family of objects of a category C. Then

a product of the family (Xi : i ∈ I) is an object X, together with the fam-

ily (πi : X → Xi : i ∈ I) of morphisms in C called projections, satisfying

12
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the following universal property. Given any object Y of C and a family

(fi : Y → Xi : i ∈ I) of morphisms in C, there exists a unique morphism

f : Y → X in C, such that πif = fi, for every i ∈ I.

Y X

Xi

∃!f

fi
πi

If the product (X, (πi, i ∈ I)) of a family (Xi : i ∈ I) of objects in the category

C exists, then the object X is unique up to an isomorphism and we denote it

with
∏

i∈I Xi.

Categories Set,Gr, Top, Cpt admit products i.e. any family of objects from

the named categories admits product X and X is just a Cartesian product

of (Xi : i ∈ I) together with projections πi from X on Xi, i ∈ I.
Since the topological product of an uncountably many metric spaces is not a

metric space, the category M doesn’t admit product.

13



Chapter 3

Inverse limits and generalized

inverse limits

Inverse limits have played very important role in the development of the

theory of continua in the past 50 years. They have also been important in

dynamical systems. One reason for this is that inverse systems with simple

spaces and simple bonding maps can produce very complicated spaces as

their inverse limits.

The study of the inverse limits begins in the 1920s and 1930s while in-

verse limits of inverse sequences with upper semicontinous set-valued bonding

functions (abbreviated generalized inverse limits) were introduced in 2004 by

W. S. Mahavier [31] as inverse limits with closed subsets of the unit square

and later in 2006 in [28] by Mahavier and W.T. Ingram.

Since then, great emphasis has been placed on the inverse limits over

closed intervals with upper semicontinous set-valued functions (abbreviated

u.s.c.) as bonding functions because even in a simple case, with same bonding

u.s.c. functions, there is much that is not understood, and many kinds of

interesting new spaces have emerged as these inverse limits, giving researchers

much to investigate [4, 5, 7, 17, 22, 27]. Surprisingly, although many new and

interesting spaces have emerged, it has also been shown that many types of

spaces cannot occur.

Goal of this chapter is to list all notions used in the Chapter 4 where we
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introduce all the results. In the first section we provide an introduction to

inverse systems and inverse limits in the most general way, in the category

theory. Then we introduce a definition of inverse limit with topological spaces

as terms and continuous functions as bonding maps. At the end we state

basic compactness and connectedness theorems. For more details see [32, 33].

In the second section we introduce a generalized inverse limit and various

theorems and examples that differ them from inverse limits.

3.1 Inverse limits

Definition 3.1 A preordering on a set Λ is a binary relation ≤ on Λ

which is reflexive and transitive. A preordering is called an ordering if it is

antisymmetric. A preordered set (Λ,≤) is said to be directed provided for

any λ1, λ2 ∈ Λ there exists a λ ∈ Λ such that λ1 ≤ λ and λ2 ≤ λ. We say

that preordered set (Λ,≤) is cofinite provided for each λ ∈ Λ the set of all

predecessors of λ, {λ′ ≤ λ : λ′ ∈ Λ} , is a finite set.

If (Λ,≤) is a preordered set and Λ′ ≤ Λ, then ≤ induces a preordering on Λ′

and one speaks of the preordered subset (Λ′,≤). The preordered subset Λ′ is

cofinal in Λ if each λ ∈ Λ admits λ′ ∈ Λ′ such that λ ≤ λ′. If Λ′ is cofinal in

Λ, then Λ is directed if and only if Λ′ is directed.

Definition 3.2 Let C be an arbitrary category. An inverse system

(Xλ, pλλ′ ,Λ) in the category C consists of a directed set Λ, called the index set,

of an objects Xλ from C for each λ ∈ Λ, called the terms, and of morphisms

pλλ′ : X ′λ → Xλ from C for each pair of indeces λ, λ′ ∈ Λ, λ ≤ λ′, called the

bonding morphisms. Moreover, one requires that pλλ = 1Xλ , for all λ ∈ Λ

and that λ ≤ λ′ ≤ λ′′ implies pλλ′ ◦ pλ′λ′′ = pλλ′′

An inverse system indexed by the positive integers N is called an inverse

sequence. It is often denoted by (Xn, pnn+1,N) or (Xn, pn), omitting the

index set.

Definition 3.3 A morphism (f, fµ) of inverse systems (Xλ, pλλ′ ,Λ)

and (Yµ, pµµ′ ,M) consists of a function f : M → Λ, called the index function

15
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and of morphisms fµ : Xf(µ) → Yµ in C, for each µ ∈ M, such that when-

ever µ ≤ µ′, then there is a λ ∈ Λ, λ ≥ f(µ), f(µ′), for which fµpf(µ)λ =

qµµ′fµ′pf(µ′)λ, i.e. the following diagram commutes.

Xf(µ) Xλ Xf(µ′)

Yµ Yµ′

fµ fµ′

pf(µ)λ

qµµ′

pf(µ′)λ

Remark 3.4 Using the same notation from the previous definition we have

the following:

• If the index function f is increasing then one requires that the mappings

fµ satisfy fµpf(µ)λ = qµµ′fµ′ and the morphism is called simple (left

diagram)

• If the inverse systems have same index set Λ and the index function is

identity 1Λ, the morphism is called level-preserving morphism or

shorter a level morphism (right diagram)

Xf(µ) Xf(µ′)

Yµ Yµ′

fµ fµ′

pf(µ′)f(µ)

qµµ′

Xλ X ′λ

Yλ Yλ′

fλ fλ′

pλλ′

qλλ′

Level morphisms have very important role in the third chapter.

For every inverse system (Xλ, pλλ′ ,Λ) we can define identity morphism of

systems:

(1Λ, 1Xλ) : (Xλ, pλλ′ ,Λ)→ (Xλ, pλλ′ ,Λ)

16
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Definition 3.5 If (f, fµ) : X → Y and (g, gν) : Y → Z are morphisms of

inverse systems, we define the composition (g, gν) ◦ (f, fµ) = (h, hν) : X→ Z

as follows:

h = f ◦ g and hν = gν ◦ fg(ν) : Xh(ν) → Zν .

Remark 3.6 It is easy to see the following:

(i) Composition defined in the previous definition is a morphism between

inverse systems.

(ii) Composition of morphisms between inverse systems is associative oper-

ation

(iii) (f, fµ) ◦ (1Λ, 1Xλ) = (f, fµ) and (1Λ, 1Xλ) ◦ (g, gν) = (g, gν)

We have thus obtained new category, denoted by inv-C, whose objects are in-

verse systems in C and morphisms are morphisms of inverse systems described

above.

Remark 3.7 A property of an index set that has proven useful is cofinite-

ness because it often makes proof by induction on the number of predecessors

possible. It is shown that this condition is not restrictive because, with certain

requirements satisfied, one can indeed work with cofinite and ordered index

set and level morphisms. For more details see [32] and [33].

A single object X of C can be viewed as a rudimentary system, i.e., a

system indexed by a singleton and will be denoted by (X).

Definition 3.8 An inverse limit of an inverse system X = (Xλ, pλλ′ ,Λ)

is a morphism p : (X)→ X of inv - C satisfying following universal property.

If g : (Y ) → X is an arbitrary morphism of inv - C, there exists a unique

morphism (g) : (Y )→ (X) of inv - C (i.e. C) such that p (g) = g.

Proposition 3.9 Inverse limit of the inverse system X, if it exists, is unique

up to a natural isomorphism.

17
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Proof. See [32, p. 54]

Due to the previous proposition we usually call the space X from the Defi-

nition 3.8 as the inverse limit and denote it withX = lim X = lim (Xλ, pλλ′ ,Λ) .

All necessary and sufficient conditions for existence of an inverse limit in

C of an inverse system in category C can be found in [32, Ch. I].

Inverse systems have limits in the following categories: Set,Gr,Gr(Ab), T op .

Remark 3.10 Let inverse systems X = (Xλ, pλλ′ ,Λ) and Y = (Yµ, pµµ′ ,M)

admit inverse limits. A morphism (f, fµ) : (Xλ, pλλ′ ,Λ) → (Yµ, pµµ′ ,M) of

inv-C induces a morphism f : lim (Xλ, pλλ′ ,Λ)→ lim (Yµ, pµµ′ ,M) in C. This

is a unique morphism f such that for every µ ∈M, fµpf(µ) = qµf.

If in an inverse system (Xλ, pλλ′ ,Λ) all the bonding morphisms pλλ′ are

isomorphisms, then for any λ ∈ Λ, pλ : X = lim (Xλ, pλλ′ ,Λ) → Xλ is an

isomoprhim in C.

Proof. See [32, p. 57].

Remark 3.11 In the category Top an inverse limit X of (Xλ, pλλ′ ,Λ) can be

obtained as the subspace of
∏

λ∈ΛXλ, which consists of all points x satisfying

πλ(x) = pλλ′πλ′(x), λ ≤ λ′,

where πλ :
∏

λ∈ΛXλ → Xλ denotes the projection on the λth−coordinate.

Moreover, the projections pλ : X → Xλ of the limit space X are given by

pλ = πλ|X .

Theorem 3.12 Let X be an inverse limit of an inverse system (Xλ, pλλ′ ,Λ) ,

where all Xλ are Hausdorff spaces, for all λ ∈ Λ. Then, X is closed subspace of

the product
∏

λ∈ΛXλ. Moreover, if all terms Xλ are compact and non-empty,

then X is compact and non-empty.

Proof. See [32, p. 58].

From the previous theorem it follows that inverse system in the category

Cpt has an inverse limit.

18
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In general, inverse systems in the category M do not have limits but we

have the following.

Corollary 3.13 Inverse limit of an inverse sequence of metrizable spaces is

metrizable space. Inverse limit of an inverse sequence of non-empty compact

metric spaces is non-empty compact metric space.

Proposition 3.14 Let A be a subspace of the inverse limit X = lim (Xλ, pλλ′ ,Λ)

and Aλ = pλ(A), for all λ ∈ Λ. Then
(
ClAλ, pλλ′|Cl(Aλ′ )

,Λ
)

is an inverse sys-

tem and Cl (A) = lim
(
ClAλ, pλλ′|Cl(Aλ′ )

,Λ
)

Proof. See [32].

Theorem 3.15 Let X = (Xλ, pλλ′ ,Λ) , an inverse system of non-empty com-

pact and connected Hausdorff spaces. Then the inverse limit X = lim X is

non-empty compact and connected space.

Proof. See [32].

From the previous we have that the limit of inverse sequence consisting

of continua is a continuum.

At the end of this section we give some examples.

Example 3.16 Let ([0, 1], fnn+1) be an inverse sequence where fnn+1(x) =

1[0,1], for each n ∈ N. It follows from Remark 3.11 that lim ([0, 1], fnn+1) is

an arc.

Example 3.17 Let S1 be the unit circle, i.e. S1 = {z ∈ C : ‖z‖ = 1} . For

p ∈ N, p ≥ 2, let qp : S1 → S1 be given by qp(z) = zp, z ∈ S1. An inverse limit

of an inverse sequence (S1, fnn+1) , fnn+1 = qp,∀n ∈ N, is a continuum called

p-adic solenoid.

Example 3.18 Let (Y1, y1) = (S1, s0) be a pointed circle and (Yn, yn) =

(Yn−1, yn−1) ∨ (S1, s0) wedge of n pointed circles. Let pnn+1 : Yn+1 → Yn be

defined by its restrictions pnn+1|Yn = 1Yn and pnn+1|(Yn+1\Yn) = constyn . Then

the inverse limit lim ((Yn, yn), pnn+1) is called Hawaiian earring.

19
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3.2 Generalized inverse limits

Definition 3.19 Let X and Y be topological spaces. A function f : X →
CL(Y ) is said to be upper semicontinous at the point x0 ∈ X if for each

open set V in Y containing f(x0), there is an open set U in X containing x0

such that if x ∈ U, then f(x) ⊆ V.

Function f is called upper semicontinous (abbreviated u.s.c.) if it is upper

semicontinous at each point x ∈ X.

Definition 3.20 The graph Γ(f) of a function f : X → 2Y is set {(x, y) ∈
X × Y : y ∈ f(x)} .

Following theorem is a well known characterisation of u.s.c functions

between Hausdorff compacta.

Theorem 3.21 Let X and Y be compact Hausdorff spaces. A function f :

X → 2Y is u.s.c. if and only if its graph Γ(f) is closed in X × Y .

Proof. See [28]

If A ⊆ X then the image of A under f : X → 2Y is f(A) = ∪x∈Af(x).

Function f : X → 2Y is said to have surjective graph if f(X) = Y.

Let f : X → Y be a function. Then f induces a function f̃ : X → 2Y

given by f̃(x) = {f(x)}.
In that case, following statements are equivalent:

(i) f is continuous

(ii) f̃ is u.s.c.

(iii) f̃ is continuous (with respect to Vietoris topology).

Often, instead of f̃ : X → 2Y we write f : X → 2Y and identify f with f̃ .

For instance, if f = idX : X → X, we will refer to f̃ as the identity on X.

A general example of u.s.c. functions is following. If X and Y are compact

metric space and f : X → Y is a continuous surjective function, then f−1 :

Y → 2X is an u.s.c. function where f−1(y) = {x ∈ X : f(x) = y}.
Proofs of statements given above and other general facts about u.s.c.

functions can be found in [29], [30] and [35].
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Proposition 3.22 Let X and Y be topological spaces. If f : X → CL(Y ) is

continuous with respect to the topology TV then f is an u.s.c. function.

Proof. Let x0 ∈ X and W open set in Y such that f(x0) ⊆ V. Then f(x0) ∈
{A ∈ CL(X) : A ⊆ W} , which is open set in CL(Y ) by Definition 2.9. Since

f is continuous, there exists open set U such that x0 ∈ U and f(x) ∈ f(U) ⊆
{A ∈ CL(X) : A ⊆ W} . Therefore, for each x ∈ U, f(x) ⊆ W so f is u.s.c.

Converse doesn’t hold. For example, function f : [0, 1] → 2[0,1] given by

f(0) = [0, 1], f(x) = {0}, x ∈ (0, 1] is u.s.c. by Theorem 3.21 and it is not

continuous in respect with TV . Set W =
{
A ∈ 2[0,1] : A ⊆ 〈1

4
, 3

4
〉
}
∈ TV and

f−1(W ) = {0} which is not open in [0, 1]. Therefore, f is not continuous with

respect to TV .
Now we introduce the notion of inverse limits with u.s.c. bonding function,

denoted by generalized inverse limits, as introduced by Mahavier in [31] and

Ingram and Mahavier in [28].

Definition 3.23 A generalized inverse sequence of compact Hausdorff

spaces Xk with u.s.c. bonding functions fk is a sequence (Xk, fk)
∞
k=1 , where

fk : Xk+1 → 2Xk for each k.

Let (Xk, fk) be an inverse sequence. Using f̃k as defined above, it induces

unique generalized inverse sequence (Xk, f̃k)
∞
k=1. Therefore every inverse se-

quence can be observed as a generalized one.

Definition 3.24 The generalized inverse limit of a generalized inverse

sequence (Xk, fk)
∞
k=1 , denoted by lim←− (Xk, fk)

∞
k=1 , is the subspace of the product

space
∏∞

k=1 Xk defined by

lim←− (Xk, fk)
∞
k=1 =

{
x ∈

∞∏
k=1

Xk : πk(x) ∈ fk(πk+1(x)),∀k ∈ N

}
.

If Xk = X, fk = f, ∀k ∈ N, to simplify notation, we denote generalized

inverse limit lim←− (Xk, fk)
∞
k=1 with lim←− f .
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Let (Xk, fk) be an inverse sequence and (Xk, f̃k)
∞
k=1 an induced generalized

inverse sequence. Since we have (using notations from Definition 3.24 and

Remark 3.11) πk(x) ∈ f̃k(πk+1(x)) ⇔ πk(x) ∈ {fk(πk+1(x))} ⇔ πk(x) =

fk(πk+1(x)), we get that lim←−
(
Xk, f̃k

)∞
k=1

= lim(Xk, fk). Therefore, an inverse

limit of an inverse sequence can be viewed as a generalized inverse limit of

an induced generalized inverse sequence. Hence the term ”generalized” both

for inverse sequences and inverse limits really makes sense.

Many properties that inverse limits have, do not hold for generalized

inverse limits. Some theorems do extend, such as the Existence theorem

which is analogous to the Theorem 3.15 for inverse limits and Topology

conjugacy theorem (Corollary 3.27), analogous to the Remark 3.10 (applied

to inverse sequences).

Theorem 3.25 If (Xk, fk)
∞
k=1 is an inverse sequence of non-empty compact

Hausdorff spaces with u.s.c. bonding functions then the generalized inverse

limit lim←− (Xk, fk) is nonempty and compact.

Proof. See [28].

Following theorem and corollary are from [28].

Theorem 3.26 Let (Xk) and (Yk) be sequences of compact Hausdorff spaces

and, for each positive integer i, fi : Xi+1 → 2Xi and gi : Yi+1 → 2Yi , are u.s.c.

functions. Suppose further that, for each positive integer i, ϕi : Xi → Yi

is a mapping such that ϕi ◦ fi = gi ◦ ϕi+1. The function ϕ : lim←− f → lim←−g

given by ϕ(x) = (ϕ1(x1), ϕ2(x2), ϕ3(x3), . . .) is continuous. Furthermore, ϕ

is one-to-one (and surjective) if each ϕi is one-to-one (and surjective).

Proof. The function Φ :
∏∞

i=1Xi →
∏∞

i=1 Yi given by Φ(x) = (ϕ1(x1), ϕ2(x2),

ϕ3(x3), . . .) is continuous and is one-to-one if each ϕi is one-to-one. Be-

cause ϕ = Φ|lim←− f , ϕ inherits continuity from Φ, and it is one-to-one if each

ϕi is one-to-one. Thus, there are only two things to show: (1) for x ∈
lim←− f ,that ϕ(x) ∈ lim←−g, and (2) if each ϕi is a homeomorphism then ϕ

is surjective. To show (1), we need to know ϕi(xi) ∈ gi(ϕi+1(xi+1)) for

each positive integer i. Suppose i is a positive integer. Because ϕi ◦ fi =
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gi ◦ ϕi+1,we have ϕi(fi(xi+1)) ∈ gi(ϕi+1(xi+1)). From x ∈ lim←− f , it follows

xi(i) ∈ fi(xi+1) and, thus, ϕi(xi) ∈ ϕi(fi(xi+1)) ∈ gi(ϕi+1(xi+1)). It follows

that ϕ(x) ∈ lim←−g. To see (2), suppose y ∈ lim←−g. Because each ϕi is one-to-one,

x =
(
ϕ−1

1 (y1), ϕ−1
2 (y2), ϕ−1

3 (y3), . . .
)

is a point of
∏∞

i=1Xi such that ϕ(x) = y.

We now observe that x ∈ lim←− f . Let i ∈ N. Because gi ◦ ϕi+1 = ϕi ◦ fi and

ϕi+1(xi+1) = yi+1, gi(yy+1 = ϕi (fi(xi+1))). Because yi ∈ gi(yi+1), there is a

point t of fi(xi+1) such that yi = ϕi(t). But, ϕi(xi) = yi and ϕi is one-to-one,

so xi = t. Thus, xi ∈ fi(xi+1) and we have x ∈ lim←− f .

Suppose X is a compact Hausdorff space. If f : X → 2X and g : X → 2X

are u.s.c. function and g is surjective, f and g are said to be topologically

conjugate provided there is homeomorphism g : X → X such that fh = hg.

Following corollary is an immediate consequence of the previous theorem.

Corollary 3.27 If f : X → 2X and g : X → 2X are topologically conjugate

upper semicontinuous functions, then lim←− f and lim←−g are homeomorphic.

Many important continua can be constructed as inverse limits with just

one bonding function. Bellow we give several examples. All proofs can be

found in [22] but some of them are very important in the last chapter of the

thesis so we list them here together with proofs.

Example 3.28 (The Hilbert cube)

Let f : [0, 1]→ 2[0,1] be given by f(t) = [0, 1] for each t, 0 ≤ t ≤ 1. Then lim←− f

is homeomorphic to Hilbert cube.

