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Zagreb, 2015



Prirodoslovno-matematički fakultet
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Zagreb, 2015.



Acknowledgements

First of all, I would like to thank my supervisor Prof. Nikolai Leonenko for his guidance,

constant support and many interesting and memorable discussions. His admiring enthu-

siasm and commitment will always be a source of inspiration to me. I thank to my second

supervisor, Prof. Mirta Ben²i¢ for her support and persistence in providing everything

to make my research possible. I thank to Nenad �uvak, my dear colleague and friend for

his numerous advices and encouragements. I also thank to my collaborators, who shaped

many of the parts of this thesis.

I am grateful to my parents and my brother for always being there for me and believing

in me. A special thanks goes to my wife Maja for her love and understanding. Her constant

support and encouragement was in the end what made this work possible.

i



Summary

Scaling properties of stochastic processes refer to the behavior of the process at di�erent

time scales and distributional properties of its increments with respect to aggregation. In

the �rst part of the thesis, scaling properties are studied in di�erent settings by analyz-

ing the limiting behavior of two statistics: partition function and the empirical scaling

function.

In Chapter 2 we study asymptotic scaling properties of weakly dependent heavy-tailed

sequences. These results are applied on the problem of estimation of the unknown tail

index. The proposed methods are tested against some existing estimators, such as Hill

and the moment estimator.

In Chapter 3 the same problem is analyzed for the linear fractional stable noise, which

is an example of a strongly dependent heavy-tailed sequence. Estimators will be developed

for the Hurst parameter and stable index, the main parameters of the linear fractional

stable motion.

Chapter 4 contains an overview of the theory of multifractal processes, which can

be characterized in several di�erent ways. A practical problem of detecting multifractal

properties of time series is discussed from the point of view of the results of the preceding

chapters.

The last Chapter 5 deals with the �ne scale properties of the sample paths described

with the so-called spectrum of singularities. The new results are given relating scaling

properties with path properties and applied to di�erent classes of stochastic processes.

Keywords: partition function, scaling function, heavy-tailed distributions, tail in-

dex, linear fractional stable motion, Hurst parameter, multifractality, Hölder continuity,

spectrum of singularities
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Saºetak

Vaºnost svojstava skaliranja slu£ajnih procesa prvi je put istaknuta u radovima Benoita

Mandelbrota. Najpoznatije svojstvo skaliranja u teoriji slu£ajnih procesa je sebi-sli£nost.

Pojam multifraktalnosti pojavio se kasnije kako bi opisao modele s bogatijom strukturom

skaliranja. Jedan od na£ina kako se skaliranje moºe izu£avati jest kori²tenjem momenata

procesa i tzv. funkcije skaliranja. Multifraktalni procesi mogu se karakterizirati kao

procesi s nelinearnom funkcijom skaliranja. Ovaj pristup prirodno name¢e jednostavnu

metodu detekcije multifraktalnih svojstava procjenjivanjem funkcije skaliranja kori²tenjem

tzv. particijske funkcije.

Prvi dio ovog rada bavi se statisti£kim svojstvima takvih procjenitelja s obzirom

na razli£ite pretpostavke. Najprije ¢e se analizirati asimptotsko pona²anje empirijske

funkcije skaliranja za slu£aj slabo zavisnih nizova s te²kim repovima. Preciznije, pro-

matrat ¢e se stacionarni nizovi sa svojstvom eksponencijalno brzog jakog mije²anja koji

imaju marginalne distribucije u klasi distribucija s te²kim repovima. Dobiveni rezultati

bit ¢e iskori²teni za de�niranje metoda procjene repnog indeksa te ¢e biti napravljena

usporedba s postoje¢im procjeniteljima kao ²to su Hillov i momentni procjenitelj. Osim

toga, predloºit ¢emo i gra�£ku metodu temeljenu na obliku procijenjene funkcije skaliranja

koja moºe detektirati te²ke repove u uzorcima.

U sljede¢em koraku analizirat ¢e se asimptotska svojstva funkcije skaliranja na jako

zavisnim stacionarnim nizovima. Za primjer takvog niza koristit ¢emo linearni frakcionalni

stabilni ²um £ija svojstva su odre�ena s dva parametra, indeksom stabilnosti i Hurstovim

parametrom. Pokazat ¢emo da u ovom slu£aju funkcija skaliranja ovisi o vrijednostima

ta dva parametra. Na osnovu tih rezultata, de�nirat ¢e se metode za istodobnu procjenu

oba parametra koje predstavljaju alternativu standardnim procjeniteljima.

U drugom dijelu rada prethodno uspostavljeni rezultati ¢e biti analizirani s aspekta

multifraktalnih slu£ajnih procesa. U prvom redu, dobiveni rezultati pokazuju da nelin-

earnosti procijenjene funkcije skaliranja mogu biti posljedica te²kih repova distribucije

uzorka. Takav zaklju£ak dovodi u pitanje metodologiju temeljenu na particijskoj funkciji.

Svojstva skaliranja £esto se isprepli¢u sa svojstvima putova procesa. Osim u termin-

ima globalnih karakteristika kao ²to su momenti, multifraktalni slu£ajni procesi £esto se

de�niraju i u terminima lokalnih nepravilnosti svojih trajektorija. Nepravilnosti u trajek-

torijama mogu se mjeriti formiranjem skupova vremenskih to£aka u kojima put procesa
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ima isti Hölderov eksponent u to£ki. Hausdor�ova dimenzija takvih skupova u ovisnosti

o Hölderovom eksponentu naziva se spektar singulariteta ili multifraktalni spektar. Mul-

tifraktalni slu£ajni procesi mogu se karakterizirati kao procesi koji imaju netrivijalan

spektar, u smislu da je spektar kona£an u vi²e od jedne to£ke. Dvije de�nicije mogu

se povezati tzv. multifraktalnim formalizmom koji predstavlja tvrdnju da su funkcija

skaliranja i spektar singulariteta Legendreova transformacija jedno drugoga. Brojna is-

traºivanja usmjerena su na uvjete pod kojima multifraktalni formalizam vrijedi. Spektar

singulariteta dosad je izveden za mnoge primjere slu£ajnih procesa, kao ²to su frakcionalno

Brownovo gibanje, Lévyjevi procesi i multiplikativne kaskade.

Rezultati o asimptotskom obliku funkcije skaliranja pokazat ¢e da u nekim slu£ajevima

procjena beskona£nih momenata moºe dati to£an spektar kori²tenjem multifraktalnog for-

malizma. Ova £injenica motivira dublje istraºivanje odnosa izme�u momenata i svojstava

trajektorija kojim se bavimo u posljednjem dijelu rada. Hölder neprekidnost i skaliranje

momenata povezani su poznatim Kolmogorovljevim teoremom neprekidnosti. S druge

strane, dokazat ¢emo svojevrsni komplement Kolmogorovljevog teorema koji povezuje

momente negativnog reda s izostankom Hölder neprekidnosti trajektorije u svakoj to£ki.

Ova tvrdnja bit ¢e dodatno poja£ana formulacijom u terminima momenata negativnog

reda maksimuma nekog �ksnog broja prirasta procesa. Iz ovih rezultata, izme�u ostalog,

slijedit ¢e da sebi-sli£ni procesi s kona£nim momentima imaju trivijalan spektar (npr. frak-

cionalno Brownovo gibanje). Obratno, svaki sebi-sli£an proces s netrivijalnim spektrom

mora imati te²ke repove (npr. stabilni Lévyjevi procesi). Dobiveni rezultati sugeriraju

prirodnu modi�kaciju particijske funkcije koja ¢e biti testirana na nizu primjera.

Klju£ne rije£i: particijska funkcija, funkcija skaliranja, distribucije s te²kim re-

povima, repni indeks, linearno frakcionalno stabilno gibanje, Hurstov parametar, mul-

tifraktalnost, Hölder neprekidnost, spektar singulariteta
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Chapter 1

Introduction

The importance of scaling relations was �rst stressed in the work of Benoit Mandelbrot.

The early references are the seminal papers Mandelbrot (1963) and Mandelbrot (1967); see

also Mandelbrot (1997). Scaling properties of stochastic processes refer to the behavior of

the process at di�erent time scales. This usually accounts to changes in �nite dimensional

distributions of the process when the time parameter is scaled by some factor. The best

known scaling relation in the theory of stochastic processes is self-similarity. The scaling

of time of the self-similar processes by some constant a > 0 results in scaling the state

space by a factor b > 0, in the sense of �nite dimensional distributions. More precisely,

a stochastic process {X(t), t ≥ 0} is said to be self-similar if for any a > 0 there exists

b > 0 such that

{X(at)} d
= {bX(t)},

where equality is in �nite dimensional distributions. Suppose {X(t)} is self-similar, non-

trivial (meaning it is not a.s. constant for every t) and stochastically continuous at 0,

that is for every ε > 0, P (|X(t)−X(0)| > ε) → 0 as t → 0. Then b must be of the form

aH for some H ≥ 0, i.e.

{X(at)} d
= {aHX(t)}.

Constant H is called the Hurst parameter or the self-similarity index. The importance of

self-similar processes may be illustrated by the Lamperti's theorem, which states that the

only possible limit (in the sense of �nite dimensional distributions) of a normalized partial

sum process of stationary sequences are self-similar processes with stationary increments

(see Embrechts & Maejima (2002) for more details).

As a generalization of self-similarity, models allowing a richer form of scaling were

introduced by Yaglom as measures to model turbulence (Yaglom (1966)). Later these

models were called multifractal in the work of Frisch and Parisi (Frisch & Parisi (1985)).

The concept can be easily generalized to stochastic processes, thus extending the notion

of self-similar processes by allowing the factor aH to be random. Of course, in many

examples there is no such exact scaling of �nite dimensional distributions as in the case

1



Chapter 1. Introduction

of self-similar or multifractal processes.

If we have a sequence of random variables (Yi, i ∈ N), then we can also speak about

scaling properties of the partial sum process {
∑n

i=1 Yi, n ∈ N}. For example, if (Yi, i ∈ N)
is an independent identically distributed (i.i.d.) sequence with strictly α-stable distribu-

tion, α ∈ (0, 2], then we know that

n∑
i=1

Yi
d
= n1/αY1, ∀n ∈ N. (1.1)

The continuous time analog of this case corresponds to Brownian motion (α = 2) and

strictly α-stable Lévy processes, which are both self-similar with Hurst parameter 1/α.

This parameter appears by taking logarithms in (1.1)

ln |
∑n

i=1 Yi|
lnn

d
= 1/α+

ln |Y1|
lnn

, ∀n ∈ N,

and represents the rate of growth of the partial sum process measured as a power of n.

The central limit theorem indicates that for all zero mean (if mean exists) i.i.d. sequences

the relation (1.1) holds approximately for large n. Thus, in the general case, scaling can

be studied as the behavior of the sequence with respect to aggregation and measured as

the rate of growth of the partial sums.

We adopt this point of view and in the next section we de�ne the so-called partition

function (sometimes called empirical structure function). Partition function will be used

for de�ning the so-called empirical scaling function. The names of the two come from the

theory of multifractal processes, which is a topic we deal with in Chapter 4.

1.1 Partition function

Partition function is a special kind of the sample moment statistic based on the blocks of

data. Given a sequence of random variables Y1, Y2, . . . we de�ne the partition function to

be

Sq(n, t) =
1

⌊n/t⌋

⌊n/t⌋∑
i=1

∣∣∣∣∣∣
⌊t⌋∑
j=1

Y(i−1)⌊t⌋+j

∣∣∣∣∣∣
q

, (1.2)

where q ∈ R and 1 ≤ t ≤ n. In words, we partition the data into consecutive blocks

of length ⌊t⌋, we sum each block and take the power q of the absolute value of the sum.

Finally, we average over all ⌊n/t⌋ blocks. Notice that for t = 1 one gets the usual empirical

q-th absolute moment.

The partition function can also be viewed as an estimator of the q-th absolute moment

of the process with stationary increments. Indeed, suppose {X(t)} is a process with

stationary increments and one tries to estimate E|X(t)|q for �xed t > 0 based on a

2



Chapter 1. Introduction

discretely observed sample Xi = X(i), i = 1, . . . , n. The natural estimator is given by

1

⌊n/t⌋

⌊n/t⌋∑
i=1

∣∣Xi⌊t⌋ −X(i−1)⌊t⌋
∣∣q .

If we denote the one step increments as Yi = X(i)−X(i− 1), then this is equal to (1.2).

In Chapters 2 and 3 we will study asymptotic properties of the partition function in

two settings. Instead of keeping t �xed, we take it to be of the form t = ns for some

s ∈ (0, 1), which allows the blocks to grow as the sample size increases. The partition

function will then have the following form

Sq(n, n
s) =

1

⌊n1−s⌋

⌊n1−s⌋∑
i=1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Y⌊ns⌋(i−1)+j

∣∣∣∣∣∣
q

. (1.3)

Since s > 0, Sq(n, n
s) will generally diverge as n → ∞. We are interested in the rate of

divergence of this statistic measured as a power of n. This can be obtained by considering

the limiting behavior of
lnSq(n, n

s)

lnn

as n → ∞. One can think of this limiting value as the value of the smallest power of n

needed to normalize the partition function in such a way that it will converge to some

random variable not identically equal to zero.

1.2 Empirical scaling function

If {X(t)} is aH-self-similar process with stationary increments, then E|X(t)|q = tHqE|X(1)|q

for q ∈ R such that E|X(t)|q < ∞. Taking logarithms we have that

lnE|X(t)|q = Hq ln t+ lnE|X(1)|q.

Having in mind that Sq(n, t) can be considered as the estimator of E|X(t)|q, we can expect
that lnSq(n, t) will be linear in ln t. This motivates considering the slope in the simple

linear regression of lnSq(n, t) on ln t based on some points 1 ≤ ti ≤ n, i = 1, . . . , N . These

slopes for varying q will be called the empirical scaling function, although linear relation

may not always be justi�ed.

Given points 1 ≤ ti ≤ n, i = 1, . . . , N and using the well known formula for the slope

of the linear regression line, we de�ne the empirical scaling function at the point q as

τ̂N,n(q) =

∑N
i=1 ln ti lnSq(n, ti)− 1

N

∑N
i=1 ln ti

∑N
j=1 lnSq(n, tj)∑N

i=1 (ln ti)
2 − 1

N

(∑N
i=1 ln ti

)2 . (1.4)

3



Chapter 1. Introduction

If we write ti in the form nsi , si ∈ (0, 1), i = 1, . . . , N , then the empirical scaling function

is given by

τ̂N,n(q) =

∑N
i=1 si

lnSq(n,nsi )

lnn
− 1

N

∑N
i=1 si

∑N
j=1

lnSq(n,n
sj )

lnn∑N
i=1 (si)

2 − 1
N

(∑N
i=1 si

)2 . (1.5)

1.3 Overview

The partition function and the empirical scaling function will be used to study asymptotic

scaling properties of di�erent types of stationary sequences. In the next chapter we

establish asymptotic behavior for weakly dependent heavy-tailed sequences and in Chapter

3 we do the same analysis for the linear fractional stable noise, which is an example of

a heavy-tailed and strongly dependent sequence. Both results will have applications in

the parameter estimation problem. In the �rst setting, we will propose an exploratory

method and several estimation methods for the unknown tail index that will be compared

with the existing estimators. In the second setting we establish methods for estimating

Hurst exponent and stable index of the linear fractional stable motion.

In Chapter 4 we provide an overview of the theory of multifractal processes and con-

sider the implications of the results of Chapters 2 and 3. The analysis will lead to a

conclusion that, empirically, it is hard to distinguish multifractal and heavy-tailed pro-

cesses. In Chapter 5 we study in more details the relation between �ne path properties and

moments of both positive and negative order. Such analysis will lead to a new de�nition

of the partition function.

4



Chapter 2

Asymptotic scaling of weakly

dependent heavy-tailed stationary

sequences

In this chapter we establish limiting behavior of the partition function and the empirical

scaling function introduced in (1.3) and (1.5). The results are applied in the tail index

estimation problem, which is discussed in Section 2.2.

2.1 Asymptotic scaling

In order to establish our results, we �rst summarize the assumptions on the sequences

considered in this chapter.

2.1.1 Assumptions

Through the chapter we assume that (Yi, i ∈ N) is a strictly stationary sequence of random
variables. Each Yi is assumed to have a heavy-tailed distribution with tail index α. This

means that it has a regularly varying tail with index −α so that

P (|Yi| > x) =
L(x)

xα
,

where L(t), t > 0 is a slowly varying function, that is, for every t > 0, L(tx)/L(x) → 1

as x → ∞. In particular, this implies that E|X|q < ∞ for 0 < q < α and E|X|q = ∞
for q > α, which is sometimes also used to de�ne heavy tails. The parameter α is

called the tail index and measures the �thickness� of the tails. Examples of heavy-tailed

distributions include Pareto, stable and Student's t-distribution, which will be precisely

de�ned in Subsections 2.2.3 and 2.2.5. For more details on heavy-tailed distributions,

regular variation and related topics see Embrechts et al. (1997) and Resnick (2007).

5



Chapter 2. Asymptotic scaling of weakly dependent heavy-tailed stationary sequences

We also impose some assumptions on the dependence structure of the sequence, which

go beyond the independent case. First, for two sub-σ-algebras, A ⊂ F and B ⊂ F on the

same complete probability space (Ω,F , P ) we de�ne

a(A,B) = sup
A∈A,B∈B

|P (A ∩B)− P (A)P (B)|.

Now for a process {Yt, t ∈ N} or {Yt, t ∈ [0,∞)}, consider Ft = σ{Ys, s ≤ t} and

F t+τ = σ{Ys, s ≥ t + τ}. We say that {Yt} has a strong mixing property if a(τ) =

supt≥0 a(Ft,F t+τ ) → 0 as τ → ∞. Strong mixing is sometimes also called α-mixing. If

a(τ) = O(e−bτ ) for some b > 0 we say that the strong mixing property has an exponentially

decaying rate. We will refer to a(τ) as the strong mixing coe�cient function. Through this

chapter (Yi, i ∈ N) is assumed to have the strong mixing property with an exponentially

decaying rate.

In some arguments the proof of the main result of this chapter relies on the limit theory

for partial maxima of absolute values of the sequence (Yi, i ∈ N). It is well known that for

the i.i.d. sequence (Zi, i ∈ N) having regularly varying tail with index −α there exists a se-

quence of the form n1/αL1(n) with L1 slowly varying, such thatmaxi=1,...,n |Zi|/(n1/αL1(n))

converges in distribution to a Fréchet random variable whose distribution is one of the

three types of distributions that can occur as a limit law for maxima (see Embrechts

et al. (1997) for more details). Following Leadbetter et al. (1982), this can be extended to

weakly dependent stationary sequence (Yi, i ∈ N) under additional assumptions. We say

that (Yi, i ∈ N) has extremal index θ if for each τ > 0 there exists a sequence un(τ) such

that nP (|Y1| > un(τ)) → τ and P (maxi=1,...,n |Yi| ≤ un(τ)) → e−θτ as n → ∞. If (Yi) is

strong mixing and Yi heavy-tailed, then it is enough for this to hold for a single τ > 0 in

order for θ to be the extremal index. It always holds that θ ∈ [0, 1]. The i.i.d. sequence

(Zi, i ∈ N) such that Zi =
d Yi for each i is called the associated independent sequence. If

θ > 0, then the limiting distribution of maxi=1,...,n |Yi| is of the same type as the limit of

the maximum of the associated independent sequence with the same norming constants.

In particular, if θ > 0, under our assumptions maxi=1,...,n |Yi|/(n1/αL1(n)) converges in

distribution to a Fréchet random variable, possibly with di�erent scale parameter. For

our consideration in this chapter, we assume (Yi, i ∈ N) has positive extremal index. The

case when θ = 0 or does not exist is considered as degenerate and only a few examples are

known where this happens under some type of mixing condition assumed (see (Leadbetter

et al. 1982, Chapter 3) and references therein). In particular, θ > 0 holds for any example

considered later in this chapter.
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Chapter 2. Asymptotic scaling of weakly dependent heavy-tailed stationary sequences

2.1.2 Main theorems

Asymptotic properties of the partition function Sq(n, t) have been considered before in

the context of multifractality detection (Heyde (2009), Sly (2005); see also Heyde & Sly

(2008)). Notice that if we keep t �xed, behavior of Sq(n, t) as n → ∞ accounts to the

standard limit theory for partial sums of the sequence∣∣∣∣∣∣
⌊t⌋∑
j=1

Y(i−1)⌊t⌋+j

∣∣∣∣∣∣
q

, i = 1, 2, . . . . (2.1)

If (Yi, i ∈ N) is i.i.d. and q < α, the weak law of large numbers implies that Sq(n, t)

converges in probability to the expectation of (2.1) as n → ∞. To get more interesting

limit results and analyze the e�ect of the block size, we take t = ns. It is clear that

Sq(n, n
s) will diverge as n → ∞ and we will measure the rate of divergence of this statistic

as a power of n. To obtain the limiting value, we analyze lnSq(n, n
s)/ lnn representing

the rate of growth.

The next theorem summarizes the main results on the rate of growth. We additionally

assume that the sequence has a zero expectation in case α > 1. For practical purposes,

this is not a restriction as one can always subtract the mean from the starting sequence.

For the case α ≤ 1 this is not necessary. The proof of the theorem is given in Subsection

2.1.3. A special case of this theorem has been proved in Sly (2005) and cited in Heyde

(2009).

Theorem 1. Let (Yi, i ∈ N) be a strictly stationary sequence that has a strong mixing

property with an exponentially decaying rate, positive extremal index and suppose that

Yi, i ∈ N has a heavy-tailed distribution with tail index α > 0. Suppose also that EYi = 0

if α > 1. Then for every q > 0 and every s ∈ (0, 1)

lnSq(n, n
s)

lnn

P→ Rα(q, s) :=



sq
α
, if q ≤ α and α ≤ 2,

s+ q
α
− 1, if q > α and α ≤ 2,

sq
2
, if q ≤ α and α > 2,

max
{
s+ q

α
− 1, sq

2

}
, if q > α and α > 2,

(2.2)

as n → ∞, where
P→ stands for convergence in probability.

In order to illustrate the e�ects of the theorem, consider the simple case in which

(Yi, i ∈ N) is a zero mean (if α > 1) i.i.d. sequence that is in the domain of normal

attraction of some α-stable random variable, 0 < α < 2. This means that
∑n

i=1 Yi/n
1/α

converges in distribution to some random variable Z with α-stable distribution. A su�-

cient condition for this to hold is the regular variation of the tail (2.1.1) with L constant
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Chapter 2. Asymptotic scaling of weakly dependent heavy-tailed stationary sequences

at in�nity and the balance of the tails (see Gnedenko & Kolmogorov (1968) for more

details). Suppose �rst that q < α and notice that

Sq(n, n
s)

n
sq
α

=
1

⌊n1−s⌋

⌊n1−s⌋∑
i=1

∣∣∣∣∣
∑⌊ns⌋

j=1 Y⌊ns⌋(i−1)+j

n
s
α

∣∣∣∣∣
q

.

When n → ∞, each of the internal sums converges in distribution to an independent copy

of Z. Since q < α, E|Z|q is �nite, so the weak law of large numbers applies and shows

that the average tends to some nonzero and �nite limit. For the case q > α, the weak law

cannot be applied and the rate of growth will be higher:

Sq(n, n
s)

ns+ q
α
−1

=

∑⌊n1−s⌋
i=1

∣∣∣∣∑⌊ns⌋
j=1 Y⌊ns⌋(i−1)+j

n
s
α

∣∣∣∣q
n(1−s) q

α

.

Internal sums again converge to independent copies of Z. Since |Z|q has (−α/q)-regularly

varying tail, it will be in the domain of attraction of (α/q)-stable distribution. Centering is

not necessary since α/q < 1 and the limit (modulo possibly some slowly varying function)

will be some positive random variable.

For the case α > 2, the variance is �nite and so the central limit theorem holds. When

q < α the rate of growth has an intuitive explanation by arguments similar to those just

given above. When q > α, interesting things happen. Note that the asymptotics of the

partition function is in�uenced by two factors: averaging and the weak law on the one

side and distributional limit arguments on the other side. It will depend on s which of

the two in�uences prevails. For larger s, s+ q/α− 1 < sq/2 and the rate will be as in the

case q < α, i.e.,

Sq(n, n
s)

n
sq
2

=
1

⌊n1−s⌋

⌊n1−s⌋∑
i=1

∣∣∣∣∣
∑⌊ns⌋

j=1 Y⌊ns⌋(i−1)+j

n
s
2

∣∣∣∣∣
q

.

Internal sums converge in distribution to normal, which has every moment �nite and

the weak law applies. But for small s, the rate will be the same as that for the case

α < 2. What happens is that in this case internal sums have a small number of terms,

so convergence to normal is slow, much slower than the e�ect of averaging. This is the

reason why the rate is greater than sq/2.

Remark 1. Note that in general, the normalizing sequence for partial sums can be of the

form n1/αL(n) for some slowly varying function L. This does not a�ect the rate of growth.