Several examples in the thesis (including the following one) involve the cantor

set, which we now define.

Let X = ({0, 1},D) be a discrete topological space and Xn = X,n ∈ N.
Then a space

∏∞
n=1Xn = {0, 1}∞ is called the Cantor set.

Example 3.29 (The Cantor set) Let f : [0, 1] → 2[0,1] be given by f(t) =

{0, 1} for t, 0 ≤ t ≤ 1. Then lim←− f is homeomorphic to Cantor set.

Following example is very important in the Chapter 5 so we give it with a

proof.
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0 1

1

Figure 3.1: The graph of f in Example 3.29

Example 3.30 (The Cantor fan)

Let f : [0, 1] → 2[0,1] be given by f(t) = {t, 1− t} for 0 ≤ t ≤ 1. Then

lim←− f is the Cantor fan (i.e. cone over Cantor set) with the vertex v =

(1/2, 1/2, 1/2, . . .)

Proof. There are four homeomorphisms whose union is f. They are g1 :

[0, 1/2]→ [0, 1/2] given by g1(t) = t, g2 : [0, 1/2]→ [1/2, 1] given by g2(t) =

1 − t, g3 : [1/2, 1] → [0, 1/2] given by g3(t) = 1 − t, and g1 : [1/2, 1] →
[1/2, 1] given by g4(t) = t. A point x is in lim←− f if and only if there is a

sequence h1, h2, h3, . . . such that hi ∈ {g1, g2, g3, g4} for each i and xi =

hi(xi+1) for each positive integer i. Each such inverse limit is an arc having

v = (1/2, 1/2, 1/2, . . .) as one endpoint and the other endpoint in the Cantor

set {0, 1}∞ . Moreover, if p ∈ {0, 1}∞ , there is a sequence h such hi ∈
{g1, g2, g3, g4} for each i and p ∈ lim←−h.

Example 3.31 (Hurewicz continuum)

Let g1 : [0, 1]→ [0, 1] be the mapping given by g1(t) = t+ 1/2 for 0 ≤ t ≤ 1/2

and g1(t) = 3/2 − t for 1/2 ≤ t ≤ 1. Let g2 : [0, 1] → [0, 1] be the mapping

given by g2(t) = 1/2− t for 0 ≤ t ≤ 1/2 and g2(t) = t− 1/2 for 1/2 ≤ t ≤ 1.

Let f : [0, 1] → 2[0,1] be an upper semicontinuous function whose graph is

the set-theoretic union of graphs of g1 and g2. Then, lim←− f is a nonplanar

continuum called Hurewicz continuum.
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0 1

1

0 1

1

Figure 3.2: The graph of the functions from Example 3.30 and Example 3.31

For standard inverse limits, taking cofinal subsets of the index set in

inverse systems we get homeomorphic inverse limits. For generalized inverse

systems that is not the case as the following example shows.

Example 3.32 Let f : [0, 1] → 2[0,1] be the upper semicontinous function

given by f(t) =
{

1− t, 1
2

}
for 0 ≤ t ≤ 1

2
, f(t) = 1

2
for 1

2
< t < 1 and

f(1) = [0, 1
2
]. Then f 2 : [0, 1] → 2[0,1] is given by f 2(0) = [0, 1

2
], f 2(t) = 1

2

for 0 < t < 1, and f(1) = [1
2
, 1]. Then lim←− ([0, 1], f) contains a triod and

lim←− ([0, 1], f 2) is an arc.

Proof. Let M = lim←− ([0, 1], f) . Let α = {x ∈M : x1 ∈ [1/2, 1], x2 = 1− x1,

and x2j−1 = 1, while x2j = 0 for each integerj > 1} . Let β = {x ∈M : x1 =

x2 = 1/2, x3 ∈ [1/2, 1], x4 = 1− x3 and x2j−1 = 1, while x2j = 0 for each in-

teger j > 2} . Let γ = {x ∈M : x1, x2 ∈ [0, 1/2], and x2j−1 = 1, while x2j =

0 for each integer j > 1} . Then (1/2, 1/2, 1, 0, 1, 0, . . .) is the only point com-

mon to any of two arcs α, β, and γ, so α ∪ β ∪ γ is a triod. It is not difficult

to see that lim←− ([0, 1], f 2) is an arc.

From the definition of inverse limit it follows that bonding functions and

projections commute. For generalized inverse limits that is not the case:

Theorem 3.33 Suppose f = (fn) is a sequence of upper semicontinuous

functions fn : [0, 1] → 2[0,1] and M = lim←− f . If m,n ∈ N with m ≤ n and

H ⊆M, then πm(H) ⊆ fmn (πn(H)) .
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0 1

1

Figure 3.3: Graph of f in Example 3.32

In case f is a sequence of upper semicontinuous functions, if H ⊆ lim←− f and

i is a positive integer such that fi|πi+1(H) is a continuous function, it is true

that πi(H) = fi(πi+1(H)). In general, equality is not necessary as seen in the

next example.

Example 3.34 Let f : [0, 1] → 2[0,1] be given by f(t) = [0, 1] for each t ∈
[0, 1]. Then, for [0, 1/2]∞, we have H ⊆ lim←− f and, if i ∈ N, πi(H) = [0, 1/2],

but fi(πi+1(H)) = [0, 1].

0 1

1

0 1/4 1/2 3/4 1

1/4

1

Figure 3.4: The graph of the functions from Example 3.35 and 3.36
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Example 3.35 Let f : [0, 1] → C ([0, 1]) be given by f(t) = {0, t} for 0 ≤
t ≤ 1. Then H =

{
x ∈ lim←− f : xi = x1 for each positive integer i

}
is a closed

proper subset of lim←− f such that πn(H) = [0, 1] for each positive integer n.

Using notation from the previous example-but if f is continuous function

i.e. the inverse limit case, we have that there exists n ∈ N such that πn(H)

is a proper subset of [0, 1] - this statement is an immediate consequence of

Proposition 3.14.

In the following example we have continua as terms but generalized inverse

limit is not connected. That can not happen for inverse limits, as seen in

Proposition 3.15.

Example 3.36 Let f : [0, 1]→ 2[0,1] be given by f(t) = {0, t} for t, 0 ≤ t ≤
1
4
, f(t) = 0 for 1

4
< t < 3

4
, f(t) = {3t− 2, 0} for 3

4
≤ t < 1, and f(1) = [0, 1].

Then, Γ(f) is connected, but lim←− f is not connected.
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Chapter 4

Categories with u.s.c. functions

as morphisms

In this chapter we introduce the results from the paper by I. Banič and T.

Sovič [10] and from the [8].

We introduce a category CHU and generalize the notion of generalized

inverse limit when the index set is not sequence of integers. We prove that

generalized inverse limit is not inverse limit in the category CHU but it is a

weak inverse limit.

Then we introduce the category CU in which the compact metric spaces

are objects and upper semicontinuous functions from X to 2Y are morphisms

from X to Y . We show that it is a full subcategory of CHU . We also intro-

duce the category ICU of inverse sequences in CU . Then we investigate the

induced functions between inverse limits of compact metric spaces with upper

semicontinuous bonding functions. We provide criteria for their existence and

prove that under suitable assumptions they have surjective graphs. We also

show that taking such inverse limits is very close to being a functor (but is not

a functor) from ICU to CU , if morphisms are mapped to induced functions.

At the end of the paper we give a useful application of the mentioned results.
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4.1 The category CHU

In this section, including corresponding subsections 4.1.1 and 4.1.2 we present

results from the paper by I. Banič and T. Sovič [10] and due to the complet-

ness, we state some results together with proofs.

The category CHU of compact Hausdorff spaces and u.s.c. functions

consists of the following objects and morphisms:

(1) Ob (CHU) - compact Hausdorff spaces;

(2) Mor (CHU) - the set of morphisms fromX to Y, denoted by Mor (CHU) (X, Y ) ,

is the set of u.s.c. functions from X to 2Y

We denote a morphism f ∈ Mor (CHU) (X, Y ) by f : X → Y, same as a

function but to avoid confusion we emphasise - a morphism f : X → Y (i.e.

an u.s.c. function f : X → 2Y ).

We also define the partial binary operation ◦ (composition) as follows.

For each f ∈ Mor (CHU) (X, Y ) and each g ∈ Mor (CHU) (Y, Z) , g ◦ f ∈
Mor (CHU) (X,Z) is defined by

(g ◦ f) (x) = g (f(x)) =
⋃

y∈f(x)

g(y)

for each x ∈ X.
Set (g ◦ f) (x) is indeed an element of 2Z (see [29]).

Theorem 4.1 CHU is a category.

Proof. First, we show that ◦ is well defined. Let f : X → Y and g : Y → Z

be any morphisms. Let also x ∈ X be arbitrary and let U be an open set in

Z such that (g ◦ f) (x) ⊆ U. Since g is u.s.c. and f(x) ⊆ Y, for each y ∈ f(x)

there is an open set Wy in Y such that:

(1) y ∈ Wy,

(2) for all w ∈ Wy, g(w) ⊆ U.

Let W =
⋃
y∈f(x) Wy. Since W is open in Y, f(x) ⊆ W, and since f is u.s.c.

function, there is an open set V in X such that:
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(1) x ∈ V,

(2) for all v ∈ V, f(v) ⊆ W.

Let v ∈ V be arbitrary. Then

(g ◦ f) (v) = g (f(v)) =
⋃

z∈f(v)

g(z) ⊆ U

since for each z ∈ f(v), g(z) ⊆ U. Therefore ◦ is well defined. It is obvious that

the composition ◦ of u.s.c. function is an associative operation. All that is

left to show is that for each X ∈ Ob (CHU) there is a morphism 1X : X → X

such that 1X ◦ f = f and g ◦ 1X = g for any morphisms f : Y → X and

g : X → Z. We can easily see that the identity map 1X : X → X, defined

by 1X(x) = {x} for each x ∈ X, is the u.s.c. function satisfying the above

conditions.

4.1.1 Generalized inverse systems and generalized in-

verse limits

In this section we define objects in the category CHU called generalized

inverse limits. If (Xα, fαβ, A) is an inverse system of compact Hausdorff

spaces and u.s.c. set-valued bonding functions, then the generalized inverse

limit is denoted by

lim←− (Xα, fαβ, A)

and we show that, together with the projections, is not necessarily an inverse

limit in the category CHU .

Definition 4.2 Let (Xα, fαβ, A) be an object in the category inv- CHU . We

say that (Xα, fαβ, A) is an generalized inverse system.

Definition 4.3 Let (Xα, fαβ, A) be a generalized inverse system. A subset{
x ∈

∏
α∈A

Xα : πα(x) ∈ fαβ (πβ(x)) ,∀α < β

}
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of the Cartesian product
∏

α∈AXα is called the generalized inverse limit

and is denoted by lim←− (Xα, fαβ, A) .

Let (Xα, fαβ, A) be an inverse system (defined in Definition 3.2) and(
Xα, f̃αβ, A

)
an induced generalized inverse system (defined in the same way

as a sequence in the comment after Definition 3.23). Again, in the same

way we get lim←−
(
Xα, f̃αβ, A

)
= lim (Xα, fαβ, A) . Therefore, each inverse limit

of an inverse system is a generalized inverse limit of an induced generalized

inverse system.

In the following theorem we prove that lim←− (Xα, fαβ, A) is really an object

of CHU .

Theorem 4.4 Let (Xα, fαβ, A) a generalized inverse system. Then the gen-

eralized inverse limit

lim←− (Xα, fαβ, A)

is a compact Hausdorff space, i.e. lim←− (Xα, fαβ, A) ∈ Ob (CHU) .

Proof. For each γ ∈ A, Xγ is a compact Hausdorff space, and therefore the

product
∏

γ∈AXγ is a compact Hausdorff space. Since lim←− (Xα, fαβ, A) is a

subspace of the Hausdorff space, it is also a Hausdorff space. We show that

lim←− (Xα, fαβ, A) is a closed subset of the compact space
∏

γ∈AXγ to show

that it is compact. For all α, β ∈ A,α < β, let

Gαβ = Γ (fαβ)×
∏

γ∈A\{α,β}

Xγ =

{
x ∈

∏
γ∈A

Xγ : xα ∈ fαβ (xβ)

}

Since the graph Γ (fαβ) of fαβ is by Theorem 3.21 a closed subset of Xβ×Xα,

Gαβ is also a closed subset of
∏

γ∈AXγ. It is obvious that

lim←− (Xα, fαβ, A) =
⋂

α,β∈A,α<β

Gαβ

and hence lim←− (Xα, fαβ, A) is a closed subset of
∏

γ∈AXγ.

Now, we have a natural question: Is the generalized inverse limit an inverse

limit in the category CHU? Answer is negative as shown by the following

example (see [10, Example 4.3]).
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Example 4.5 Let A = N, Xk = [0, 1] , and let fkk+1 = f for each k ∈ N,
where f : [0, 1]→ 2[0,1] is the function on [0, 1] defined by its graph

Γ(f) = {(t, t) ∈ [0, 1]× [0, 1] : t ∈ [0, 1]} ∪ ({1} × [0, 1]) .

Also let X = lim←− ([0, 1] , fkk+1,N) and let p = (pk : X → Xk : k ∈ N) : (X)→
(X, fkk+1,N) be any morphism in inv- CHU . Then p : (X) → (X, fkk+1,N)

is not an inverse limit in CHU .
Let Y = [0, 1] be an object in CHU and let ϕ = (ϕk : Y → Xk : k ∈ N) be a

morphism in inv- CHU where ϕk(t) = [0, 1] for each k and each t ∈ Y. We

distinguish the following two cases.

(1) If there is a positive integer i0,such that 1 /∈ pi0(x) for each x ∈ X,

then suppose that Φ is any morphism Y → X. Then ϕi0(t) = [0, 1] but

1 /∈ pi0 (Φ(t)) for any t ∈ Y. Therefore p Φ 6= ϕ.

(2) If for each positive integer i there is xi ∈ X such that 1 ∈ pi (xi) , then

let s ∈ X be an accumulation point of the sequence (xi)
∞
i=1 . We show

first that pi(s) = [0, 1] for each i. Let k be any positive integer. Then

for each l > k, it follows from

[0, 1] ⊇ pk
(
xl
)

= fkl
(
pl
(
xl
))
⊇ fkl(1) ⊇ [0, 1]

that pk
(
xl
)

= [0, 1] . Let (ni)
∞
i=1 be any increasing sequence of positive

integers such that:

– ni > k for each i;

– lim
i→∞

xni = s.

It follows from pk (xni) = [0, 1] that {xni} × [0, 1] ⊆ Γ (pk) for each i.

This means that for each t ∈ [0, 1] , the point (xni , t) ∈ Γ (pk) . Therefore

lim
i→∞

(xni , t) = (s, t) ∈ Γ (pk) and hence pk(s) = [0, 1] .

Next, let Φ,Ψ : Y → X be the morphisms in CHU , defined by

Φ(t) = X,Ψ(t) = {s}
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for each t ∈ Y. It follows from

pk (Φ(t)) = pk(X) = [0, 1] = ϕk(t)

and

pk (Ψ(t)) = pk ({s}) = [0, 1] = ϕk(t)

that p Φ = ϕ and p Ψ = ϕ. Therefore we don’t have unique morphism which

satisfies the equation from the definition on an inverse limit.

Note that in the second part of the previous example, Ψ(t) ⊆ Φ(t) =

(
∏∞

k=1 ϕk(t)) ∩X holds true for each t ∈ Y. The following lemma shows that

such an inclusion is not accidental. It will be used in the proof of Theorem

4.11.

Lemma 4.6 Let (Xα, fαβ, A) be a generalized inverse system and let X =

lim←− (Xα, fαβ, A) . Suppose (ϕα : Y → Xα : α ∈ A) : (Y ) → (Xα, fαβ, A) is a

morphism in inv- CHU . Then ϕ : Y → 2X , defined by ϕ(y) =
(∏

γ∈A ϕγ(y)
)
∩

X for each y ∈ Y, is a morphism in CHU such that for any morphism

Ψ : Y → X such that pα (Ψ(y)) = ϕα(y) for each α ∈ A and for each

y ∈ Y,Ψ(y) ⊆ ϕ(y) holds true for all y ∈ Y.

Proof. See [10].

4.1.2 Weak inverse limits in CHU

In this section we introduce the notion of weak inverse limit in CHU , as

defined in [10], and show that lim←− (Xα, fαβ, A) , together with the projections,

is a weak inverse limit in CHU . In the following definition we define a weak

commutation of a diagram in the category CHU .

Definition 4.7 Let X, Y, Z ∈ Ob (CHU) and let f : X → Y, g : X → Z and

h : Z → Y be any morphisms in CHU . We say that the diagram
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X

Y Z

f
g

h

weakly commutes if, for any x ∈ X, f(x) ⊆ (h ◦ g) (x) and denote it by

f
w
= h ◦ g.

Example 4.8 Let f : [0, 1]→ 2[0,1], g : [0, 1]→ 2[0,1] be identity functions on

[0, 1] and let h : [0, 1] → 2[0,1] be defined by h(x) = [0, 1] for all x ∈ [0, 1] .

Then the diagram

[0, 1]

[0, 1] [0, 1]

f
g

h

weakly commutes but does not commute.

In the following definition we generalise the notion of inverse limits in CHU .

Definition 4.9 Let (Xα, fαβ, A) be a generalized inverse system. An object

X ∈ Ob (CHU) , together with the family (pα : X → Xα : α ∈ A) of mor-

phisms pα in CHU is called a weak inverse limit of (Xα, fαβ, A) provided

(i) for each α, β ∈ A,α ≤ β, fα
w
= pαβfβ;

(ii) for any morphism (ϕα : Y → Xα : α ∈ A) : (Y ) → (Xα, fαβ, A) in

inv- CHU and any morphism Ψ : Y → X such that pαΨ = ϕα for each

α ∈ A it holds Ψ(y) ⊆
(∏

γ∈A ϕγ(y)
)
∩X, for each y ∈ Y.

Note that each inverse limit in CHU is always a weak inverse limit in CHU .

Example 4.10 Let X = lim←− ([0, 1] , fkl,N) be the generalized inverse limit

that we defined in Example 4.5. Then X, together with the projection map-

pings, is obviously not an inverse limit but it is a weak inverse limit in CHU .
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We show in the following theorem that the generalized inverse limits together

with projections are always weak inverse limits in CHU .

Theorem 4.11 Let (Xα, fαβ, A) be a generalized inverse system. Then the

generalized inverse limit

lim←− (Xα, fαβ, A) ,

together with the projections

pγ : lim←− (Xα, fαβ, A)→ Xγ, pγ
(
(xα)α∈A

)
= {xγ} ,

is a weak inverse limit of (Xα, fαβ, A) in CHU .

Proof. Let X = lim←− (Xα, fαβ, A) . First, we prove (i) i.e. that fα
w
= pαβfβ for

each α, β ∈ A,α ≤ β. Choose any x ∈ X and let α < β. Then

pα(x) = {xα} ⊆ fαβ ({xβ}) = (fαβ ◦ pβ) (x).

(ii) follows from Lemma 4.6.

4.2 Induced functions and induced morphisms

Let CU be a full subcategory of CHU whose objects are compact metric spaces.

Let ICU be a subcategory of inv- CHU which consists of inverse systems and

level morphisms.

Recall the following:

If ϕ = (ϕn : Xn → Yn, n ∈ N) : (Xn, fn)∞n=1 → (Yn, gn)∞n=1 and ψ = (ψn :

Yn → Zn), n ∈ N) : (Yn, gn)∞n=1 → (Zn, hn)∞n=1 are two morphisms of ICU ,
then the composition ψ ◦ ϕ : (Xn, fn)∞n=1 → (Zn, hn)∞n=1 , ψ ◦ ϕ = (ψn ◦ ϕn :

Xn → Zn,N) is a morphism of ICU .
We continue with the definition of functions induced by sequences of u.s.c.

functions.