Indeed, if Zn/n
aL(n) →d Z for some non-negative sequence Zn, then for every ε > 0,

P

(
lnZn

lnn
< a− ε

)
= P

(
Zn < na−ε

)
= P

(
Zn

naL(n)
<

1

L(n)nε

)
≤ P

(
Zn

naL(n)
<

1

2nε

)
→ 0,

8



Chapter 2. Asymptotic scaling of weakly dependent heavy-tailed stationary sequences

since for n large enough n−ε < L(n) < nε, i.e. lnL(n)/ lnn → 0. Similar argument

applies for the upper bound. On the other hand, if lnZn/ lnn →P a, then Zn grows

at the rate a in the sense that for every ε > 0 there exist constants c1, c2 > 0 such

that P (c1 < Zn/n
a < c2) ≥ 1 − ε for n large enough. This is sometimes denoted as

Zn = ΘP (n
a).

Remark 2. A natural question arises from the previous discussion whether it is possible

to identify a normalizing sequence and a distributional limit of Sq(n, n
s). In some special

cases the limit can be easily deduced. Suppose (Yi, i ∈ N) is an i.i.d. sequence with

strictly α-stable distribution. When q < α, the rate of growth will be sq/α. Dividing the

partition function with nsq/α and using the scaling property of stable distributions yields

Sq(n, n
s)

n
sq
α

=
1

⌊n1−s⌋

⌊n1−s⌋∑
i=1

∣∣∣∣∣
∑⌊ns⌋

j=1 Y⌊ns⌋(i−1)+j

n
s
α

∣∣∣∣∣
q

d
=

1

⌊n1−s⌋

⌊n1−s⌋∑
i=1

|Yi|q .

Since q < α, E|Yi|q < ∞ and the weak law of large numbers implies

Sq(n, n
s)

n
sq
α

P→ E|Y1|q, n → ∞.

On the other hand, when q ≥ α the weak law cannot be applied and the rate of growth

is s+ q/α− 1. Normalizing the partition function gives

Sq(n, n
s)

ns+ q
α
−1

=

∑⌊n1−s⌋
i=1

∣∣∣∣∑⌊ns⌋
j=1 Y⌊ns⌋(i−1)+j

n
s
α

∣∣∣∣q
n(1−s) q

α

d
=

∑⌊n1−s⌋
i=1 |Yi|q

n(1−s) q
α

.

Each |Yi|q has (−α/q) regularly varying tail, so it will be in the domain of normal attrac-

tion of (α/q)-stable distribution. Since α/q < 1, the centering is not needed and by the

generalized central limit theorem it follows that

Sq(n, n
s)

ns+ q
α
−1

d→ Z, n → ∞,

with Z having (α/q)-stable distribution.

Using Theorem 1 we can establish asymptotic properties of the empirical scaling func-

tion de�ned by (1.5). First, we show how Theorem 1 can motivate the de�nition of the

scaling function.

Using the notation of Theorem 1, we denote

εn :=
Sq(n, n

s)

nRα(q,s)
.

9



Chapter 2. Asymptotic scaling of weakly dependent heavy-tailed stationary sequences

Taking logarithms and rewriting yields

lnSq(n, n
s)

lnn
= Rα(q, s) +

ln εn
lnn

. (2.3)

As follows from Remark 1, εn is bounded in probability from above and from bellow, thus,

it makes sense to view (2.3) as a regression model of lnSq(n, n
s)/ lnn on q and s with

the model function Rα(q, s), where ln εn/ lnn are the errors. One should count on the

intercept in the model due to the possible nonzero mean of an error. Notice that, when

α ≤ 2, Rα(q, s) is linear in s, i.e. it can be written in the form Rα(q, s) = a(q)s+ b(q) for

some functions a(q) and b(q). This also holds if α > 2 and q ≤ α. We can then rewrite

(2.3) as
lnSq(n, n

s)

lnn
= a(q)s+ b(q) +

ln εn
lnn

.

Fixing q gives the simple linear regression model of lnSq(n, n
s)/ lnn on s, thus it makes

sense to consider the slope of this regression. This is exactly the empirical scaling function

(1.5). If α > 2 and q > α, Rα(q, s) is not linear in s due to the maximum term in (2.2). It

is actually a broken line with the breakpoint depending on the values of q and α. However,

this does not prevent us from considering statistic (1.5) anyway. This will be re�ected as

the peculiar nonlinear shape of the asymptotic scaling function.

Theorem 2. Suppose that the assumptions of Theorem 1 hold and τ̂N,n is the empirical

scaling function based on the points s1, . . . , sN ∈ (0, 1). Let

τ∞α (q) =



q
α
, if q ≤ α and α ≤ 2,

1, if q > α and α ≤ 2,

q
2
, if 0 < q ≤ α and α > 2,

q
2
+ 2(α−q)2(2α+4q−3αq)

α3(2−q)2
, if q > α and α > 2.

(2.4)

(i) If α ≤ 2 or α > 2 and q ≤ α then

plim
n→∞

τ̂N,n(q) = τ∞α (q),

where plim stands for the limit in probability.

(ii) If α > 2 and q > α, suppose si = i/N , i = 1 . . . , N . Then

lim
N→∞

plim
n→∞

τ̂N,n(q) = τ∞α (q).

Theorem 2 shows that, asymptotically, the shape of the empirical scaling function in

the setting considered signi�cantly depends on the value of the tail index α. The limit

from case (i) of Theorem 2 does not depend on the choice of points si in the computation
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Chapter 2. Asymptotic scaling of weakly dependent heavy-tailed stationary sequences

of the empirical scaling function. In case (ii), we need additional assumptions as in this

case we are estimating the slope while the underlying relation is actually nonlinear. Plots

of the asymptotic scaling function τ∞α for di�erent values of α are shown in Figure 2.1.

When α ≤ 2, the scaling function has the shape of a broken line (we will refer to this

shape as bilinear). In this case the �rst part of the plot is a line with slope 1/α > 1/2

and the second part is a horizontal line with value 1. A break occurs exactly at the point

α. In case α > 2, τ∞α is approximately bilinear, the slope of the �rst part is 1/2 and

again the breakpoint is at the α. When α is large, i.e., α → ∞, it follows from (2.4)

that τ∞α (q) ≡ q/2. This case corresponds to a sequence coming from a distribution with

all moments �nite, e.g., an independent normally distributed sample. This line will be

referred to as the baseline. In Figure 2.1 the baseline is shown by a dashed line. The

cases α ≤ 2 (α = 0.5, 1, 1.5) and α > 2 (α = 2.5, 3, 3.5, 4) are shown by dot-dashed and

solid lines, respectively.

2 4 6 8 10
q

1

2

3

4

5

Τ
Α

¥HqL

4
3.5
3.
2.5
1.5
1
0.5
Α

Figure 2.1: Plots of τ∞α for di�erent values of α

2.1.3 Proofs of Theorems 1 and 2

One of the main ingredients in the proof of Theorem 1 is the following version of Rosen-

thal's inequality for strong mixing sequences, precisely Theorem 2 in Section 1.4.1 of

Doukhan (1994):

Lemma 1. Fix q > 0 and suppose (Zk, k ∈ N) is a sequence of random variables and let

aZ(m) be the corresponding strong mixing coe�cient function. Suppose that there exists

ζ > 0 and c ≥ q, c ∈ N such that

∞∑
m=1

(m+ 1)2c−2 (aZ(m))
ζ

2c+ζ < ∞, (2.5)

and suppose E|Zk|q+ζ < ∞ and if q > 1, EZk = 0 for all k. Then there exists some

11
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constant K depending only on q and aZ(m) such that

E

∣∣∣∣∣
l∑

k=1

Zk

∣∣∣∣∣
q

≤ KD(q, ζ, l),

where

D(q, ζ, l) =


L(q, 0, l), if 0 < q ≤ 1,

L(q, ζ, l), if 1 < q ≤ 2,

max
{
L(q, ζ, l), (L(2, ζ, l))

q
2

}
, if q > 2,

L(q, ζ, l) =
l∑

k=1

(
E |Zk|q+ζ

) q
q+ζ

.

Remark 3. The inequality from Lemma 1 for q ≤ 1 is a simple consequence of the fact

that for 0 < q ≤ 1, (a+b)q ≤ aq+bq for all a, b ≥ 0. Therefore, in this case no assumption

on the mixing is needed and more importantly Zk are not required to be centered.

Proof of Theorem 1. We split the proof into three parts depending whether q > α, q < α

or q = α.

(a) Let q > α. First we show an upper bound for the limit in probability.

Let ϵ > 0. Notice that

n
lnSq(n,ns)

lnn = Sq(n, n
s) =

1

⌊n1−s⌋

⌊n1−s⌋∑
i=1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Y⌊ns⌋(i−1)+j

∣∣∣∣∣∣
q

.

Let δ > 0 and de�ne

Ȳj,n = Yj 1
(
|Yj| ≤ n

1
α
+δ
)
, j = 1, . . . , n, n ∈ N,

Zj,n = Ȳj,n − EȲj,n,

ξi =

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Zns(i−1)+j,n

∣∣∣∣∣∣
q

, i = 1, . . . , ⌊n1−s⌋.

By Remark 3, centering is not needed in Lemma 1 when α < q ≤ 1 and so we consider

Zj,n = Ȳj,n in this case. Before splitting the cases based on di�erent α values, we derive

some facts that will be used later. Due to stationarity, (ξi) are identically distributed for

�xed n, so that E
[
(1/k)

∑k
i=1 ξi

]
= Eξ1. Moments of all orders of Ȳj,n are �nite and by

using Karamata's theorem (Resnick 2007, Theorem 2.1), for arbitrary r > α it follows

12
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that for n large enough

E|Ȳj,n|r =
∫ ∞

0

P (|Ȳj,n|r > x)dx =

∫ nr( 1
α+δ)

0

P (|Yj|r > x)dx

=

∫ nr( 1
α+δ)

0

L(x
1
r )x−α

r dx ≤ C1L(n
1
α
+δ)nr( 1

α
+δ)(−α

r
+1) ≤ C1n

r
α
−1+δ(r−α)+η,

(2.6)

since for any η > 0 we can take n large enough to make L(n1/α+δ) ≤ nη. It follows then

that if r > 1 by Jensen's inequality

E|Zj,n|r = E|Ȳj,n − EȲj,n|r ≤ 2r−1
(
E|Ȳj,n|r + (E|Ȳj,n|)r

)
≤ 2rE|Ȳj,n|r

≤ C2n
r
α
−1+δ(r−α)+η.

(2.7)

On the other hand, if r ≤ 1, the same bound holds as α < r ≤ 1 so there is no centering,

i.e. E|Zj,n|r = E|Ȳj,n|r.
Next, notice that, for �xed n, Zj,n, j = 1, . . . , n is a stationary sequence. By de�nition

EZj,n = 0 and also E|Zj,n|q+ζ < ∞ for every ζ > 0. Since Zj,n is no more than a

measurable transformation of Yj, the mixing properties of Zj,n are inherited from those

of sequence (Yj). This means that there exists a constant b > 0 such that the mixing

coe�cients sequence satis�es aZ(m) = O(e−bm) as m → ∞. It follows that

∞∑
m=1

(m+ 1)2c−2 (aZ(m))
ζ

2c+ζ ≤
∞∑

m=1

(m+ 1)2c−2K1e
−bm ζ

2c+ζ < ∞

for every choice of c ∈ N and ζ > 0. Hence we can apply Lemma 1 for n �xed to get

Eξ1 = E

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Zj,n

∣∣∣∣∣∣
q

≤


KL(q, 0, ⌊ns⌋), if 0 < q ≤ 1,

KL(q, ζ, ⌊ns⌋), if 1 < q ≤ 2,

Kmax
{
L(q, ζ, ⌊ns⌋), (L(2, ζ, ⌊ns⌋))

q
2

}
, if q > 2.

(2.8)

Notice that none of the previous arguments uses assumptions on α. Now we split the cases:

•α > 2 Because for q > α, utilizing Equation (2.7), we can choose ζ small enough so

that ζ < qδα (in order to achieve n− q
q+ζ

(1+δα) < n−1) to obtain

L(q, ζ, ⌊ns⌋) =
⌊ns⌋∑
j=1

(
E |Zj,n|q+ζ

) q
q+ζ ≤ C3n

sn(
q+ζ
α

−1+δ(q+ζ−α)+η)( q
q+ζ )

≤ C3n
s+ q

α
− q

q+ζ
(1+δα)+δq+η ≤ C3n

s+ q
α
−1+δq+η, (2.9)
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and

(L(2, ζ, ⌊ns⌋))
q
2 =

⌊ns⌋∑
j=1

(
E |Zj,n|2+ζ

) 2
2+ζ


q
2

≤ n
sq
2

(
E|Y1|2+ζ

) q
2+ζ ≤ C4n

sq
2 .

Hence Eξ1 ≤ C5n
max{s+ q

α
−1+δq+η, sq

2 }.

•1 < α ≤ 2 Bound for L(q, ζ, ⌊ns⌋) is the same as in (2.9), so if α < q ≤ 2 we have

Eξ1 ≤ KL(q, ζ, ⌊ns⌋) ≤ C5n
s+q/α−1+δq+η. If q > 2, using Equation (2.7) and choosing

ζ < 2δα yields

(L(2, ζ, ⌊ns⌋))
q
2 =

⌊ns⌋∑
j=1

(
E |Zj,n|2+ζ

) 2
2+ζ


q
2

≤ n
sq
2

(
C2n

2+ζ
α

−1+δ(2+ζ−α)+η
) q

2+ζ

≤ C6n
sq
2
+ q

α
− q

2+ζ
(1+δα)+δq+η ≤ C6n

sq
2
+ q

α
− q

2
+δq+η.

But for q > 2

s+
q

α
− 1− sq

2
− q

α
+

q

2
=
(
1− q

2

)
(s− 1) > 0,

so that s+ q
α
− 1 > sq

2
+ q

α
− q

2
and

Kmax
{
L(q, ζ, ⌊ns⌋), (L(2, ζ, ⌊ns⌋))

q
2

}
≤ C7n

s+ q
α
−1+δq+η.

We conclude that for every q > α, Eξ1 ≤ C8n
s+ q

α
−1+δq+η.

•0 < α ≤ 1 If q > 1 we can repeat the arguments from the previous case. If α < q ≤ 1,

again by (2.7)

L(q, 0, ⌊ns⌋) =
⌊ns⌋∑
j=1

E|Zj,n|q ≤ C2n
s+ q

α
−1+δ(q−α)+η ≤ C2n

s+ q
α
−1+δq+η,

so for every q > α

Eξ1 ≤ C9n
s+ q

α
−1+δq+η. (2.10)

Next, notice that

P

(
max

i=1,...,n
|Yi| > n

1
α
+δ

)
≤

n∑
i=1

P
(
|Yi| > n

1
α
+δ
)
≤ n

L(n
1
α
+δ)

(n
1
α
+δ)α

≤ C10
L(n

1
α
+δ)

nαδ
.
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If α > 1, since EYi = 0 we have from Karamata's theorem

|EȲj,n| =
∣∣E (Yj − Ȳj,n

)∣∣ ≤ E
∣∣Yj − Ȳj,n

∣∣ = E
∣∣∣Yj 1

(
|Yj| > n

1
α
+δ
)∣∣∣

=

∫ ∞

n
1
α+δ

P
(
|Yj|1

(
|Yj| > n

1
α
+δ
)
> x

)
dx+

∫ n
1
α+δ

0

P
(
|Yj|1

(
|Yj| > n

1
α
+δ
)
> x

)
dx

=

∫ ∞

n
1
α+δ

P (|Yj| > x) dx+ n
1
α
+δP

(
|Yj| > n

1
α
+δ
)

=

∫ ∞

n
1
α+δ

L(x)x−αdx+ n
1
α
+δL(n

1
α
+δ)n−1−αδ

≤ C11L(n
1
α
+δ)n( 1

α
+δ)(−α+1) + n

1
α
+δL(n

1
α
+δ)n−1−αδ ≤ C12n

1
α
−1+δ(1−α)+η

and thus

E

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Ȳj,n

∣∣∣∣∣∣
q

= E

∣∣∣∣∣∣
⌊ns⌋∑
j=1

(
Zj,n + EȲj,n

)∣∣∣∣∣∣
q

≤ 2q−1E

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Zj,n

∣∣∣∣∣∣
q

+ 2q−1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

EȲj,n

∣∣∣∣∣∣
q

= 2q−1Eξ1 + 2q−1nsq
∣∣EȲ1,n

∣∣q ≤ 2q−1Eξ1 + 2q−1C13n
sq+ q

α
−q+qδ(1−α)+qη.

If α ≤ 1 and q > 1 we can use (2.6) to get

E

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Ȳj,n

∣∣∣∣∣∣
q

≤ 2q−1E

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Zj,n

∣∣∣∣∣∣
q

+ 2q−1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

EȲj,n

∣∣∣∣∣∣
q

= 2q−1Eξ1 + 2q−1nsq
(
E|Ȳ1,n|

)q
≤ 2q−1Eξ1 + 2q−1C1n

sq+ q
α
−q+δq(1−α)+qη.

(2.11)

By partitioning on the event {Yi = Ȳi, i = 1, . . . , n} = {maxi=1,...,n |Yi| ≤ n
1
α
+δ} and

its complement, using Markov's inequality and preceding results we conclude for the case

α > 2:

P

(
lnSq(n, n

s)

lnn
> max

{
s+

q

α
− 1,

sq

2

}
+ δq + ϵ

)
= P

(
Sq(n, n

s) > nmax{s+ q
α
−1, sq

2 }+δq+ϵ
)

≤ P

 1

⌊n1−s⌋

⌊n1−s⌋∑
i=1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Ȳ⌊ns⌋(i−1)+j,n

∣∣∣∣∣∣
q

> nmax{s+ q
α
−1, sq

2 }+δq+ϵ

+ P

(
max

i=1,...,n
|Yi| > n

1
α
+δ

)

≤
E
∣∣∣∑⌊ns⌋

j=1 Ȳj,n

∣∣∣q
nmax{s+ q

α
−1, sq

2 }+δq+ϵ
+ C10

L(n
1
α
+δ)

nαδ
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≤ 2q−1Eξ1 + 2q−1C13n
sq+ q

α
−q+qδ(1−α)+qη

nmax{s+ q
α
−1, sq

2 }+δq+ϵ
+ C10

L(n
1
α
+δ)

nαδ

≤ 2q−1C5n
max{s+ q

α
−1+δq+η, sq

2 } + 2q−1C13n
sq+ q

α
−q+qδ(1−α)+qη

nmax{s+ q
α
−1, sq

2 }+δq+ϵ
+ C10

L(n
1
α
+δ)

nαδ
→ 0,

as n → ∞, since sq + q/α− q + qδ(1− α) + qη < s+ q/α− 1 + δq + ϵ if we take η < ϵ/q.

As ϵ and δ are arbitrary, it follows that

plim
n→∞

lnSq(n, n
s)

lnn
≤ max

{
s+

q

α
− 1,

sq

2

}
.

In case 1 < α ≤ 2 we can repeat the previous with ns+q/α−1+δq instead of nmax{s+q/α−1+δq,sq/2}

and get

plim
n→∞

lnSq(n, n
s)

lnn
≤ s+

q

α
− 1.

If α ≤ 1 and q > 1 we use (2.11) and similarly get

P

(
lnSq(n, n

s)

lnn
> s+

q

α
− 1 + δq + ϵ

)
≤ 2q−1C9n

s+ q
α
−1+δq+η + 2q−1C1n

sq+ q
α
−q+δq(1−α)+qη

ns+ q
α
−1+δq+ϵ

+ C10
L(n

1
α
+δ)

nαδ
→ 0,

as n → ∞. Finally, if α < q ≤ 1 there is no centering and (2.10) gives

P

(
lnSq(n, n

s)

lnn
> s+

q

α
− 1 + δq + ϵ

)
≤ Eξ1

ns+ q
α
−1+δq+ϵ

+ C10
L(n

1
α
+δ)

nαδ
→ 0,

as n → ∞.

We next show the lower bound in two parts.

We �rst consider the case α > 2 and assume that s+ q/α− 1 ≤ sq/2. Let

σ2 = lim
n→∞

E
(∑n

j=1 Yj

)2
n

,

ρn = P

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Yns(i−1)+j

∣∣∣∣∣∣ > n
s
2σ

 .

Since the sequence (Yj) is stationary and strong mixing with an exponential decaying

rate and since E|Yj|2+ζ < ∞ for ζ > 0 su�ciently small, the central limit theorem holds

(see (Hall & Heyde 1980, Corollary 5.1.)) and σ2 exists. Since P (|N (0, 1)| > 1) > 1/4,

it follows that for n large enough ρn > 1/4. Recall that if MB(n, p) is the sum of n

stationary mixing indicator variables with expectation p, then ergodic theorem implies

MB(n, p)/n → p, a.s.
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Now we have

P

(
lnSq(n, n

s)

lnn
<

sq

2
− ϵ

)
= P

(
Sq(n, n

s) < n
sq
2
−ϵ
)

≤ P

⌊n1−s⌋∑
i=1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Yns(i−1)+j

∣∣∣∣∣∣
q

< n
sq
2
−ϵ+1−s


≤ P

⌊n1−s⌋∑
i=1

1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Yns(i−1)+j

∣∣∣∣∣∣ > n
s
2σ

 <
n

sq
2
−ϵ+1−s

n
sq
2 σq


= P

⌊n1−s⌋∑
i=1

1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Yns(i−1)+j

∣∣∣∣∣∣ > n
s
2σ

 <
n1−s−ϵ

σq


≤ P

(
MB(⌊n1−s⌋, 1/4) < n1−s−ϵ

σq

)
→ 0,

hence

plim
n→∞

lnSq(n, n
s)

lnn
≥ sq

2
.

For the second part, assume that s + q/α − 1 > sq/2. Notice that in this case it must

hold 1/α− s/2 > 0. We can assume that ϵ < 1/α− s/2. Indeed, otherwise we can choose

0 < ϵ̃ < 1/α− s/2 and continue the proof with it in place of ϵ by observing that

P

(
lnSq(n, n

s)

lnn
< s+

q

α
− 1− ϵ

)
≤ P

(
lnSq(n, n

s)

lnn
< s+

q

α
− 1− ϵ̃

)
.

The main fact behind the following part of the proof is that
∑

|Yi|q ≈ max |Yi|q and that

s is small, which makes the blocks to grow slowly. As discussed in Subsection 2.1.1, the

assumption that the extremal index is positive ensures that maxj=1,...,n |Yj|/(n1/αL1(n))

with some L1 slowly varying converges in distribution to some positive random variable,

so that

P

(
max

j=1,...,n
|Yj| < 2n

1
α
−ϵ

)
→ 0.

Let l ∈ N be such that |Yl| = maxj=1,...,n |Yj|. Then, for some k ∈ {1, 2, . . . , ⌊n1−s⌋} we

have l ∈ J := {⌊ns⌋(k−1)+1, . . . , ⌊ns⌋k}. Assumption α > 2 ensures that E|Y1|2+ζ < ∞
for some ζ > 0. Applying Markov's inequality and then Lemma 1 yields

P

(∣∣∣∣∣ ∑
j∈J ,j ̸=l

Yj

∣∣∣∣∣ > n
1
α
−ϵ

)
≤

E
(∑

j∈J ,j ̸=l Yj

)2
n

2
α
−2ϵ

≤
K1

∑
j∈J ,j ̸=l

(
E|Yj|2+ζ

) 2
2+ζ

n
2
α
−2ϵ

≤ K2n
s

n
2
α
−2ϵ

= K2n
s− 2

α
+2ϵ → 0, as n → ∞,

since s− 2/α+ 2ϵ < 0 by the assumption in the proof.
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Combining this it follows that

P

(
lnSq(n, n

s)

lnn
< s+

q

α
− 1− qϵ

)
= P

(
Sq(n, n

s) < ns+ q
α
−1−qϵ

)
≤ P

⌊n1−s⌋∑
i=1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Yns(i−1)+j

∣∣∣∣∣∣
q

< n
q
α
−qϵ


≤ P

(∣∣∣∣∣∑
j∈J

Yj

∣∣∣∣∣
q

< n
q
α
−qϵ

)
= P

(∣∣∣∣∣∑
j∈J

Yj

∣∣∣∣∣ < n
1
α
−ϵ

)

≤ P
(
|Yl| < 2n

1
α
−ϵ
)
+ P

(∣∣∣∣∣ ∑
j∈J ,j ̸=l

Yj

∣∣∣∣∣ > n
1
α
−ϵ

)
→ 0,

as n → ∞. Hence,

plim
n→∞

lnSq(n, n
s)

lnn
≥ max

{
s+

q

α
− 1,

sq

2

}
.

For the case 0 < α ≤ 2 we just need a di�erent estimate for the sum containing maximum.

Choose γ such that 0 < γ < α. Again we use Markov's inequality

P

(∣∣∣∣∣ ∑
j∈J ,j ̸=l

Yj

∣∣∣∣∣ > n
1
α
−ϵ

)
≤

E
∣∣∣∑j∈J ,j ̸=l Yj

∣∣∣α−γ

n1−αϵ− γ
α
+ϵγ

.

From Lemma 1 one can easily bound this expectation by K3n
s for some constant K3.

Choosing ϵ and γ small enough to make s− 1 + αϵ+ γ/α− ϵγ < 0, we get

P

(∣∣∣∣∣ ∑
j∈J ,j ̸=l

Yj

∣∣∣∣∣ > n
1
α
−ϵ

)
≤ K3n

s

n1−αϵ− γ
α
+ϵγ

→ 0, as n → ∞,

and this completes the (a) part of the proof.

(b) Now let q < α. We �rst show the upper bound on the limit, i.e. we analyze

P

(
lnSq(n, n

s)

lnn
>

sq

β(α)
+ ϵ

)
= P

(
Sq(n, n

s) > n
sq

β(α)
+ϵ
)

≤ P

 1

⌊n1−s⌋

⌊n1−s⌋∑
i=1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Yns(i−1)+j,n

∣∣∣∣∣∣
q

> n
sq

β(α)
+ϵ

 ≤
E
∣∣∣∑⌊ns⌋

j=1 Yj

∣∣∣q
n

sq
β(α)

+ϵ
,

where β(α) = α or 2 according to α ≤ 2 or α > 2. To show that this tends to zero, we

�rst consider the case α > 2. If q > 2, using Lemma 1 with ζ small enough it follows that

E

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Yj

∣∣∣∣∣∣
q

≤ C1max{ns, n
sq
2 }.
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For the case q ≤ 2 we combine Jensen's inequality with Lemma 1:

E

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Yj

∣∣∣∣∣∣
q

≤

E

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Yj

∣∣∣∣∣∣
2

q
2

≤ C2n
sq
2 .

In the case α ≤ 2 we choose γ small enough to make q < α− γ < α and get

E

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Yj

∣∣∣∣∣∣
q

≤

E

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Yj

∣∣∣∣∣∣
α−γ

q
α−γ

≤ C3n
sq

α−γ .

We next prove the lower bound. For the case α > 2 the proof is the same as the proof of (a).

Assume α ≤ 2. The arguments go along the same line, but we avoid using limit theorems

for partial sums of stationary sequences. Instead we use before mentioned asymptotic be-

havior of the partial maximum, that is, we use the fact thatmaxj=1,...,⌊ns⌋ |Yj|/(ns/αL1(n
s))

converges in distribution to some positive random variable, for some slowly varying L1.

This means we can choose some constant m > 0 such that for large enough n

P

(
maxj=1,...,⌊ns⌋ |Yj|

n
s
α

> 2m

)
>

1

4
.

Let |Yl| = maxj=1,...,⌊ns⌋ |Yj|. Then it follows that

P

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Yj

∣∣∣∣∣∣ > mn
s
α

 ≥ P
(
|Yl| > 2mn

s
α

)
+ P

∣∣∣∣∣∣
⌊ns⌋∑

j=1,j ̸=l

Yj

∣∣∣∣∣∣ < mn
s
α

 >
1

4
.

Now we conclude as before, denoting by MB(n, p) the sum of n stationary mixing indi-

cator variables with mean p and noting that the ergodic theorem implies MB(n, p)/n →
p > 0, a.s.:

P

(
lnSq(n, n

s)

lnn
<

sq

α
− ϵ

)
=≤ P

⌊n1−s⌋∑
i=1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Yns(i−1)+j

∣∣∣∣∣∣
q

< n
sq
α
−ϵ+1−s


≤ P

⌊n1−s⌋∑
i=1

1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Yns(i−1)+j

∣∣∣∣∣∣ > n
s
αm

 <
n

sq
α
−ϵ+1−s

n
sq
α mq


≤ P

⌊n1−s⌋∑
i=1

1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Yns(i−1)+j

∣∣∣∣∣∣ > n
s
αm

 <
n1−s−ϵ

mq


≤ P

(
MB(⌊n1−s⌋, 1/4) < n1−s−ϵ

mq

)
→ 0,

as n → ∞. This proves the lower bound.
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(c) It remains to consider the case q = α. For every δ > 0, we have for n large enough

lnSq−δ(n, n
s)

lnn
≤ lnSq(n, n

s)

lnn
≤ lnSq+δ(n, n

s)

lnn
.

Thus, the limit must be monotone in q and the claim follows from the previous cases.

Proof of Theorem 2. Fix q > 0. First we show that

plim
n→∞

τ̂N,n(q) =

∑N
i=1 siRα(q, si)− 1

N

∑N
i=1 si

∑N
j=1Rα(q, sj)∑N

i=1 (si)
2 − 1

N

(∑N
i=1 si

)2 . (2.12)

Let ε > 0 and δ > 0 and denote

C =
N∑
i=1

(si)
2 − 1

N

(
N∑
i=1

si

)2

> 0.

By Theorem 1, for each i = 1, . . . , N there exists n(1)
i such that

P

(∣∣∣∣ lnSq(n, n
si)

lnn
−Rα(q, si)

∣∣∣∣ > εC

2siN

)
<

δ

2N
, n ≥ n

(1)
i .

It follows then that for n ≥ n
(1)
max := max{n(1)

1 , . . . , n
(1)
N }

P

(∣∣∣∣∣
N∑
i=1

si
lnSq(n, n

si)

lnn
−

N∑
i=1

siRα(q, si)

∣∣∣∣∣ > εC

2

)

≤ P

(
N∑
i=1

si

∣∣∣∣ lnSq(n, n
si)

lnn
−Rα(q, si)

∣∣∣∣ > εC

2

)

≤
N∑
i=1

P

(∣∣∣∣ lnSq(n, n
si)

lnn
−Rα(q, si)

∣∣∣∣ > εC

2siN

)
<

δ

2
.

Similarly, for each i = 1, . . . , N there exist n(2)
i such that

P

∣∣∣∣ lnSq(n, n
si)

lnn
−Rα(q, si)

∣∣∣∣ > εC

2
(∑N

i=1 si

)
 <

δ

2N
, n ≥ n

(2)
i ,
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and for n ≥ n
(2)
max := max{n(2)

1 , . . . , n
(2)
N }

P

(∣∣∣∣∣ 1N
N∑
i=1

si

N∑
j=1

lnSq(n, n
sj)

lnn
− 1

N

N∑
i=1

si

N∑
j=1

Rα(q, sj)

∣∣∣∣∣ > εC

2

)

≤ P

 N∑
j=1

∣∣∣∣ lnSq(n, n
sj)

lnn
−Rα(q, sj)

∣∣∣∣ > NεC

2
(∑N

i=1 si

)


≤
N∑
j=1

P

∣∣∣∣ lnSq(n, n
sj)

lnn
−Rα(q, sj)

∣∣∣∣ > εC

2
(∑N

i=1 si

)
 <

δ

2
.

Finally then, for n ≥ max{n(1)
max, n

(2)
max} it follows that

P


∣∣∣∣∣∣∣τ̂N,n(q)−

∑N
i=1 siRα(q, si)− 1

N

∑N
i=1 si

∑N
j=1Rα(q, sj)∑N

i=1 (si)
2 − 1

N

(∑N
i=1 si

)2
∣∣∣∣∣∣∣ > ε


≤ P

(∣∣∣∣∣
N∑
i=1

si
lnSq(n, n

si)

lnn
−

N∑
i=1

siRα(q, si)

∣∣∣∣∣
+

∣∣∣∣∣ 1N
N∑
i=1

si

N∑
j=1

lnSq(n, n
sj)

lnn
− 1

N

N∑
i=1

si

N∑
j=1

Rα(q, sj)

∣∣∣∣∣ > εC

)

≤ P

(∣∣∣∣∣
N∑
i=1

si
lnSq(n, n

si)

lnn
−

N∑
i=1

siRα(q, si)

∣∣∣∣∣ > εC

2

)

+ P

(∣∣∣∣∣ 1N
N∑
i=1

si

N∑
j=1

lnSq(n, n
sj)

lnn
− 1

N

N∑
i=1

si

N∑
j=1

Rα(q, sj)

∣∣∣∣∣ > εC

2

)
< δ,

and this proves (2.12). To show (i), notice that in this case Rα(q, s) from (2.2) can be

written in the form Rα(q, s) = τ∞α (q)s+ b(q). Now the right hand side in (2.12) is

τ∞α (q)
∑N

i=1 s
2
i + b(q)

∑N
i=1 si −

1
N

∑N
i=1 si

(
τ∞α (q)

∑N
j=1 sj +Nb(q)

)
∑N

i=1 (si)
2 − 1

N

(∑N
i=1 si

)2 = τ∞α (q).

For (ii), dividing denominator and numerator of the fraction in limit (2.12) by N yields

plim
n→∞

τ̂N,n(q) =

1
N

∑N
i=1

i
N
Rα

(
q, i

N

)
−
(

1
N

∑N
i=1

i
N

)(
1
N

∑N
j=1 Rα

(
q, i

N

))
1
N

∑N
i=1 (si)

2 −
(

1
N

∑N
i=1 si

)2 .

One can see all the sums involved as Riemann sums based on the equidistant partition.

Functions involved, s 7→ sRα(q, s), s 7→ Rα(q, s), s 7→ s and s 7→ s2, are all bounded

continuous on [0, 1], so all sums converge to integrals when partition is re�ned, i.e. when
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N → ∞. Thus

lim
N→∞

plim
n→∞

τ̂N,n(q) =

∫ 1

0
sRα(q, s)ds−

∫ 1

0
sds

∫ 1

0
Rα(q, s)ds∫ 1

0
s2ds−

(∫ 1

0
sds
)2 .

By solving the integrals using the expression for Rα(q, s), one gets τ∞α as in (2.4). Indeed,

let s = (1− q/α)/(1− q/2). For the numerator we have∫ 1

0

sRα(q, s)ds−
∫ 1

0

sds

∫ 1

0

Rα(q, s)ds

=

∫ s

0

s2ds+
( q
α
− 1
)∫ s

0

sds+
q

2

∫ 1

s

s2ds− 1

2

∫ s

0

sds− 1

2

( q
α
− 1
)∫ s

0

ds− 1

2

q

2

∫ 1

s

sds

=
s3

3
+
( q
α
− 1
) s2

2
+

q

2

(
1

3
− s3

3

)
− 1

2

s2

2
− 1

2

( q
α
− 1
)
s− q

4

(
1

2
− s2

2

)
=

s3

3

(
1− q

2

)
− s2

2

(
1− q

α

)
− s2

4

(
1− q

2

)
+

s

2

(
1− q

α

)
+

q

6
− q

8

=
q

24
+

1

3

(
1− q

α

)3(
1− q

2

)2 − 1

2

(
1− q

α

)3(
1− q

2

)2 − 1

4

(
1− q

α

)2(
1− q

2

) +
1

2

(
1− q

α

)2(
1− q

2

)
=

q

24
+

(
1− q

α

)2(
1− q

2

)2 (−1

6

(
1− q

α

)
+

1

4

(
1− q

2

))
=

q

24
+

4 (α− q)2

α2 (2− q)2

(
1

12
+

1

6

q

α
− 1

8
q

)
=

q

24
+

1

12

2 (α− q)2

α3 (2− q)2
(2α + 4q − 3αq) .

Since ∫ 1

0

s2ds−
(∫ 1

0

sds

)2

=
1

12
,

we arrive at the form given in (2.4).

2.2 Applications in the tail index estimation

This section deals with the applications of the partition function and the empirical scaling

function in the analysis of the tail index of heavy-tailed data. Heavy-tailed distributions

are of considerable importance in modeling a wide range of phenomena in �nance, ge-

ology, hydrology, physics, queuing theory and telecommunications. Pioneering work was

done in Mandelbrot (1963), where stable distributions with index less than 2 have been

advocated for describing �uctuations of cotton prices. In the �eld of �nance, distributions

of logarithmic asset returns can often be �tted extremely well by Student's t-distribution

(see Heyde & Leonenko (2005) and references therein).

Two important practical problems arise in this context. First, if we have data sampled

from some stationary sequence (Yi, i ∈ N), the question is whether this data comes from
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some heavy-tailed distribution or not. Usually, methods for this purpose are graphical.

The second problem is the estimation of the unknown tail index for samples coming from

some heavy-tailed distribution.

Before we apply our results on these problems, we provide a brief overview of the

existing methods.

2.2.1 Overview of the existing methods

The problem of estimation of the tail index is widely known and there have been numerous

approaches to it. Probably the best known estimator of the tail index is the Hill estimator

(Hill (1975)). For what follows, Y(1) ≥ Y(2) ≥ · · · ≥ Y(n) will denote the order statistics

of the sample Y1, Y2, . . . , Yn. For 1 ≤ k ≤ n, the Hill estimator based on k upper order

statistics is

α̂Hill
k =

(
1

k

k∑
i=1

log
Y(i)

Y(k+1)

)−1

. (2.13)

The Hill estimator possesses many desirable asymptotic properties, for example weak con-

sistency provided the sample is i.i.d. and k = k(n) is a sequence satisfying limn→∞ k(n) =

∞ and limn→∞ (k(n)/n) = 0. Under additional assumptions on the sequence k(n) and

second order regular variation properties of the underlying distribution, even asymptotic

normality holds. Properties of the Hill estimator have been extensively studied in settings

di�erent than i.i.d. (for example, see Hsing (1991) for mixing sequences).

Another estimator of the tail index is the so-called moment estimator proposed by

Dekkers et al. (1989). De�ne for r = 1, 2

H
(r)
k =

1

k

k∑
i=1

(
log

Y(i)

Y(k+1)

)r

.

A moment estimator based on k order statistics is given by

α̂M
k =

1 +H
(1)
k +

1

2

(
(H

(1)
k )2

H
(2)
k

− 1

)−1
−1

. (2.14)

Originally, moment estimator is de�ned as 1/α̂M
k and is an estimator of the extreme value

index ξ, which coincides with the reciprocal of the tail index when ξ > 0. For more details

on both estimators as well as the de�nitions of others, like e.g. the Pickands estimator,

see Embrechts et al. (1997) and De Haan & Ferreira (2007).

Both equations, (2.13) and (2.14), actually yield a sequence of estimated values for

di�erent values of k. The choice of optimal k is considered to be the main disadvantage

of these estimators as their performance can vary signi�cantly with k. If additional

assumptions are imposed on the second order regular variation of the distribution, a
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sequence k(n) giving an optimal asymptotic mean square error can be obtained (see

De Haan & Ferreira (2007)). Although there is no much practical signi�cance of such

results, estimators of the sequence k(n) can be derived. This leads to the adaptive selection

methods for k, an example of which can be found in Beirlant et al. (2006) (see also De Haan

& Ferreira (2007) and references therein). A more common approach is to plot estimated

values against k. A heuristic rule is to look for the place where the graph stabilizes and

report this as the estimated value. For the Hill estimator this is usually called the Hill

plot. We use this approach later in the examples.

Tail index estimators are usually based on upper order statistics and their asymptotic

properties. Alternatively, in Meerschaert & Sche�er (1998), an estimator based on the

asymptotics of the sample variance has been proposed. More precisely, the authors de�ne

α̂ =
2 lnn

lnn+ ln σ̂2
,

where σ̂2 is the usual sample variance. The estimator is consistent for i.i.d. samples in

the domain of attraction of a stable law with index α < 2. This approach is, however,

appropriate mostly for the case α < 2, otherwise one would need to transform the data,

e.g. to square it when 2 < α < 4. In a certain way, the underlying idea of our method

is also based on the asymptotic properties of the sum. Our approach is, however, more

general and independent of the results in Meerschaert & Sche�er (1998). As we will see,

the block structure of the partition function enables extracting more information about

the tail index. Moreover, we go beyond the i.i.d. case and consider weakly dependent

samples.

Before applying any of the tail index estimators, one should make sure that the heavy-

tailed model is appropriate. Usually, various graphical techniques are used for this pur-

pose. It is important to stress that Hill plots cannot be used as a graphical tool for

establishing heavy tail property of the data as they can be misleading in cases when the

tails are light. On the other hand, extreme value index estimators, like moment estimator,

can be used for this purpose. Plotting the values 1/α̂M
k for varying k can indicate that

the tails are light if the values are around zero (see Resnick (2007)). There are other

exploratory tools for inspecting whether the tails are heavy or not. One of the most

frequently used tool is a variation of the QQ plot. The basic idea comes from the fact

that if P (Y > x) ∼ x−α, then P (lnY > x) = P (Y > ex) ∼ e−αx, i.e. the log-transformed

Pareto random variable has an exponential distribution. By choosing 1 ≤ k ≤ n one can

plot the points (
− ln

(
i

k + 1

)
, lnY(i)

)
, i = 1, . . . , k.

If the data is heavy-tailed with index α, the plot should be roughly linear with slope 1/α.

This is no more than the standard QQ plot of log-transformed data on exponential quan-
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tiles. This graphical method can be used to de�ne estimator (Resnick (2007)), however,

we will use it only as an exploratory tool. For k = n this plot is sometimes called Zipf's

plot. We will refer to it simply as the QQ plot.

2.2.2 Graphical method

As a �rst step, we propose a graphical method useful for exploratory analysis of the tails

of the underlying distribution. Since the scaling function shape is strongly in�uenced by

the tail index value, this motivates the use of a plot of the empirical scaling function to

detect the tail index of a distribution. In particular, the asymptotic results suggest that

there should be sharp di�erences between the plots for distributions with in�nite variance

(α < 2) and the others (α > 2).

Based on a �nite sample and chosen points si ∈ (0, 1), i = 1, . . . , N , one can estimate

the scaling function by equation (1.5) for a �xed value of q. Repeating this for a range of

q values makes it possible to give a plot of the empirical scaling function τ̂N,n.

By examining the plot and comparing it with the baseline, it is possible to say some-

thing about the nature of the tails of the underlying distribution. If τ̂N,n(q) is above the

baseline for q < 2 and nearly horizontal afterward, then true α is probably less than

2. By examining the point where the graph breaks, one can roughly estimate the inter-

val containing α. If τ̂N,n(q) coincides with the baseline for q < 2 and diverges from it

somewhere after q > 2, then the true α is probably greater than 2. The point at which

deviation starts can be an estimate for α. This also establishes a graphical method for

distinguishing two cases, whether α ≤ 2 or α > 2.

If the graph coincides with the baseline, then we can suspect that the data does not

exhibit heavy tails and that the moments are �nite for the considered range of q. This

way one can distinguish between heavy tails or not.

In the next subsection we show how the estimated scaling functions look like on several

sets of simulated data. Subsection 2.2.6 contains examples of how conclusions can be made

from the shape of the scaling functions.

2.2.3 Plots of the empirical scaling functions

The shape of the empirical scaling function is not always ideal as its asymptotic form.

However, most plots are very close to their theoretical form. To illustrate this, we sim-

ulate 10 independent samples of size 1000 in six di�erent settings. The �rst three cases

studied are i.i.d. samples and others are stationary and weakly dependent, in accordance

with the assumptions of Theorem 1. Figure 2.2 summarizes the plots of the empirical

scaling functions (dotted) together with the corresponding asymptotic form (solid) and

the baseline (dot-dashed). Here, si, i = 1, . . . , N in (1.5) are chosen equidistantly in the
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interval [0.1, 0.9] with N = 23. The scaling function is estimated at the points qj chosen

in the interval [0, 10] with step 0.1.

The �rst group of samples is generated from a stable distribution with stable index

equal to 1. A random variable Y has an α-stable distribution with index of stability α ∈
(0, 2), scale parameter σ ∈ (0,∞), skewness parameter β ∈ [−1, 1] and shift parameter

µ ∈ R, denoted by Y ∼ Sα(σ, β, µ) if its characteristic function has the following form

E
[
eiζY

]
=

exp
{
−σα|ζ|α

(
1− iβ sign(ζ) tan πα

2

)
+ iζµ

}
, if α ̸= 1,

exp
{
−σ|ζ|

(
1 + iβ 2

π
sign(ζ) ln |ζ|

)
+ iζµ

}
, if α = 1,

ζ ∈ R. (2.15)

If µ = 0 and α ̸= 1, or if β = 0 and α = 1, then Y is said to have strictly stable

distribution. The second group of samples is generated from the Student t-distribution

with 3 degrees of freedom, a parameter that corresponds to the tail index. Recall that

the probability density function of the Student t-distribution T (ν, σ, µ) is

fT (ν,σ,µ)(x) =
Γ(ν+1

2
)

√
νσ

√
πΓ(ν

2
)

(
1 +

1

ν

(
x− µ

σ

)2
)− ν+1

2

, x ∈ R, (2.16)

where σ > 0 is the scale parameter, ν the tail parameter (usually called degrees of freedom)

and µ ∈ R the location parameter. Figures 2.2a and 2.2b show that for both stable and

Student case the empirical scaling functions are close to their theoretical form. Both plots

are approximately bilinear and by identifying the breakpoint, one can roughly guess the

tail index value. Also, it is clear from the shape of the empirical scaling functions that the

variance is in�nite in the �rst case and �nite in the second. The third sample is generated

from a standard normal distribution. From Figure 2.2c one can surely doubt the existence

of heavy-tails in these samples since the empirical scaling functions almost coincide with

the baseline q/2. This shows that the estimated scaling functions have the potential of

providing a self-contained characterization of the tail.

Examples shown in Figures 2.2d-2.2f are based on dependent data. Dependent samples

are generated as sample paths of two types of stochastic processes: Ornstein-Uhlenbeck

(OU) type processes and di�usions. Recall that a stochastic process X = {X(t), t ≥ 0}
is said to be of OU type if it satis�es a stochastic di�erential equation (SDE) of the form

dX(t) = −λX(t)dt+ dL(λt), t ≥ 0, (2.17)

where L = {L(t), t ≥ 0} is the background driving Lévy process (BDLP) and λ > 0. We

consider strictly stationary solutions of SDE (2.17). The α-stable OU type process with

parameter λ > 0 and 0 < α < 2 is the solution of the SDE (2.17) with L being the α-

stable Lévy process. Since the distribution of increments for the BDLP L is known in this

case, we use Euler's scheme of simulation by replacing di�erentials in Equation (2.17) with
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di�erences. Student OU type process has been introduced in Heyde & Leonenko (2005). It

can be shown that for arbitrary λ > 0 there exists a strictly stationary stochastic process

X = {X(t), t ≥ 0}, which has a marginal distribution T (ν, σ, µ) with density function

(2.16) and BDLP L such that (2.17) holds. This stationary process X is referred to as

the Student OU type process. Moreover, the cumulant transform of the BDLP L can be

expressed as

κL1(ζ) = logE
[
eiζL1

]
= iζµ−

√
νσ|ζ|

Kν/2−1(
√
νσ|ζ|)

Kν/2(
√
νσ|ζ|)

, ζ ∈ R, ζ ̸= 0,

where K is the modi�ed Bessel function of the third kind and κL1(0) = 0 (Heyde &

Leonenko (2005)). Since for the Student OU process the exact law of the increments of

the BDLP is unknown, we use the approach introduced in Taufer & Leonenko (2009) to

simulate Student OU process. This approach circumvents the problem of simulating the

jumps of the BDLP and is easily applicable when an explicit expression of the cumulant

transform is available. Both OU processes considered can be shown to posses strong

mixing property with an exponentially decaying rate (see Masuda (2004)).

The last process considered is a stationary Student di�usion. In order to de�ne the

Student di�usion, we introduce the SDE:

dX(t) = −θ (X(t)− µ) dt+

√√√√ 2θσ2

ν − 1

(
ν +

(
X(t)− µ

σ

)2
)
dB(t), t ≥ 0, (2.18)

where ν > 2, σ > 0, µ ∈ R, θ > 0, and B = {B(t), t ≥ 0} is a standard Brownian motion

(BM) (see Bibby et al. (2005) and Heyde & Leonenko (2005)). The SDE (2.18) admits a

unique ergodic Markovian weak solution X = {X(t), t ≥ 0}, which is a di�usion process

with the Student invariant distribution given by probability density function (2.16). The

di�usion process which solves the SDE (2.18) is called the Student di�usion. If X(0) =d

T (ν, σ, µ), the Student di�usion is strictly stationary. According to Leonenko & �uvak

(2010), the Student di�usion is a strong mixing process with an exponentially decaying

rate. For the simulation of paths of the Student di�usion process with known values of

parameters, we have used the Milstein scheme (for details see Iacus (2008)). Both OU

processes were generated with autoregression parameter λ = 1 and di�usion was generated

with θ = 2.

From the examples on dependent data we can conclude that the shape of the empir-

ical scaling function is not a�ected with this weak form of dependence present. Again,

empirical scaling functions are very near their asymptotic form.
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(f) Student T (3, 1, 0) di�usion

Figure 2.2: Plots of the empirical scaling functions

2.2.4 Estimation methods

Besides the graphical method, a simple estimation methods for the unknown tail index

can also be established based on the asymptotic behavior of the partition function and the

empirical scaling function. As follows from the assumptions of Theorem 1, the estimators

de�ned here should work well for stationary strong mixing samples, thus extending the

problem from the simplest i.i.d. case. We propose here three methods and test their

performance in the next subsection by means of simulation.
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The basic idea of a method M1 is to estimate α by �tting the empirical scaling

function to the asymptotic form τ∞α . This is done by the ordinary least squares method.