Definition 4.12 Let (Xn, fn)∞n=1 and (Yn, gn)∞n=1 be inverse sequences in CU),

X = lim←− (Xn, fn)∞n=1 and Y = lim←− (Yn, gn)∞n=1 their generalized inverse limits
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and let (ϕn) be a sequence of u.s.c. functions ϕn : Xn → 2Yn. For each

x = (xn) ∈ X, put

Φ(x) =

(
∞∏
n=1

ϕn(xn)

)
∩ Y ∈ 2Y . (4.1)

If Φ is an u.s.c. function from X to 2Y , we say that Φ is induced by (ϕn).

The next theorem provides a simple criterion for recognizing induced

functions.

Theorem 4.13 We use the notation from Definition 4.12. Then Φ is induced

by (ϕn) if and only if Φ(x) 6= ∅ for each x = (xn) ∈ lim←− (Xn, fn)∞n=1.

Proof. If Φ : X → 2Y is induced by (ϕn), then for each x = (xn) ∈ X,

Φ(x) ∈ 2Y . Therefore Φ(x) 6= ∅.
Now assume that Φ(x) 6= ∅ for each (x) ∈ X. Since Φ(x) is compact it is

closed in Y . Therefore the function Φ : X → 2Y is well-defined.

Next we prove that Φ is a u.s.c. function. It is sufficient to prove that the

graph Γ (Φ) of Φ is a closed subset of X × Y . It follows from the definition

of Φ that

Γ (Φ) = {((xn) , (yn)) ∈ X × Y | ∀i ∈ N, yi ∈ ϕi (xi)} .

Let α : X × Y → (X1 × Y1)× (X2 × Y2)× · · · be defined by

α (x, y) = ((x1, y1), (x2, y2), . . .) ,

for all x = (xn) ∈ X and y = (yn) ∈ Y .

Note that A : X × Y → Imα defined by A (x, y) = α (x, y) is a homeo-

morphism.
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We prove that A (Γ (Φ)) is closed in ImA = A(X × Y ).

A (Γ (Φ)) = {((x1, y1), (x2, y2), . . .) | x ∈ X, y ∈ Y, ∀i ∈ N, yi ∈ ϕi (xi)}

= {((x1, y1), (x2, y2), . . .) | x ∈ X, y ∈ Y, ∀i ∈ N, (xi, yi) ∈ Γ (ϕi)}

= {((x1, y1), (x2, y2), . . .) ∈ Γ (ϕ1)× Γ (ϕ2)× · · · | x ∈ X, y ∈ Y }

= (Γ (ϕ1)× Γ (ϕ2)× · · · ) ∩ {((x1, y1), (x2, y2), . . .) | x ∈ X, y ∈ Y }

= (Γ (ϕ1)× Γ (ϕ2)× · · · ) ∩ A(X × Y ).

The product

Γ (ϕ1)× Γ (ϕ2)× Γ (ϕ3)× · · ·

is a closed subset of (X1 × Y1)× (X2 × Y2)×· · · , therefore A (Γ (Φ)) is closed

in A(X × Y ). It follows that Γ (Φ) is closed in X × Y .

The next theorem presents a commutativity-like condition under which Φ is

induced.

Theorem 4.14 Let (Xn, fn)∞n=1 and (Yn, gn)∞n=1 be inverse sequences in CU ,

and let (ϕn) be a sequence of u.s.c. functions ϕn : Xn → 2Yn. If

(ϕn ◦ fn)(x) ⊆ (gn ◦ ϕn+1)(x)

for each positive integer n and each x ∈ Xn+1, then Φ defined by (4.1) is

induced by (ϕn).

Proof. By Theorem 4.13 it suffices to prove that Φ(x) is nonempty for

arbitrary x ∈ lim←− (Xn, fn)∞n=1. For arbitrary x ∈ lim←− (Xn, fn)∞n=1 we construct

a point y = (y1, y2, y3, . . .) ∈ Φ(x) by an inductive construction of coordinates

yi. More precisely, by induction on i ∈ N, we construct a sequence (yi) in Yi,

satisfying yi ∈ ϕi (xi) and yi ∈ gi (yi+1) for each i.

We choose any y1 ∈ ϕ1(x1); it can be done since ϕ1(x1) is nonempty.

Assume next that we have already constructed yi ∈ ϕi (xi). Now we

construct yi+1 ∈ ϕi+1 (xi+1) such that yi ∈ gi (yi+1).
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It follows from x ∈ lim←− (Xn, fn)∞n=1 that xi ∈ fi (xi+1). Therefore

yi ∈ ϕi(xi) ⊆ (ϕi ◦ fi) (xi+1) ⊆ (gi ◦ ϕi+1) (xi+1) =
⋃

t∈ϕi+1(xi+1)

gi (t) .

Hence, there exists a point t0 ∈ ϕi+1 (xi+1) such that yi ∈ gi (t0). We take

any such t0 for yi+1.

This immediately leads to the following corollary.

Corollary 4.15 Let (Xn, fn)∞n=1 and (Yn, gn)∞n=1 be any objects of ICU , and

let the sequence (ϕn) be any morphism of ICU from (Xn, fn)∞n=1 to (Yn, gn)∞n=1.

Then Φ : lim←− (Xn, fn)∞n=1 → 2
lim←−(Yn,gn)∞n=1, defined by (4.1), is induced by (ϕn),

meaning that Φ : lim←− (Xn, fn)∞n=1 → lim←− (Yn, gn)∞n=1 is a morphism in CU .

Definition 4.16 The function Φ from Corollary 4.15 is called the morphism

of CU induced by the morphism (ϕn) of ICU and is denoted by Φ = lim←−(ϕi).

Note that if (ϕn) is not a morphism of ICU but the induced function Φ is a

morphism of CU (that happens when (ϕn) satisfies the conditions of Theorem

4.13) lim←−ϕi does not exist.

The induced morphism lim←−(ϕi) : lim←− (Xn, fn)∞n=1 → lim←− (Yn, gn)∞n=1 cannot

be defined simply by the formula

(
lim←−(ϕi)

)
(x1, x2, x3, . . .) =

∞∏
i=1

ϕi(xi) (4.2)

since the right hand side product of (4.2) is not necessarily a subset of

lim←− (Yn, gn)∞n=1, as we show in the following example.

Example 4.17 Let Xi = Yi = [0, 1], let fi = gi = 1[0,1], where 1[0,1] : [0, 1]→
2[0,1] is the u.s.c. function, defined by 1[0,1](x) = {x} for each x ∈ [0, 1], and

let ϕi : [0, 1] → 2[0,1] be defined by its graph: Γ (ϕi) = [0, 1] × [0, 1], for each

positive integers i. Then ϕ1(x1) × ϕ2(x2) × ϕ3(x3) × · · · is not a subset of

lim←− (Yn, gn)∞n=1.

Proof. Obviously, gi ◦ϕi+1 = ϕi ◦ fi holds true for any positive integer i, and

therefore (ϕn) is a morphism of ICU .
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Also, lim←− (Xn, fn)∞n=1 = lim←− (Yn, gn)∞n=1 = {(t, t, t, . . .) | t ∈ [0, 1]}, and

therefore

ϕ(x1, x2, x3, . . .) = ϕ1(x1)×ϕ2(x2)×ϕ3(x3)×· · · = [0, 1]× [0, 1]× [0, 1]×· · ·

is not a subset of lim←− (Yn, gn)∞n=1 (and therefore it is not an element of

2
lim←−(Yn,gn)∞n=1).

This example shows also that (4.2) cannot replace (4.1) in the definition

of induced functions.

In the following theorem we prove that if each of the ϕi’s has a surjective

graph, then also lim←−(ϕi) has a surjective graph. Note that it is not required

that any of the functions fn and gn have a surjective graph.

Theorem 4.18 Let (Xn, fn)∞n=1 and (Yn, gn)∞n=1 be any objects of ICU and

let the sequence (ϕn) be a morphism of ICU from (Xn, fn)∞n=1 to (Yn, gn)∞n=1

such that ϕi : Xi → 2Yi has a surjective graph for each positive integer i.

Then lim←−ϕi has a surjective graph.

Proof. Let y = (y1, y2, y3, . . .) ∈ lim←− (Yn, gn)∞n=1 be arbitrary. We construct a

point x ∈ lim←− (Xn, fn)∞n=1 such that y ∈
(
lim←−(ϕi)

)
(x).

Let n be any positive integer. Since ϕn : Xn → 2Yn has a surjective graph,

there is a point xnn ∈ Xn such that yn ∈ ϕn(xnn). We choose and fix such an xnn.

Then by downwards induction we prove that for any k ∈ {1, 2, 3, . . . , n− 1}
there is xnk ∈ Xk such that yk ∈ ϕk(xnk) and xnk ∈ fk(xnk+1).

Let k be any integer from {1, 2, 3, . . . , n − 1}. Assume that xnk+1 has

already been chosen in such a way that yk+1 ∈ ϕk+1(xnk+1). Note that this

assumption is fulfilled for k = n− 1.

Since yk ∈ gk(yk+1) and yk+1 ∈ ϕk+1(xnk+1), it follows that

yk ∈ (gk ◦ ϕk+1)(xnk+1) = (ϕk ◦ fk)(xnk+1).

Therefore there is a point xnk ∈ Xk such that xnk ∈ fk(xnk+1) and yk ∈ ϕk(xnk)

and we fix one such xnk .
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This construction yields

xn = (xn1 , x
n
2 , x

n
3 , . . . , x

n
n−1, x

n
n, z

n
n+1, z

n
n+2, z

n
n+3, . . .) ∈

∞∏
i=1

Xi,

where zni ∈ Xi is arbitrarily chosen for each i > n. Then {xn}∞n=1 is a sequence

in the compact metric space (
∏∞

i=1Xi, D). Let x = (x1, x2, x3, . . .) ∈
∏∞

i=1 Xi

be any accumulation point of the sequence {xn}∞n=1.

Next we prove that x ∈ lim←− (Xn, fn)∞n=1 and that y ∈
(
lim←−ϕi

)
(x). Let

{in}∞n=1 be a strictly increasing sequence of integers such that

lim
n→∞

xin = x.

First we prove that x ∈ lim←− (Xn, fn)∞n=1. Let m be any positive integer. Then

(xikm+1, x
ik
m) ∈ Γ(fm) for each positive integer ik > m. Since lim

k→∞
(xikm+1, x

ik
m) =

(xm+1, xm) and since the graph Γ(fm) is closed in Xm+1×Xm, it follows that

(xm+1, xm) ∈ Γ(fm). Therefore x ∈ lim←− (Xn, fn)∞n=1.

Finally we prove that y ∈
(
lim←−ϕi

)
(x). Let m be any positive integer.

Then ym ∈ ϕm(xikm) for each positive integer ik > m. Therefore (xikm, ym) ∈
Γ(ϕm) for each ik > m. Since lim

k→∞
(xikm, ym) = (xm, ym) and since the graph

Γ(ϕm) is closed in Xm × Ym, it follows that (xm, ym) ∈ Γ(ϕm), and therefore

ym ∈ ϕm(xm).

It follows that (y1, y2, y3, . . .) ∈
(
lim←−ϕi

)
(x1, x2, x3, . . .) and hence lim←−(ϕi)

has a surjective graph.

Next example shows that the function Φ induced by (ϕn) need not have

a surjective graph if (ϕn) is not a morphism of ICU , even if each ϕi, fi, and

gi has a surjective graph and if gi ◦ ϕi+1 = ϕi ◦ fi holds true for any positive

integer i > 1.

Example 4.19 Let for each positive integer i and j > 1, Xi = Yi = [0, 1],

fi = gj = ϕi = 1[0,1], and let g1 : [0, 1] → 2[0,1] be defined by its graph:

Γ (g1) = [0, 1]× [0, 1]. Then the function Φ induced by (ϕn) does not have a

surjective graph.

Proof. Obviously, gi ◦ϕi+1 = ϕi ◦ fi holds true for any positive integer i > 1,
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and ϕ1 ◦f1(t) ⊆ g1 ◦ϕ2(t) for any t ∈ [0, 1]. Therefore (ϕ1, ϕ2, ϕ3, . . .) induces

Φ defined by (4.1) according to Theorem 4.14.

Obviously (0, 1, 1, 1, . . .) ∈ lim←− (Yn, gn)∞n=1 and lim←− (Xn, fn)∞n=1 = {(t, t, t, . . .) :

t ∈ [0, 1]}. But Φ(t, t, t, . . .) = {(t, t, t, . . .)}, and therefore (0, 1, 1, 1, . . .) /∈
Φ(t, t, t, . . .) for any t ∈ [0, 1].

In the rest of the section we study a rule F : ICU → CU , defined by

(Xn, fn)∞n=1

F7−→ lim←− (Xn, fn)∞n=1

(ϕn)
F7−→ lim←−(ϕn).

In the following theorem we show that the rule F is very close to being a

functor from ICU to CU .

Theorem 4.20 Let (Xn, fn)∞n=1, (Yn, gn)∞n=1 and (Zn, hn)∞n=1 be any objects

of ICU , and

ϕ = (ϕn) : (Xn, fn)∞n=1 → (Yn, gn)∞n=1

and

ψ = (ψn) : (Yn, gn)∞n=1 → (Zn, hn)∞n=1

morphisms in ICU . Then

1. F ((1Xn)) = 1lim←−(Xn,fn)∞n=1
;

2. (F (ψ) ◦ F (ϕ))(x) ⊆ F (ψ ◦ ϕ)(x) for all x ∈ lim←− (Xn, fn)∞n=1.

Proof. To prove (1), choose arbitrary x = (x1, x2, x3, . . .) ∈ lim←− (Xn, fn)∞n=1.

Then

F ((1Xn))(x) =
∞∏
n=1

1Xn(xn) ∩ lim←− (Xn, fn)∞n=1 = {x} = 1lim←−(Xn,fn)∞n=1
(x).

To prove (2), let x ∈ lim←− (Xn, fn)∞n=1 and let

z ∈ (F (ψ) ◦ F (ϕ))(x) = F (ψ)[F (ϕ)(x)] =
⋃

y∈F (ϕ)(x)

F (ψ)(y)

41



Chapter 4. Categories with u.s.c. functions as morphisms

be arbitrary. Then

z ∈
⋃

y∈(ϕ1(x1)×ϕ2(x2)×··· )∩lim←−(Yn,gn)∞n=1

(ψ1(y1)× ψ2(y2)× · · · ) ∩ lim←− (Zn, hn)∞n=1

and therefore there is a point y ∈ lim←− (Yn, gn)∞n=1 such that yn ∈ ϕn(xn)

and zn ∈ ψn(yn) for each positive n. It follows that zn ∈
⋃
t∈ϕn(xn) ψn(t) =

(ψn ◦ ϕn)(xn) for each positive integer n and hence z ∈ F (ψ ◦ ϕ)(x).

F is a functor if and only if (F (ψ) ◦ F (ϕ))(x) = F (ψ ◦ ϕ)(x) holds

true for all x ∈ lim←− (Xn, fn)∞n=1 and all objects (Xn, fn)∞n=1, (Yn, gn)∞n=1 and

(Zn, hn)∞n=1 and all morphisms ϕ = (ϕn) : (Xn, fn)∞n=1 → (Yn, gn)∞n=1 and

ψ = (ψ1, ψ2, ψ3, . . .) : (Yn, gn)∞n=1 → (Zn, hn)∞n=1 of ICU . In the following

example shows that this is not the case, hence F is not a functor. We use

the notation from Theorem 4.20.

Example 4.21 Let for each positive integer n, Xn = Yn = Zn = [0, 1]

and let f, g : [0, 1] → 2[0,1] be u.s.c. functions defined by f(t) = {t} and

g(t) = [0, 1] for each t ∈ [0, 1]. Also let f1 = h1 = ψ1 = ϕn = g for each

n ≥ 2 and let ϕ1 = fn+1 = gn = hn+1 = ψn+1 = f for each n ≥ 1. Let

x = (1, 0, 0, 0, . . .) ∈ lim←− (Xn, fn)∞n=1. Then (F (ψ) ◦ F (ϕ))(x) 6= F (ψ ◦ ϕ)(x).

Proof. Let z = (1, 0, 0, 0, . . .) ∈ lim←− (Zn, hn)∞n=1. Obviously z ∈ F (ψ ◦ ϕ)(x).

Then, since ϕ1(t) = {t} for each t ∈ [0, 1], y = (1, 1, 1, . . .) is the only

element in lim←− (Yn, gn)∞n=1 such that y ∈ F (ϕ)(x). But, since F (ψ)(y) =

[0, 1] × {1} × {1} × · · · and z2 = 0 it follows that z /∈ F (ψ)(y). Therefore

z /∈ (F (ψ) ◦ F (ϕ))(x) and hence (F (ψ) ◦ F (ϕ))(x) 6= F (ψ ◦ ϕ)(x).

4.3 An application

In the final section we study the following diagram.
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X1
1 X1

2 X1
3 X1

4 · · · L1

X2
1 X2

2 X2
3 X2

4 · · · L2

X3
1 X3

2 X3
3 X3

4 · · · L3

...
...

...
...

...

K1 K2 K3 · · · K

L

f 1
1 f 1

2 f 1
3 f 1

4

f 2
1 f 2

2 f 2
3 f 2

4

f 3
1 f 3

2 f 3
3 f 3

4

f1 f2 f3

H

g1
1 g1

2 g1
3 g1

4 g1

g2
1 g2

2 g2
3 g2

4 g2

g3
1 g3

2 g3
3 g3

4 g3

Theorem 4.22 Let Xj
i be compact metric spaces, and let f ji : Xj

i+1 → 2X
j
i ,

gji : Xj
i+1 → 2X

j
i be u.s.c. functions, for all positive integers i and j. Let also

for each j

Lj = lim←−
(
Xj
i , f

j
i

)∞
i=1

and for each i

Ki = lim←−
(
Xj
i , g

j
i

)∞
j=1

.

If for each integer n, fn is the function induced by (f 1
n, f

2
n, f

3
n, . . .) and gn is

the function induced by (gn1 , g
n
2 , g

n
3 , . . .), then

L = lim←−
(
Lj, gj

)∞
j=1

and

K = lim←− (Ki, fi)
∞
i=1 .

are homeomorphic.
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Proof. Define the function H : K → L as follows:

H
((
x1

1, x
2
1, x

3
1, . . .

)
,
(
x1

2, x
2
2, x

3
2, . . .

)
,
(
x1

3, x
2
3, x

3
3, . . .

)
, . . .

)
= (3)((

x1
1, x

1
2, x

1
3, . . .

)
,
(
x2

1, x
2
2, x

2
3, . . .

)
,
(
x3

1, x
3
2, x

3
3, . . .

)
, . . .

)
,

where (x1
i , x

2
i , x

3
i , . . .) ∈ Ki and (x1

i , x
2
i , x

3
i , . . .) ∈ fi

(
x1
i+1, x

2
i+1, x

3
i+1, . . .

)
for each positive integer i.

We will prove that H is a homeomorphism.

First, we prove that H is well-defined. We need to show that the right

side of (3) is a point of L. The proof is in the following steps.

1.
(
xj1, x

j
2, x

j
3, . . .

)
∈ Lj, for arbitrary j ∈ N;

2.
(
xj1, x

j
2, x

j
3, . . .

)
∈ gj

(
xj+1

1 , xj+1
2 , xj+1

3 , . . .
)
, for arbitrary j ∈ N.

Let us prove (1).

Since (x1
i , x

2
i , x

3
i , . . .) ∈ fi

(
x1
i+1, x

2
i+1, x

3
i+1, . . .

)
=
(∏∞

j=1 f
j
i (xji+1)

)
∩Ki, it

follows that xji ∈ f
j
i

(
xji+1

)
for each i and j. Hence,

(
xj1, x

j
2, x

j
3, . . .

)
∈ Lj.

It remains to prove (2).

Since (x1
i , x

2
i , x

3
i , . . .) ∈ Ki, it follows that for each i and j, xji ∈ g

j
i (x

j+1
i ).

Therefore
(
xj1, x

j
2, x

j
3, . . .

)
∈
(∏∞

i=1 g
j
i (x

j
i )
)
∩ Lj = gj

(
xj+1

1 , xj+1
2 , xj+1

3 , . . .
)

for

all j.

Hence, ((x1
1, x

1
2, x

1
3, . . .) , (x

2
1, x

2
2, x

2
3, . . .) , (x

3
1, x

3
2, x

3
3, . . .) , . . .) ∈ L. So we

have proved that H : K → L is well defined.

In the same manner we prove that H ′ : L→ K defined by

H ′
((
x1

1, x
1
2, x

1
3, . . .

)
,
(
x2

1, x
2
2, x

2
3, . . .

)
,
(
x3

1, x
3
2, x

3
3, . . .

)
, . . .

)
=((

x1
1, x

2
1, x

3
1, . . .

)
,
(
x1

2, x
2
2, x

3
2, . . .

)
,
(
x1

3, x
2
3, x

3
3, . . .

)
, . . .

)
,

is well defined. Since obviously H and H ′ are both continuous and inverses

to each other, it follows that they are homeomorphisms.

Corollary 4.23 We use the notation of Theorem 4.22. If for all positive

integers i and j

gji ◦ f
j+1
i = f ji ◦ g

j
i+1,
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then the spaces L and K are homeomorphic.

Proof. The claim follows by Theorem 4.22 since by Corollary 4.15 there are

induced functions fn and gn for each n.

We conclude the section with the following theorem.

Theorem 4.24 Let X be any compact metric space and let f : X → X be a

surjective mapping. Let L′ = lim←− (X, f−1)
∞
n=1, where f−1 is the u.s.c. function

f−1 : X → 2X defined by its graph

Γ(f−1) = {(x, y) ∈ X ×X | (y, x) ∈ Γ(f)}.

Let σ : L′ → L′ be the shift map, defined by

σ(t1, t2, t3, . . .) = (t2, t3, t4, . . .)

for each (t1, t2, t3, . . .) ∈ L′.
Then the inverse limit lim←− (L′, σ)∞n=1 is homeomorphic to lim←− (X, f)∞n=1.

Proof.

We show first that the mapping (t1, t2, t3, . . .) 7→ {σ(t1, t2, t3, . . .)} can be

interpreted as an induced function and then we use Theorem 4.22 to prove

that the inverse limit lim←− (L′, σ)∞n=1 is homeomorphic to lim←− (X, f)∞n=1.

We use the notation that is used in Theorem 4.22. Let for all positive

integers i, j, Xj
i = X, gji (t) = {f(t)}, and f ji (t) = f−1(t) for each t ∈ X.

Then, gn(t1, t2, t3, . . .) = ({f(t1)} × {f(t2)} × {f(t3)} × . . .) ∩ L′ =

{(t2, t3, t4, . . .)} = {σ(t1, t2, t3, . . .)} for any (t1, t2, t3, . . .) ∈ L′. It follows that

L = lim←− (Ln, gn)∞n=1 = lim←− (L′, σ)∞n=1.

Let K ′ = Kn = lim←− (X, f)∞n=1 for each positive integer n. Next we show

that K = lim←− (Kn, fn)∞n=1 = lim←− (K ′, σ′−1)
∞
n=1, where σ′ is the shift map from

K ′ to K ′. Note that σ′ is a homeomorphism, since f is single-valued, and

that σ′−1(t1, t2, t3, . . .) = (f(t1), t1, t2, t3, . . .) for each (t1, t2, t3, . . .) ∈ K ′.
Then fn(t1, t2, t3, . . .) = ({f−1(t1)} × {f−1(t2)} × {f−1(t3)} × . . .)∩K ′ =

{(f(t1), t1, t2, t3, . . .)} = {σ′−1(t1, t2, t3, . . .)} for any (t1, t2, t3, . . .) ∈ K ′. It

follows that K = lim←− (Kn, fn)∞n=1 = lim←− (K ′, σ′−1)
∞
n=1.
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Since σ′−1 is a homeomorphism it follows that K = lim←− (K ′, σ′−1)
∞
n=1 is

homeomorphic to K ′ = lim←− (X, f)∞n=1. By Theorem 4.22 K is homeomorphic

to L, and that proves that lim←− (X, f)∞n=1 is homeomorphic to lim←− (L′, σ)∞n=1.
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Chapter 5

Topological entropy for

set-valued functions

In this chapter we generalize the idea of topological entropy to closed subsets

of [0, 1]2. We show that when the closed subset of [0, 1]2 is the graph of a

continuous function f : [0, 1]→ [0, 1], then the topological entropy of f with

our new definition of topological entropy is the same as that of the traditional

definition of topological entropy. We further compare the properties of the

new definition of topological entropy with those of the traditional definition,

and find that many of the same properties hold, but not all. We reduce the

problem of computing topological entropy in our context to one of counting

the “boxes” (elements of our grid covers) that certain sets generated by our

closed subset of [0, 1]2 intersect.

Closed subsets of [0, 1]2 can be viewed as a closed relation, or a multi-

valued function, from a subset of [0, 1] to itself. We use techniques from

inverse limits and generalizations of inverse limits to define and investigate

topological entropy on closed subsets of [0, 1]2.

5.1 Mahavier product

All the results in this section are from [19].

Definition 5.1 Let X0, X1, . . . , Xn, n ∈ N, n ≥ 2 be topological spaces and
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A1 ⊆ X0 ×X1, . . . , An ⊆ Xn−1 ×Xn. We define

A1?· · ·?An = ?ni=1Ai =

{
(x0, . . . , xn) ∈

n∏
i=0

Xi : (xi−1, xi) ∈ Ai,∀i = 1, . . . , n

}

to be the Mahavier product of Ai, i = 1, . . . , n.

In particular, for n = 1 we put ?1
i=1A = A.

Now we extend the definition to the Mahavier product of infinitely many

sets.

Definition 5.2 Let X0, X1, . . . , Xn, . . . be a sequence of topological spaces

and A0, A1, . . . , An, . . . a sequence of sets such that Ai ⊆ Xi−1 ×Xi,∀i ∈ N.
We define

?∞i=1Ai =

{
(x0, . . . , xn, . . .) ∈

∞∏
i=0

Xi : (x0, . . . , xn) ∈ ?ni=1Ai,∀n ∈ N

}

to be the Mahavier product of a sequence Ai, i ∈ N.

We see that

?∞i=1Ai =

{
(x0, . . . , xn, . . .) ∈

∞∏
i=0

Xi : (xi−1, xi) ∈ Ai, ∀i ∈ N

}
.

If A = {(a, b)} and B = {(b, c)}, then we write (a, b) ? (b, c) to mean

A ? B = {(a, b)} ? {(b, c)}.
Mahavier products have nice algebraic and topological properties, which

we list in the following propositions.

Here, X, Y, Z and W are topological spaces. A basic set in X × Y ×
Z, X×Y or Y ×Z is a set of the form AX×AY ×AZ , AX×AY or AY ×AZ ,
respectively, for some sets AX ⊂ X, AY ⊂ Y and AZ ⊂ Z.

The ”middle” space Y in the definition has a special role and we observe

projection maps from X×Y, Y ×Z andX×Y ×Z to Y as seen in the following

propositions. We denote those projection maps with πX×YY , πY×ZY , πX×Y×ZY

respectively, but use πY to denote all of them, if there is no confusion, to
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simplify notation. We also define the following: If G ⊂ X × Y, then πGY :

G → Y is the map defined by πGY ((x, y)) = y for (x, y) ∈ G, i.e. πGY is the

restriction of πY on G. For H ⊂ Y × Z, we define πHY in the same way.

Proposition 5.3 Suppose G is a subset of X×Y and H is a subset of Y ×Z.
Then G ? H = (G× Z) ∩ (X ×H) .

Proposition 5.4 Suppose G is a subset of X×Y and H is a subset of Y ×Z.
Then πY (G ? H) = πY (G) ∩ πY (H) .

Proposition 5.5 Suppose G, J are subsets of X × Y and H,K are subsets

of Y ×Z. Then (G ∩ J)? (H ∩K) = (G ? H)∩ (J ? K) = (G ? K)∩ (J ? H) .

Proposition 5.6 Suppose G, J are subsets of X × Y and H,K are subsets

of Y ×Z. Then (G ∪ J) ? (H ∪K) = (G ? H)∪ (J ? K)∪ (G ? K)∪ (J ? H) .

Proposition 5.7 Suppose G, J are subsets of X × Y and H,K are subsets

of Y × Z. Then

(G ∪ J) ? (H ∩K) = [(G ? H) ∩ (G ? K)] ∪ [(J ? H) ∩ (J ? K)]

and

(G ∩ J) ? (H ∪K) = [(G ? H) ∩ (J ? H)] ∪ [(G ? K) ∩ (J ? K)] .

Proposition 5.8 Suppose G ⊂ X × Y,H ⊂ Y × Z and L ⊂ Z ×W. Then

(G ? H) ? L = G ? (H ? L) . Hence, we may simply write G ? H ? L.

Proposition 5.9 Suppose G := G1×G2 is a basic open subset of X×Y and

H := H2×H3 is a basic open subset of Y ×Z. Then G?H = G1×(G2 ∩H2)×
H3 is a basic open subset of X × Y × Z (which is empty if G2 ∩H2 = ∅).

Proposition 5.10 Suppose G is an open subset of X × Y and H is an open

subset of Y × Z. Then G ?H is an open subset of X × Y × Z (which may be

empty).
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Proposition 5.11 Suppose G is a subset of X × Y and H is a subset of

Y × Z. Then

(X × Y × Z) \ (G ? H) = [((X × Y ) \G)× Z] ∪ [X × ((Y × Z) \H)]

∪ [X × (Y \ (πY (G) ∩ πY (H)))× Z] .

Proposition 5.12 Suppose X, Y and Z are compact Hausdorff spaces, G is

a closed subset of X × Y and H is a closed subset of Y × Z. Then G×H is

a closed subset of X × Y × Z (which may be empty)

Proof. SinceG andH are closed, (X × Y )\G is open inX×Y, ((X × Y ) \G)×
Z is open in X×Y ×Z, (Y × Z)\H is open in Y ×Z, and X×((Y × Z) \H)

is open in X × Y ×Z. Since G and H are compact, we have that πY (G) and

πY (H) are compact subsets of Hausdorff space and therefore closed. Hence,

Y \ (πY (G) ∩ πY (H)) is open in Y, and X × (Y \ (πY (G) ∩ πY (H)))× Z is

open in X × Y × Z. The result then follows.

Proposition 5.13 Suppose X, Y and Z are compact Hausdorff spaces, U is

open in the closed set G ⊂ X×Y and V is open in the closed set H ⊂ Y ×Z.
Then U ? V is open relative to the closed set G ? H.

Proof. There are (1) an open set U ′ of X×Y such that U ′∩G = U, and (2) an

open set V ′ of Y ×Z such that V ′∩H = V. Now U?V = (U ′ ∩G)?(V ′ ∩H) =

(U ′ ? V ′)∩(G ? H) , U ′?V ′ is open in X×Y ×Z, G?H is closed in X×Y ×Z,
so (U ′ ? V ′) ∩ (G ? H) = U ? V is open relative to G ? H.

Proposition 5.14 Suppose X, Y and Z are compact Hausdorff spaces. Fur-

ther, suppose G and H are closed subsets of X × Y and Y × Z, respectively,

and K is a closed subset of Y . Then

(
G ∩ π−1

Y (K)
)
?
(
H ∩ π−1

Y (K)
)

=
(
πGY
)−1

(K) ?
(
πHY
)−1

(K) .

Proof. Suppose x = (x, y, z) ∈
(
G ∩ π−1

Y (K)
)
?
(
H ∩ π−1

Y (K)
)
. Then y ∈

K, (x, y) ∈ G and (y, z) ∈ H, so we get (x, y) ∈
(
πGY
)−1

(K) and (y, z) ∈
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(
πHY
)−1

(K) . Then x = (x, y, z) ∈
(
πGY
)−1

(K) ?
(
πHY
)−1

(K) . It follows that

(
G ∩ π−1

Y (K)
)
?
(
H ∩ π−1

Y (K)
)
⊂
(
πGY
)−1

(K) ?
(
πHY
)−1

(K)

Suppose x = (x, y, z) ∈
(
πGY
)−1

(K) ?
(
πHY
)−1

(K) . Then we have y ∈
K, (x, y) ∈ G, and (y, z) ∈ H, so (x, y) ∈ G ∩ π−1

Y (K) and (y, z) ∈ H ∩
π−1
Y (K) . Then x ∈

(
G ∩ π−1

Y (K)
)
?
(
H ∩ π−1

Y (K)
)

and

(
πGY
)−1

(K) ?
(
πHY
)−1

(K) ⊂
(
G ∩ π−1

Y (K)
)
?
(
H ∩ π−1

Y (K)
)

The result follows.

Proposition 5.15 Suppose that S ⊂ Y. Then

(
πX×Y×ZY

)−1
(S) =

(
πX×YY

)−1
(S) ?

(
πY×ZY

)−1
(S) .

Proposition 5.16 Suppose that X, Y and Z are compact metric spaces. Sup-

pose that G and H are closed subsets of X × Y and Y × Z, and d1 and

d2 are (compatible) metrics on X × Y and Y × Z, respectively. If ε > 0,

let Nε(G) = {x ∈ X × Y : there is some z in G such that d1(x, z) < ε} and

Nε(H) = {x ∈ Y × Z : there is some z in H such that d2(x, z) < ε} . Then⋂
ε>0 (Nε(G) ? Nε(H)) = G ? H.

Proof. Suppose x ∈
⋂
ε>0 (Nε(G) ? Nε(H)) . If xG = πX×Y (x) and xH =

πY×Z(x), then xG ? xH = x. Then for each ε > 0,xG ∈ Nε(G) and xH ∈
Nε(H). Thus, xG ∈ G,xH ∈ H, and x ∈ G?H. Then

⋂
ε>0 (Nε(G) ? Nε(H)) ⊂

G?H. It is easy to see that
⋂
ε>0 (Nε(G) ? Nε(H)) ⊃ G?H. The result follows.

Proposition 5.17 Suppose G ⊂ X × Y,H ⊂ Y × Z, and T is a topological

space. If g : T → G and h : T → H are continuous and πY (g(t)) = πY (h(t))

for each t ∈ T, then g ? h : T → G?H, where (g ? h) (t) = g(t) ? h(t) for each

t ∈ T, is continuous.

Proof. Since for each t ∈ T, πY (g(t)) = πY (h(t)) , g ? h is well defined.

Suppose t ∈ T, and U := UX×UY ×UZ is a basic open set in X×Y ×Z that
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contains g(t) ? h(t). Then U ∩ (G ? H) is open in G ? H. Since g and h are

continuous, there are open sets V1 and V2 in T, both of which contain t, such

that g (V1) ⊂ G∩ (UX × UY ) and h (V2) ⊂ H ∩ (UY × UZ) . Then t ∈ V1 ∩V2,

an open set in T, and, if s ∈ V1 ∩ V2, g(s) ? h(s) ∈ U ∩ (G ? H) . The result

follows.

At the end of this section we outline the connection between generalized

inverse limits defined in the Section 3.2 and Mahavier products.

Let (Xi, fi)
∞
i=1 be a generalized inverse sequence and put Gi := Γ(f−1

i ) =

{(xi, xi+1) : (xi+1, xi) ∈ Γ(fi)} ⊆ Xi × Xi+1. It follows directly from the

definitions of a generalized inverse limit and a Mahavier product that

lim←− (Xi, fi)
∞
i=1 = ?∞i=1Gi.

Hence, the generalized inverse limit itself is a Mahavier product.

Mahavier products also make it easy to discuss finite generalized inverse

limits (something that is not observed in the standard case) and their subsets.

5.2 Topological entropy using open covers

In this section, the traditional version of topological entropy (due to Adler,

Konheim, and McAndrew [1]) is reviewed and together with its properties,

following to a large extent the discussion in Peter Walters’ book [41].

First, we list all notions we need for this section.

Definitions 5.18

• If α is a finite collection of sets, define N∗(α) to be the cardinality of the

collection α. If α is an open cover of the compact topological space X,

let N(α) denote the number of sets in a finite subcover of α of smallest

cardinality. Define the entropy H(α) by H(α) = logN(α).

• If α is a finite collection of open sets that covers the set G, subset of a

topological space X, then a subcover α′ of G in α is minimal if there

does not exist a subcover of G in α of smaller cardinality.
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• If α and β are open covers of a space X, define the join α ∨ β to be

the collection

α ∨ β = {A ∩B : A ∈ α,B ∈ β}

of open sets. The join α ∨ β is also an open cover of the space X. We

can likewise define, for a finite collection (αi : i = 1, . . . , n) of open

covers of X, the join ∨ni=1αi, for any n ∈ N, n ≥ 2.

• If α and β are open covers of the compact topological space X, then α

is a refinement of β if each A ∈ α is contained in some B ∈ β. We

will say that β < α and also that α > β. Note that if α is a subcover of

X in β, then α is both a subcollection of β and a refinement of β, and

β < α.

• If X is a compact topological space, α is an open cover of X, and

f : X → X is continuous, then f−1(α) is the open cover consisting of

all sets f−1(A) where A ∈ α. Also,

f−1(α ∨ β) = f−1(α) ∨ f−1(β) (∗)

and

α < β implies f−1(α) < f−1(β).

We denote α ∨ f−1(α) ∨ · · · ∨ f−n(α) by ∨ni=0f
−i(α).

Remarks 5.19 Suppose α and β are open covers of the compact topological

space X. Then

1. H(α) ≥ 0.

2. H(α) = 0 if and only if N(α) = 1 if and only if X ∈ α.

3. If α < β, then H(α) ≤ H(β).

4. H(α ∨ β) ≤ H(α) +H(β).

53



Chapter 5. Topological entropy for set-valued functions

5. If f : X → X is a continuous map, then H(f−1(α)) ≤ H(α). If f is

also surjective, then H(f−1(α)) = H(α).

Proof. (See [41] for proofs of 3., 4., and 5. above.)

We will need the following lemma, which is used in the proof of Theorem

5.21, and in our results.

Lemma 5.20 [41] If (an)n≥1 is a sequence of nonnegative real numbers such

that an+p ≤ an + ap for each n, p ∈ N, then lim
n→∞

an
n

exists and equals inf
n

an
n

.

Proof. Fix p > 0. Each n > 0 can be written as n = kp+i for some 0 ≤ i < p.

Then we have

an
n

=
ai+kp
i+ kp

≤ ai
kp

+
akp
kp
≤ ai
kp

+
kap
kp
≤ ai
kp

+
ap
p
.

If n→∞, then k →∞, so we have

lim sup
n

an
n
≤ ap

p
,

and hence

lim sup
n

an
n
≤ inf

p

ap
p
.

Since

inf
p

ap
p
≤ lim inf

n

an
n
,

it follows that lim
n

an
n

exists and is equal to inf
n

an
n

.

Theorem 5.21 [41] If α is an open cover of X and f : X → X is continuous,

then

lim
n→∞

H(∨ni=0f
−i(α))

n

exists.

Proof. If we set

an = H
(
∨n−1
i=0 f

−i(α)
)
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then by the Lemma 5.20 it suffices to show that an+k ≤ an + ak for k, n ≥ 1.

We have

an+k = H
(
∨n+k−1
i=0 f−i(α)

)
≤ H

(
∨n−1
i=0 f

−i(α)
)

+H
(
f−n ∨k−1

j=0 f
−j(α)

)
by Remark (4) and (∗)

≤ an + ak by Remark (5) .

Definition 5.22 If α is an open cover of the compact topological space X,

and f : X → X is continuous, then the entropy of f relative to α, denoted

by h(f, α), is given by

h(f, α) = lim
n→∞

H(∨ni=0f
−i(α))

n
.

Remarks 5.23

1. h(f, α) ≥ 0.

2. If α < β, then h(f, α) ≤ h(f, β).

3. h(f, α) ≤ H(α).

Proof. See [41].

Definition 5.24 If f : X → X is continuous, the topological entropy

h(f) of f is given by

h(f) = sup
α
h(f, α)

where α ranges over all open covers of X.

Remarks 5.25

1. ∞ ≥ h(f) ≥ 0.