First we �x some points si ∈ (0, 1), i = 1 . . . , N in the de�nition of the empirical scaling

function. For example, in simulations below we take equidistant points in the interval

[0.1, 0.9] with N = 23. Now, for points qi ∈ (0, qmax), i = 1, . . . ,M , we can calculate

τ̂i = τ̂N,n(qi) using Equation (1.5). The estimator is de�ned as

α̂1 = argmin
α∈(0,∞)

M∑
i=1

(τ̂i − τ∞α (qi))
2. (2.19)

For practical reasons, due to complexity of the expression for τ∞α , the method is divided

into two cases: α ≤ 2 and α > 2; i.e., the corresponding part of τ∞α is used as a model

function in (2.19), depending where the true value of α is. Therefore, it is necessary to �rst

detect whether we are in the case of in�nite variance or not. This can be accomplished

by using the graphical method described earlier. In the inconclusive case, it is advisable

to compute both estimates and compare the quality of the �t. For simulations, points qi
are chosen equidistantly in the interval [0, 8] with step 0.1.

If α ≤ 2, the information on α in the asymptotic form of the empirical scaling function

is hidden in the slope of the �rst part and the breakpoint. When α > 2, the information

on α appears in the breakpoint and in the complicated nonlinear expression of the second

part. Method M1 tries to use all three parts in estimating α. Alternatively, we can base the

method only on a breakpoint. Since the shape of τ∞α is bilinear or approximately bilinear,

we de�nemethod M2 by �tting the following general continuous bilinear function to the

empirical scaling function

ς(q) =

aq, if 0 < q ≤ b,

cq + b(a− c), if q > b.
(2.20)

The parameter of interest is b which corresponds to a breakpoint α and the estimator by

method M2, α̂2, is de�ned as

(â, α̂2, ĉ) = argmin
(a,b,c)∈(0,∞)×(0,∞)×R

M∑
i=1

(τ̂i − ς(qi))
2. (2.21)

This method has the advantage of not depending on whether α ≤ 2 or α > 2. More-

over, the second part depends on the rate of divergence of in�nite moments and may not

precisely follow the shape of τ∞α on �nite samples. This part is, however, usually approxi-

mately linear and �tting (2.20) makes the method more robust on the discrepancies from

τ∞α .

For the third method, we go one step back to the asymptotic behavior of the parti-

29



Chapter 2. Asymptotic scaling of weakly dependent heavy-tailed stationary sequences

tion function. As already discussed, results of Theorem 1 motivate viewing (2.3) as the

regression model. It makes sense then to estimate α from a bivariate nonlinear regression

of lnSq(n, n
s)/ lnn on q and s with model function Rα(q, s). However, this complicated

regression model may not always give good results and that is why we approach it in two

steps. When de�ning the empirical scaling function we �xed q and �rst considered s as

the variable in regression, while for the third method we go the other way around.

For the moment let us �x s ∈ (0, 1). The limit Rα(q, s) in Theorem 1 has the following

form for α ≤ 2:

Rα(q, s) =

 s
α
q, if q ≤ α,

1
α
q + s− 1, if q > α,

(2.22)

and if α > 2 the limit is

Rα(q, s) =

 s
2
q, if q ≤ α,

max
{

1
α
q + s− 1, s

2
q
}
, if q > α.

Notice that in this case bilinear function q 7→ max
{

1
α
q + (s− 1), s

2
q
}
has a breakpoint at

q =
s− 1
s
2
− 1

α

.

If s ∈ (2/α, 1), q < 0 and there is no breakpoint in the range of positive q values. If

s ∈ (0, 2/α), we can write for the case α > 2:

Rα(q, s) =

 s
2
q, if q ≤ q,

1
α
q + (s− 1), if q > q.

(2.23)

So, if s ∈ (0, 2/α), q 7→ Rα(q, s) is bilinear continuous and, motivated by the regression

model (2.3), we can �t function (2.20) to points{(
qi,

lnSqi(n, n
s)

lnn

)
: i = 1, . . . ,M

}
. (2.24)

This way we �nd the estimated parameters of (2.20)

(âs, b̂s, ĉs) = argmin
(a,b,c)∈(0,∞)×(0,∞)×R

M∑
i=1

(
lnSqi(n, n

s)

lnn
− ς(qi)

)2

.

In order to de�ne a method that does not depend on α ≤ 2 or not, we notice that, if

s ∈ (0, 2/α), the common part of (2.22) and (2.23) giving information on α is the slope

of the second part. Therefore, 1/ĉs is an estimate for α for each s ∈ (0, 2/α). Since

we do not consider problems with tail index greater than, say 8, s can be chosen in the
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interval (0, 0.25). We de�ne a method M3 estimator by averaging over a set of values

sj ∈ (0, 0.25), j = 1, . . . , N :

α̂3 =
1

N

N∑
i=1

1

ĉsi
. (2.25)

In simulations and examples below we take sj equidistantly in the interval [0.01, 0.25]

with step 0.02.

To make the estimation process by this method more clear, we illustrate it on a simple

example with data consisting of 1000 points generated from the Student t distribution

T (3, 1, 0) (Figure 2.3). Figures 2.3a-2.3e show sets of points (2.24) for di�erent s values,

together with the �tted bilinear function (2.20). The reciprocal of the slope of the second

part corresponds to the tail index α. These values for a range of s are shown in Figure

2.3f. By averaging, we obtain the �nal estimate by method M3 to be 2.942.

Although method M3 may seem promising, it has a serious drawback of not being scale

invariant. Indeed, scaling the data by some factor c would scale the partition function by

a factor |c|q. As the samples are �nite, this produces an additional term ln |c|q/ lnn in the

ordinate of the set of points (2.24) that a�ects the estimation process. This makes the

practical use of the method very limited. Nonetheless, we will include it in the simulation

study below in which the generated data will be chosen from distributions with scale

parameter equal to 1. These problems do not appear for the methods based on the

empirical scaling functions. Scaling functions are robust to scale change as they are based

only on the slope obtained for a �xed value of q.
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Figure 2.3: Estimation process by method M3 on Student T (3, 1, 0) data

2.2.5 Simulation study

In this subsection we provide a simulation study in order to investigate �nite sample

properties of the estimators de�ned in the previous subsection. We choose to generate

i.i.d. random samples from the following distributions: stable distribution Sα(1, 0, 0)

with α = 0.5 and α = 1.5, Student t-distribution T (α, 1, 0) with α = 0.5, 1.5, 2.5, 3, 4 and

Pareto distribution with tail index α = 0.5, 1, 1.5 and scale parameter 1. Recall that the
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random variable X has Pareto distribution if its tail distribution is given by

P (X > x) =


(
xm

x

)α
, x ≥ xm,

1, x < xm,

where xm > 0 is the minimal possible value (scale parameter) and α > 0 is the tail index.

For each distribution we have generated 250 samples of length 1000 and computed the

estimators (2.19), (2.21) and (2.25). In addition to i.i.d. samples, we have generated

samples from stable and Student OU type process and Student di�usion, in the same way

as it was done in Subsection 2.2.3.

In order to give a picture of the performance of the estimators, we compare them with

the Hill estimator. Since the Hill estimator depends on the number of order statistics k,

we do this in the following manner. For each sample we compute the value of the Hill

estimator for each k in the range {1, . . . , 250}. After this is done for all 250 samples, we

choose k such that the mean square error (MSE) is minimal. So this is the smallest MSE

that can be achieved with the Hill estimator on the generated samples if k is �xed for

each distribution. It is clear that this comparison is unfair to the estimators proposed in

Subsection 2.2.4, as in practice one can hardly choose an optimal k for the Hill estimator.

We note that besides the Hill estimator, we computed in the same way the moment

estimator and the Pickands estimator. However, as neither of these is signi�cantly better

than the Hill estimator, we do not report their results in the following.

Table 2.1: Bias (α̂− α) of the estimators based on 250 samples of length 1000

distribution α M1 M2 M3 Hill optimal k
stable 0.5 0.1252 0.1085 0.0126 -0.0218 98
stable 1.5 0.1533 0.3352 0.2914 -0.0275 211
Student 0.5 0.1182 0.1194 0.0276 -0.0065 238
Student 1.5 0.0716 0.1607 0.0834 -0.0938 94
Student 2.5 0.5669 -0.1396 0.0025 -0.2375 44
Student 3 0.3432 -0.4268 -0.1053 -0.4241 39
Student 4 -0.1861 -1.1929 -0.4638 -0.6033 20
Pareto 0.5 0.0654 0.1204 -0.0048 0.0011 250
Pareto 1 -0.1391 0.2349 0.0003 0.0023 250
Pareto 1.5 0.1736 0.1449 0.0381 0.0034 250

stable OU 0.5 0.1805 0.1965 0.0876 -0.0289 159
stable OU 1.5 0.0846 0.3940 0.3113 -0.0161 209
Student OU 3 1.1333 -0.4035 0.9498 -0.3224 32
Student OU 4 0.4769 -1.2158 1.3796 -0.6695 23
Student di� 3 0.0073 -0.9425 -0.4411 -0.8703 31
Student di� 4 -0.5066 -1.6429 -0.5128 -1.0137 14

Table 2.1 reports the estimated bias as well as the optimal k for the Hill estimator,

while Table 2.2 shows the root of the mean square error (RMSE). Bold values show the
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Table 2.2: RMSE of the estimators based on 250 samples of length 1000

distribution α M1 M2 M3 Hill
stable 0.5 0.2474 0.1602 0.0861 0.0504

stable 1.5 0.3027 0.4654 0.4549 0.1001

Student 0.5 0.2039 0.1606 0.0869 0.0307

Student 1.5 0.2708 0.2897 0.2783 0.1652

Student 2.5 0.9884 0.2894 0.4030 0.3950
Student 3 1.0232 0.4913 0.4556 0.5704
Student 4 1.3163 1.2171 0.6687 0.9418
Pareto 0.5 0.1098 0.1673 0.0754 0.0316

Pareto 1 0.1470 0.3387 0.1565 0.0632

Pareto 1.5 0.3352 0.2906 0.2628 0.0948

stable OU 0.5 0.2778 0.2386 0.1389 0.0668

stable OU 1.5 0.2563 0.5112 0.4752 0.1203

Student OU 3 1.9149 0.4612 1.1514 0.5337
Student OU 4 1.7082 1.2410 1.7274 0.9081

Student di� 3 0.5985 0.9810 0.6821 0.9757
Student di� 4 1.1394 1.6655 0.9150 1.3743

best value for each case considered.

First, if we compare the three proposed methods, one can notice that method M2 is

outperformed by M1 and M3 by bias, while there is no much di�erence when it comes to

RMSE. The methods M1 and M3 have similar performance with M3 slightly better when

RMSE is considered. The disadvantage of method M1 is that it depends on the knowledge

of whether α ≤ 2 or α > 2 and in some cases the estimated value may depend on the

choice of the maximal q value taken into consideration. On the other hand, method M3 is

not scale invariant which makes it less suitable for the practical examples. To summarize

these arguments, in a general situation a method M1 is recommended to use.

When compared by the RMSE, the Hill estimator shows smaller variability than the

other three estimators, especially for smaller values of α, while for larger α the proposed

methods give better results. However, one should notice that the di�erences are not

substantial. Moreover, the Hill estimator's performance is reported for the optimal choice

of k, which may not be achieved in practice. On the other hand, computation of the

proposed estimators is straightforward and does not require choosing extra parameters.

If we take this in mind, the new methods can be seen as a good alternative to Hill

estimator. The comparison of method M1 and the Hill estimator is also shown by boxplots

in Figure 2.4. We illustrate more advantages of the estimator M1 on examples in the next

subsection.
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Figure 2.4: Boxplots of α̂− α for α̂1 and α̂Hill
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2.2.6 Examples and comparison

In this subsection we provide several examples to illustrate how the proposed methods

work and compare them with the existing methods.

Example 1 - non heavy-tailed data

With this example we try to illustrate the potential of the empirical scaling functions as

a graphical method that can distinguish between heavy-tailed and light-tailed scenario.

Di�erent methods are tested on a random sample from standard normal distribution of

size 2000. The results are shown in Figure 2.5. QQ plot for 500 largest data points

exhibits nonlinearity, thus indicating that Pareto type tail is not a good �t for the data

(Figure 2.5a). For the purpose of tail analysis we plot the extreme value index (1/α)

values estimated by the moment estimator. From Figure 2.5b one can see that the plot

stabilizes at a negative value near zero. This is an indication of light tails. The scaling

function shown in Figure 2.5c is completely in accordance with this analysis. Indeed, it

almost coincides with the baseline that corresponds to a non heavy-tailed data.
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(c) Empirical scaling function

Figure 2.5: Example 1 - non heavy-tailed data
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Example 2 - Danish �re insurance claims

The second example is a practical one. The data we analyze are the Danish �re insurance

claims in the period from 1980 to 1990. There are 2167 observations and the amounts

are in millions of Danish Kroner.1 The same example has been considered in (Embrechts

et al. 1997, Example 6.2.9) and in (Resnick 2007, Fig. 1.6., 4.5., 4.7.). The analysis made

in Resnick (2007) suggests that the data exhibits heavy-tails and the tail index estimate is

around 1.4 (see (Resnick 2007, Fig. 4.5.)). Hill and moment estimator plots (Figures 2.6a

and 2.6b) con�rm the index value is around 1.5. The empirical scaling function, together

with the baseline, is shown in Figure 2.6c. Mean has been subtracted from the data to

adjust to the assumptions of Theorem 1. The scaling function is approximately bilinear:

the �rst part of the plot has a slope greater than the baseline and the second part is

nearly horizontal. This points out that the variance is in�nite. The breakpoint occurs at

around 1.5, which indicates a possible value of the tail index. Estimation by method M1

gives α̂1 = 1.419, which is consistent with the previous analysis done in Resnick (2007).
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Figure 2.6: Example 2 - Danish �re insurance claims

1The data can be obtained from: http://www.ma.hw.ac.uk/~mcneil/data.html
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Example 3 - departure from Pareto tail

The Hill estimator, as well as many others, is known to behave poorly if the slowly

varying function in the tail is far away from a constant. We compare this behavior with

the performance of the empirical scaling functions on the same samples. Consider two

distribution F1, F2 de�ned by their tail distribution functions

F 1(x) = 1− F1(x) =
1

x
1
2

, x ≥ 1, (2.26)

F 2(x) = 1− F2(x) =
e

1
2

x
1
2 lnx

, x ≥ e. (2.27)

Both distributions are heavy-tailed with tail index equal to 1/2. We generate samples

from these two distributions with 5000 observations. The corresponding Hill plots are

shown in Figure 2.7a. While for the Pareto distribution F1 the Hill plot provides very

good results, for F2 it is impossible to draw any conclusion about the value of the tail

index. The plot fails to stabilize at some value and produces a departure from the true

index value. This is sometimes called the Hill horror plot (see Embrechts et al. (1997)).

The result is similar with the moment estimator: a non-constant slowly varying function

in the tail produces a signi�cant bias, as shown in Figure 2.7b.
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Figure 2.7: Example 3 - departure from Pareto tail
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Figure 2.7c shows the empirical scaling functions for the same samples, together with

the theoretical one and the baseline. One can see that the empirical scaling functions are

very close to their asymptotic shape, especially in the �rst part of the plot, before the

breakpoint. It seems that nonconstant slowly varying function a�ects the estimation but

the e�ect is not so dramatic as for the standard estimators. Calculating estimates using

method M1 yields α̂1 = 0.645 for F1 and α̂1 = 0.72 for F2.
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Asymptotic scaling of the linear

fractional stable noise

In the previous chapter, we have analyzed asymptotic properties of the partition function

for weakly dependent heavy-tailed sequences. In this chapter we do this for the linear

fractional stable noise, which is an example of a self-similar stationary sequence exhibiting

both strong dependence and heavy-tails.

We start with the de�nition and basic properties of the linear fractional stable motion

and then establish asymptotic behavior of the partition function and the empirical scaling

function. These results are used to de�ne estimation methods for the parameters of the

process. The methods are tested by simulations and on some real data examples.

3.1 Linear fractional stable motion

Empirical time series which appear in many applications display both the �Joseph� and

�Noah� e�ects, as coined by Mandelbrot after the biblical �gures of Joseph and Noah (see

e.g. Mandelbrot (1997)). While the Joseph e�ect refers to long-range dependence of the

increments, the Noah e�ect refers to their high variability, as expressed by the power law

tails of the marginal distributions. Fractional Brownian motion (FBM) is an example of

a process exhibiting only the Joseph e�ect: its increments are long-range dependent but

with normal marginal distribution. On the other hand, the α-stable Lévy process with

0 < α < 2 exhibits only the Noah e�ect: it has independent but heavy-tailed increments

with tail index equal to α.

An example of a stochastic process which exhibits both e�ects is the linear fractional

stable motion (LFSM). LFSM can be de�ned through the stochastic integral

X(t) =
1

CH,α

∫
R

(
(t− u)

H−1/α
+ − (−u)

H−1/α
+

)
M(du), t ∈ R, (3.1)
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where α ∈ (0, 2), 0 < H < 1, (x)+ = max(x, 0) and where M is a random noise. More

speci�cally, M is an α-stable random measure on R with Lebesgue control measure λ and

skewness β. This means, �rst, that M is a σ-additive mapping from E = {A ∈ B(R) :

λ(A) < ∞} to the space of random variables and that it is independently scattered: if

A1, A2 ∈ E are disjoint sets, then M(A1) and M(A2) are independent random variables.

Secondly, for all sets A ∈ E , M(A) has an α-stable distribution with scale parameter

λ(A)1/α and skewness parameter β, i.e. M(A) ∼ Sα(λ(A)
1/α, β, 0). If α = 1 we assume

β = 0, but for other values of α,M is allowed to be skewed. Recall that stable distributions

Sα(σ, β, µ) were de�ned in (2.15).

If the constant CH,α in the representation (3.1) is chosen such that the scaling param-

eter of X(1) equals 1, i.e.

CH,α =

(∫
R

∣∣∣(1− u)
H−1/α
+ − (−u)

H−1/α
+

∣∣∣α du)1/α

,

then the process is called standard LFSM. The stationary sequence Yi = X(i)−X(i− 1),

i ∈ N is referred to as the linear fractional stable noise (LFSN). The LFSM process

{X(t)} is H-self-similar with stationary increments (see (Samorodnitsky & Taqqu 1994,

Proposition 7.4.2)). For each t, X(t) has a strictly stable distribution with stable index

α (Samorodnitsky & Taqqu 1994, Proposition 7.4.3). The parameter α governs the tail

behavior of the marginal distributions in the sense that for each t, X(t) is heavy-tailed

with tail index α, i.e. P (|X(t)| > x) = L(x)x−α where L is a slowly varying function,

more precisely, L is constant at in�nity. In particular, we have that E|X(t)|q = ∞ for

q ≥ α. More details on the LFSM and its properties can be found in the monograph

Samorodnitsky & Taqqu (1994).

Setting α = 2 in (3.1) reduces the LFSM to the FBM. Dependence structure of the

FBM {BH(t), t ≥ 0} can be described using autocovariance function γ(h) = EY1Yh+1,

where Yi = BH(i) − BH(i − 1), i ∈ N. It can be shown that γ(h) ∼ H(2H − 1)h2H−2

as h → ∞. This implies that
∑∞

h=1 γ(h) = ∞ for 1/2 < H < 1, which is a property

known as the long-range dependence. The case 0 < H < 1/2 is referred to as the negative

dependence, since the coe�cient H(2H − 1) is negative in this case. As the second

moment of the LFSM is in�nite, dependence cannot be characterized with the covariance

function. For stable processes this can be done using codi�erences (Samorodnitsky &

Taqqu (1994)), but there are also many other competing approaches (see e.g. Magdziarz

(2009)). Nevertheless, by analogy to the FBM, the case of LFSM with H > 1/α is referred

to as a long-range dependence and the case H < 1/α as negative dependence.
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3.2 Asymptotic scaling

Suppose {X(t), t ≥ 0} is LFSM that is sampled in a regularly spaced time instants,

X(δ), X(2δ), . . . , X(nδ). For simplicity of notation, we assume δ = 1, so we have a

sample X1, . . . , Xn. We denote by Yi = Xi − Xi−1, i ∈ N the corresponding LFSN.

Partition function can now be written as

Sq(n, t) =
1

⌊n/t⌋

⌊n/t⌋∑
i=1

∣∣∣∣∣∣
⌊t⌋∑
j=1

Y(i−1)⌊t⌋+j

∣∣∣∣∣∣
q

=
1

⌊n/t⌋

⌊n/t⌋∑
i=1

∣∣Xi⌊t⌋ −X(i−1)⌊t⌋
∣∣q ,

where q ∈ R and 1 ≤ t ≤ n. Asymptotic properties of Sq(n, t) for LFSM have been

considered in the context of multifractality detection in Heyde & Sly (2008). We go over

the methodology of the previous chapter to establish the asymptotic properties. Although

dependence restricts many of the arguments used in the previous chapter, self-similarity

simpli�es the proofs at many points.

In our analysis we will also include a range of negative q values. Although this may

seem unusual, �nite negative order moments provide additional information on the value

of the Hurst parameter H. In particular, for q ∈ (−1, 0), stable-distributed random

variables have �nite q-th absolute moment, since their probability density function is

bounded (see e.g. Zolotarev (1986)).

The main argument in establishing asymptotic properties of the partition function is

based on the following lemma. A similar result has been proved in Heyde & Sly (2008),

yet we prove it here by much simpler arguments.

Lemma 2. Suppose (Yi, i ∈ N) is a LFSN. Then for q > α,

ln (
∑n

i=1 |Yi|q)
lnn

P→ q

α
,

as n → ∞.

Proof. Let ε > 0. Suppose δ < ε/(q − α) and de�ne

Zi,n = Yi 1
(
|Yi| ≤ n

1
α
+δ
)
, i = 1, . . . , n, n ∈ N.

It follows from Karamata's theorem (Resnick (2007)) that for arbitrary r > α

E|Zi,n|r =
∫ ∞

0

P (|Zi,n|r > x)dx =

∫ nr( 1
α+δ)

0

P (|Yi|r > x)dx

=

∫ nr( 1
α+δ)

0

L(x
1
r )x−α

r dx ≤ C1L(n
1
α
+δ)nr( 1

α
+δ)(−α

r
+1) = C1L(n

1
α
+δ)n

r
α
−1+δ(r−α)

(3.2)
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Next, notice that

P

(
max

i=1,...,n
|Yi| > n

1
α
+δ

)
≤

n∑
i=1

P
(
|Yi| > n

1
α
+δ
)
≤ C2n

L(n
1
α
+δ)

(n
1
α
+δ)α

≤ C2
L(n

1
α
+δ)

nαδ
.

Now by partitioning on the event

{Yi = Zi,n, i = 1, . . . , n} =
{
Yi ≤ n

1
α
+δ, i = 1, . . . , n

}
=

{
max

i=1,...,n
|Yi| ≤ n

1
α
+δ

}
,

using Markov's inequality and (3.2) we have

P

(
ln (
∑n

i=1 |Yi|q)
lnn

>
q

α
+ ε

)
= P

(
n∑

i=1

|Yi|q > n
q
α
+ε

)

≤ P

(
n∑

i=1

|Yi|q > n
q
α
+ε, max

i=1,...,n
|Yi| ≤ n

1
α
+δ

)
+ P

(
max

i=1,...,n
|Yi| > n

1
α
+δ

)

≤ P

(
n∑

i=1

|Zi,n|q > n
q
α
+ε

)
+ P

(
max

i=1,...,n
|Yi| > n

1
α
+δ

)
≤ nE |Zi,n|q

n
q
α
+ε

+ C2
L(n

1
α
+δ)

nαδ

≤ n

n
q
α
+ε

C1L(n
1
α
+δ)n

q
α
−1+δ(q−α)) + C2

L(n
1
α
+δ)

nαδ
≤ C1L(n

1
α
+δ)nδ(q−α)−ε + C2

L(n
1
α
+δ)

nαδ
→ 0,

as n → ∞, since δ(q−α)−ε < 0 and L(x) is slowly varying, thus bounded by any positive

power of x, as x → ∞.

For the reverse inequality notice that since Yi is a stationary strictly α-stable sequence

corresponding to a dissipative �ow it follows by (Samorodnitsky 2004, Theorem 4.8) that

maxi=1,...,n |Yi|/n1/α converges in distribution to some positive random variable. So for

any δ > 0

P

(
max

i=1,...,n
|Yi| < n

1
α
−δ

)
→ 0, as n → ∞.

Now it follows that

P

(
ln (
∑n

i=1 |Yi|q)
lnn

<
q

α
− ε

)
= P

(
n∑

i=1

|Yi|q < n
q
α
−ε

)
≤ P

(
max

i=1,...,n
|Yi| < n

1
α
− ε

q

)
→ 0,

as n → ∞ which proves the statement.

Theorem 3. Suppose (Yi, i ∈ N) is a LFSN. Then for every q > −1 and every s ∈ (0, 1)

lnSq(n, n
s)

lnn

P→ RH,α(q, s) :=

sqH, if q ≤ α,

s
(
1 + qH − q

α

)
+ q

α
− 1, if q > α,

(3.3)

as n → ∞.
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Proof. By H-self-similarity of the LFSM it follows that

Sq(n, n
s)

d
=

nsqH

n1−s

n1−s∑
i=1

|X(i)−X(i− 1)|q = nsqH

n1−s

n1−s∑
i=1

|Yi|q . (3.4)

The LFSN sequence (Yi, i ∈ N) is a stable mixed moving average, which is known to be

ergodic (see Cambanis et al. (1987), Surgailis et al. (1993) or Pipiras & Taqqu (2002)).