2. In the definition of h(f) one can take the supremum over finite open

covers of X. This follows from the fact that if α < β, then h(f, α) ≤
h(f, β).
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3. If idX denotes the identity map from X to X, then h(idX) = 0.

4. If Y is a closed subset of X and f(Y ) = Y , then h(f |Y ) ≤ h(f).

Proof. See [41].

Theorem 5.26 [41] If X1, X2 are compact spaces and fi : Xi → Xi are

continuous for i = 1, 2, and if φ : X1 → X2 is a continuous map with

φ(X1) = X2 and φ◦f1 = f2◦φ, then h(f1) ≥ h(f2). If φ is a homeomorphism,

then h(f1) = h(f2).

Proof. Let α be an open cover of X2. Then

h(f2, α) = lim
n→∞

1

n
H
(
∨n−1
i=0 f

−i
2 (α)

)
= lim

n

1

n
H
(
φ−1 ∨n−1

i=0 f
−i
2 (α)

)
by (5)

= lim
n

1

n
H
(
∨n−1
i=0 φ

−1f−i2 (α)
)

by (∗)

= lim
n

1

n
H
(
∨n−1
i=0 f

−i
1 φ−1(α)

)
= h

(
f1, φ

−1(α)
)
.

Hence, h(f2) ≤ h(f1). If φ is a homeomorphism then φ−1f2 = f1φ
−1 so, by

the above, h(f1) ≤ h(f2).

Theorem 5.27 [41] If f : X → X is a homeomorphism of a compact space

X, then h(f) = h(f−1).

Proof.

h(f, α) = lim
n→∞

1

n
H
(
∨n−1
i=0 f

−i(α)
)

= lim
n→∞

1

n
H
(
fn−1

(
∨n−1
i=0 f

−i(α)
))

= lim
n→∞

1

n
H
(
∨n−1
i=0 f

i(α)
)

= H(f−1, α).
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Theorem 5.28 If f : X → X is a continuous map of a compact metric

space X, then h(fn) = nh(f).

Proof. See [41], Theorem 7.10.

5.3 Topological entropy of closed subsets of

[0, 1]2

5.3.1 Background and notation

Sometimes it is convenient to index our factor spaces, sometimes not. Suppose

for each integer i ≥ 0, Ii = [0, 1]. The Hilbert cube is I∞ = [0, 1]∞ =
∏∞

0 Ii.

We often need to talk about various projections from a subset of I∞ into

an interval or a product of intervals. Unless it leads to confusion, for a subset

X of I∞, and a point x = (x0, x1, ...) in X, πi(x) = xi. (That is, we do not

specify the momentary domain of πi.) Likewise, if N is a positive integer,

x = (x0, x1, ..xN), x ∈ X ⊂ IN+1, then πi(x) = xi for 0 ≤ i ≤ N . Also, we

make following definitions.

• We use both N and Z+ to denote the positive integers.

• Let m,n be integers and 0 ≤ m < n. Put 〈m,n〉 = {m,m+ 1, ..., n},
and we call 〈m,n〉 the integer interval fromm to n. Then π〈m,n〉(x) =

(xm, xm+1, ..., xn). We define 〈m,∞〉 to be the set {m,m+ 1, ...}.

• Let A = {n1, n2, ...} denote a subset of the nonnegative integers (not

necessarily listed in order, and either finite or infinite). Then πA(x) =

(xn1 , xn2 , ...).

• If A is a subset of the space X, then A◦ denotes the interior of A in X,

and A denotes the closure of A in X.

• Suppose x = (x0, x1, ..., xn) is a point in In+1 and (y0, y1, ...) is a point

in I∞. Then we define x⊕ y to be the point (x0, ..., xn, y0, y1, ...) in I∞.
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• The metric we use on I∞ is d(x, y) =
∑∞

i=0
|πi(x)−πi(y)|

2i
, where x and y

are points in I∞.

• The shift map σ : I∞ → I∞ is defined by σ((x0, x1, x2, ...)) = (x1, x2, ...).

The shift map takes I∞ continuously onto itself. Also, if f : Ii → 2Ii−1

for each i > 0, and M = lim
←−

f, then σ(M) = M (for proof see [22, p.

62]). Hence, M is invariant under the action of σ.

• For A ⊂ I0 × I1, define A−1 = {(x, y) : (y, x) ∈ A}. More generally, if

N is a positive integer and A ⊂
∏N

i=0 Ii, then we define

A−1 =
{

(xN , xN−1, . . . , x1, x0) ∈
∏N

i=0 Ii : (x0, x1, . . . , xN−1, xN) ∈ A
}
.

• Suppose X, Y are topological spaces, and α is a collection of sets that

covers X. Then α× Y denotes the collection {A× Y : A ∈ α}, which

covers X × Y .

• Suppose α is a collection of (open) sets in the space X, and H ⊂ X.

Put α ∩H := {A ∩H : A ∈ α}.

5.3.2 Preliminary results

Before we define topological entropy we need some background information

on the closed sets and open covers we are using.

The following examples demonstrate that if G is a closed subset of [0, 1]2,

then

1. it may be the case that G := ?∞i=1G = ∅ (and that G is of limited

interest), and

2. even if G := ?∞i=1G 6= ∅, it may be the case that σ(G) 6= G.

Example 5.29 Suppose G is the closed subset [2
3
, 1]× [0, 1

3
] of Ii×Ii+1. Then

G := ?∞i=1G = ∅. In fact, G ? G = ∅.
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Example 5.30 Let L0 = I0 × {p} and L1 = I0 × {q}, where 0 ≤ p < q ≤
1.Suppose G is the closed subset L0 ∪ L1 of I0 × I1. Then G := ?∞i=1G is a

Cantor set of arcs, and σ(G) is a Cantor set and is a proper subset of G.

Proof. Let C = {s = (s1, s2, . . .) : si ∈ {p, q} for each i > 0}. Then C is a

Cantor set contained in G. Moreover, for each s ∈ C, I0 × {s} is an arc

contained in G, and G = ∪{I0 × {s} : s ∈ C}. Hence, G is a Cantor set of

arcs. Since σ(G) = C, C is a proper subset of G.

Proposition 5.31 If G is a nonempty closed subset of I0 × I1, then G =

?∞i=1G 6= ∅ if and only if for every integer m ≥ 2, ?mi=1G 6= ∅.

Proof. If G = ?∞i=1G 6= ∅ it follows from the definition that ?mi=1G 6= ∅,∀m ∈
N. Now, suppose ?mi=1G 6= ∅ for every integerm ≥ 2. We will inductively define

point in G = ?∞i=1G. First observe the following: If (x0, . . . , xm−1, xm) ∈ ?mi=1G

for some integer m ≥ 2 then (x0, . . . , xm−1) ∈ ?m−1
i=1 G. (∗)

For m = 2 we have G ? G 6= ∅ so from the above it follows that there is a

point (x, y) ∈ G and z ∈ [0, 1] such that (x, y, z) ∈ G ? G.

Now, for given m = k we have that ?ki=1G 6= ∅. So, there are points

(x0, x1, . . . , xk) ∈ ?ki=1G and xk+1 ∈ [0, 1] such that (x0, x1, . . . , xk, xk+1) ∈
?k+1
i=1G. This follows from (∗) and assumption ?k+1

i=1G 6= ∅.
Therefore we constructed a sequence x0, x1, . . . , xk, . . . , such that for each

positive integer m ≥ 2, (x0, x1, . . . , xm) ∈ ?mi=1G i.e. (x0, x1, . . . , xk, . . .) ∈
?∞i=1G. Therefore we have G = ?∞i=1G 6= ∅.

Proposition 5.32 Let G be a nonempty closed subset of I0 × I1. If there is

some point (x, y) ∈ G such that (y, x) is also in G, then G = ?∞i=1G 6= ∅.

Proof. Let (x, y) ∈ G such that (y, x) ∈ G. Then, for each integer m ≥ 2 we

have that (x, y, x, y, . . . , x) ∈ ?mi=1G if m is even or (x, y, x, . . . , y) ∈ ?mi=1G if

m is odd. In both cases ?mi=1G 6= ∅ and therefore, from Proposition 5.31 it

follows that G = ?∞i=1G 6= ∅.

Corollary 5.33 If G = G−1, where G−1 = {(y, x) : (x, y) ∈ G} is a nonempty

closed subset of I0 × I1, then G = ?∞i=1G 6= ∅.
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Proof. Since G 6= ∅, there is some point (x, y) ∈ G. Since G = G−1, the

point (y, x) ∈ G. From previous proposition it follows that G 6= ∅.

Proposition 5.34 Suppose n is a positive integer. If G is a nonempty closed

subset of I0 × I1 that contains a finite set of points {(x0, x1), (x1, x2), . . . ,

(xn−1, xn), (xn, x0)}, then G = ?∞i=1G 6= ∅. Furthermore, G contains a point

x of period n under the action of σ.

Proof. The point (x0, x1, . . . , xn, x0, . . . , xn, . . .) ∈ G, so G 6= ∅. Let y0 =

(x0, . . . , xn) and yn = (xn, x0, x1 . . . xn−1). For each 0 < i < n, let yi =

(xi, . . . , xn, x0, . . . xi−1). For 0 ≤ i ≤ n, let zi = yi ⊕ yi ⊕ yi ⊕ . . .. Then each

zi ∈ G, and σ(zi) = zi+1 for 0 ≤ i < n, and σ(zn) = z0. Hence, σn(z0) = z0.

Proposition 5.35 If G is a nonempty closed subset of I0 × I1 and G =

?∞i=1G 6= ∅, then σ(G) ⊂ G.

Proof. Suppose x = (x0, x1, . . . ) ∈ σ(G). Then there is y = (y0, y1, . . .) ∈ G

such that σ(y) = x. Now σ(y) = (y1, y2, . . .) = x, so xi−1 = yi for each

i > 0. Since y ∈ G, for each i > 0, (yi−1, yi) ∈ G. Then for each i > 1,

(yi−1, yi) = (xi−2, xi−1) ∈ G. Then x ∈ G.

Proposition 5.36 Let G be a nonempty closed subset of I0×I1, G = ?∞i=1G 6=
∅ and ∩∞i=0σ

i(G) = G∗. Then G∗ 6= ∅ and G∗ ⊂ G. Furthermore, σ(G∗) =

G∗.

Proof. Since σn(G) ⊂ σn−1(G) for n > 0 and σn(G) is closed for each

n ∈ N, we have G∗ 6= ∅ and G∗ ⊂ G. It remains to prove that σ(G∗) = G∗.

Let x ∈ σ(G∗). Then x ∈ σ (∩∞i=0σ
i(G)) ⊆ ∩∞i=0σ (σi(G)) = ∩∞i=1σ

i(G)
5.35

⊆
∩∞i=0σ

i(G) = G∗.

Now, let x = (x1, x2, . . .) ∈ G∗ = ∩∞i=0σ
i(G). In particular, it follows that

x = (x1, x2, . . .) ∈ σ(G) and similar as in the proof of the previous proposi-

tion we get that there is x0 ∈ I such that (x0, x1, x2, . . .) ∈ G. Continuing

in the same way we get that (x0, x1, x2, . . .) ∈ σn(G), ∀n ∈ N. Therefore,
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(x0, x1, x2, . . .) ∈ G∗. Finally, x = σ((x0, x1, x2, . . .)) ∈ σ(G∗).

For G is a nonempty closed subset of I0 × I1 and G = ?∞i=1G 6= ∅, we will

call the set G∗ = ∩∞i=0σ
i(G) the kernel of G.

5.3.3 Grid covers

Suppose G is a closed subset of I∞. Let τ = {T1, . . . , Tn} be a minimal

open cover of [0, 1] by open intervals. Let N be a positive integer. The grid

generated by τ for N is the collection T of basic open sets in I∞

T = {Ti0 × Ti1 × . . .× TiN × I∞ : ij ∈ 〈1, n〉} .

Since T is an open cover of I∞ by basic open sets, it is therefore also a cover

of G by basic open sets. We will say that T is a grid cover of G. Likewise,

S = {Ti0 × Ti1 × . . .× TiN : ij ∈ 〈1, n〉} .

is a grid cover of IN+1 by basic open sets, and is also therefore a cover of

any closed subset K of IN+1.

Proposition 5.37 Suppose G is a closed subset of I∞. If α is an open

cover of G by open sets in I∞, then there is a grid cover T of I∞ such that

T ′ = {T ∈ T : T ∩G 6= ∅} refines α and covers G. If α′ is an open cover of

G by open sets in the subspace G, then there is a grid cover T of I∞ such

that T ∗ = {T ∩G : T ∈ T } refines α′ and covers G.

Proof. Suppose α is an open cover of G by open sets in I∞. Then there

is a collection β of basic open sets in I∞ that refines α and covers G. We

also assume that for each B ∈ β, each projection πk(B) is an open interval

(relative to [0, 1]). Since G is compact, there is a finite subcover β′ of β. Let

β′ = {B1, . . . , Bm}. G is compact metric space with inherited metric that on

I∞, so there is a collection δ of basic open sets such that δ = {D1, . . . , Dm},
Di ⊂ Bi for 1 ≤ i ≤ m, and δ covers G. Again, we can choose the collection

δ so that for each D ∈ δ, each projection πk(D) is an open interval relative

61



Chapter 5. Topological entropy for set-valued functions

to [0, 1]. Since each Di is a basic open set, there is some positive integer N

such that πj(Di) = I for each j > N .

Let πk(Di) = [ai,k, bi,k] for each 0 ≤ k ≤ N , 1 ≤ i ≤ m, and let

E = {x : x ∈ {ai,k, bi,k} , 0 ≤ k ≤ N, 1 ≤ i ≤ m} ∪ {0, 1} .

Since E is a finite subset of I, we can list the members of E in increasing

order as E = {0 = t0, t1, . . . , tl = 1}. Then each πk(Dj) is a unique union of

consecutive intervals of the form [ti−1, ti]. If x = (x0, x1, . . .) ∈ G, there is

some Di such that x ∈ Di, which implies that for each k ≤ N , xk ∈ πk(Di),

and there is some tjk such that xk ∈ [tjk , tjk+1]. Thus, x ∈
∏N

k=0[tjk , tjk+1]×
I∞.

Suppose ε > 0. Let πk(Di)
+ = (ai,k−ε, bi,k+ε)∩ [0, 1] for each 0 ≤ k ≤ N ,

1 ≤ i ≤ m. Let D+
i =

∏N
k=0 πk(Di)

+ × I∞. We can choose ε > 0 so small

that

(1) ε < min {|ti+1−ti| : i=0,...,l−1}
16

, and

(2) Di ⊂ D+
i ⊂ Bi.

Then each D+
i is a union of members of

T =

{
N∏
i=0

((tji − ε, tji+1 + ε) ∩ [0, 1])× I∞ : ji ∈ 〈0, l〉

}
.

Hence, if T ′ = {T ∈ T : T ∩G 6= ∅}, then T ′ > δ > β > α and T ′ covers G.

Now let us prove the second part.

Suppose α′ is an open cover of G by open sets in the subspace G. Then

there is an open cover α of G by open sets in I∞ such that α ∩G = α′.

Now we apply the statement proved above and get T ∗ as T ′ ∩G.

Proposition 5.38 Suppose m is a positive integer and G is a closed subset

of Im+1. If α is an open cover of G by open sets in Im+1, then there is a grid

cover T of Im+1 such that T ′ = {T ∈ T : T ∩G 6= ∅} refines α and covers G.

If α′ is an open cover of G by open sets in the subspace G, then there is a
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grid cover T of Im+1 such that T ∗ = {T ∩G : T ∈ T } refines α′ and covers

G.

Proof.

The proof is similar to the proof of Proposition 5.37 but for the complete-

ness of the thesis we present it.

Suppose α is an open cover of G by open sets in I∞. Then there is

a collection β of basic open sets in I∞ that refines α and covers G. We

also assume that for each B ∈ β, each projection πk(B) is an open interval

(relative to [0, 1]). Since G is compact, there is a finite subcover β′ of β. Let

β′ = {B1, . . . , Bp}. G is compact metric space with inherited metric that on

I∞, so there is a collection δ of basic open sets such that δ = {D1, . . . , Dp},
Di ⊂ Bi for 1 ≤ i ≤ p, and δ covers G. Again, we can choose the collection

δ so that for each D ∈ δ, each projection πk(D) is an open interval relative

to [0, 1].

Let πk(Di) = [ai,k, bi,k] for each 0 ≤ k ≤ m, 1 ≤ i ≤ p, and let E =

{x : x ∈ {ai,k, bi,k} , 0 ≤ k ≤ m, 1 ≤ i ≤ p} ∪ {0, 1} .
Since E is a finite subset of I, we can list the members of E in increasing

order as E = {0 = t0, t1, . . . , tl = 1}. Then each πk(Dj) is a unique union of

consecutive intervals of the form [ti−1, ti]. If x = (x0, x1, . . . , xm) ∈ G, there

is some Di such that x ∈ Di, which implies that for each k ≤ m, xk ∈ πk(Di),

and there is some tjk such that xk ∈ [tjk , tjk+1]. Thus, x ∈
∏m

k=0[tjk , tjk+1].

Suppose ε > 0. Let πk(Di)
+ = (ai,k−ε, bi,k+ε)∩ [0, 1] for each 0 ≤ k ≤ m,

1 ≤ i ≤ p. Let D+
i =

∏m
k=0 πk(Di)

+. We can choose ε > 0 so small that

ε < min {|ti+1−ti| : i=0,...,l−1}
16

and Di ⊂ D+
i ⊂ Bi. Then each D+

i is a union of

members of

T =

{
N∏
i=0

((tji − ε, tji+1 + ε) ∩ [0, 1]) : ji ∈ 〈0, l〉

}
.

Hence, if T ′ = {T ∈ T : T ∩G 6= ∅}, then T ′ > δ > β > α and T ′ covers G.

Proving the second part now follows easy.

Suppose α′ is an open cover of G by open sets in the subspace G. Then

there is an open cover α of G by open sets in I∞ such that α ∩G = α′.
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Now we apply the statement proved above and get T ∗ as T ′ ∩G.

For a grid cover T of Im+1 or I∞, we refer to the members of T as boxes.

Setting up the machinery for a definition of topological entropy of G, a closed

subset of [0, 1]2 (and later for G a closed subset of Im+1), takes some doing,

but once in place, we will be able to compute topological entropy by “counting”

the boxes our relevant sets intersect.

5.3.4 Main results

We index our intervals for bookkeeping purposes. For convenience, we also

write I∞ for
∏∞

i=m Ii (for m a positive integer). Suppose G is a closed subset

of I0 × I1. We can define the topological entropy of G as follows:

1. First, let α = {A1, . . . , An} be a minimal open cover of I0 by intervals.

Then N∗(α) = n. For each positive integer m > 1, let

αm =

{
m−1∏
j=0

Akj : kj ∈ 〈1, n〉, 0 ≤ j ≤ m− 1

}
.

2. If K is a closed subset of
∏m−1

i=0 Ii (m > 1 a positive integer or m =∞),

and β is a collection of open sets in
∏m−1

i=0 Ii that covers K, let N(K, β)

denote the least cardinality of a subcover of K in β.

3. Then α2 = {Ai × Aj : i, j ∈ 〈1, n〉} is a cover of G by open subsets of

I0 × I1, and N(G,α2) ≤ n2.

4. Now

α3 = {Ai0 × Ai1 × Ai2 : ik ∈ 〈1, n〉, 0 ≤ k ≤ 2} ,

is a cover of G ? G by open sets in
∏2

j=0 Ij and N(G ? G, α3) ≤ n3.

5. Note that α2?α2 contains more sets than does α3 since it contains sets of

the form (Ai×Aj)?(Ak×Al) for i, j, k, l ≤ n, and (Ai×Aj)?(Ak×Al) =

Ai×(Aj∩Ak)×Al, which is nonempty as long as Aj∩Ak 6= ∅ . However,

a minimal subcover of G?G in α2 ?α2 has the same number of elements
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as a minimal subcover of α3, since each set Ai × (Aj ∩ Ak) × Al is

contained in at least one member of α3.

6. We can continue this process for each m ∈ N:

αm+1 =

{
m∏
j=0

Akj : kj ∈ 〈1, n〉, 0 ≤ j ≤ m

}
(∗)

is an open cover of ?mi=1G and N(?mi=1G,α
m+1) ≤ nm+1. Again, a mini-

mal subcover of ?mi=1G by elements of ?mi=1α
2 has the same number of

elements as a minimal subcover of ?mi=1G by elements of αm+1. Since

using the cover ?mi=1α
2 is sometimes more convenient, we continue to

use both covers. Without loss of generality, we assume that a mini-

mal subcover (in both αm+1 and ?mi=1α
2) consists of sets of the form∏m

j=0Akj .

In several following statements, to simplify notation, we will denote el-

ements of αm+1,m ∈ N, with Am+1
i for some positive integer i instead

as in (∗) if particular sets Akj are not important for proofs. Likewise, if

βm+1 =
{∏m

j=0Bkj : kj ∈ 〈1, n〉, 0 ≤ j ≤ m
}

, we denote its elements with

Bm+1
i .

Proposition 5.39 Suppose G is a closed subset of I0×I1. Let α = {A1, A2,

. . . , An} denote a minimal open cover of I0 by open intervals and let G =

?∞i=1G.

(i) For each positive integer m, 0 ≤ N(?mi=1G,α
m+1) ≤ nm+1. If G 6= ∅,

0 < N(?mi=1G,α
m+1).

(ii) If G 6= ∅, 1 = N(?mi=1G,α
m+1) if and only if there is a finite sequence

Aj0 , Aj1 , . . . Ajm (with each 1 ≤ ji ≤ n) such that G ⊂ (Aj0 × . . . ×
Ajm)× I∞.

(iii) If α, β are both minimal open covers of I0 by open intervals and α < β,

then for each m > 0, N(?mi=1G,α
m+1) ≤ N(?mi=1G, β

m+1).
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Proof. First two statements are obvious so let us prove the third one. Let

k = N(?mi=1G, β
m+1) and

{
Bm+1

1 , Bm+1
2 , . . . , Bm+1

k

}
be a subcover of ?mi=1G in

βm+1 of minimal cardinality. For each 1 ≤ i ≤ k, there is some Am+1
i ∈ αm+1

such that Bm+1
i ⊂ Am+1

i . Then
{
Am+1

1 , Am+1
2 , . . . , Am+1

k

}
is a subcover of

?mi=1G in αm+1 of cardinality k. Hence, N(?mi=1G,α
m+1) ≤ N(?mi=1G, β

m+1).

Proposition 5.40 If α is a minimal open cover of I0 by open intervals, k, l

are positive integers, and K ⊂ ?ki=1G, L ⊂ ?li=1G, K,L are closed, then αk+1?

αl is a cover of
∏k+l

i=0 Ii and of K ?L by open sets in
∏k+l

i=0 Ii, as is (?ki=1α
2) ?

(?li=1α
2) = ?k+l

i=1α
2. Furthermore, N(?k+l

i=1G,α
k+l+1) = N((?k+l

i=1G, ?
k+l
i=1α

2) ≤
N(?ki=1G,α

k+1)N(?li=1G,α
l+1) = N(?ki=1G, ?

k
i=1α

2)N(?li=1G, ?
l
i=1α

2).

Proof. Showing that αk+1 ? αl and (?ki=1α
2) ? (?li=1α

2) = ?k+l
i=1α

2 are open

covers of
∏k+l

i=0 Ii and of K ?L by open sets in
∏k+l

i=0 Ii is straightforward. Let{
Ak+1

1 , Ak+1
2 , . . . , Ak+1

p

}
be a subcover of ?ki=1G in αk+1 of minimal cardinality

and let
{
Bl+1

1 , Bl+1
2 , . . . , Bl+1

q

}
be a subcover of ?li=1G in αl+1 of minimal

cardinality. Then
{
Ak+1
i ? Bl+1

j : 1 ≤ i ≤ p, 1 ≤ j ≤ q
}

is a subcover of ?k+l
i=1G

in αk+l+1, and

N(?k+l
i=1G,α

k+l+1) =N(?k+l
i=1G, ?

k+l
i=1α

2)

5.39

≤ N(?ki=1G,α
k+1)N(?li=1G,α

l+1)

=N(?ki=1G, ?
k
i=1α

2)N(?li=1G, ?
l
i=1α

2).

Equalities above follow from the 6th step at the beginning of this section.

Proposition 5.41 If α, β are both minimal open covers of I0 by open inter-

vals, then for each m > 0, αm+1 ∨ βm+1 = (α ∨ β)m+1, and N(?mi=1G,α
m+1 ∨

βm+1) ≤ N(?mi=1G,α
m+1)N(?mi=1G, β

m+1).

Proof. Showing that (α ∨ β)m+1 = αm+1 ∨ βm+1 is straightforward and we

omit it. Let
{
Am+1

1 , Am+1
2 , . . . , Am+1

k

}
be a subcover of ?mi=1G in αm+1 of min-

imal cardinality and let
{
Bm+1

1 , Bm+1
2 , . . . , Bm+1

l

}
be a subcover of ?mi=1G in

βm+1 of minimal cardinality. Then
{
Am+1
i ∩Bm+1

j : 1 ≤ i ≤ k, 1 ≤ j ≤ l
}
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is a subcover of ?mi=1G in αm+1 ∨ βm+1, and N(?mi=1G,α
m+1 ∨ βm+1) ≤

N(?mi=1G,α
m+1)N(?mi=1G, β

m+1).

Proposition 5.42 If K is a closed subset of G ⊂ I0 × I1, m is a positive

integer, and α = {A1, . . . , An} is a minimal open cover of I0 by open intervals,

then N(?mi=1K,α
m+1) ≤ N(?mi=1G,α

m+1).

Proof. Suppose
{
Am+1

1 , Am+1
2 , . . . , Am+1

k

}
is an open subcover of minimum

cardinality of ?mi=1G in αm+1. Since ?mi=1K ⊂ ?mi=1G,
{
Am+1

1 , Am+1
2 , . . . , Am+1

k

}
is also an open subcover of K. Hence, N(?mi=1K,α

m+1) ≤ N(?mi=1G,α
m+1).

Proposition 5.43 Suppose l and m are positive integers and α = {A1, . . . , An}
is a minimal open cover of I0 by open intervals,. Then αl+1 is a grid

cover of ?li=1G, αl+m+1 is a grid cover of ?l+mi=1 G, and αl+1 ×
∏m+1

i=l+1 Ii is an

open cover of ?l+mi=1 G. Then N(?li=1G,α
l+1) ≤ N(?l+mi=1 G,α

l+1 ×
∏l+m

i=l+1 Ii) ≤
N(?l+mi=1 G,α

l+m+1).

Proof. Suppose
{
Al+1
j ×

∏l+m
i=l+1 Ii

}k
j=1

is a subcover of ?l+mi=1 G in αl+1 ×∏l+m
i=l+1 Ii of least cardinality. Then

{
Al+1
j

}k
j=1

is a subcover of ?li=1G in αl+1.

Hence, N(?li=1G,α
l+1) ≤ N(?l+mi=1 G,α

l+1 ×
∏l+m

i=l+1 Ii). Since αl+m+1 refines

αl+1 ×
∏l+m

i=l+1 Ii, we have N(?l+mi=1 G,α
l+1 ×

∏l+m
i=l+1 Ii) ≤ N(?l+mi=1 G,α

l+m+1).

The result follows.

Theorem 5.44 If α = {A1, . . . , An} is a minimum open cover of I0 by

intervals, G is a closed subset of I0 × I1 and G 6= ∅, then

lim
m→∞

logN(?mi=1G,α
m+1)

m
= lim

m→∞

logN(?mi=1G, ?
m
i=1α

2)

m

exists.

Proof.

Let am = logN(?mi=1G,α
m+1) = logN(?mi=1G, ?

m
i=1α

2) for each m ∈ N.

Then 1 ≤ N(?mi=1G,α
m+1) ≤ nm+1, so

0 ≤ am = logN(?mi=1G,α
m+1) ≤ (m+ 1) log n.
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By Lemma 5.20, it suffices to show that am+k ≤ am + ak. We have

αm+k+1 ⊂ (?mi=1α
2) ? (?m+k

i=m+1α
2),

because (?mi=1α
2) ? (?m+k

i=m+1α
2) contains more sets than does αm+k+1 since it

contains sets of the form (A1 × · · · × Am × Am+1) ? (A′m+1 × Am+2 × · · · ×
Am+k+1) = (A1×· · ·×Am−1× (Am+1∩A′m+1)×Am+2×· · ·×Am+k+1), which

is nonempty as long as Am+1 ∩ A′m+1 6= ∅. However, a minimal subcover of

?mi=1G in αm+k+1 and in (?mi=1α
2) ? (?m+k

i=m+1α
2) has the same number so we

have

N(?m+k
i=1 G,α

m+k+1) = N(?m+k
i=1 G, (?

m
i=1α

2) ? (?m+k
i=m+1α

2)).

Since N(?mi=1G,α
m+1) is the cardinality of a minimal subcover of ?mi=1G

in ?mi=1α
2, and N(?ki=1G,α

k+1) is the cardinality of a minimal subcover of

?ki=1G = ?m+k
i=m+1G in ?m+k

i=m+1α
2, (?mi=1α

2) ? (?m+k
i=m+1α

2) is a cover of ?m+k
i=1 G in∏m+k

i=0 Ii. Thus,

N(?m+k
i=1 G,α

m+k+1) = N(?m+k
i=1 G, (?

m
i=1α

2) ? (?m+k
i=m+1α

2))

= N(?m+k
i=1 G, (?

m
i=1α

2) ? (?ki=1α
2)) ≤ N(?mi=1G, ?

m
i=1α

2)N(?ki=1G, ?
k
i=1α

2),

and we have

am+k = log(N(?m+k
i=1 G,α

m+k+1)) ≤ log(N(?mi=1G, ?
m
i=1α

2)N(?ki=1G, ?
k
i=1α

2)) =

log(N(?mi=1G, ?
m
i=1α

2) + log(N(?ki=1G, ?
k
i=1α

2)) = am + ak.

Following the notation in Theorem 5.44, for G 6= ∅, define ent(G,α) to be

ent(G,α) = lim
m→∞

logN(?mi=1G,α
m+1)

m
.

If G = ∅, define ent(G,α) = 0.

Remarks 5.45

1. ent(G,α) ≥ 0.
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2. If α < β, α, β both minimal covers of I0 by open intervals, then

ent(G,α) ≤ ent(G, β).

Proof. The first statement is obvious. Let us prove the second one. For each

positive integer m, αm < βm. If
{
Bm+1

1 , . . . , Bm+1
k

}
is a minimal subcover

of ?mi=1G in βm+1, then for each 1 ≤ i ≤ k, there is some Am+1
i ∈ αm+1 such

that Bm+1
i ⊂ Am+1

i . Thus,
{
Am+1

1 , . . . , Am+1
k

}
is a subcover of ?mi=1G in αm+1,

and ent(G,α) ≤ ent(G, β).

Corollary 5.46 If K is a closed subset of G ⊂ I0×I1, m is a positive integer,

and α = {A1, . . . , An} is a minimal open cover of I0 by open intervals, then

ent(K,α) ≤ ent(G,α).

Proof. This follows directly from the fact that N(?mi=1K,α
m+1) ≤

N(?mi=1G,α
m+1) for each positive integer m.

Finally, we can define topological entropy of G:

Definition 5.47 We define ent(G) = sup
α
{ent(G,α)}, where α ranges over

all minimal covers of I0 by open intervals (in I0).

Theorem 5.48 Let G be a closed subset of I0×I1 and G−1 = {(x, y) : (y, x) ∈ G}.
Then ent(G) = ent(G−1).

Proof. For a positive integer m, note that a point (x0, x1, . . . , xm) ∈ ?mi=1G

if and only if (xm, xm−1, . . . , x0) ∈ ?mi=1G
−1. Suppose α = {A1, . . . , An} is a

minimal cover of I0 by open intervals. Suppose m is a positive integer. Then

Ai0 × Ai1 × · · · × Aim ∈ αm+1 if and only if Aim × Aim−1 × · · · × Ai0 ∈ αm+1,

and (Ai0 ×Ai1 × · · · ×Aim)∩
(
?mj=1G

)
6= ∅ if and only if (Aim ×Aim−1 × · · · ×

Ai0) ∩
(
?mj=1G

−1
)
6= ∅. Then N(?mi=1G,α

m+1) = N(?mi=1G
−1, αm+1) for each

m. Hence, ent(G,α) = ent(G−1, α) for each cover α, and the result follows.

Proposition 5.49 If β is an open cover (in I∞) of ?∞i=1G, σ : I∞ → I∞ is

the shift map then σ−1(β) := {σ−1(B) : B ∈ β} = {I0 ×B : B ∈ β} is also

an open cover (in I∞) of ?∞i=1G.
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Proof. Suppose x = (x0, x1, . . .) ∈ ?∞i=1G. Then σ(x) = (x1, x2, . . .) ∈ ?∞i=1G

by Proposition 5.35, and there is some B ∈ β such that σ(x) ∈ B. Since

I0 ×B = σ−1(B), x ∈ σ−1(B) ∈ σ−1(β).

If α is an open cover of I∞, G is a closed subset of I0 × I1, and G =

?∞i=1G 6= ∅, let α∗ = {A ∩G : A ∈ α} denote the corresponding open cover

of G by open sets in G.

Theorem 5.50 Suppose G is a closed subset of I0 × I1, G = ?∞i=1G 6= ∅,
and σ(G) = G. If α = {A1, . . . , An} is a minimal open cover of I0 by open

intervals, then ent(G,α) = h(σ, (αM+1 × I∞)∗) for each positive integer M .

Proof.

Let α = {A1, . . . , An} be a minimal open cover of I0 by intervals.

Fix the positive integer M . Let

β =

{
M∏
j=0

Aij × I∞ : Aij ∈ α and

(
M∏
j=0

Aij × I∞
)
∩G 6= ∅

}
,

and let

γ =
{
Ak0 × Ak1 × . . .× AkM × AkM+1

× I∞ : (kj)
M+1
j=0 is a finite sequence of

members of {1, . . . , n} of length M + 2
}
.

For B =
∏M

j=0Aij × I∞ ∈ β, σ−1(B) = I0 ×
∏M

j=0Aij × I∞. Then

σ−1(β) ∨ β =

{
σ−1(B1) ∩B2 : B1 =

M∏
j=0

Aij × I∞, B2 =
M∏
j=0

Akj × I∞ ∈ β

}

=

{(
I0 ×

M∏
j=0

Aij × I∞
)
∩

(
M∏
j=0

Akj × I∞
)

: (ij)
M
j=0 and (kj)

M
j=0

are finite sequences of members of {1, . . . , n} of length M + 1

}
.

If B1 =
∏M

j=0Aij × I∞ ∈ β and B2 =
∏M

j=0Akj × I∞ ∈ β, then
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σ−1(B1) ∩B2 =

(
I0 ×

M∏
j=0

Aij × I∞
)
∩

(
M∏
j=0

Akj × I∞
)

= Ak0 × (Ak1 ∩ Ai0)× . . .× (AkM ∩ AiM−1
)× AiM × I∞

⊂ Ak0 × Ak1 × . . .× AkM × AiM × I∞.

Hence, the collection σ−1(β) ∨ β refines the collection

γ =
{
Ak0 × Ak1 × . . .× AkM × AkM+1

× I∞ : (kj)
M+1
j=0 is a finite sequence of

members of {1, . . . , n} of length M + 2
}
.

Then (σ−1(β) ∨ β)∗ refines the collection γ∗, so γ∗ < (σ−1(β) ∨ β)∗ , and

N(G, γ∗) ≤ N(G, (σ−1(β) ∨ β)∗).

But γ also refines σ−1(β) ∨ β, and so γ∗ refines (σ−1(β) ∨ β)∗. Thus,

N(G, γ∗) ≥ N(G, (σ−1(β) ∨ β)∗). Then N(G, γ∗) = N(G, (σ−1(β) ∨ β)∗).

Note that N(G, γ∗) = N(?M+1
i=1 G,αM+2).

We can continue: By similar arguments, for each positive integer l,

N(G, (∨li=0σ
−iβ)∗) = N(G, αM+l+1 × I∞) = N(?M+l+1

i=1 G,αM+l+1).

Now β = αM+1 × I∞, and for l a positive integer, N(G, (∨li=0σ
−iβ)∗) =

N(?M+l
i=1 G,α

M+l+1). Then log(N(G, (∨li=0σ
−iβ)∗)) = log(N(?M+l

i=1 G,α
M+l+1)).

It follows that

h(σ, αM+1 × I∞) = lim
l→∞

log(N(G, (∨li=0σ
−iβ)∗))

l

= lim
l→∞

log(N(?M+l
i=1 G,α

M+l+1))

l
,

while

ent(G,α) = lim
l→∞

log(N(?li=1G,α
l+1))

l
.

For each positive integer k, let log(N(?ki=1G,α
k+1)) = ak.
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Then log(N(?li=1G,α
l+1)) = al and log(N(?M+l

i=1 G,α
M+l+1)) = aM+l. Fur-

thermore, al ≤ aM+l ≤ aM + al. (This is because N(?M+l
i=1 G,α

M+l+1) ≤
N(?Mi=1G,α

M+1)N(?li=1G,α
l+1).) Then al

l
≤ al+M

l
≤ al

l
+ aM

l
. By Lemma 5.21,

liml→∞
al
l

exists, and

lim
l→∞

al
l
≤ lim

l→∞

al+M
l
≤ lim

l→∞
(
al
l

+
aM
l

) = lim
l→∞

al
l

+ lim
l→∞

aM
l

= lim
l→∞

al
l
.

It follows that

lim
l→∞

log(N(?li=1G,α
l+1))

l
= lim

l→∞

log(N(?M+l
i=1 G,α

M+l+1))

l
,

and thus, ent(G,α) = h(σ, (αM+1 × I∞)∗) for each positive integer M .

Theorem 5.51 Suppose G is a closed subset of I0 × I1, G = ?∞i=1G, and

σ(G) = G. If α = {A1, . . . , An} is a minimal open cover of I0 by open

intervals, then ent(G) = h(σ).

Proof. Since each open cover of G is refined by the grid cover αM+1 × I∞

for some minimal open cover by intervals α of I0, the result follows.

Theorem 5.52 If f : I → I is a continuous function and G is the graph of

f−1, i.e. G = {(y, x) : (x, y) ∈ Γ(f)} then h(f) = ent(G).

Proof. This follows from Theorem 5.50, and Ye’s result that h(f) = h(σ) in

[42].

5.4 Topological entropy of closed subsets of

[0, 1]N

Before we can investigate further we need to define and explore the topological

entropy of closed subsets of [0, 1]N for N a positive integer. So suppose N

is a positive integer and H is a closed subset of
∏N

i=0 Ii. We can define the

topological entropy of H as follows:
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1. Let α = {A1, . . . , An} be a minimal open cover of I0 by intervals. Let

β =

{
N∏
j=0

Akj : kj ∈ 〈1, n〉, 0 ≤ j ≤ N

}
.

Hence, β is the grid cover of
∏N

i=0 Ii determined by α, and β therefore

covers H. Since N∗(β) = n(N + 1) := nβ, we can list the members of

β =
{
B1, B2, . . . , Bnβ

}
. For each positive integer m > 1, let

βm =

{
m−1∏
j=0

Bkj : kj ∈ 〈1, nβ〉, 0 ≤ j ≤ m− 1

}
.

2. Then β?β = {Bi ? Bj : 1 ≤ i, j ≤ nβ} is a cover ofH?H by open subsets

of
∏2N

i=0 Ii, and N(H ? H, β ? β) ≤ n2
β. Note that β ? β refines α2N+1

and β ? β is refined by α2N+1, so N(H ? H, β ? β) = N(H ? H,α2N+1).