For q ∈ (−1, α), E|Yi|q < ∞, so it follows by the ergodic theorem that

1

n1−s

n1−s∑
i=1

|Yi|q → E|X(1)|q a.s.

and in particular

ln

(
nsqH

n1−s

n1−s∑
i=1

|Yi|q
)

− lnnsqH P→ lnE|X(1)|q.

Since

ln

(
nsqH

n1−s

n1−s∑
i=1

|Yi|q
)

− lnnsqH d
= lnn

(
lnSq(n, n

s)

lnn
− sqH

)
,

this implies the statement of the theorem for q < α.

Now we consider the case q > α. We have by (3.4) that

lnSq(n, n
s)

lnn
− s

(
1 + qH − q

α

)
−
( q
α
− 1
)

d
=

(sqH − 1 + s) lnn+ ln
(∑n1−s

i=1 |Yi|q
)

lnn
− s

(
1 + qH − q

α

)
−
( q
α
− 1
)

=
ln
(∑n1−s

i=1 |Yi|q
)

lnn
− q

α
(1− s)

=
ln
(∑n1−s

i=1 |Yi|q
)

lnn1−s
(1− s)− q

α
(1− s).

Since by Lemma 2
ln
(∑n1−s

i=1 |Yi|q
)

lnn1−s

P→ q

α
, as n → ∞,

it follows that

P

(∣∣∣∣ lnSq(n, n
s)

lnn
− s

(
1 + qH − q

α

)
−
( q
α
− 1
)∣∣∣∣ > ε

)

= P

∣∣∣∣∣∣
ln
(∑n1−s

i=1 |Yi|q
)

lnn1−s
− q

α

∣∣∣∣∣∣ (1− s) > ε

→ 0,

as n → ∞ and this proves the second case. The case q = α follows by the same argument
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as (c) part of the proof of Theorem 1.

The previous theorem can be seen as an analogue of Theorem 1. As opposed to the

setting of the previous chapter, the limit now additionally depends on the value of the

parameter H. It is clear from (3.3) that lnSq(n, n
s)/ lnn should behave approximately

linearly in s. It thus makes sense to focus on the slope of the simple linear regression of

lnSq(n, n
s)/ lnn on s for a �xed value of q. We now establish an analog of Theorem 2 on

the empirical scaling function.

Theorem 4. Suppose that the assumptions of Theorem 3 hold and �x s1, . . . , sN in the

de�nition of the empirical scaling function (1.5). Then for every q > −1

τ̂N,n(q)
P→ τ∞H,α(q) :=

Hq, if q ≤ α,(
H − 1

α

)
q + 1, if q > α,

(3.5)

as n → ∞.

Proof. Fix q > −1 and let ε > 0, δ > 0 and

C =
N∑
i=1

(si)
2 − 1

N

(
N∑
i=1

si

)2

> 0.

By Theorem 3, for each i = 1, . . . , N there exist n(1)
i such that

P

(∣∣∣∣ lnSq(n, n
si)

lnn
−RH,α(q, si)

∣∣∣∣ > εC

2siN

)
<

δ

2N
, n ≥ n

(1)
i .

It follows then that for n ≥ n
(1)
max := max{n(1)

1 , . . . , n
(1)
N }

P

(∣∣∣∣∣
N∑
i=1

si
lnSq(n, n

si)

lnn
−

N∑
i=1

siRH,α(q, si)

∣∣∣∣∣ > εC

2

)

≤ P

(
N∑
i=1

si

∣∣∣∣ lnSq(n, n
si)

lnn
−RH,α(q, si)

∣∣∣∣ > εC

2

)

≤
N∑
i=1

P

(∣∣∣∣ lnSq(n, n
si)

lnn
−RH,α(q, si)

∣∣∣∣ > εC

2siN

)
<

δ

2
.

Similarly, for each i = 1, . . . , N there exist n(2)
i such that

P

∣∣∣∣ lnSq(n, n
si)

lnn
−RH,α(q, si)

∣∣∣∣ > εC

2
(∑N

i=1 si

)
 <

δ

2N
, n ≥ n

(2)
i ,
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and for n ≥ n
(2)
max := max{n(2)

1 , . . . , n
(2)
N }

P

(∣∣∣∣∣ 1N
N∑
i=1

si

N∑
j=1

lnSq(n, n
sj)

lnn
− 1

N

N∑
i=1

si

N∑
j=1

RH,α(q, sj)

∣∣∣∣∣ > εC

2

)

≤ P

 N∑
j=1

∣∣∣∣ lnSq(n, n
sj)

lnn
−RH,α(q, sj)

∣∣∣∣ > NεC

2
(∑N

i=1 si

)


≤
N∑
j=1

P

∣∣∣∣ lnSq(n, n
sj)

lnn
−RH,α(q, sj)

∣∣∣∣ > εC

2
(∑N

i=1 si

)
 <

δ

2
.

Finally then, for n ≥ max{n(1)
max, n

(2)
max} it follows that

P


∣∣∣∣∣∣∣τ̂N,n(q)−

∑N
i=1 siRH,α(q, si)− 1

N

∑N
i=1 si

∑N
j=1RH,α(q, sj)∑N

i=1 (si)
2 − 1

N

(∑N
i=1 si

)2
∣∣∣∣∣∣∣ > ε


≤ P

(∣∣∣∣∣
N∑
i=1

si
lnSq(n, n

si)

lnn
−

N∑
i=1

siRH,α(q, si)

∣∣∣∣∣
+

∣∣∣∣∣ 1N
N∑
i=1

si

N∑
j=1

lnSq(n, n
sj)

lnn
− 1

N

N∑
i=1

si

N∑
j=1

RH,α(q, sj)

∣∣∣∣∣ > εC

)

≤ P

(∣∣∣∣∣
N∑
i=1

si
lnSq(n, n

si)

lnn
−

N∑
i=1

siRH,α(q, si)

∣∣∣∣∣ > εC

2

)

+ P

(∣∣∣∣∣ 1N
N∑
i=1

si

N∑
j=1

lnSq(n, n
sj)

lnn
− 1

N

N∑
i=1

si

N∑
j=1

RH,α(q, sj)

∣∣∣∣∣ > εC

2

)
< δ,

and thus

τ̂N,n(q)
P→
∑N

i=1 siRH,α(q, si)− 1
N

∑N
i=1 si

∑N
j=1 RH,α(q, sj)∑N

i=1 (si)
2 − 1

N

(∑N
i=1 si

)2 , as n → ∞.

It remains to show that the right hand side is exactly τ∞H,α(q) from (3.5). Indeed, when

q ≤ α we have ∑N
i=1 qHs2i − 1

N

∑N
i=1 si

∑N
j=1 qHsj∑N

i=1 (si)
2 − 1

N

(∑N
i=1 si

)2 = Hq
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and if q > α∑N
i=1 si

((
1 + qH − q

α

)
si +

q
α
− 1
)
− 1

N

∑N
i=1 si

∑N
j=1

((
1 + qH − q

α

)
sj +

q
α
− 1
)

∑N
i=1 (si)

2 − 1
N

(∑N
i=1 si

)2
=

(
1 + qH − q

α

)∑N
i=1 s

2
i −

(
1 + qH − q

α

)
1
N

(∑N
i=1 si

)2
∑N

i=1 (si)
2 − 1

N

(∑N
i=1 si

)2
+

(
q
α
− 1
)∑N

i=1 si −
1
N

∑N
i=1 si

∑N
j=1

(
q
α
− 1
)

∑N
i=1 (si)

2 − 1
N

(∑N
i=1 si

)2
=

(
H − 1

α

)
q + 1 +

(
q
α
− 1
)∑N

i=1 si −
(
q
α
− 1
)∑N

i=1 si∑N
i=1 (si)

2 − 1
N

(∑N
i=1 si

)2 =

(
H − 1

α

)
q + 1.

3.3 Applications in parameter estimation

Since LFSM combines both heavy-tails and long-range dependence it provides a rich

modeling potential (see e.g. Willinger et al. (1998)). It is therefore important to have

methods for estimating the main parameters α and H. Standard estimators of the Hurst

exponent H usually assume that the underlying process has �nite variance and this makes

them inappropriate for the case of LFSM. Also, estimators of the tail index are known

to behave well mostly on independent or weakly dependent samples (see e.g. Embrechts

et al. (1997)). It is therefore necessary to construct estimators of both parameters that

take into account the special structure of the LFSM.

A wavelet based estimator of the parameter H for the LFSM has been proposed

in Stoev & Taqqu (2003) (see also Stoev & Taqqu (2005) and Pipiras et al. (2007)).

The authors de�ne two estimators, both of which are shown to be strongly consistent

and asymptotically normal under some conditions. These estimators do not require the

knowledge of α. In Ayache & Hamonier (2012) a wavelet-based estimator of α has been

de�ned. However, this method requires one to know the H value �rst. For the more

general model of linear multifractional stable motion, estimators of α and the Hurst

functional parameter H(·) have been developed in Ayache & Hamonier (2013).

In this section we develop methods that are able to simultaneously estimate both

parameters α and H. The methods are based on the asymptotic behavior of partition

function and the empirical scaling function established in Theorem 4. The asymptotic

shape of the empirical scaling function τ∞H,α de�ned in (3.5) is shown in Figure 3.1 for

a range of values of H and α. Figure 3.1a shows the long-range dependent case. As

indicated in (3.5), the scaling function is bilinear in q with the �rst part having the slope
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H. A break occurs at α and the plot is linear again but now with the slope H − 1/α.

In the negative dependence case H < 1/α (Figure 3.1b), the second part has a negative

slope.
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1.0

ΤH ,Α
¥ HqL

H=0.9, Α=1.2

H=0.8, Α=1.3

H=0.7, Α=1.5

H=0.6, Α=1.7

(a) Case H > 1
α
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q
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¥ HqL
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H=0.4, Α=1.1

H=0.2, Α=1.5

(b) Case H < 1
α

Figure 3.1: Asymptotic scaling function τ∞H,α

Figure 3.2 shows the empirical scaling functions (dashed) for some of the H and α

values presented in Figure 3.1. Their computation is based on one sample path realization

of length 15784 (explained later). Here, and in every other example of this chapter, si,

i = 1, . . . , N in (1.4) are chosen equidistantly in the interval [0.1, 0.9] with N = 23. The

scaling function is estimated at points qj chosen equidistantly in the interval [−1, 4] with

step 0.1. On each plot in Figure 3.2 the corresponding true scaling function is shown by

a solid line. Although the break is not sharp, one can notice the bilinear shape.
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Figure 3.2: Empirical scaling functions (dashed) with the corresponding τ∞H,α

3.3.1 Estimation methods

We now specify the estimation methods for the parameters H and α, similarly as it was

done in Subsection 2.2.4.

Let us �rst mention that one method can be based on the results of Theorem 3. By

choosing points 0 ≤ s1 < · · · < sN ≤ 1 and qj ∈ (−1, qmax), j = 1, . . . ,M , based on the

sample of length n, we can calculate{
lnSqj(n, n

si)

lnn
: i = 1, . . . , N, j = 1, . . . ,M

}
. (3.6)

As lnSqj(n, n
si)/ lnn is expected to behave as RH,α(qj, si) de�ned in (3.3), we can de�ne

the method MI estimator for (H,α) by minimizing the di�erence between the two in

the sense of the ordinary least squares, i.e.

(Ĥ1, α̂1) = argmin
(H,α)∈(0,1)×(0,2)

N∑
i=1

M∑
j=1

(
lnSqj(n, n

si)

lnn
−RH,α(qj, si)

)2

. (3.7)

Although this method follows naturally from Theorem 3, it has a disadvantage of being

sensitive to the scale parameter of the data similarly as method M3 of the previous

chapter. Again, scaling the data by factor c would produce an additional term ln |c|q/ lnn
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in Equation (3.7). If the underling process is standard LFSM, then the scale parameter

equals 1 and this would not cause the problem. However, for real data this is usually not

the case. For this reason, we would not consider this method in more details, although

it will be tested by simulations in the next subsection. To avoid this issue, we specify

two other methods which are based only on the slope of RH,α and are not a�ected by an

underlying scale parameter.

Method MII is based on the empirical scaling function (1.4) and Theorem 4. In

contrast to MI, we proceed here in two steps. First, based on the data set (3.6) for each

qj, j = 1, . . . ,M we compute the empirical scaling function τ̂N,n(qj) as de�ned in (1.4).

Since for large samples this converges to τ∞H,α(qj) for each j, we de�ne estimators based

on the empirical scaling function as

(Ĥ2, α̂2) = argmin
(H,α)∈(0,1)×(0,2)

M∑
j=1

(
τ̂N,n(qj)− τ∞H,α(qj)

)2
. (3.8)

In simulations and examples below we choose qj, j = 1, . . . ,M equidistantly in the interval

[−1, 4] with step 0.2, in order to cover the range of α ∈ (0, 2) values.

The slope of the �rst part (q < α) of the empirical scaling function corresponds to

H, the breakpoint corresponds to α and the slope of the second part (q > α) contains

information about both parameters H and α. In some examples, as well as in those in

Figure 3.2, the slope of the second part does not give the value H − 1/α very precisely,

although the �rst part and the breakpoint behave as expected from (3.5). The second

part corresponds to the rate of growth under in�nite moments, which makes it a sensitive

quantity to measure. Moreover, it depends on both parameters H and α. This can a�ect

the estimation even when there is an obvious bilinear shape. For this reason we provide

an alternative estimation method which uses only the information from the �rst part of

the scaling function and the breakpoint, analogues to method M2 of Subsection 2.2.4.

Method MIII �ts the following general continuous bilinear function to the empirical

scaling function

ς(q) =

aq, if q ≤ b,

cq + b(a− c), if q > b.
(3.9)

Here we are interested in two parameters: a which corresponds to H and b which corre-

sponds to α. The estimators by method MIII are now de�ned as

(Ĥ3, α̂3, ĉ) = argmin
(a,b,c)∈(0,1)×(0,2)×R

M∑
j=1

(τ̂N,n(qj)− ς(qj))
2 . (3.10)
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3.3.2 Simulation study

We use simulation to test the bias and variability of the estimators (3.7), (3.8) and (3.10).

We also compare the methods to see which one provides the best results.

In order to simulate paths of LFSM we have used fast Fourier transform (FFT) based

algorithm, described in Stoev & Taqqu (2004). All generated sample paths are of length

15784 and additional parameters of the generator are chosen to be m = 128 and M = 600.

This makes m(M + 15784) to be a power of 2 and the algorithm uses FFT (see Stoev &

Taqqu (2004) for more details). In all cases we use symmetric α-stable LFSM and the

scale parameter of X(1) is set to 1.

Simulations were conducted as follows. We chose for α values 0.3, 0.7, 1, 1.3, 1.7 and

for H values 0.2, 0.4, 0.6, 0.8, which makes a total of 20 cases. For each case, 100 sample

paths of length 15784 have been simulated. For each sample we compute the estimates

(Ĥ1, α̂1), (Ĥ2, α̂2) and (Ĥ3, α̂3) corresponding to each of the methods. The mean bias and

RMSE of each estimator have been computed for each case. The results are shown in

Table 3.1 and Table 3.2. We compare the methods by indicating the better values in bold

for each parameter separately.

Table 3.1: Bias of the estimators based on 100 sample paths

H α Ĥ1 −H Ĥ2 −H Ĥ3 −H α̂1 − α α̂2 − α α̂3 − α

0.2

0.3 0.1076 0.1898 0.1888 0.0199 0.0124 -0.0089

0.7 0.0349 0.0472 0.0869 0.0325 0.0317 -0.0798
1 0.0250 -0.0162 0.0304 0.0396 0.0958 -0.1137

1.3 0.0227 -0.0377 0.0112 0.0590 0.1854 -0.1465
1.7 0.0266 0.0048 0.0014 0.1640 0.2253 -0.0950

0.4

0.3 -0.0129 0.0877 0.0876 0.0243 0.0167 -0.0062

0.7 -0.0208 -0.0208 0.0138 0.0456 0.0486 -0.0632
1 -0.0071 -0.0590 -0.0085 0.0543 0.1222 -0.1005

1.3 0.0071 -0.0533 -0.0053 0.0707 0.1951 -0.1265
1.7 0.0176 0.0040 0.0024 0.1572 0.2045 -0.0870

0.6

0.3 -0.1210 -0.0240 -0.0227 0.0295 0.0242 -0.0013

0.7 -0.0650 -0.0910 -0.0515 0.0627 0.0793 -0.0442

1 -0.0234 -0.0855 -0.0277 0.0663 0.1423 -0.0828
1.3 0.0064 -0.0432 -0.0033 0.0579 0.1546 -0.1174
1.7 0.0139 -0.0022 -0.0016 0.1395 0.1899 -0.0921

0.8

0.3 -0.2230 -0.1159 -0.1156 0.0360 0.0305 0.0030

0.7 -0.1109 -0.1507 -0.1195 0.0824 0.1097 -0.0098

1 -0.0309 -0.0883 -0.0513 0.0622 0.1334 -0.0360

1.3 0.0072 -0.0379 -0.0079 0.0276 0.1126 -0.1016

1.7 -0.0176 -0.0356 -0.0466 0.1626 0.2261 -0.0382

The comparison based on the RMSE from Table 3.2 shows that method MIII provides

the best results for both parameters. Table 3.1 indicates that MI and MIII provide smaller

bias than MII, although the di�erences between the estimators are not substantial. Having
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Table 3.2: RMSE of the estimators based on 100 sample paths

H α Ĥ1 Ĥ2 Ĥ3 α̂1 α̂2 α̂3

0.2

0.3 0.2733 0.2537 0.2516 0.0416 0.0423 0.0318

0.7 0.1301 0.1155 0.1333 0.0866 0.1124 0.1104
1 0.0902 0.0899 0.0838 0.1133 0.2014 0.1513

1.3 0.0652 0.0833 0.0644 0.1461 0.2902 0.1903
1.7 0.0444 0.0432 0.0483 0.2238 0.2621 0.2030

0.4

0.3 0.2597 0.2000 0.1975 0.0454 0.0431 0.0307

0.7 0.1438 0.1148 0.1073 0.0952 0.1128 0.0940

1 0.0996 0.1167 0.0811 0.1257 0.2128 0.1385
1.3 0.0691 0.0970 0.0731 0.1607 0.2940 0.1820
1.7 0.0418 0.0432 0.0500 0.2266 0.2537 0.1815

0.6

0.3 0.2846 0.1965 0.1935 0.0503 0.0478 0.0320

0.7 0.1654 0.1465 0.1176 0.1095 0.1258 0.0828

1 0.1091 0.1292 0.0963 0.1390 0.2105 0.1268

1.3 0.0731 0.0958 0.0695 0.1592 0.2577 0.1517

1.7 0.0413 0.0469 0.0531 0.2206 0.2512 0.1775

0.8

0.3 0.3357 0.2264 0.2261 0.0566 0.0495 0.0313

0.7 0.1881 0.1859 0.1523 0.1288 0.1446 0.0612

1 0.1094 0.1350 0.1003 0.1415 0.1984 0.0916

1.3 0.0746 0.0939 0.0699 0.1461 0.2255 0.1363

1.7 0.0446 0.0563 0.0681 0.2305 0.2601 0.1541

in mind that MI is not scale invariant, we can de�nitely recommend the method MIII

as the best one. The performance of MIII is also shown in Figure 3.3. Mean estimates

based on 100 samples are shown as points in the (H,α) plane and the gridlines show the

true value of the parameters. For each value of H the corresponding points and gridline

are shown with di�erent colors. We also plot the function 1/H to distinguish between

long-range dependence (α > 1/H) and negative dependence (α < 1/H) case.

It can be seen from Figure 3.3 that the value of H does not seem to have a signi�cant

in�uence on the estimation of the tail index α. However, the quality of the estimates of

H worsens as α takes smaller values. This can be explained from (3.3) since for small α,

the value of H has only a small impact on the shape of RH,α. One can see this also from

the shape of the scaling function (3.5). The scaling function contains information on H

in the slopes of the two parts of the broken line. When α is small, the �rst linear part is

short and the value 1/α dominates in the slope of the second part. This makes it hard to

estimate H in this case.
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Figure 3.3: Mean estimates of (Ĥ3, α̂3)

All three methods can estimate both parameters H and α simultaneously. In view

of the results of Chapter 2, we �nd it interesting to also study how an estimation of the

tail index would behave if the dependence structure is stronger and the parameter H

measuring dependence is known. So we included in the simulation the behavior of the

estimators MII and MIII when H is known. We also did this for the estimators of H

assuming α is known. In these cases (3.8) and (3.10) reduce to the minimization of an

univariate function.

When one of the parameters is known, both methods MII and MIII behave equally

well. Here we present only the mean estimates by method MII (Figure 3.4). The mean

estimates of α when H is known are shown in Figure 3.4a. Figure 3.4b shows a similar

plot for the estimated value of H assuming α is known. In the case of the estimation

of α (Figure 3.4a), one sees that estimators based on the scaling function, like the one

proposed in the previous chapter, can perform well even under complicated dependence

structure.
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Figure 3.4: Mean estimates assuming one parameter is known
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3.3.3 Real data applications

Empirical studies show that the network tra�c data can exhibit both self-similarity and

heavy tails (see e.g. Willinger et al. (1998), Leland et al. (1994)). Many models have

been built explaining this behavior. In Karasaridis & Hatzinakos (2001), the authors

propose to model network tra�c as a linear transformation of the totally skewed linear

fractional stable noise. Here we take one network tra�c data set and assuming the data

is a realization of this model, we estimate the self-similarity and tail parameters.

The data we analyze is the Ethernet trace recorded at the Bellcore Morristown Re-

search and Engineering facility (BC-Oct89Ext) (see Leland & Wilson (1991) and Leland

et al. (1994) for more details). It contains packet arrival times (in seconds) and the num-

ber of packets (in bytes). The original data has been modi�ed by counting the packets

in the blocks of 1 second. We express the time series as the number of packets per time

unit and take only the �rst 25000 values, which is around 20% of all data (Figure 3.5a).

The sample mean has been subtracted according to the model and the empirical scaling

function (dotted) is shown in Figure 3.5b with the �tted bilinear function (3.9) (solid).

The shape indeed resembles the one characteristic for the LFSM and estimation with MIII

yields values Ĥ = 0.88 and α̂ = 1.33. The same data set has been analyzed in Karasaridis

& Hatzinakos (2001). The authors report the estimated value 0.8 for the Hurst parameter

and 1.63 for the tail index, which is in accordance with our analysis.

5000 10 000 15 000 20 000 25 000

10 000

20 000

30 000

40 000

50 000

(a) Data

-1 1 2 3 4
q

-0.5

0.5

1.0

1.5

2.0

ΤHqL

(b) Empirical and �tted scaling function

Figure 3.5: BC-Oct89Ext trace

For the second illustration we analyze the solar �are X-ray data observed by GOES

satellite1. This type of data is considered to exhibit both self-similarity and heavy tails and

claimed to be modeled well with the LFSM (see Weron et al. (2005) and Stanislavsky et al.

(2009)). Assuming the data is indeed a realization of the mean shifted linear fractional

stable noise, we estimate the parameters H and α. The data contains the information

about the time of appearance and energy of the solar �ares. We take the data in the
1Data is publicly available at http://www.ngdc.noaa.gov/stp/solar/solarflares.html
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period from August, 1999 to December, 2003, aggregate the maximum �ux values on a

daily basis and set the mean to 0, which provides 1405 data points. Figure 3.6a shows

the plot of the data and Figure 3.6b the empirical scaling function with the �tted bilinear

function (3.9). The estimated values of the parameters are Ĥ = 0.75 and α̂ = 1.56.
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Figure 3.6: Solar �are X-ray data
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Detecting multifractality of time series

In this chapter we introduce the notion of a multifractal stochastic process. There is no

unique de�nition, so we provide an overview of di�erent properties usually referred to

as multifractality. The importance of such processes is still a subject of debate, mainly

because there is no reliable statistical method that would con�rm the occurrence of multi-

fractal properties in empirical time series. We make a contribution to this problem in the

second part of this chapter, where we analyze the implications of the results of Chapters

2 and 3 on one of the detection methods.

4.1 Multifractal stochastic processes

The starting point of the multifractal theory can be traced back to the work of Mandel-

brot in the context of turbulence modeling, continuing the earlier work of Kolmogorov,

Yaglom and Obukhov. In his seminal papers Mandelbrot (1972) and Mandelbrot (1974),

Mandelbrot introduced multiplicative cascades in the setting of measures, but also allow-

ing the randomness in the construction. The term �multifractal� was coined to refer to

cascades and is attributed to Frisch and Parisi (Frisch & Parisi (1985)). Cascades have

many interesting properties which became a model for characterizing more general ob-

jects. Geometrical properties of the sets of irregularities of cascades have led to extending

the notion of multifractality to functions and motivated studying �ne scale properties of

functions (see e.g. Ja�ard (1996)). In this setting, multifractal analysis deals with the

local irregularities of functions characterized by the Hausdor� dimension of sets of points

having the same pointwise Hölder exponent. For multifractal functions these sets are

interwoven and have noninteger Hausdor� dimension. This notion can be generalized to

stochastic processes by simply applying the de�nition for a function on the sample paths.