3. We can continue this process for each m ∈ N:

?mi=1β =
{
?mj=1βkj : kj ∈ 〈1, nβ〉, 1 ≤ j ≤ m

}
is an open cover of ?mi=1H and N(?mi=1H, ?

m
i=1β) ≤ nmβ . Again, a mini-

mal subcover of ?mi=1H by elements of ?mi=1β has the same number of

elements as a minimal subcover of ?mi=1H by elements of αmN+1. Since

using the cover ?mi=1β is sometimes more convenient, we continue to use

both covers. Without loss of generality, we may assume that a mini-

mal subcover (in both αmN+1 and ?mi=1β) consists of sets of the form∏mN
j=0 Akj , where each kj ∈ 〈1, n〉.

4. Remarks Using the notation from before, suppose H is a closed subset

of
∏N

i=0 Ii. Let H = ?∞i=1H.

• For each positive integer m, 0 ≤ N(?mi=1H,α
mN+1) =

N(?mi=1H, ?
m
i=1β) ≤ nmN+1, and 0 ≤ N(?mi=1H,α

mN+1) =

N(?mi=1H, ?
m
i=1β) ≤ nmβ . If H 6= ∅, 0 < N(?mi=1H, ?

m
i=1β).
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• If H 6= ∅, 1 = N(?mi=1H, ?
m
i=1β) if and only if there is a sequence

Aj0 , Aj1 , . . . AjmN (with each 1 ≤ ji ≤ n) such that H ⊂ (Aj0 ×
. . .× AjmN )× I∞.

• As before, if α, γ are both minimal open covers of I0 by open

intervals and α < γ, then for each m > 0, N(?mi=1H,α
mN+1) ≤

N(?mi=1H, γ
mN+1).

• As before, if α, γ are both minimal open covers of I0 by open

intervals, then for each m > 0, αmN+1∨γmN+1 = (α∨γ)mN+1, and

N(?mi=1H,α
mN+1 ∨ γmN+1) ≤ N(?mi=1H,α

mN+1)N(?mi=1H, γ
mN+1).

• If K is a closed subset of H ⊂
∏N

i=0 Ii, m is a positive integer, and

α = {A1, . . . , An} is a minimal open cover of I0 by open intervals,

then N(?mi=1K,α
mN+1) ≤ (?mi=1H,α

mN+1).

• Suppose l and m are positive integers. Then αlN+1 is a grid

cover of ?li=1H, αlN+mN+1 is a grid cover of ?l+mi=1 H, and αlN+1 ×∏mN+1
i=lN+1 Ii is an open cover of ?l+mi=1 G. Then N(?li=1H,α

lN+1) ≤
N(?l+mi=1 H,α

lN+1 ×
∏lN+mN

i=lN+1 Ii) ≤ N(?l+mi=1 H,α
lN+mN+1).

5. If α = {A1, . . . , An} is a minimal open cover of I0 by intervals, H is a

closed subset of
∏N

i=0 Ii and H 6= ∅, then

lim
m→∞

logN(?mi=1H,α
mN+1)

m
= lim

m→∞

logN(?mi=1H, ?
m
i=1β)

m

exists.

Proof.

Let am = logN(?mi=1H,α
mN+1) = logN(?mi=1H, ?

m
i=1β) for each m ∈ N.

Then 1 ≤ N(?mi=1H,α
mN+1) ≤ nmN+1, so

0 ≤ am = logN(?mi=1H,α
mN+1) ≤ (mN + 1) log n.

By Lemma 5.20, it suffices to show that am+k ≤ am + ak. We have

αm+k+1 ⊂ (?mi=1β) ? (?ki=1β) = ?m+k
i=1 β,
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and also

αm+k+1 refines (?mi=1β) ? (?ki=1β) = ?m+k
i=1 β.

Then

N(?m+k
i=1 H,α

mN+kN+1) = N(?m+k
i=1 H, (?

m
i=1β) ? (?ki=1β)).

Since N(?mi=1H,α
mN+1) is the cardinality of a minimal subcover of ?mi=1H

in ?mi=1β, and N(?ki=1H,α
kN+1) is the cardinality of a minimal subcover

of ?ki=1H in ?ki=1β, (?mi=1β)?(?m+k
i=m+1β) is a cover of ?m+k

i=1 H in
∏mN+kN

i=0 Ii.

Thus,

N(?m+k
i=1 H,α

mN+kN+1) = N(?m+k
i=1 H, (?

m
i=1β) ? (?ki=1β))

= N(?m+k
i=1 H, (?

m
i=1β) ? (?ki=1β)) ≤ N(?mi=1H, ?

m
i=1β)N(?ki=1H, ?

k
i=1β),

and we have

am+k = log(N(?m+k
i=1 H,α

mN+kN+1)) ≤ log(N(?mi=1H, ?
m
i=1β)N(?ki=1H, ?

k
i=1β)) =

log(N(?mi=1H, ?
m
i=1β) + log(N(?ki=1H, ?

k
i=1β)) = am + ak.

6. If H 6= ∅ and α is minimal open cover of I0, define ent(H,α) to be

ent(H,α) = lim
m→∞

logN(?mi=1H,α
mN+1)

m
.

If H = ∅, define ent(H,α) = 0.

7. Remarks

(a) ent(H,α) ≥ 0.

(b) If α < β, α, β both minimal covers of I0 by open intervals, then

ent(H,α) ≤ ent(H, β).
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(c) If K is a closed subset of H ⊂
∏N

i=0 Ii, m is a positive integer, and

α = {A1, . . . , An} is a minimal open cover of I0 by open intervals,

then ent(K,α) ≤ ent(H,α).

8. Finally, we define ent(H) = sup
α
{ent(H,α)}, where α ranges over all

minimal covers of I0 by open intervals (in I0).

Theorem 5.53 Let H be a closed subset of
∏N

i=0 Ii and

H−1 = {(xN , xN−1, . . . , x1, x0) : (x0, x1, . . . , xN−1, xN) ∈ H} .

Then ent(H) = ent(H−1).

Proof. Let α = {A1, . . . , An} be a minimal open cover of I0 by open in-

tervals and m a positive integer. First note that (x0, x1, . . . , xmN+1) ∈
?mi=1H if and only if (xmN+1, xmN , . . . , x1, x0) ∈ ?mi=1H

−1. Now, let β be

defined as at the beginning of this section. We have that Bi0 × Bi1 ×
· · ·Bim ∈ βm+1 if and only if Bim × Bim−1 × · · ·Bi0 ∈ βm+1 and Bi0 ×
Bi1 × · · ·Bim ∩ ?mi=1H 6= ∅ if and only if Bim × Bim−1 × · · ·Bi0 ∩ ?mi=1H

−1 6=
∅. Therefore, N(?mi=1H,α

mN+1) = N(?mi=1H, β
m+1) = N(?mi=1H

−1, βm+1) =

N(?mi=1H
−1, αmN+1). Hence, ent(H,α) = ent(H−1, α) for each α, and the

result follows.

Proposition 5.54 Let H be a closed subset of
∏N

i=0 Ii, β is an open cover (in

I∞) of ?∞i=1H, σ : I∞ → I∞ is a shift map, then σ−N(β) :=
{
σ−N(B) : B ∈ β

}
={∏N−1

i=0 Ii ×B : B ∈ β
}

is also an open cover (in I∞) of ?∞i=1H.

Proof. Suppose x = (x0, x1, . . .) ∈ ?∞i=1. Then, by Proposition 5.35 it follows

σN(x) = (xN , xN+1, . . .) ∈ ?∞i=1H and there is some B ∈ β such that σN(x) ∈
B. Since

∏N−1
i=0 Ii ×B = σ−N(B), x ∈ σ−N(B) ∈ σ−N(β).

Suppose H is a closed subset of
∏N

i=0 Ii and H = ?∞i=1H. If α is an open

cover of I∞, let α∗ = {A ∩H : A ∈ α} denote the corresponding open cover

of H by open sets in H.

Theorem 5.55 Suppose H is a closed subset of
∏N

i=0 Ii, H = ?∞i=1H 6= ∅,
and σN(H) = H. Suppose M is a positive integer. If α = {A1, . . . , An} is a
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minimal open cover of I0 by open intervals, then ent(H,α) = h(σN , (αMN+1×
I∞)∗).

Proof. This proof is similar to the proof of Theorem 5.50, but a little more

difficult technically so we present it.

Let α = {A1, . . . , An} be a minimal open cover of I0 by intervals.

Fix the positive integer M . Let

β =

{
MN∏
j=0

Aij × I∞ : Aij ∈ α and

(
MN∏
j=0

Aij × I∞
)
∩H 6= ∅

}
,

and let

γ =
{
Ak0 × Ak1 × . . .× Ak(M+1)N

× I∞ : (kj)
(M+1)N
j=0 is a finite sequence

of members of {1, . . . , n} of length (M + 1)N + 1
}
.

For B =
∏MN

j=0 Aij × I∞ ∈ β, σ−N(B) =
∏N−1

i=0 Ii ×
∏MN

j=0 Aij × I∞. Then

σ−N(β) ∨ β =

{
σ−N(B1) ∩B2 : B1 =

MN∏
j=0

Aij × I∞, B2 =
MN∏
j=0

Akj × I∞ ∈ β

}

=

{(
N−1∏
i=0

Ii ×
MN∏
j=0

Aij × I∞
)
∩

(
MN∏
j=0

Akj × I∞
)

: (ij)
MN
j=0 and

(kj)
MN
j=0 are finite sequences of members of {1, . . . , n} of length

(M + 1)N + 1

}
.

If B1 =
∏MN

j=0 Aij × I∞ ∈ β and B2 =
∏MN

j=0 Akj × I∞ ∈ β, then
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σ−N(B1) ∩B2 =

(
N−1∏
i=0

Ii ×
MN∏
j=0

Aij × I∞
)
∩

(
MN∏
j=0

Akj × I∞
)

=
N−1∏
i=0

Aki × (AkN ∩ Ai0)× . . .× (AkMN
∩ Ai(M−1)N

)×
MN∏

l=(M−1)+1

Ail × I∞

⊂ Ak0 × Ak1 × . . .× AkMN
× Ai(M−1)N+1

× . . .× AiMN
× I∞.

Hence, the collection σ−1(β) ∨ β refines the collection

γ =
{
Ak0 × Ak1 × . . .× Ak(M+1)N

× I∞ : (kj)
(M+1)N
j=0 is a finite sequence of

members of {1, . . . , n} of length (M + 1)N + 1
}
.

Then (σ−N(β) ∨ β)∗ refines the collection γ∗, so γ∗ < (σ−N(β) ∨ β)∗ , and

N(H, γ∗) ≤ N(H, (σ−N(β) ∨ β)∗).

But γ also refines σ−N(β) ∨ β, and so γ∗ refines (σ−N(β) ∨ β)∗. Thus,

N(H, γ∗) ≥ N(H, (σ−N(β) ∨ β)∗). Then N(H, γ∗) = N(H, (σ−N(β) ∨ β)∗).

Note that N(H, γ∗) = N(?
(M+1)N
i=1 H,αMN+1).

We can continue: By similar arguments, for each positive integer l,

N(H, (∨li=0σ
−iN(β)∗)) = N(H, α(M+l)N+1 × I∞) = N(?

(M+l)N
i=1 H,α(M+l)N+1).

Now β = αMN+1 × I∞, and for l a positive integer, N(H, (∨li=0σ
−iN(β)∗)) =

N(?M+l
i=1 G,α

(M+l)N+1). Then log(N(G, (∨li=0σ
−iN(β)∗)) =

log(N(?
(M+l)N
i=1 H,α(M+l)N+1)). It follows that

h(σN , αMN+1 × I∞) = lim
l→∞

log(N(H, (∨li=0σ
−iN(β)∗))

l

= lim
l→∞

log(N(?
(M+l)N
i=1 H,α(M+l)N+1))

l
,

while

ent(H,α) = lim
l→∞

log(N(?li=1H,α
lN+1))

l
.
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For each positive integer k, let log(N(?ki=1H,α
kN+1)) = ak. Then

log(N(?li=1H,α
lN+1)) = al and log(N(?M+l

i=1 H,α
(M+l)N+1)) = aM+l. Further-

more, al ≤ aM+l ≤ aM + al. Then al
l
≤ al+M

l
≤ al

l
+ aM

l
. By Lemma 5.21,

liml→∞
al
l

exists, and

lim
l→∞

al
l
≤ lim

l→∞

al+M
l
≤ lim

l→∞
(
al
l

+
aM
l

) = lim
l→∞

al
l

+ lim
l→∞

aM
l

= lim
l→∞

al
l
.

It follows that

lim
l→∞

log(N(?li=1H,α
lN+1))

l
= lim

l→∞

log(N(?M+l
i=1 H,α

(M+l)N+1))

l
,

and thus, ent(G,α) = h(σN , (αMN+1 × I∞)∗).

Theorem 5.56 Suppose H is a closed subset of
∏N

i=0 Ii, H = ?∞i=1H, and

σN(H) = H. If α = {A1, . . . , An} is a minimal open cover of I0 by open

intervals, then ent(H) = h(σN).

Proof. Since each open cover of H is refined by the grid cover αMN+1 × I∞

for some minimal open cover by intervals α of I0, the result follows.

Theorem 5.57 Suppose G is a closed subset of I0× I1, G = ?∞i=1G 6= ∅, and

σ(G) = G. Then ent(?ki=1G) = k ent(G), for each integer k ≥ 2.

Proof. Supppose k is a positive integer. LetG be a closed subset of I0×I1 such

that G = ?∞i=1G 6= ∅, and σ(G) = G, and let H = ?ki=1G ⊂
∏k

i=0 Ii. Let α =

{A1, . . . , An} be a minimal open cover of I0 by open intervals. Then for each

positive integer m, ?mi=1H = ?mi=1(?ki=1G) = ?mki=1G. Hence, N(?mki=1G,α
mk+1) =

N(?mi=1H,α
mk+1). Then

ent(G,α) = lim
m→∞

1

m
logN(?mi+1G,α

m+1) = lim
m→∞

1

mk
logN(?mki+1G,α

mk+1)

=
1

k
lim
m→∞

1

m
logN(?mki+1G,α

mk+1) =
1

k
ent(?mki=1G,α

mk+1).

Thus, for every minimal cover α by open intervals of I0,

k ent(G,α) = ent(?mki=1G,α
mk+1).
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The result follows.

5.5 Computation and application of topolog-

ical entropy

In this section we compute the topological entropy for some closed subsets

G of I2. We also suggest an application.

Example 5.58 Suppose G = I2. Then ent(G) =∞.

Proof. Suppose α = {A1, . . . , An} is a minimal open cover of I0 by open

intervals. Then for each positive integer m, N(?mi=1G,α
m+1) = nm+1. Thus,

ent(G,α2) = lim
m→∞

1

m
logN(?mi+1G,α

m+1) = lim
m→∞

1

m
log nm+1

= lim
m→∞

m+ 1

m
log n = log n.

Then

sup
α

ent(G,α2) = sup
α

log n =∞.

Example 5.59 Let G = {(x, x) |x ∈ I}. Then ent (G) = 0.

Proof. G is graph of the identity map f−1 and the inverse f is a homeomor-

phism, hence ent (G) = ent (f) = 0.

Example 5.60 Let G denote the union of the diagonal from (0, 0) to (1, 1)

and one point (x, y) where (x, y) is an arbitrary point in I×I such that x 6= y.

Then, ent (G) = 0.

Proof. Set G is the union of the diagonal and one point, G ? G is the union

of the diagonal from (0, 0, 0) to (1, 1, 1) and two points, ?mi=1G is union of

diagonal and m different points. Therefore, we have that

N
(
G,α2

)
≤ n+ 1, N

(
G ? G, α3

)
≤ n+ 2, . . . , N

(
?mi=1G,α

m+1
)
≤ n+m.
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0 1

1

(x, y)

I0

I1

0 1

1

(x, y)

(y, x)

I0

I1

Figure 5.1: Set G from the Example 5.60 (left) and Example 5.61 (right)

Hence,

ent (G,α) = lim
m→∞

1

m
logN

(
?mi=1G,α

m+1
)
≤ lim

m→∞

1

m
log (n+m) = 0.

So, ent (G,α) = 0 and then ent (G) = 0.

If we add finitely many points (x, y) to the G from the last example, such

that x 6= y, and there is no pair of symmetric points (relative to the diagonal),

we get zero entropy in the same way.

Example 5.61 Let G denote the union of the diagonal from (0, 0) to (0, 1)

and two points (x, y) and (y, x) , where (x, y) is an arbitrary point in I × I
such that x 6= y. Then, ent (G) = log 2.

Proof. Set G is the union of the diagonal and two points, G?G is the union

of the diagonal from (0, 0, 0) to (1, 1, 1) and six points, ?mi=1G is union of

diagonal and 2m+1−2 different points that don’t lie on the diagonal. Namely,

points in ?mi=1G have m + 1 coordinates and every coordinate is either x or

y so there are 2m+1 − 2 different points which don’t lie on diagonal. So, we

have

N
(
G,α2

)
≤ n+2, N

(
G ? G, α3

)
≤ n+6, . . . , N

(
?mi=1G,α

m+1
)
≤ n+2m+1−2.
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Hence, it is easy to see

ent (G,α) = lim
m→∞

1

m
log
(
n+ 2m+1 − 2

)
= log 2.

Therefore, ent (G) = log 2.

Theorem 5.62 For each n ∈ N there exists a closed set G ⊆ I × I such that

ent (G) = log n.

0 1
2

1

1
2

1

I0

I1

Figure 5.2: Set G from the Example 5.62 for n = 3

Proof. Let n ∈ N be arbitrary. We define G in following way:

G =

{(
k

n− 1
,

l

n− 1

)
: k, l ∈ {0, 1, . . . , n− 1}

}
.

Set G is union of n2 points, G ? G is union of n3, ?mi=1G is union of nm+1

different points so we have the following:

N
(
G,α2

)
≤ n2, N

(
G ? G, α3

)
≤ n3, . . . , N

(
?mi=1G,α

m+1
)
≤ nm+1.

We have

ent (G,α) = lim
m→∞

1

m
log
(
nm+1

)
= log n.

Therefore, ent (G) = log n
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For the next example, G−1 is Example 2.14 in [22].

Example 5.63 Let G = {(x, x} : x ∈ I} ∪ ({1} × I) . Then ent (G) = 0.

Proof. Let us denote the following: L1 = {(x, x) |x ∈ I} and L2 = {1} × I.
For arbitrary m ∈ N we observe ?mi=1Li, i ∈ {1, 2} . We have m+ 1 combina-

tions. Namely, if i = 2 on j − th position (for all preceeding position we put

i = 1), so (xj, xj+1) ∈ L2, on all coordinates of the point x before j we must

have 1. Therefore, the product is determined by the last appearance of the

L2 (that is,others don’t matter), so we have m+ 1 possibilities:

?mi=1L1,
(
?m−1
i=1 L1

)
? L2, . . . , L2 ?

(
?m−1
i=1 L1

)
.

All m + 1 sets are arcs in Im+1 intersecting in point (1, 1, . . . , 1) ∈ Im+1.

Therefore, we have

N
(
?mi=1G,α

m+1
)

= n+m (n− 1)

and

ent (G,α) = lim
m→∞

1

m
log (n+m (n− 1)) ≤ lim

m→∞

1

m
log (n (m+ 1)) = 0.

Hence, ent (G) = 0.

Example 5.64 Let G = ({0} × [0, 1]) ∪ ([0, 1]× {1}) . Then, ent (G) = 0.

Proof. Let us denote the following: L1 = {0}×[0, 1] and L2 = [0, 1]×{1} . For

arbitrarym ∈ N we observe ?mi=1Li, i ∈ {1, 2}. First, let i = 2,∀i ∈ {1, . . . ,m}.
All points in L1 have first coordinate 0 so we have x ∈ ?mi=1L1 if and only if

x1 = x2 = . . . xm−1 = 0. Otherwise, let i0 be smallest integer such that i0 = 2.