On the other hand, scaling properties of cascades can be seen as a generalization

of the self-similarity. This led to a consideration of a new class of stochastic processes,

called multifractal, characterized by global scaling properties that extend self-similarity in

di�erent manners. However, this can lead to discrepancy. For example, strictly α-stable
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Lévy processes with 0 < α < 2 are known to be self-similar with Hurst parameter 1/α.

On the other hand, the sample paths of these processes exhibit multifractal features (see

Ja�ard (1999)).

The example of cascade suggests that local irregularities are closely related with global

scaling properties. This is precisely described with the so-called multifractal formalism.

There has been an extensive research questioning when this formalism holds in di�erent

settings (see Ja�ard (1997a,b, 2000), Riedi (1995, 2003)). Numerically, �ne irregularities

are unreachable without such property. For this reason, many di�erent de�nitions have

been introduced in order to achieve the validity of the formalism.

In this section we provide an overview of di�erent scaling relations for stochastic

processes that are usually referred to as multifractality. Examples are provided illustrating

each of these properties.

4.1.1 De�nitions of multifractality

The best known scaling relation in the theory of stochastic processes is self-similarity. A

stochastic process {X(t), t ≥ 0} is said to be self-similar if for any a > 0, there exists

b > 0 such that

{X(at)} d
= {bX(t)}, (4.1)

where {·} d
= {·} stands for the equality of �nite dimensional distributions. A process

{X(t), t ≥ 0} is said to be stochastically continuous at 0 if for every ε > 0, P (|X(h) −
X(0)| > ε) → 0 as h → 0. If {X(t), t ≥ 0} is self-similar, nontrivial and stochastically

continuous at 0, then b in (4.1) must be of the form aH for some H ≥ 0, i.e.

{X(at)} d
= {aHX(t)}. (4.2)

The proof of this fact can be found in Embrechts & Maejima (2002). These weak as-

sumptions are assumed to hold for every self-similar process considered latter on. The

exponent H is called the Hurst parameter and we say {X(t), t ≥ 0} is H-ss or H-sssi if it

also has stationary increments.

Following Mandelbrot et al. (1997), the de�nition of a multifractal that we present

�rst is motivated by generalizing the scaling rule of self-similar processes in the following

manner:

De�nition 1. A stochastic process {X(t)} is said to be multifractal if

{X(ct)} d
= {M(c)X(t)}, (4.3)

where for every c > 0,M(c) is a random variable independent of {X(t)} whose distribution
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does not depend on t.

When M(c) is nonrandom for every c > 0, the process is self-similar and M(c) = cH

if the process is nontrivial and stochastically continuous at 0. The scaling factor M(c) is

assumed to satisfy the following property:

M(ab)
d
= M1(a)M2(b), (4.4)

for every choice of a and b, where M1 and M2 are independent copies of M . This general-

izes the property of the nonrandom factor for H-ss processes (ab)H = aHbH . A motivation

for this property can be found in Mandelbrot et al. (1997).

However, instead of De�nition 1, scaling is usually speci�ed in terms of moments. The

idea of extracting the scaling properties from average type quantities, like Lp norm, dates

back to the work of Frisch and Parisi (Frisch & Parisi (1985)).

De�nition 2. A stochastic process {X(t)} is said to be multifractal if there exist functions
c(q) and τ(q) such that

E|X(t)−X(s)|q = c(q)|t− s|τ(q), ∀t, s ∈ T , ∀q ∈ Q, (4.5)

where T and Q are intervals on the real line with positive length and 0 ∈ T .

The function τ(q) is called the scaling function. Set Q can also include negative reals.

The de�nition can also be based on the moments of the process instead of the moments

of increments, i.e. E|X(t)| = c(q)tτ(q). If the increments are stationary, these de�nitions

coincide. It is clear that if {X(t)} is H-sssi, then τ(q) = Hq where it is de�ned.

The following argument shows that τ must be concave. Let q1, q2 ∈ Q, w1, w2 > 0,

w1 + w2 = 1 and q = w1q1 + w2q2. From Hölder's inequality it follows

E|X(t)−X(s)|q ≤ (E|X(t)−X(s)|q1)w1 (E|X(t)−X(s)|q2)w2 .

Taking logarithms gives

ln c(q) + τ(q) ln |t− s| ≤ (w1τ(q1) + w2τ(q2)) ln |t− s|+ (w1 ln c(q1) + w2 ln c(q2)) .

Dividing by ln |t−s| < 0 and letting t → s gives τ(q) ≥ w1τ(q1)+w2τ(q2), so τ is concave.

If T = [0,∞), then by letting t → ∞ we would get the opposite inequality τ(q) ≤
w1τ(q1) + w2τ(q2), showing τ is linear. Therefore, strict concavity can hold only over a

�nite time horizon, otherwise τ(q) would be linear. This is not considered to be a problem

for practical purposes (see Mandelbrot et al. (1997) for details). Since the scaling function

is linear for self-similar processes, every departure from linearity can be attributed to
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multifractality. However, for this reasoning to make sense, one must assume moment

scaling to hold as otherwise self-similarity and multifractality are not complementary

notions.

The drawback of involving moments in the de�nition is that they can be in�nite. This

narrows the applicability of the de�nition and as we show later, can produce practical

problems.

It is easy to see that under stationary increments the de�ning property (4.3), along

with the property (4.4), implies multifractality De�nition 2. Indeed, (4.4) implies that

E|M(c)|q must be of the form cτ(q) and the claim follows from X(t) =d M(t)X(1). One

has to assume �niteness of the moments involved in order for the statements like (4.5)

to have sense. Also notice that both de�nitions imply X(0) = 0 a.s., which will be used

later.

There exist many variations of De�nition 2. Some processes obey the de�nition only

for a small range of values t or for asymptotically small t. The stationarity of increments

can also be imposed. When referring to multifractality we will make clear which de�nition

we mean. However, we exclude self-similar processes from the preceding de�nitions.

The prominent examples of multifractals are the so-called multiplicative cascades.

They were �rst introduced as measures to model turbulence and the basic idea goes back

to Richardson in 1920s (see Lovejoy & Schertzer (2013) for the historical account). A

motivating example is the binomial measure, which can be constructed on the interval

[0, 1] as follows. Suppose p ∈ (0, 1) and q = 1−p. Take µ0 to be the Lebesgue measure on

[0, 1]. Measure µ1 is de�ned by assigning mass p to interval [0, 1/2] and mass q to interval

[1/2, 1]. Repeating this process, at the step n we arrive at measure µn such that for the

dyadic interval Ia1a2···an :=
[∑n

i=1
ai
2i
,
∑n

i=1
ai
2i
+ 1

2n

)
, ai ∈ {0, 1}, i = 1, . . . , n, it holds

µn(Ia1a2···an) = pn−
∑n

i=1 aiq
∑n

i=1 ai .

One can then show that the sequence (µn, n ∈ N) converges weakly to a �nite measure µ

de�ned on the Borel σ-algebra on [0, 1] (Kahane & Peyriere (1976)). Several extensions

of this construction can be made. First, instead of splitting the intervals in half, one can

take some b > 2 and spread masses p1, . . . , pb that add up to one. Secondly, the mass

allocated to each interval can be made random and this leads to a discrete multiplicative

cascade. More precisely, suppose {Wa1a2···an : ai ∈ {0, 1, . . . , b − 1}, n ∈ N} is a family

of independent copies of the non-negative random variable W such that EW = 1. The

previous construction gives at the step n a random measure µn such that for the b-adic

interval Ia1a2···an :=
[∑n

i=1
ai
bi
,
∑n

i=1
ai
bi
+ 1

bn

)
, ai ∈ {0, . . . , b− 1}, i = 1, . . . , n, it holds

µn(Ia1a2···an) = b−nWa1Wa1a2 · · ·Wa1a2···an .

The factor b−n ensures conserving the mass on average, E [µn([0, 1])] = 1. We can write
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the preceding equation in the form

µn+1(Ia1a2···an+1) = b−1Wa1a2···an+1µn(Ia1a2···an),

which can be seen as a discrete form of the multifractal property (4.3) with t = b−n and

c = b−1. Moreover, we have that, assuming the moments involved are �nite,

E [(µn(Ia1a2···an))
q] = b−nq (EW q)n =

(
b−n
)− logb EW q+q

,

which is a version of (4.5) for [s, t] = Ia1a2···an with τ(q) = − logbEW q+q. It can be shown

that, a.s., the sequence (µn)n∈N converges weakly to a random measure µ. Conditions for

the nondegeneracy of µ and existence of moments can be found in Kahane & Peyriere

(1976). We can now de�ne a stochastic process X(t) = µ([0, t]), t ∈ [0, 1], which we

will refer to as the discrete multiplicative cascade. The resulting measure has another

interesting property: if we denote Yn = µn([0, 1]), n ∈ N, then

Yn+1 = b−(n+1)
∑

a1a2···an+1 : ai∈{0,...,b−1}

Wa1Wa1a2 · · ·Wa1a2···an+1

= b−1

b−1∑
j=0

Wj

b−n
∑

a2···an+1 : ai∈{0,...,b−1}

Wja2 · · ·Wja2···an+1

 .

This means that Yn+1 satis�es

Yn+1
d
= b−1

b−1∑
j=0

WjYn(j),

where Yn(j), j = 0, . . . , b − 1 are independent, distributed as Yn and independent of

W0, . . . ,Wb−1. Taking the limit as n → ∞ we get that for Y∞ = µ([0, 1])

Y∞
d
= b−1

b−1∑
j=0

WjY∞(j),

where Y∞(j), j = 0, . . . , b are independent copies of Y∞ independent of i.i.d. Wj,

j = 0, . . . , b. Thus, Y∞ is a solution of the following problem: given nonnegative i.i.d.

A0, . . . , Ab−1, a non-negative random variable Z is the �xed point of the smoothing trans-

form if

Z
d
=

b−1∑
j=0

AjZj,

where Z0, . . . , Zb−1 are independent copies of Z, independent of A0, . . . , Ab−1. Describing

the solutions of such equations has attracted a lot of attention (see Alsmeyer et al. (2012)
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and references therein). If Aj are nonrandom, then it is well known that the only solutions

are strictly stable distributed random variables.

Although cascades are considered as a model example of multifractals, they satisfy

multifractal properties only on a discrete grid of time points. Moreover, the discrete

cascade process {X(t)} does not have stationary increments. Several constructions have

been proposed to obtain continuous scaling properties and stationary increments starting

with Barral & Mandelbrot (2002) and followed by Muzy & Bacry (2002), Bacry & Muzy

(2003), Chainais et al. (2005) and more recently, Barral & Jin (2014). Of all these, mostly

equivalent constructions, we will use only the log-normal cascade process which is derived

from a class of log-in�nitely divisible multifractal random measures proposed in Bacry

& Muzy (2003). These measures can be constructed as follows. Let ϕ(q), q ∈ R be the

logarithm of the characteristic function of some in�nitely divisible distribution. Suppose

P is an independently scattered in�nitely divisible random measure on S+ = {(t, l) :

t ∈ R, l ≥ 0} with intensity measure µ(dt, dl) = l−2dtdl. This means that for every

sequence of disjoint Borel sets (An) ⊂ S+, (P(An)) are independent random variables,

P (
∪

n An) =
∑

n P(An) a.s. and for every Borel set A ⊂ S+

EeiqP(A) = eϕ(q)µ(A).

Given T > 0, de�ne

f(k) =

k, k ≤ T,

T, k > T.

For t ∈ R and l > 0 de�ne sets (cones)

Al(t) = {(s, k) : k ≥ l, −f(k)/2 < s− t < f(k)/2},

and consider process wl(t) = P(Al(t)). Now for l > 0 and Lebesgue measurable set

I, we de�ne measure Ml(I) =
∫
I
ewl(t)dt. Under certain conditions (see Bacry & Muzy

(2003)), a.s., Ml converges weakly to a random measure M , as l → 0. This limiting

measure is called log-in�nitely divisible cascade measure. If the starting in�nitely divisible

distribution is normal, then we arrive at the log-normal cascade measure that in the

discrete construction corresponds to a cascade constructed with multipliers W such that

lnW has normal distribution. In this case, we will refer to a process {θ(t), t ∈ [0, T ]},
θ(t) = M([0, t]) as the log-normal cascade (LNC). LNC with intermittency parameter

λ2 ∈ (0, 1/2) has stationary increments and the property that for every 0 < c < 1

{θ(ct)} d
= {ce2Γcθ(t)}, (4.6)

where Γc is normally distributed random variable such that EΓc = −V ar(Γc) = λ2 ln c,
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independent of {θ(t)}. For every t ∈ [0, T ] and for the range of �nite moments, moment

scaling of the form (4.5) holds with

τLNC(q) = q(1 + 2λ2)− 2λ2q2. (4.7)

Cascades are heavy-tailed, and for the log-normal cascade the range of �nite moments is

(−∞, 1/(2λ2)) by applying (Bacry & Muzy 2003, Lemma 3) and by (Bacry et al. 2013,

Proposition 5).

Modeling abilities of cascades are restricted as they are nondecreasing and can take

only positive values. Several models have been proposed to address the need for a more

general multifractal processes. Two approaches are the most common. The �rst is based

on the time change of some self-similar process, i.e. X(t) = Y (θ(t)), where {θ(t)} is some

type of continuous cascade process independent of {Y (t)}. A typical choice for {Y (t)}
is FBM and resulting process is called (fractional) Brownian motion in multifractal time

or multifractal (fractional) random walk (MRW). The second construction is based on

the stochastic integration of some continuous cascade process {θ(t)} with respect to some

self-similar process, i.e. X(t) =
∫ t

0
θ(s)dY (s). Generally, two approaches lead to di�erent

processes (see Bacry et al. (2001), Muzy & Bacry (2002), Ludeña (2008) and Abry et al.

(2009) for more details). However, if {Y (t)} is BM (H = 1/2) and {θ(t)} log-in�nitely

divisible cascade process, then the process {Y (θ(t))} has the same �nite dimensional

distributions as the process

X(t) = lim
l→0

∫ t

0

ewl(s)/2dY (s),

where {wl(s)} is de�ned in the construction of the cascade measure. If {θ(t)} is the

log-normal cascade process, we will refer to a process {X(t) = Y (θ(t)), t ∈ [0, T ]} as the

log-normal multifractal random walk (LNMRW). Multifractal properties of {X(t)} are

inherited from those of {θ(t)} and for every 0 < c < 1

{X(ct)} d
= {c

1
2 eΓcX(t)}, (4.8)

with Γc as in (4.6). Since E|X(t)|q = E|θ(t)|q/2E|Y (1)|q, the scaling function is given by

τLNMRW (q) = q

(
1

2
+ λ2

)
− λ2

2
q2, (4.9)

when q-th moment is �nite, i.e. when q ∈ (−1, 1/λ2). Moments of negative order q ≤ −1

are in�nite as this is a property of the normally distributed Y (1).

Continuous cascade processes and multifractal random walks are the main examples

of multifractals with properties (4.3) and (4.5). In what follows when we say multifractal

process we mean a process of this kind. More advanced models can also be built by
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generalizing the previous construction, see e.g. Anh et al. (2008, 2009a,b, 2010).

4.1.2 Spectrum of singularities

Previous de�nitions involve �global� properties of the process. Alternatively, one can

base the de�nition on the �local� scaling properties, such as roughness of the process

sample paths measured by the pointwise Hölder exponents. There are di�erent approaches

on how to develop the notion of a multifractal function. First, we say that a function

f : [0,∞) → R is Cγ(t0) if there exists a constant C > 0 such that for all t in some

neighborhood of t0
|f(t)− f(t0)| ≤ C|t− t0|γ. (4.10)

Another common de�nition in the literature is to de�ne that f is Hölder continuous of

order γ at point t0 if |f(t)−Pt0(t)| ≤ C|t− t0|γ for some polynomial Pt0 of degree at most

⌊γ⌋. If the Taylor polynomial of this degree exists, then Pt0 is that Taylor polynomial.

Thus, if Pt0 is constant, then Pt0 ≡ f(t0) and two de�nitions coincide. This happens, in

particular when γ < 1. For other conditions of equivalence and more details see Riedi

(2003). In what follows we will use the �rst de�nition as in many cases we consider only

processes whose sample paths are Cγ(t0) with γ < 1 at any point t0.

It is clear that if f ∈ Cγ(t0), then f ∈ Cγ′
(t0) for each γ′ < γ. A pointwise Hölder

exponent of the function f at t0 is

H(t0) = sup {γ : f ∈ Cγ(t0)} . (4.11)

Consider sets Sh = {t : H(t) = h} consisting of the points in the domain where f has

the Hölder exponent of value h. If we consider the Lebesgue measure of the sets Sh for

varying h, then usually only one of them would have a full Lebesgue measure while all

the others would have Lebesgue measure zero. To properly measure the size of the sets

Sh, we introduce the Hausdor� dimension, which is based on the concept of Hausdor�

measure. Denote by |U | = sup{∥x−y∥ : x, y ∈ U} the diameter of the set U ⊂ Rn, where

∥ · ∥ is the Euclidean norm. For F ⊂ Rn, F ̸= ∅ and s ≥ 0, let for every δ > 0

Hs
δ (F ) = inf

{
∞∑
i=1

|Ui|s : F ⊂
∞∪
i=1

Ui, |Ui| ≤ δ

}
,

which increases as δ → 0. The s-dimensional Hausdor� measure of F ⊂ Rn is de�ned as

Hs(F ) = lim
δ→0

Hs
δ (F ).

One can show that this is indeed a measure on the Borel sets on Rn and for s = n it is

a multiple of the Lebesgue measure. Moreover, it has the scaling property Hs(λF ) =
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λsHs(F ). Next, notice that for |Ui| ≤ δ and t > s,
∑

i |Ui|t ≤
∑

i |Ui|t−s|Ui|s ≤
δt−s

∑
i |Ui|s so that H t

δ(F ) ≤ δt−sHs
δ (F ). Letting δ → 0 we see that if Hs(F ) < ∞,

then H t(F ) = 0 for t > s and there must be a critical value of s where Hs(F ) changes

from ∞ to 0. This is the Hausdor� dimension of F ⊂ Rn, denoted by dimH F . More

precisely,

dimH F = inf {s ≥ 0 : Hs(F ) = 0} = sup {s ≥ 0 : Hs(F ) = ∞}

with the convention that sup ∅ = 0. If F = ∅, then we de�ne dimH F = −∞. For more

details on the Hausdor� dimension see Falconer (2003).

In the interesting examples, sets Sh are fractal in the sense that they have noninteger

Hausdor� dimension. This means that the local regularity of a function, measured by

the pointwise Hölder exponents, changes erratically from point to point. The mapping

h 7→ d(h) = dimH Sh is called the spectrum of singularities (also multifractal or Hausdor�

spectrum) or simply the spectrum. We will refer to a set of h such that d(h) ̸= −∞ as

the support of the spectrum. A function f is said to be multifractal if the support of

its spectrum is nontrivial, in the sense that it is not a one point set. This is naturally

extended to stochastic processes:

De�nition 3. A stochastic process {X(t)} on some probability space (Ω,F , P ) is said to

have multifractal paths if for (almost) every ω ∈ Ω, t 7→ X(t, ω) is a multifractal function.

When considered for a stochastic process, Hölder exponents are random variables

and Sh random sets. However, in many cases the spectrum is deterministic, that is, for

almost every sample path spectrum is equally de�ned. Moreover, spectrum is usually

homogeneous, in the sense it is the same when considered over any nonempty subset

A ⊂ [0,∞). All the examples considered in the following will have these two properties.

An example of a process with random, nonhomogeneous spectrum can be found in Barral

et al. (2010).

To perform a multifractal analysis usually means to determine the spectrum of a

process or a function. This has been done so far for many examples. For instance, some

famous classical functions are shown to have a nontrivial spectrum of singularities (Ja�ard

(1996)). FBM with Hurst parameter H is known to have a trivial spectrum consisting of

only one point, that is a.s.

dFBM(h) =

1, if h = H

−∞, otherwise.
(4.12)

This property is sometimes referred to as monofractality. In the early days, this example

led many to think that all self-similar processes have a trivial spectrum and that a more

general scaling property is needed to obtain a nontrivial spectrum. Strictly stable Lévy
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processes give a counterexample to this thought, as they are 1/α-sssi and their spectrum

is a.s. (Ja�ard (1999))

dSLP (h) =

αh, if h ∈ [0, 1/α],

−∞, if h > 1/α.
(4.13)

More generally, many other Lévy processes have multifractal paths. This was established

in Ja�ard (1999) and extended in Balança (2014) under weaker assumptions. Denote by

β the Blumenthal-Getoor (BG) index of a Lévy process

β = inf

{
γ ≥ 0 :

∫
|x|≤1

|x|γπ(dx) < ∞
}
,

where π is the corresponding Lévy measure. We assume the drift is zero if β < 1. If σ is

the Brownian component of the characteristic triplet, de�ne

β′ =

β, if σ = 0,

2, if σ ̸= 0.

Spectrum of singularities of almost every path of the Lévy process is given by

dLP (h) =


βh, if h ∈ [0, 1/β′),

1, if h = 1/β′,

−∞, if h > 1/β′.

(4.14)

Another example is provided by the LFSM studied in Chapter 3. Local regularity of the

LFSM has been established recently in Balança (2014). If α ∈ [1, 2), H ∈ (0, 1) and

H > 1/α, then a.s.

dLFSM(h) =

α(h−H) + 1, if h ∈ [H − 1
α
, H],

−∞, otherwise.
(4.15)

It is known that in the case H < 1/α sample paths are nowhere bounded, which explains

the assumptions.

In all these examples the spectrum is linear. The cascade processes provide a more

general shape. For example, LNC process has a parabolic spectrum a.s. given by (Bacry

et al. (2008))

dLNC(h) =

1− (h−1−2λ2)2

8λ2 , if h ∈
[
1 + 2λ2 − 2

√
2λ2, 1 + 2λ2 + 2

√
2λ2
]
,

−∞, otherwise.
(4.16)
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In the case of LNMRW we have a.s.

dLNMRW (h) =

1− (h−1/2−λ2)2

2λ2 , if h ∈
[
1/2 + λ2 −

√
2λ2, 1/2 + λ2 +

√
2λ2
]
,

−∞, otherwise.
(4.17)

See Barral & Seuret (2007) and Bacry et al. (2008) for more details.

4.1.3 Multifractal formalism

Multifractal formalism relates local and global scaling properties by connecting singularity

spectrum with the scaling function via the Legendre transform:

d(h) = inf
q
(hq − τ(q) + 1) . (4.18)

Since the Legendre transform is concave, the spectrum is always a concave function,

provided the multifractal formalism holds. If the multifractal formalism holds, then

infq (hq − τ(q) + 1) = −∞ implies that Sh = ∅ so that h is not the Hölder exponent

at any point. In addition, formalism gives the possibility of estimating the spectrum as

the Legendre transform of the estimated scaling function.

The following loose heuristics may motivate the formalism for functions. In this case,

scaling function may be de�ned by∫
|f(s+ t)− f(s)|qds ∼ |t|τ(q).

If the Hölder exponent in s is h, then in a small interval of length |t| around s we have

|f(s+ t)− f(s)| ∼ |t|qh. Since the dimension of such singularities if d(h), there is around

|t|−d(h) such intervals of length |t|, so that they contribute to the integral with |t|qh−d(h)+1.

The largest contribution as t → 0 is given by the smallest exponent, thus∫
|f(s+ t)− f(s)|qds ∼ |t|infh(qh−d(h)+1).

The preceding arguments actually illustrate that τ is the Legendre transform of d, but

for concave functions double Legendre transform returns the original function. This and

other facts about the Legendre transform can be found in (Riedi et al. 1999, Appendix

A).

Substantial work has been done to investigate when this formalism holds, in the begin-

ning for measures and later for functions in the work of Ja�ard. A somewhat surprising

result was given in Ja�ard (2000), showing that the formalism holds for a dense Gδ subset

(countable intersection of open sets) of a certain naturally chosen function space. Mul-

tifractal formalism ensures that the spectrum can be estimated from computable global
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quantities and is therefore a desirable property of the object considered. For this reason

many authors seek for di�erent de�nitions of global and local scaling properties that would

always be related by a certain type of multifractal formalism. To this end, local scaling

properties can also be based on replacing the Hausdor� dimension with the box-counting

dimension or using the so-called coarse Hölder exponents for de�ning local regularity.

Coarse Hölder exponents can be de�ned as

H
(n)
k =

log2 sup
{
|X(t)−X(s)| : k

2n
≤ s ≤ t ≤ k+1

2n

}
log2 2

−n
.

In this setting, we �x one path of the process {X(t)} and measure the spectrum discretely.

Let

N (n)(h, ε) =
2n−1∑
k=0

1{|H(n)
k −h|<ε}

denote the number of coarse Hölder exponents in the interval [h− ε, h+ ε]. In this sense,

we can think of N (n)(h, ε)/2n as the probability to select k from the set {0, 1, . . . , 2n − 1}
such that H(n)

k ∈ [h− ε, h+ ε]. This roughly estimates the probability that h is a Hölder

exponent. Typically, by the argument based on the law of large numbers, this probability

will be more and more concentrated at some point as n → ∞. This is the most probable

Hölder exponent, while the others are derived by the large deviations principle, which

measures a probability of observing deviant spectrum values. The Legendre transform

comes here into play as a part of the large deviations principle. Notice that the path is

�xed and the randomness is considered through the choice of k. Such type of statements

are sometimes referred to as the weak multifractal formalism. More details on such

de�nitions and related formalism can be found in Riedi (2003). Another path to the

multifractal formalism is investigated by changing the global property involved. For this

purpose, scaling function can be speci�ed using wavelets, wavelet leaders or oscillations

(see Ja�ard et al. (2014) and references therein).

Multifractal formalism and other approaches will be discussed in more details in Chap-

ter 5. Even though Legendre transform of the scaling function may not represent the

spectrum of singularities, in many applications it is estimated based on the estimated

scaling function and used for the classi�cation and model selection. We will use this

principle until the end of this chapter and estimate the spectrum without any reference

to path properties.

Another important issue is which range of q should one use for taking in�mum in

(4.18). Since τ may not be de�ned for all q it is reasonable to take only the range of

�nite moments. As the example of the LNC shows, it is important to consider also the

moments of negative order to get the full spectrum. Indeed, it is easy to check using (4.7)
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and (4.16) that

dLNC(h) = inf
q∈(−∞,1/(2λ2))

(hq − τLNC(q) + 1) ,

thus the multifractal formalism holds for the LNC. The same is not true for LNMRW,

as the moments of order q ≤ −1 are in�nite. However, if the in�mum is taken only

over positive q values, we can get the left (increasing) part of the parabolically shaped

spectrum (4.17):

inf
q∈(0,1/λ2)

(hq − τLNMRW (q) + 1) =


1− (h−1/2−λ2)2

2λ2 , if h ∈
[
1/2 + λ2 −

√
2λ2, 1/2 + λ2

]
,

1, if h > 1/2 + λ2,

−∞, otherwise.

We defer any further discussion on this topic until Chapter 5 where we will study the

in�uence of in�nite moments on the path properties. Through this chapter spectrum is

used only as a graphical method and all the computation is performed by taking in�mum

over q ∈ (0,∞).

4.2 Statistical analysis of multifractal processes

The �rst goal of the statistical analysis is to detect multifractal properties of a given time

series data. De�nition 2, which is a direct consequence of De�nition 1 if (4.4) is assumed,

provides a simple criterion for detecting multifractal stochastic processes. Before using

De�nition 2, one must determine that the moment scaling of the form (4.5) holds. If this

is true, then the method can be based on exploiting the fact that the scaling function is

linear for self-similar processes where it is de�ned. Every departure from linearity can

therefore be accredited to multifractality. So, the main problem is to check if the moment

scaling holds and then estimate the scaling function from the data and inspect its shape.

This provides a connection with the work done in Chapters 2 and 3. One can already

notice from the earlier results that the e�ects may be blurred with in�nite moments. If

the data is suspected to be a realization of some multifractal process, then some of the

multifractal models described in Subsection 4.1.1 can be �tted based on the shape of the

estimated scaling function or spectrum. We now present the methodology provided in

Fisher et al. (1997) for detecting multifractality of a time series data.

Suppose {X(t), t ∈ [0, T ]} is a stationary increments stochastic process with X(0) = 0.

If {X(t)} is multifractal in the sense of De�nition 2, then we have from (4.5) that

lnE|X(t)|q = τ(q) ln t+ ln c(q). (4.19)

Thus, to check if the moment scaling holds, one should check if, for each q, lnE|X(t)|q is
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linear in ln t for varying t. As we already remarked in Chapter 1, a natural estimator for

E|X(t)|q if {X(t)} is sampled on the interval [0, T ], is the partition function

Sq(T, t) =
1

⌊T/t⌋

⌊T/t⌋∑
i=1

|X(it)−X((i− 1)t)|q .

If we denote Yi, i = 1, . . . , T to be the one step increments Yi = X(i)−X(i− 1), we get

the usual form (1.2). Since ESq(T, t) = E|X(t)|q, for multifractal processes we have

lnESq(T, t) = τ(q) ln t+ ln c(q). (4.20)

It thus makes sense to consider the slope in the simple linear regression of lnSq(T, t) on ln t.

This is exactly the empirical scaling function τ̂N,T (q) as de�ned in (1.4). Alternatively,

taking logT instead of ln, we would get

logT ESq(T, t) = τ(q) logT t+ logT c(q), (4.21)

and consider the slope of the linear regression of logT Sq(T, t) on logT t. This is the

empirical scaling function in the form (1.5), which is equivalent to (1.4) by changing n to

T and s to logT t.

Multifractal behavior is inspected through the use of Equation (4.19). Based on the

data sample, Xi, i = 1, . . . T , the following methodology is presented in Fisher et al.

(1997):

(1) For �xed value of q, one computes the logarithm of the partition function for a

range of values t and plots it against ln t. If the scaling exists, the plot should be

approximately a linear line.

(2) Following Equation (4.20) the slope of the line can be estimated by a linear regression

of lnESq(T, t) on ln t. The value obtained provides an estimate τ̂N,T (q) for the

scaling function τ(q) at point q.

(3) Repeating this for a range of q values, one is able to plot the empirical scaling func-

tion. If the plot is nonlinear then one can suspect the existence of the multifractal

scaling.

(4) After an estimate τ̂N,T of the scaling function is obtained, it is possible to calculate

the spectrum using Equation (4.18) with τ replaced by τ̂N,T .

In Fisher et al. (1997) the method is applied to the DEM/USD exchange rate as well

as to other �nancial data. The examples suggest a linear relation of the form (4.19) holds

and the scaling function exhibits nonlinear behavior. We next explain that these e�ects

can also be contributed to the presence of heavy tails.
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Remark 4. Although the de�nition (1.4) follows naturally from the moment scaling rela-

tion (4.5), it is not the only one appearing in the literature. A common approach is to

estimate the scaling function by using only the smallest time scale available. For example,

for the cascade process on the interval [0, T ] the smallest interval is usually of the length

2−jT for some j. One can then estimate the scaling function at point q as

log2 Sq(T, 2
−jT )

−j
. (4.22)

The estimator (1.4) estimates the scaling function across di�erent time scales and is

therefore more general than (4.22).

Fixed domain asymptotic properties of the estimator (4.22) for the discrete multiplica-

tive cascade have been established in Ossiander & Waymire (2000), where it was shown

under some assumptions that when j → ∞ estimator (4.22) tends a.s. to

τ∞C (q) =


h−
0 q, if q ≤ q−0 ,

τ(q), if q−0 < q < q+0

h+
0 q, if q ≥ q+0 ,

where
q+0 = inf{q ≥ 1 : qτ ′(q)− τ(q) + 1 ≤ 0},

q−0 = sup{q ≤ 0 : qτ ′(q)− τ(q) + 1 ≤ 0},
(4.23)

and h+
0 = τ ′(q+0 ), h

−
0 = τ ′(q−0 ). For the LNC we have

q+0 = 1/
√
2λ2, (4.24)

q−0 = −1/
√
2λ2. (4.25)

So the estimator (4.22) is consistent for a certain range of q, while outside this interval the

so-called linearization e�ect happens, which is still not entirely understood. See Bacry

et al. (2010) for a discussion, where similar results have been established in a mixed

asymptotic framework.

4.3 Detecting multifractality under heavy tails

In this section we apply the results of Chapters 2 and 3 on the problem of detecting multi-

fractal properties of time series. It is clear that these results show that the scaling function

can be estimated as nonlinear due to heavy tails and that this e�ect can be mistakenly

regarded as multifractality. We make this point more clear in the rest of the chapter.

Although multifractal models have attracted a lot of attention among practitioners, the

evidence of multifractal properties has been questioned in many references. In Barunik
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et al. (2012), it has been reported by simulations that these properties may have been

confused with heavy-tails. The �rst proper treatment in this direction was given in Heyde

& Sly (2008) and Heyde (2009). Our goal here is to provide a full analysis of the problem

and all the repercussions it has.

First, we de�ne a class of stochastic processes which fall into our consideration. We

will call these processes to be of type L.

De�nition 4. A stochastic process {X(t), t ≥ 0} is said to be of type L, if Yi =

X(i) − X(i − 1), i ∈ N is a strictly stationary sequence having heavy-tailed marginal

distribution with index α, positive extremal index, satisfying strong mixing property with

an exponentially decaying rate and such that EYi = 0 when α > 1.

This class includes many examples like all Lévy processes with X(1) heavy-tailed, for

example, strictly α-stable Lévy processes with 0 < α < 2. A richer modeling ability is

provided by the Student Lévy process, which allows for arbitrary tail index parameter.

Since the Student t-distribution de�ned in (2.16) is in�nitely divisible, a Lévy process

such that X(1)
d
= T (ν, σ, µ) surely exists (see Heyde & Leonenko (2005) for details). We

assume µ = 0 if ν > 1.

The class L also includes cumulative sums of stationary processes like Ornstein-

Uhlenbeck (OU) type processes or di�usions with heavy-tailed marginal distributions.

Recall from Subsection 2.2.3 that OU type or di�usion process {Y (t), t ≥ 0} is a strictly

stationary process having strong mixing property with an exponentially decaying rate.

Heavy-tailed examples are Student OU type process and Student di�usion. For more

examples of heavy-tailed di�usions see Avram et al. (2013). If {Y (t), t ≥ 0} is a strictly

stationary OU type process or di�usion with heavy-tailed marginals having the strong

mixing property with an exponentially decaying rate, then the process

X(t) =

⌊t⌋∑
i=0

Y (i), t ≥ 0

will be of type L. This provides a variety of examples with dependent increments.

For what follows, we will assume that X1, . . . , XT is a sample observed at discrete

equally spaced time instants from a stochastic process {X(t), t ≥ 0}. Moreover, we

assume that the process is sampled at time instants 1, 2, . . . T . Notice that it is not a

restriction, as if {X(t)} is multifractal by De�nition 2 and is sampled at regularly spaced

time instants δ, 2δ, . . . , nδ and δ ̸= 1, then we know the values of the process {X̃t} = {Xδt}
at times 1, 2, . . . n. But then τX̃(q) = τX(q), since

E|X̃(t)|q = E|X(δt)|q =
(
c(q)δτ(q)

)
tτ(q).

We can therefore assume that the process is sampled at time instants 1, 2, . . . T .
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We �rst discuss the implications of Theorem 1. If {X(t)} is of type L, this theorem es-

tablishes the limit of lnSq(T, T
s)/ lnT when T → ∞. Repeating the discussion preceding

Theorem 2, we denote

εT =
Sq(T, t)

TRα(q,logT t)
,

taking the logarithm and rewriting yields

logT Sq(T, t) = Rα(q, logT t) + logT εT . (4.26)

In the step (1) of the methodology presented in the previous section, we should check that

lnSq(T, t) is linear in ln t, or equivalently that logT Sq(T, t) is linear in logT t. By the same

argument as in Subsection 2.1.2, we can view (4.26) as the regression model with errors

logT εT . Moreover, when α ≤ 2 or, α > 2 and q ≤ α, Rα(q, logT t) is linear in logT t, i.e.

we can rewrite (4.26) as

logT Sq(T, t) = a(q) logT t+ b(q) + logT εT , (4.27)

for some functions a(q) and b(q). It follows that the relation of type (4.21) holds up to

some random variable and the data sampled from processes of type L will behave as if

they obey the moment scaling relation (4.19). Thus, for processes of type L step (1) of the

methodology from Section 4.2 will always be satis�ed. If α > 2 and q > α, Rα(q, logT t) is

not linear in logT t. It is actually bilinear with the breakpoint depending on the values of

q and α. However, if q is not much greater than α, s 7→ Rα(q, s) is very close to a linear

function. The relation of type (4.27) would again hold approximately.

As follows from the preceding discussion, for processes of type L, it makes sense to

consider the slope of the linear regression of lnSq(T, t) on ln t. This is step (2) of the

methodology given in Section 4.2 that leads to the empirical scaling function de�ned by

(1.4). Theorem 2 derives the asymptotic form of the scaling function. The additional

assumption in the case q > α > 2 forces ti to be of the form T
i
N . This ensures that, as

the sample size grows (T → ∞), the number of points included in the regression based

on (4.19) grows.

To conclude, if the underlying process has stationary, heavy-tailed, zero mean, weakly

dependent increments, then the scaling function estimated from the data will behave

approximately as τ∞α de�ned in (2.4). The shape of the scaling function is determined

by the value of the tail index α, as shown in Figure 2.1. Thus, under the assumptions

considered, the di�erence between linear and nonlinear estimated scaling function can be

described by the presence of heavy tails.

This means that heavy-tailed processes exhibit features that can be confused with

multifractality. It is therefore dangerous to conclude multifractality by examining the

estimated scaling function under heavy tails. Moreover this e�ect is so regular that
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one can make inference about the unknown tail index of the underlying distribution by

analyzing the scaling function behavior, as it was done in Chapter 2. We illustrate these

points by examples given in Section 4.4, but before that we analyze how the spectrum

would be estimated for processes of type L.

4.3.1 Estimation of the spectrum

As mentioned before, using Equation (4.18) the spectrum can be estimated as the Legen-

dre transform of the estimated scaling function, i.e.

d̂N,T (h) = inf
q
(hq − τ̂N,T (q) + 1) . (4.28)

At this point, spectrum is not used with any reference to path properties, but only as an

exploratory tool for the model choice. In this chapter we will consider (4.28) by taking

in�mum only over q > 0. This means considering only moments of positive order. More

detailed discussion on the range of moments used will be provided in Chapter 5.

One way to assess the spectrum numerically is to interpolate τ̂N,T based on some

estimated points and then proceed with numerical minimization. Since τ̂N,T (q) can be

estimated at any point q, the interpolation can be made arbitrary precise. In the graphical

presentation we choose not to plot the values of the minimum achieved for q = 0 as these

trivially give the value 1.

The alternative approach is based on the following geometrical meaning of the Legen-

dre transform. Consider d(h) = infq (hq − τ(q)) and suppose τ is concave. Given q0 we

can �nd the tangent at q0 on τ , call it s(q) = aq + b, such that τ(q) ≤ s(q) with equality

at q0. If τ is di�erentiable, this tangent will be unique. Then aq− τ(q) ≥ aq− s(q) = −b

with equality at q0 and so

d(a) = aq0 − τ(q0) = −b.

If we suppose τ is di�erentiable at q0, then s is unique and

d(τ ′(q0)) = q0τ
′(q0)− τ(q0).

One can show that d is concave (see e.g. (Riedi et al. 1999, Appendix A)). Thus, the line

lq0(h) = q0h− τ(q0) is a tangent of d at point a. This gives an idea of how to estimate the

spectrum graphically, as simply plotting lq0 for a range of q0 values will yield an envelope

for d. We will use this method in one of the examples in the next section.

Having in mind the asymptotic behavior of the empirical scaling function, the esti-

mated spectrum for processes of type L is expected to behave as

d∞(h) = inf
q>0

(hq − τ∞α (q) + 1) . (4.29)
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We consider the cases α ≤ 2 (d∞) and α > 2 (d∞) separately.

When α ≤ 2, we can explicitly calculate

d∞(h) = min

{
inf

0<q≤α

(
hq − q

α
+ 1
)
, inf

q≥α
hq

}

=

αh, if 0 ≤ h ≤ 1
α

1, if h > 1
α
.

If the in�mum is taken over all q, the part of the spectrum for h > 1/α would depend on

τ∞α (q) for negative q. This part corresponds to the right (decreasing) part of the spectrum

and requires negative order moments to be estimated.

When α > 2 we have

d∞(h) = min

{
inf

0<q≤α

(
hq − q

2
+ 1
)
, inf

q≥α

(
hq − q

2
− 2(α− q)2(2α + 4q − 3αq)

α3(2− q)2

)}
.

Values h > 1/2 yield the right part of the spectrum and d∞(h) = 1. On the other hand if

h < lim
q→∞

τ∞α (q)

q
=

(α− 2)2(α + 4)

2α3
,

then d∞(h) = −∞ is attained when q → ∞. Thus, the left part of the spectrum is �nite

for

h ∈
[
(α− 2)2(α + 4)

2α3
,
1

2

]
.

On this interval the spectrum is nonlinear and approximately parabolic but the explicit

formula is complicated. Figure 4.1 shows the shape of the spectrum one would expect

when estimation is done using scaling function. We conclude that processes of type L can

yield a nontrivial estimated spectrum in the presence of heavy-tails.
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Figure 4.1: Spectrum estimated from τ∞α
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4.4 Simulations and examples

In this section we provide examples showing that nonlinearity of the estimated scaling

functions can be reconstructed just by using a process with heavy-tailed increments.

For this purpose we set {X(t)} to be a Student Lévy process, i.e. a stochastic process

with stationary independent increments such that X(0) = 0 and X(1) has Student's

t-distribution.

It is important to stress that we do not advocate using Student Lévy process as a

model in any of the examples. Besides, independence of increments is an unrealistic

property for �nancial data. Our goal is simply to show that nonlinear scaling functions

can be reproduced using heavy-tailed models. However, our results also cover some weakly

dependent processes. In Heyde & Leonenko (2005) and Leonenko et al. (2011) the authors

provide examples of Student processes with di�erent dependence structures that could be

more appropriate for �nancial data.

4.4.1 Example 1

In Calvet & Fisher (2002) (see also Fisher et al. (1997) and Calvet & Fisher (2008)),

the authors provide an example with DM/USD exchange rate data with the plot of the

estimated scaling function (Calvet & Fisher 2002, Figure 6). The concavity is ascribed to

the multifractal property of the data. Considering the discussion of the preceding section

and comparing the plot with Figure 2.1 one can conclude that the data exhibit heavy-

tailed characteristics and a rough estimate of the tail index is around 4. This is consistent

with other studies suggesting risky asset returns are usually heavy-tailed with tail index

between 3 and 5 (see Hurst & Platen (1997) and Heyde & Liu (2001)).

We try to reproduce the same �gures as in Calvet & Fisher (2002) by simulating the

data taking {X(t)} to be the Student Lévy process. Figure 4.2a shows the one step

increments of a sample path of length 1000 of a Student Lévy process with X(1)
d
=

T (4, 0.005, 0). A linear behavior of the partition function in the sense of relation (4.19) is

con�rmed by Figure 4.2b, which shows the plots of ln t against lnSq(T, t) for �ve di�erent

values of q. Adjusted R2 values for the linear �t are approximately 0.97 for q = 1, . . . , 5,

which con�rms the linear relation. Similar analysis was done in (Calvet & Fisher 2002,

Figure 5) and we want to stress the similarity of the two plots. Figure 4.2c shows the

estimated scaling function together with the baseline. Concavity is a consequence of heavy

tails and one can notice the resemblance with Figure 6 in Calvet & Fisher (2002). Finally,

we estimate the spectrum by plotting tangents forming an envelope of the spectrum. The

shape of the spectrum is almost identical to the one presented in Figure 7 in Calvet &

Fisher (2002).

75



Chapter 4. Detecting multifractality of time series

0 200 400 600 800 1000

-0.02

0.00

0.02

0.04

t

X
Ht
L
-

X
Ht
-

1L

(a) Di�erences of the Student Lévy process

q=1

q=2

q=3

q=4

q=5

1 2 3 4 5 6
ln t

-20

-15

-10

-5

ln SqHT , tL

(b) Partition functions for q = 1, 2, 3, 4, 5

2 4 6 8
q

1

2

3

4
Τ
`
HqL

(c) Estimated scaling function

0.0 0.1 0.2 0.3 0.4 0.5 0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

h

d`
Hh
L

(d) Estimated spectrum

Figure 4.2: Student Lévy process

4.4.2 Example 2

We provide another example based on the �nancial data. The data consist of 5307 daily

closing values of the S&P500 stock market index collected in the period from January 1,

1980 until December 31, 2000 (Figure 4.3a). For the analysis we consider log-di�erences

of this series and subtract the mean. Figure 4.3b con�rms linear relation of the parti-

tion function and time in the log-log scale. For estimating the scaling function at every

point q the time points chosen are 1, 2, 3, 4, 5, 7, 15, 30, 60, 90, 180. The scaling function

estimated from the data is shown in Figure 4.3d, together with the baseline and plot of

τ∞α for α = 2.5 (dashed). One can see the resemblance which indicates the data may be

heavy-tailed with tail index around 2.5. We additionally generate a sample path of the

same length for a Student Lévy process with X(1)
d
= T (2.5, 0.0046, 0), where the second

parameter is estimated from the data by the method of moments. Partition functions

again scale linearly (Figure 4.3c) and Figure 4.3e shows the estimated scaling function

for the generated process. The similarity of the two scaling functions is also naturally

re�ected in the estimated multifractal spectrum shown in Figures 4.3f and 4.3g.
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Figure 4.3: S&P 500 index
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4.4.3 Conclusion

To brie�y summarize the main �ndings of this section, we showed that the data coming

from heavy-tailed processes exhibit multifractal features. The �rst conclusion from this

analysis is that one must be very careful when advocating multifractal model (like cascade

process or MRW) based on the shape of the estimated scaling function. A large class of

processes will behave as the moment scaling holds and this is hardly veri�able in practice.

Even if the moment scaling does hold, heavy tails will produce concavity of the empirical

scaling function.

The nonlinearity of the estimated scaling function comes from estimating moments

that are actually in�nite. So it is obvious what we are doing wrong. The reasonable

solution one may suggest is to �rst estimate the range of �nite moments and then estimate

the scaling function only for this range, as otherwise moment scaling (4.5) does not make

sense. Therefore the �rst step should be to estimate the tail index and suppose we

want to do this with the empirical scaling function as proposed in Chapter 2. For truly

multifractal processes, e.g. cascades, the estimated scaling function would be nonlinear

as there is nonlinear scaling and from the point of view of Chapter 2 this would lead us to

classify the data as heavy-tailed. Thus, we arrive at the converse problem: multifractal

processes with nonlinear scaling function may exhibit heavy tails. To illustrate this point

and to show that this problem is not restricted only to methods of Chapter 2, but appears

for other tail index estimators too, we present a simulation based example.

Example

Suppose {X(t)} is LNMRW with intermittency parameter λ2. We will analyze the distri-

bution tail of the increments of one sample path of such process. In �nancial applications,

based on �tting the estimated scaling function, parameter λ2 is usually taken around 0.05.

LNMRW is itself heavy-tailed (see Subsection 4.1.1) with the tail index equal to 1/λ2 and

for λ2 = 0.05 this gives the tail index value 20. Such large value is hardly observable

in practice and this has been a major critique of multifractal models in modeling asset

returns, as it is widely accepted that this data is heavy-tailed with the tail index between

3 and 5.

It has been observed �rst in Calvet & Fisher (2004) that the data from multifractal

process may exhibit heavy-tailed properties with tail index much lower than its true value.

In Muzy et al. (2006), the authors provide a discussion based on the analogy with a certain

kind of physical system. They conclude, among other things, that estimating tail index

of the log-normal cascade (which is 1/(2λ2)) with the classical estimators such as Hill

and Pickands, will yield values around
√
(1− ν)/(2λ2). Here ν represents the log-ratio

of upper order statistics used in computing the estimator, i.e. ln k/ lnn for the sample

of size n. This means, for example, that if for the sample of size 10000 of the LNC with
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λ2 = 0.05 we compute the Hill estimator using k = 1000, instead of the true value 10, we

will get a value around 1.58.
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Figure 4.4: LNMRW generated with λ2 = 0.05

Let us illustrate this phenomenon with the sample path of LNMRW of length 10000

generated with λ2 = 0.05. Such process has �nite moments up to order 20. Figure 4.4a

shows the estimated scaling function with the corresponding τLNMRW . From the point of

view of the results of Chapter 2, one may say that the scaling function exhibits nonlinearity

due to heavy-tails. However, the moments considered are �nite and it is completely

legitimate to estimate them. One can observe the linearization e�ect as the discrepancy

between the two plots starting at around q = 6. Other methods also indicate heavy-tails.

QQ plot with k = 2000 (Figure 4.4b) shows approximate linearity and the estimated slope

is 1/2.31. The Hill plot shows very low values, although it is not very informative (Figure

4.4c). The moment estimator plot stabilizes around 5− 6 (Figure 4.4d). Following Muzy

et al. (2006), tail index estimators should correspond to
√

2/λ2 ≈ 6.3 or lower, which is

con�rmed in this case.

If we would adopt an estimate 3 or 4, the scaling function is almost linear for this

range and there would be no reason to consider multifractal models. To conclude, by

using empirical scaling functions it is impossible to distinguish whether the data are

heavy-tailed or multifractal.
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One of the goals of the statistical analysis of scaling properties is to distinguish whether

the data come from a process that is self-similar (4.2) or there is a more general multifractal

scaling (4.3). Both properties can be reduced to moment scaling (4.5) and described by the

scaling function, which is linear for self-similar processes and nonlinear for multifractals

de�ned by (4.3). This holds for a range of �nite moments, otherwise, the de�nition of the

scaling function does not make sense. In theory, this is a completely clear distinction. In

practice, one estimates the scaling function using estimated moments. For this to work,

one must �rst examine if the moments under consideration are �nite. This is a serious

practical issue. First of all, this is a very challenging problem from the statistical point of

view. Secondly, the previous example shows that for the main examples of multifractals

the tail index is seriously underestimated. In the example considered, it is completely

legitimate to estimate the scaling function as the moments are �nite, but the data itself

will behave di�erently. So, determining a range of �nite moments before estimation would

not be a good approach.