Since all points in L2 have second coordinate equal 1, after L2 in product we

cannot have L1. Therefore, given product is determined with first appearance

of L1. Hence, we have m+ 1. Each product is an arc in Im+1 and they form

arc from (0, 0, . . . , 0) to (1, 1 . . . , 1) in Im+1, in a way that end point of ?mi=1L1

is origin point of
(
?m−1
i=1 L1

)
? L2 and so on. Therefore, we have

N
(
?mi=1G,α

m+1
)
≤ (m+ 1)n
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and

ent (G,α) ≤ lim
m→∞

1

m
log (n (m+ 1)) = 0.

Hence, ent (G) = 0.

0 1

1

I0

I1

0 1

1

I0

I1

Figure 5.3: Set G from the Example 5.63 (left) and Example 5.64 (right)

Example 5.65 Let G = {0} × [0, 1] ∪ [0, 1]× {0} . Then ent (G) =∞.

Proof. Let us denote the following: L1 = {0} × [0, 1] and L2 = [0, 1]× {0} .
For arbitrary m ∈ N, ?mi=1G contains L1 ?L2 ? . . . L1 ?L2 = [0, 1]×{0}× . . .×
{0}× [0, 1] if m is even and L1 ?L2 ?. . . L2 ?L1 = [0, 1]×{0}× . . .× [0, 1]×{0}
if m is odd. Either way, N (?mi=1G,α

m+1) > n
m
2 . Therefore,

ent (G,α) ≥ lim
m→∞

1

m
log
(
n
m
2

)
= log n.

and it follows ent (G) =∞.

Example 5.66 Let G = I×{0}∪{(x, 1− x) : x ∈ I} . Then ent(G) = 1+
√

5
2

i.e. ”golden ratio.”

Proof. Let us denote with L1 line from (1, 0) to (0, 0) and with L2 line from

(1, 0) to (0, 1). We have G = L1∪L2. In arbitrary product ?mj=1Lij , ij ∈ {1, 2} ,
let i0 be first index such that Li0 = L1. Next coordinate has to be 0 and after

that we have only zeros and ones such that we cannot have two neighboring
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0 1

1

I0

I1

0 1

1

I0

I1

Figure 5.4: Set G from the Example 5.65 (left) and Example 5.66 (right)

ones. If Li = L2,∀i then the product is arc from (0, 1, 0, . . .) to (1, 0, 1, . . .).

So we have

N
(
?m−1
i=1 G,α

m
)

+N
(
?m−2
i=1 G,α

m−1
)
≤N

(
?mi=1G,α

m+1
)

≤N
(
?m−1
i=1 G,α

m
)

+N
(
?m−2
i=1 G,α

m−1
)

+ n

and hence nFm+2 ≤ N (?mi=1G,α
m+1) ≤ n(Fm+3 − 1), where Fm is m − th

Fibonacci number. Therefore, we have that

ent (G,α) = lim
m→∞

1

m
logN

(
?mi=1G,α

m+1
)

= lim
m→∞

1

m
log n(Fm+3−1) =

1 +
√

5

2
.

and ent(G) = log 1+
√

5
2
.

Example 5.67 Let a ∈ N be arbitrary and let

Ga =

{(
k

a
, 0

)
: k ∈ {0, . . . , a}

}
∪
{(

0,
k

a

)
: k ∈ {0, . . . , a}

}
⊆ I2.

Then ent(Ga) = log
1 +
√

1 + 4a

2
.

Proof. Let us denote number of points in ?mi=1Ga with Nm.

We prove Nm = Nm−1 + a Nm−2.
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0 1
4

· · · 3
4

1

1
4

· · ·

3
4

1

a+ 1 points︷ ︸︸ ︷
I0

I1

Figure 5.5: Set G4 in Example 5.67

Proof is combinatorial: let us observe arbitrary (m+1)−tuple in ?mi=1Ga. If we

have 0 on the first coordinate, second can be any number from
{

0, 1
a
, 2
a
, . . . , 1

}
so we can get any m− tuple. If we have non-zero as first coordinate, second

coordinate has to be zero, third can be anything (as above) so we can get any

(m− 1)− tuple. Therefore, we get reccurence relation Nm = Nm−1 + a Nm−2

with initial values N1 = 2a + 1 and N2 = (a + 1)2 + a. Solving it using

characteristical polynomial x2 − x− a = 0 we get

Nm = a0

(
1 +
√

1 + 4a

2

)m
+ b0

(
1−
√

1 + 4a

2

)m
where a0 and b0 are obtained from initial values.

Therefore

N
(
?mi=1Ga, α

m+1
)
≤ Nm

and

lim
m→∞

N
(
?mi=1Ga, α

m+1
)

= lim
m→∞

Nm.

Now,

ent(Ga, α) = lim
m→∞

logNm

m
.
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By simple calculations we get

ent(Ga, α) =
1 +
√

1 + 4a

2
.

Example 5.68 Let G = {(x0, x1) ∈ I0 × I1 : x1 ≤ x2
0} and let bL = ([0, 1]×

{0}) ∪ ({1} × [0, 1]). Then ent(G) = ent(bL) = 0.

0 1

1

G

I0

I1

0 1

1

bL

I0

I1

Figure 5.6: Sets G and bL from the Example 5.68

Proof. Mahavier product ?∞i=1G has very simple dynamics. The orbit of every

point x = (x0, x1, . . .) 6= (1, 1, . . .) under the action of σ, i.e. x, σ(x), σ2(x), . . . ,

converges to the point (0, 0, . . .). Points (0, 0, . . .) and (1, 1, . . .) are fixed

points, where (0, 0, . . .) is an attracting and (1, 1, . . .) is a repelling fixed

point. So we have that ent(σ) = 0 and by Theorem 5.51 therefore h(G) = 0.

Set M = ?∞i=1bL indeed is an arc and the entropy is equal 0. Namely, in the

Example 5.64 we have that ent(bL−1) = 0 but then by the Theorem 5.48 it

follows that ent(bL) = 0.

Before stating the proposition we give new notion. If H is closed subset

of [0, 1]n+1, define π{0,n} to be the map from H to [0, 1] × [0, 1] defined by

π{0,n}(x) = (x0, xn) for x = (x0, x1, . . . , xn) ∈ H. For G a closed subset of
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[0, 1]× [0, 1], and n positive integer, let G0,n = π{0,n}(?
n
i=1G). Therefore, G0,n

is the closed subset of [0, 1]× [0, 1].

With limHd we denote limit with respect to the Hausdorff metric. Let us

recall that Hausdorff metric:

Hd (A,B) = max

{
sup
a∈A

d (a,B) , sup
b∈B

d (b, A)

}
.

This equation is different from the one in the first chapter but they are actually

equivalent.

Proposition 5.69 Let G be connected and closed subset of [0, 1]2 such that

limHd G
0,n = bL where bL is from the previous example. Then ent(G) = 0.

Proof. We have limHd G
0,n = bL i.e.

(∀ε >)(∃n0 ∈ N)(∀n ∈ N) n ≥ n0 → Hd(G
0,n, bL) < ε

We divide the proof in several steps:

(i) G does not contain any point on diagonal not equal to (0, 0) and (1, 1).

Assume the contrary, i.e. if it does contain point (x, x), x 6= 0, 1, then

G0,n also contains that point, for all n ∈ N. Then, d((x, x), bL) ={
x, x ≤ 1

2

1− x, x > 1
2

, but in either way it is greater than 0.

Therefore, we get Hd(G
0,n, bL) ≥ d((x, x), bL) > 0,∀n ∈ N, hence we

cannot have limHd G
0,n = bL.

(ii) π0(G) = [0, 1] and π1(G) = [0, 1].

Suppose π0(G) = J0 where J0 is closed and proper subset of [0, 1]. Then,

G0,n ⊆ J0× [0, 1] ⊂ [0, 1]× [0, 1] for all n ∈ N. Since bL contains [0, 1]×
{0}, there exists point (x, 0) ∈ bL \ (J0 × {0}) such that d((x, 0), J0) =

d0 > 0 (because J0 is closed). Now we have that 0 < d0 = d((x, 0), J0×
[0, 1]) ≤ d((x, 0), G0,n) and therefore Hd(G

0,n, bL) ≥ d0 > 0. So we get

limHd G
0,n 6= bL which is contradiction.

88



Chapter 5. Topological entropy for set-valued functions

(iii) G doesn’t contain point (x0, y0) above diagonal.

Suppose that G contains point (x0, y0) above diagonal, i.e. y0 > x0. Set

G is closed, connected and by (ii), π0(G) = [0, 1] and π1(G) = [0, 1],

therefore G intersects diagonal in some point (x, x), x ∈ [0, 1]. By (i) it

follows that x is equal to 0 or 1.

Suppose that x = 0. Since G is connected and closed, it contains

an arc connecting points (x0, y0) and (0, 0) which we denote with K.

Since K is an arc, for each positive integer n there exists finite se-

quence of points xn−1 < xn−2 < . . . < x0 < y0 in [0, 1] such that

(xn−1, xn−2, . . . , x0, y0) ∈ ?ni=1K. Therefore, since K ⊂ G, we have

Hd(G
0,n, bL) ≥ Hd (K0,n, bL) ≥ d((x0, y0), bL) > 0, hence we cannot

have limHd G
0,n = bL.

If we suppose that x = 1, we get the contradiction in the same way.

From (i) and (iii) it follows that set G is under the diagonal, except points

(0, 0) and (1, 1) i.e.

(∀(x, y) ∈ G \ {(0, 0), (1, 1)} , y < x.) (∗)

(iv) G contains both (0, 0) and (1, 1).

We prove that G contains (1, 1) in the same way as we proved (i). If

we assume contrary, we would get that the distance between G and bL

is > 0. Therefore, ?∞i=1G contains the point (1, 1, 1, . . .).

Suppose G doesn’t contain (0, 0). Since G is closed subset of [0, 1]2, then

π0(G) is closed subset of [0, 1] so there exists minimum of that set and let

us denote it with xmin. Now, we claim that ?∞i=1G contains only the point

(1, 1, 1, . . .). Let assume that there is point (x0, x1, . . .) 6= (1, 1, 1, . . .) in

?∞i=1G. But since, by (∗) we have x0 > x1 > x2 > . . ., there exists n ∈ N
large enough such that xn < xmin but that is contradiction. Therefore

G contains (0, 0).

(v) ent(G) = 0.

Proof is same as for the set G in the previous example so we omit it.
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Some open problems:

Question 1 Suppose L is a closed subset of [0, 1]× [0, 1], and ent(L) = 0. If

G is closed subset of [0, 1]× [0, 1], and limHd(G
0,n) = L, is ent(G) = 0?

Question 2 Is there for arbitrary b ∈ R, a closed subset G of [0, 1] × [0, 1]

that is not graph of a continuous function such that ent(G) = b?

Question 3 Can we find a characterisation for closed subsets of [0, 1]× [0, 1],

with zero entropy?
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complete classification of tent maps inverse limits, Topology Appl. 160

(2013), 63-73.
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[11] I. Banič and J. Kennedy, Inverse limits with bonding functions whose

graphs are arcs, Topology and its Applications 151 (2015)

[12] R. E. Bowen, Entropy for group endomorphisms and homogeneous

spaces, Transactions of the American Mathematical Society 153 (1971)

401-414.

[13] W. J. Charatonik and R. P. Roe, Inverse limits of continua having

trivial shape, Houston J. Math. 38 (2012) 1307–1312.

[14] W. J. Charatonik and R. P. Roe, Mappings between inverse limits of

continua with multivalued bonding functions, Topology Appl. 159 (2012),

233–235.

[15] E. I. Dinaburg, The relation between topological entropy and metric

entropy, Soviet Math. 11 (1970) 13-16.

[16] J. Dugunji, Topology, Allyn and Bacon, Inc. Boston, Mass., (1966)

[17] S. Greenwood and J. A. Kennedy, Generic generalized inverse limits,

Houston J. Math. 38 (2012) 1369-1384.

[18] Sina Greenwood and Judy Kennedy, Connected generalized inverse limits,

Topology Appl., 159 (2012) 57-68.

[19] Sina Greenwood and Judy Kennedy, Connectedness and Ingram-

Mahavier products, Topology Appl., 166 (2014) 1-9.

[20] P. J. Hilton, U. Stammbach, A course in homological algebra, Springer,

New York et. al., (1970)

92



Bibliography

[21] A. Illanes, S.B. Nadler, Hyperspaces. Fundamentals and recent advances,

Marcel Dekker, Inc., New York (1999).

[22] W. T. Ingram, An Introduction to Inverse Limits with Set-valued Func-

tions, Springer, New York et. al., 2011.

[23] W. T. Ingram, Inverse limits of upper semicontinuous functions that

are unions of mappings, Topology Proceedings 34 (2009) 17-26.

[24] W. T. Ingram, Inverse limits of upper semicontinuous set valued func-

tions, Houston Journal of Mathematics 32, No 1, (2006) 17-26.

[25] W. T. Ingram, Inverse limits with upper semicontinuous bonding func-

tions: Problems and some partial solutions, Topology Proc., 36 (2010)

353-373.

[26] W. T. Ingram, Two-pass maps and indecomposability of inverse limits

of graphs, Topology Proceedings 29 (2005) 1-9.

[27] W. T. Ingram, W. S. Mahavier, Inverse limits: From Continua to

Chaos, Springer, New York et. al., 2012

[28] W. T. Ingram, W. S. Mahavier, Inverse limits of upper semi-continuous

set valued functions, Houston J. Math. 32 (2006), 119-130

[29] K. Kuratowski, Topology, Vol. I, Acad. Press, New York, N.Y, 1966

[30] K. Kuratowski, Topology, Vol. II, Acad. Press, New York, N.Y, 1968

[31] W. S. Mahavier, Inverse limits with subsets of [0, 1]× [0, 1], Topology

Appl. 141 (2004), 225-231.

[32] S. Mardešić, J. Segal, Shape Theory. The inverse system approach,

North-Holland, Amsterdam (1982)

[33] S. Mardešić, Strong Shape and Homology, Springer, New York et. al.,

(2000)

93



Bibliography

[34] J. R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood

Cliffs, New Jersey (1975)

[35] S. B. Nadler, Continuum theory. An Introduction, Monographs and

Textbooks in Pure and Applied Mathematics 158, Marcel Dekker, Inc.,

New York, (1992).

[36] Van Nall, Connected Inverse limits with set-valued functions, Topology

Proceedings 40 (2012), 167-177.

[37] V. Nall, Inverse limits with set valued functions, Houston J. of Mathe-

matics 37. no. 4 (2011) 1323-1332.

[38] V. Nall, Finite graphs that are inverse limits with a set valued function

on [0, 1], Topology and its Applications 158 (2011) 1226-1233.

[39] V. Nall, The only finite graph that is an inverse limit with a set valued

function on [0, 1] is an arc, Topology and its Applications 159 (2012)

733-736.

[40] A. Palaez, Generalized inverse limits , Houston J. Math. 32 (2006),

1107–1119.

[41] Peter Walters, An Introduction to Ergodic Theory, Springer-Verlag, New

York, (1982).

[42] X. Ye, Topological entropy of the induced maps of the inverse limits with

bonding maps, Topology and its Applications 67 (1995) 113-118.

94



Abstract

Generalized inverse limits are generalization of standard inverse limits in a

way that in the corresponding inverse system bonding functions are upper

semicontinuous (u.s.c.) functions instead of continuous functions. Concept

was introduced in 2004 in [31] and later in 2006 in [28] and since then, theory

has been developing rapidly.

In the first part we introduce categories CHU and CU in which u.s.c.

functions are morphisms and compact Hausdorff and compact metric spaces,

respectively, are objects. We also introduce the category ICU of inverse

sequences in CU . Then we investigate the induced functions between inverse

limits of compact metric spaces with u.s.c. bonding functions. We also show

that taking such inverse limits is very close to being a functor (but is not a

functor) from ICU to CU , if morphisms are mapped to induced functions. At

the end of the third chapter we give a useful application of the mentioned

results.

In the second part new definition of topological entropy is considered, in

which is used Mahavier product, introduced in [19]. It is shown that new

notion is well defined and that is in line with previous definitions for regular

functions [41], using entropy of the shift map. Then, entropy of various

examples is calculated, new ones and some well known. Finally, some new

results about generalized inverse limits are shown using newly defined objects.

Keywords: category, hyperspace, inverse system, inverse limit, upper

semicontinuous function, generalized inverse limit, Mahavier product, topo-

logical entropy



Sažetak

Inverzni limesi su imali ključnu ulogu u razvoju teorije kontinuuma u prošlom

stoljeću. Takoder su bili važni i u dinamičkim sustavima. Jedan od razloga

za to je njihovo svojstvo da inverzni nizovi s jednostavnim prostorima i

jednostavnim veznim preslikavanjima mogu inducirati komplicirane prostore

kao njihove inverzne limese. U dinamičkim sustavima, inverzni limesi se

koriste za
”
kodiranje“, na neki način, kompliciranih dinamičkih sustava.

Generalizirani inverzni limesi su poopćenje standardnih inverznih limesa

na način da u pripadajućem inverznom sustavu vezna preslikavanja nisu

neprekidne funkcije nego odozgo poluneprekidne funkcije. Pojam je uveden

u [31] 2004. godine, a zatim 2006. godine u [28] razvijen do forme koja se

danas koristi. Od tada se teorija intezivno razvija.

U prvom dijelu rada se kategorijski opisuju ti objekti i ispituje se koje

se tvrdnje iz standardnog slučaja mogu poopćiti, te se primjenjuje dobivene

rezultate na neke konkretne slučaje. Uvodimo dvije kategorije, CHU i CU .

Objekti u CHU su kompaktni Hausdorffovi prostori s odozgo poluneprekid-

nim funkcijama (skraćeno u.s.c.) kao morfizmima, a CU je potkategorija od

CHU , s istim morfizmima i kompaktnim metričkim prostorima kao objek-

tima. Pokazuje se da u kategoriji CHU inverzni limes inverznog sistema (s

usmjerenim indeksnim skupom) s u.s.c. vǐseznačnim funkcijama (kako su

ih definirali Ingram i Mahavier) zajedno s projekcijama nije nužno inverzni

limes u CHU , ali je takozvani slabi inverzni limes, [10].

Nadalje, razmatraju se inverzni nizovi u kategoriji CU i dokazuje da s odgo-

varajućim morfizmima čine kategoriju, označenu s ICU . Promatraju se mor-

fizmi izmedu dvaju inverznih limesa, inducirani odgovarajućim morfizmima

u kategoriji ICU . Dokazuju se nužni i dovoljni uvjeti za njihovu egzistenciju



i njihova svojstva. Nadalje, razmatra se standardno pridruživanje izmedu

inverznog niza i njegovog inverznog limesa i pokazuje da nije funktor iz

kategorije ICU inverznih nizova u kategoriju CU , ali je jako blizu istom. Na-

posljetku, na kraju trećeg poglavlja se pokazuje primjena navedenih rezultata.

U drugom dijelu rada se razmatra poopćenje pojma topološke entropije

na zatvorene podskupove od [0, 1]2 koristeći Mahavierov produkt, uveden

u [19]. Pokazuje se da je nova definicije topološke entropije zaista dobra

i koristeći entropiju tzv. funkcije pomaka (funkcija u uobičajenom smislu)

pokazuje se da je uskladena s prijašnjim definicijama entropije. Naime ako

je dana neprekidna funkcija f : [0, 1] → [0, 1] i zatvoreni podskup od [0, 1]2

kao graf od f−1, nova i tradicionalna topološka entropija su jednake. Zatim

se pokazuju razna svojstva za novu definiciju koja se uspješno mogu poopćiti

iz teorije s funkcijama te se proširuje definicija na zatvorene podskupove

konačnih produkata jediničnog segmenta [0, 1]. Na kraju primjenjujemo do-

bivene rezultate za računanje entropije raznih primjera, važnih u teoriji o

generaliziranim inverznim limesima i nekih novih.

Ključne riječi: kategorija, hiperprostor, inverzni sustav, inverzni limes,

odozgo poluneprekidna funkcija, generalizirani inverzni limes, Mahavierški

produkt, topološka entropija
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solving nonlinear equations, Applied mathematics and computation, 192

(2007) , 2; 311-318
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završio Prirodoslovno-matematičku gimnaziju. Godine 2009. diplomirao je
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