One may wonder if some other method may give better results. Wavelets are surely

the most widely used tool for the multifractal analysis. However, the same problem seems

to a�ect wavelets, as it is reported in Gonçalves & Riedi (2005). In this paper, the authors

propose a tail index estimator to determine the range of �nite moments.

Before jumping to conclusion that the estimated scaling functions are not very useful,

one should remember that if the multifractal formalism holds, they can be used to estimate

the spectrum of singularities. It is to expect that the nonlinearities that are artefact of

the estimation method have nothing to do with the path properties. Although this is

generally true, some examples may suggest di�erently. We leave this discussion for the

next chapter where we investigate the relation between moments and small scale path

properties.
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Moments and the spectrum of

singularities

As we have seen in the previous chapter, empirical scaling functions are not capable to de-

tect multifractal data as in�nite positive order moments are empirically indistinguishable

from multifractality. In this chapter we investigate the role of the scaling functions in the

multifractal formalism. For stochastic processes, multifractal formalism would mean that

it is possible to determine �ne path properties using an object (scaling function) derived

from the process distribution. Moreover, this object, like moments, should be equally

de�ned for many, if not all processes. It is hard to believe that such general property may

hold. In this chapter, we make contribution to the problem by identifying properties that

make the spectrum nontrivial. We start with some motivating examples.

5.1 Motivation

Estimating in�nite positive order moments is what makes the empirical scaling function

to look misleading. However, the following examples suggest that if we are interested in

the spectrum of singularities, empirical scaling functions can be the right approach.

Suppose {X(t)} is a strictly α-stable Lévy process, 0 < α < 2. This process is 1/α-sssi

and has multifractal paths with spectrum given by (4.13). Scaling function τSLP is de�ned

on (−1, α) and τSLP (q) = q/α. The empirical scaling function asymptotically behaves as

τ∞α de�ned in Theorem 2, i.e.

τ∞α (q) =


q
α
, if 0 < q ≤ α,

1, if q > α.

If we consider Legendre transforms of these two functions and take in�mum over all
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positive q where they are de�ned, then one can easily check that

inf
0<q<α

(hq − τSLP (q) + 1) = inf
0<q<∞

(hq − τ∞α (q) + 1) =

αh, if h ∈ [0, 1/α],

1, if h > 1/α.

This actually coincides with the true spectrum (4.13), except for the part h > 1/α, which

is the in�mum obtained when q → 0. To correctly estimate this part one needs negative

order moments, which will be discussed later. Thus, although we are estimating in�nite

moments we arrive at the correct spectrum.

The second example is more compelling. Suppose {X(t)} is a LFSM with α ∈ [1, 2),

0 < H < 1 and H > 1/α. Since {X(t)} is H-sssi, the scaling function is τLFSM(q) = Hq

for q ∈ (−1, α). Theorem 3 justi�es estimating the scaling function in the same manner

as in Section 4.2 and Theorem 4 gives the asymptotic behavior:

τ∞H,α(q) =

Hq, if 0 < q ≤ α,(
H − 1

α

)
q + 1, if q > α.

Considering Legendre transform of τLFSM over (0, α) gives

inf
0<q<α

(hq − τLFSM(q) + 1) =

α(h−H) + 1, if h ∈ [0, H],

1, if h > H.

Although the expression is similar to the true spectrum dLFSM de�ned in (4.15), the

support is di�erent. On the other hand, it is easy to check that

inf
0<q<∞

(
hq − τ∞H,α(q) + 1

)
=


−∞, if h < H − 1/α,

α(h−H) + 1, if h ∈ [H − 1/α,H],

1, if h > H.

Thus, the empirical scaling function will lead to a correct left part of the spectrum using

formalism. This reveals that the validity of the formalism may be narrow if τ is speci�ed

as in (4.5). Secondly, it shows the potential of the empirical scaling function and indicates

that in�nite positive order moments may be related with path properties. To further sup-

port this conjecture, consider FBM. FBM is H-sssi with all positive order moments �nite

and has a trivial spectrum consisting of only one point (4.12). This raises the question if

in�nite moments are what makes the spectrum of stable Lévy process and LFSM nontriv-

ial. We deal with this in the next section. The following example illustrates that generally

two properties are not related, however, the di�erence with the previous examples is that

there is no exact scaling of �nite dimensional distributions, like (4.1) or (4.3).

Suppose {X(t), t ≥ 0} is a Lévy process. The Lévy processes in general do not satisfy
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moment scaling of the form (4.5). The only such examples are the BM and strictly α-

stable Lévy process. If X(1) is heavy-tailed and with zero mean, the empirical scaling

function will asymptotically behave as τ∞α de�ned in (2.4). On the other hand, spectrum

(4.14) depends on the BG index β. The estimated scaling function and the spectrum

are not related as they depend on the di�erent parts of the Lévy measure. The shape

of the estimated scaling function is governed by the tail index, which depends on the

behavior of the Lévy measure π at in�nity since for q > 0, E|X(1)|q < ∞ is equivalent to∫
|x|>1

|x|qπ(dx) < ∞. On the other hand, the spectrum is determined by the behavior of

π around origin, i.e. by the BG index. Stable Lévy processes are the special case since

then α = β.

5.1.1 Negative order moments

An example of the LNC suggests that to get the spectrum from the multifractal formalism,

negative order moments must also be included. Negative order moments depend on the

behavior of the distribution around 0. If taken for the increments of stochastic process,

they may describe small variations of paths. The problem with negative order moments is

that they are usually in�nite. For example, if random variable X has continuous density

f such that f(0) > 0, then E|X|−1 = ∞ and consequently, E|X|q = ∞ for every q ≤ −1.

However, if f is continuous and bounded near zero, then E|X|q < ∞ for every −1 < q < 0.

One can guess that in�nite negative order moments may also produce nonlinear be-

havior of the estimated scaling function. In the spirit of the previous discussion, one may

ask if these nonlinearities are related to the spectrum. We will show that this is not so in

the next section.

One of the �rst references reporting this problem is Muzy et al. (1993), where the

authors introduced wavelet methods in the multifractal analysis. They proposed the

method called wavelet transform modulus maxima, which is based on a continuous wavelet

transform of a process where the partition function is de�ned by taking maxima over the

same scale wavelet transforms. Later the method based on wavelet leaders was introduced,

where the partition function is based on the local suprema of wavelet coe�cients (see e.g.

Ja�ard et al. (2007) and references therein). This resembles the method we propose in

Section 5.5, although our motivation comes entirely from the results of Section 5.2. Two

main advantages of the wavelet methods over the increments based partition function are

emphasized in the literature. First, wavelet leaders are more stable for divergent negative

order moments. In Section 5.5 we modify the partition function to have the same property

and this idea relies on the precise results about the spectrum. The second advantage is

the insensitivity of wavelets to polynomial trends, which makes it possible to study more

generally de�ned Hölder exponents (see Subsection 4.1.2). We conform to the de�nition

(4.10) in order to simplify the analysis and relate in�nite moments with path properties.
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5.2 Bounds on the support of the spectrum

Our goal in this section is to identify the property of the process that makes the spectrum

nontrivial. We do this by deriving the bounds on the support of the spectrum. The

lower bound is a consequence of the well-known Kolmogorov's continuity theorem. For

the upper bound we prove a sort of complement of this theorem.

Before we proceed, we �x the following notation for a process {X(t), t ∈ T } where

T = [0, T ] or T = [0,+∞). We denote the range of �nite moments as Q = (q, q), i.e.

q = sup{q > 0 : E|X(t)|q < ∞, ∀t},

q = inf{q < 0 : E|X(t)|q < ∞, ∀t}.
(5.1)

If {X(t)} is multifractal in the sense of De�nition 2 with the scaling function τ de�ne

H− = sup

{
τ(q)

q
− 1

q
: q ∈ (0, q) & τ(q) > 1

}
,

H̃+ = inf

{
τ(q)

q
− 1

q
: q ∈ (q, 0) & τ(q) < 1

}
,

(5.2)

with the convention that sup ∅ = 0 and inf ∅ = +∞. In this context, we always assume

that (4.5) holds on the whole T and Q. All the processes {X(t), t ∈ T } considered here

are de�ned on some probability space (Ω,F , P ) and measurable, meaning that (t, ω) 7→
X(t, ω) is B(T )×F -measurable. Furthermore, we assume that {X(t), t ∈ T } is separable
with respect to any dense countable set T ⊂ T , in the sense that for all t ∈ T there exists

a sequence (tn) in T, tn → t such that a.s. X(tn) → X(t). We say that the two processes

{X(t), t ∈ T } and {X̃(t), t ∈ T } de�ned on the same probability space are modi�cations

of each other if for every t ∈ T , P (X(t) = X̃(t)) = 1. If P (X(t) = X̃(t), ∀t ∈ T ) = 1, we

say that the two processes are indistinguishable. Every stochastic process {X(t), t ∈ T }
has a separable modi�cation (see e.g. Doob (1953)).

5.2.1 The lower bound

Using the well-known Kolmogorov's criterion it is easy to derive the lower bound on the

support of the spectrum. Before stating the theorem, we de�ne f : T → R to be locally

Hölder continuous of order γ if for every compact K ⊂ T there exists a constant C(K)

such that

|f(t)− f(s)| ≤ C(K)|t− s|γ, ∀t, s ∈ K.

It is clear that the local Hölder continuity at some domain implies pointwise Hölder

continuity of the same order at any point. The proof of the following theorem can be

found in (Karatzas & Shreve 1991, Theorem 2.8) or (Kallenberg 2002, Theorem 3.23).
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Theorem 5 (Kolmogorov-Chentsov). Suppose that a process {X(t), t ∈ T } satis�es

E|X(t)−X(s)|α ≤ C|t− s|1+β, ∀t, s ∈ T , (5.3)

for some constants α > 0, β > 0 and C > 0. Then there exists a modi�cation {X̃(t), t ∈
T } of {X(t), t ∈ T } having continuous sample paths. Furthermore, a.s. {X̃(t)} is locally

Hölder continuous of order γ for every γ ∈ (0, β/α).

Proposition 1. Suppose {X(t), t ∈ T } is multifractal in the sense of De�nition 2. If

τ(q) > 1 for some q ∈ (0, q), then there exists a modi�cation of {X(t)} which is a.s.

locally Hölder continuous of order γ for every

γ ∈
(
0,

τ(q)

q
− 1

q

)
.

In particular, there exists a modi�cation such that a.s.

H− ≤ H(t), ∀t ∈ T ,

where H(t) is de�ned by (4.11) and H− by (5.2).

Proof. This is a simple consequence of Theorem 5 since De�nition 2 implies

E|X(t)−X(s)|q = c(q)|t− s|1+(τ(q)−1).

For the second part, if H− = 0 there is nothing to prove. Otherwise, by (5.2), for each

γ < H− there is q ∈ (0, q) such that τ(q) > 1 and γ < (τ(q) − 1)/q, and thus, by the

�rst part there is modi�cation which is a.s. locally Hölder continuous of order γ. Since

all continuous modi�cations are indistinguishable (see e.g. (Karatzas & Shreve 1991,

Problem 1.5), we have the desired modi�cation. This implies that a.s. the pointwise

Hölder exponent is everywhere greater than H−.

In the sequel we always suppose to work with the modi�cation from Proposition 1.

If H− > 0, we conclude that the spectrum d(h) = −∞ for h ∈ (0, H−). This way we

can establish an estimate for the left endpoint of the support of the spectrum. It also

follows that if the process is H-sssi and has �nite moments of every positive order, then

H− = H ≤ H(t). Thus, when the moment scaling holds, path irregularities are closely

related with in�nite moments of positive order. We make this point stronger later.

Theorem 5 is valid for general stochastic processes. Although moment condition (5.3)

is appealing, the condition needed for the proof of Theorem 5 can be stated in a di�erent

form.

Corollary 1. For a process {X(t), t ∈ T } there exists a modi�cation which is a.s. locally

Hölder continuous of order γ > 0 if for some η > 1 it holds that for every K > 0 there
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exists C > 0 such that

lim sup
t→0

P (|X(s+ t)−X(s)| ≥ Ktγ)

tη
≤ C, ∀s ∈ T .

Proof. This is obvious from the proof of Theorem 5; see (Karatzas & Shreve 1991, Theo-

rem 2.8).

5.2.2 The upper bound

To establish the bound on the right endpoint of the support of the spectrum, one needs to

show that a.s. the sample paths are nowhere Hölder continuous of some order γ, i.e. that

a.s. t 7→ X(t) /∈ Cγ(t0) for each t0 ∈ T . To show this we �rst use a criterion based on

the negative order moments, similar to (5.3). The resulting theorem can be seen as a sort

of a complement of the Kolmogorov-Chentsov theorem. We then apply this to moment

scaling multifractals to get an estimate for the support of the spectrum.

In proving the statements involving negative order moments we use the following

two simple facts at several places. The �rst is a Markov's inequality for negative order

moments. If X is a random variable, ε > 0 and q < 0, then

P (|X| ≤ ε) = P (|X|q ≥ εq) ≤ E|X|q

εq
.

The second fact is the expression for the q-th order moment, q < 0,

E|X|q = −
∫ ∞

0

qy−q−1P (1/|X| ≥ y)dy = −
∫ ∞

0

qyq−1P (|X| ≤ y)dy.

Theorem 6. Suppose that a process {X(t), t ∈ T } satis�es

E|X(t)−X(s)|α ≤ C|t− s|1+β, ∀t, s ∈ T , (5.4)

for some constants α < 0, β < 0 and C > 0. Then a.s. {X(t)} is nowhere Hölder

continuous of order γ for every γ > β/α.

Proof. For typographical convenience we sometimes write Xt for X(t). First, it su�ces

to prove the statement by �xing arbitrary γ > β/α. Indeed, this would give events Ωγ,

P (Ωγ) = 0 such that for ω ∈ Ω\Ωγ, t 7→ Xt(ω) is nowhere Hölder continuous of order γ.

If Ω0 is the union of Ωγ over all γ ∈ (β/α,∞) ∩ Q, then Ω0 ∈ F , P (Ω0) = 0 and Ω\Ω0

would �t the statement of the theorem.

Secondly, it is enough to consider only restrictions to the interval [0, 1), as, if needed,

for n ∈ N we get from this the proof for the interval [n, n + 1) by using the process

X ′(t) = X(n + t) − X(n), t ∈ [0, 1). Removing null sets for all n ∈ N would imply the

general statement.
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For j, k ∈ N de�ne the set

Mjk :=
∪

t∈[0,1)

∩
h∈[0,1/k]

{ω ∈ Ω : |Xt+h(ω)−Xt(ω)| ≤ jhγ} .

It is clear that if ω /∈ Mjk for every j, k ∈ N, then t 7→ Xt(ω) is nowhere Hölder continuous

of order γ. As there is countably many Mjk, it is enough to �x arbitrary j, k ∈ N and

show that Mjk ⊂ A for some A ∈ F such that P (A) = 0.

Suppose n > 2k and ω ∈ Mjk. Then there is some t ∈ [0, 1) such that

|Xt+h(ω)−Xt(ω)| ≤ jhγ, ∀h ∈ [0, 1/k]. (5.5)

Take i ∈ {1, . . . , n} such that
i− 1

n
≤ t <

i

n
. (5.6)

Since n > 2k we have

0 ≤ i

n
− t <

i+ 1

n
− t ≤ i+ 1

n
− i− 1

n
=

2

n
<

1

k
,

and from (5.5) it follows that

|X i+1
n
(ω)−X i

n
(ω)| ≤ |X i+1

n
(ω)−Xt(ω)|+ |Xt(ω)−X i

n
(ω)| ≤ 2γ+1jn−γ.

Put A(n)
i =

{
|X( i+1

n
)−X( i

n
)| ≤ 2γ+1jn−γ

}
. Since ω was arbitrary it follows that

Mjk ⊂
n∪

i=1

A
(n)
i .

Using Markov's inequality for α < 0 and the assumption of the theorem we get

P (A
(n)
i ) ≤

E|X( i+1
n
)−X( i

n
)|α

(2γ+1j)αn−γα
≤ C(2γ+1j)−αnγα−1−β,

P

(
n∪

i=1

A
(n)
i

)
≤

n∑
i=1

P (A
(n)
i ) ≤ C(2γ+1j)−αn−(β−γα).

(5.7)

If we set

A =
∩
n>2k

n∪
i=1

A
(n)
i ,

then A ∈ F and Mjk ⊂ A. Since γ > β/α, it follows that β−γα > 0 and hence P (A) = 0.

This proves the theorem.

Proposition 2. Suppose {X(t), t ∈ T } is multifractal in the sense of De�nition 2. If

τ(q) < 1 for some q ∈ (q, 0), then a.s. {X(t)} is nowhere Hölder continuous of order γ
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for every

γ ∈
(
τ(q)

q
− 1

q
, +∞

)
.

In particular, a.s.

H(t) ≤ H̃+, ∀t ∈ T .

Proof. De�nition 2 implies

E|X(t)−X(s)|q = c(q)|t− s|1+(τ(q)−1).

Since q < 0, τ(q) < 0 and the statement follows from Theorem 6.

This proposition shows that d(h) = −∞ for h ∈ (H̃+,∞). Recall that H̃+ is de�ned

in (5.2).

Remark 5. Statements like the ones in Proposition 1 and 2 are stronger than saying, for

example, that for every t ∈ T , H(t) ≤ U a.s. Indeed, an application of the Fubini's

theorem would yield that for almost every path, H(t) ≤ U for almost every t. If we put

h = U + δ, then the Lebesgue measure of the set Sh = {t : H(t) = h} is zero a.s. This,

however, does not imply that d(h) = −∞ and hence, it is impossible to say something

about the spectrum of almost every sample path. On the other hand, it is clear that this

type of statements are implied by Propositions 1 and 2.

For the example of this weaker type of the bound, consider {X(t),∈ T } multifractal

in the sense of De�nition 2. If there is q ∈ (q, 0), then for every t ∈ T

H(t) ≤ τ(q)

q
a.s.

Indeed, let δ > 0 and suppose C > 0. Since q < 0, by Markov's inequality

P
(
|X(t+ ε)−X(t)| ≤ C|ε|

τ(q)
q

+δ
)
≤ E |X(t+ ε)−X(t)|q

Cq|ε|τ(q)+δq
=

c(q)

Cq|ε|δq
→ 0,

as ε → 0. We can choose a sequence (εn) that converges to zero such that

P
(
|X(t+ εn)−X(t)| ≤ C|εn|

τ(q)
q

+δ
)
≤ 1

2n
.

Now, by the Borel-Cantelli lemma

|X(t+ εn)−X(t)|

|εn|
τ(q)
q

+δ
→ ∞ a.s., as n → ∞.

Thus, for arbitrary δ > 0 it holds that for every t, H(t) ≤ τ(q)
q

+ δ a.s. However, this

result does not allow us to say anything about the spectrum.
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Consider for the moment the FBM. The range of �nite moments is (−1,∞) and

τ(q) = Hq for q ∈ (−1,∞), so we have H̃+ = H + 1. Thus, the best we can say from

Proposition 2, is that d(h) = −∞ for h > H + 1. However, we know that d(h) = −∞ for

h > H. If the in�mum in the de�nition of H̃+ could be considered over all negative q, we

would get exactly the right endpoint of the support of the spectrum.

The fact that the bound derived in Proposition 2 is not sharp enough for some ex-

amples points that negative order moments may not be the right paradigm to explain

the spectrum. We therefore provide more general conditions that do not depend on the

�niteness of moments. First of them is obvious from the proof of Theorem 6, Equation

(5.7).

Corollary 2. A process {X(t), t ∈ T } is a.s. nowhere Hölder continuous of order γ > 0

if for some η > 1 it holds that for every K > 0 there exists C > 0 such that

lim sup
t→0

P (|X(s+ t)−X(s)| ≤ Ktγ)

tη
≤ C, ∀s ∈ T .

Theorem 7. A process {X(t), t ∈ T } is a.s. nowhere Hölder continuous of order γ > 0

if for some η > 1 and m ∈ N it holds that for every K > 0 there exists C > 0 such that

lim sup
t→0

P

(
max

l=1,...,m
|X(s+ lt)−X(s+ (l − 1)t)| ≤ Ktγ

)
tη

≤ C, ∀s ∈ T . (5.8)

Proof. The �rst part of the proof goes exactly as in the proof of Theorem 6. Fix j, k ∈ N
and take n ∈ N such that

n > (m+ 1)k.

If ω ∈ Mjk, then there is some t ∈ [0, 1) and i ∈ {1, . . . , n} such that (5.5) and (5.6) hold.

Choice of n ensures that for l ∈ {1, . . . ,m}

0 <
i+ l − 1

n
− t <

i+ l

n
− t <

i+ l

n
− i− 1

n
=

l + 1

n
≤ 1

k
.

It follows from (5.5) that for each l ∈ {1, . . . ,m}

|X i+l
n
(ω)−X i+l−1

n
(ω)| ≤ j

(
l + 1

n

)γ

+ j

(
l

n

)γ

≤ 2j

(
m+ 1

n

)γ

.

Let

A
(n)
i,l =

{
|X( i+l

n
)−X( i+l−1

n
)| ≤ 2j

(
m+1
n

)γ}
,

A
(n)
i =

m∩
l=1

A
(n)
i,l .
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It then follows that

Mjk ⊂
n∪

i=1

A
(n)
i .

From the assumption, there exists C > 0 such that

P (A
(n)
i ) = P

(
max

l=1,...,m
|X( i+l

n
)−X( i+l−1

n
)| ≤ 2j(m+ 1)γ

(
1
n

)γ) ≤ Cn−η,

P

(
n∪

i=1

A
(n)
i

)
≤

n∑
i=1

P (A
(n)
i ) ≤ Cn−(η−1).

Now setting

A =
∩

n>(m+1)k

n∪
i=1

A
(n)
i ∈ F ,

it follows that P (A) = 0, since η > 1.

Theorem 7 enables one to avoid using moments in deriving the bound. As an example,

we consider how Theorem 7 can be applied in the simple case when {X(t)} is BM. Since

{X(t)} is 1/2-sssi we have

P

(
max

l=1,...,m
|X(lt)−X((l − 1)t)| ≤ Ktγ

)
= P

(
max

l=1,...,m
|X(l)−X(l − 1)| ≤ Ktγ−1/2

)
.

Due to independent increments:

P

(
max

l=1,...,m
|X(l)−X(l − 1)| ≤ Ktγ−1/2

)
=
(
P
(
|X(1)| ≤ Ktγ−1/2

))m ≤ Ctm(γ−1/2).

This holds for every γ > 1/2 and m ∈ N and by taking m > 1/(γ−1/2) we conclude that

d(h) = −∞ for h > 1/2.

Before we proceed on applying these results, we state the following simple corollary

that expresses the criterion (5.8) in terms of the negative order moments, but now mo-

ments of the maximum of increments. This is a generalization of Theorem 6, which

enables bypassing in�nite negative order moments under very general conditions. From

this criterion, in the next section we derive strong statements about H-sssi processes.

Corollary 3. Suppose that a process {X(t), t ∈ T } satis�es

E

[
max

l=1,...,m
|X(s+ lt)−X(s+ (l − 1)t)|

]α
≤ Ct1+β, ∀t, s ∈ T , (5.9)

for some α < 0, β < 0, m ∈ N and C > 0. Then a.s. {X(t)} is nowhere Hölder

continuous of order γ for every γ > β/α.

Proof. This follows directly from the Markov's inequality for negative order moments and
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Theorem 7 since

P

(
max

l=1,...,m
|X(s+ lt)−X(s+ (l − 1)t)| ≤ Ktγ

)
≤ K−αt−γαE

[
max

l=1,...,m
|X(s+ lt)−X(s+ (l − 1)t)|

]α
≤ K−αCt−αγ+1+β,

and 1 + β − αγ > 1.

5.3 Applications

In this section we consider in more details processes with scaling properties and apply

the results of the previous section to derive some very general statements about these

processes.

5.3.1 The case of self-similar stationary increments processes

In this subsection we re�ne our results for the case of H-sssi processes by using Corollary

3. These results can also be viewed in the light of the classical papers Vervaat (1985)

and Takashima (1989). To be able to apply Corollary 3, we need to make sure that the

moment in (5.9) can be made �nite by choosing m large enough. We state this condition

explicitly for reference.

Condition 1. Suppose {X(t), t ∈ T } is a stationary increments process. For every α < 0

there is m0 ∈ N such that

E

[
max

l=1,...,m0

|X(l)−X(l − 1)|
]α

< ∞.

One way of assessing the Condition 1 is given in the following lemma, which is strong

enough to cover all the examples considered later. Recall the de�nition of the range of

�nite moments q and q given in (5.1).

Lemma 3. Suppose {X(t), t ≥ 0} is a stationary increments process which is ergodic in

the sense that if E|f(X1)| < ∞ for some measurable f , then∑m
l=1 f(Xl −Xl−1)

m

a.s.→ Ef(X1), as m → ∞.

Suppose also that q < 0. Then Condition 1 holds.

91



Chapter 5. Moments and the spectrum of singularities

Proof. Let r < 0 be such that E|X(1)−X(0)|r < ∞. Then

inf
l∈N

|X(l)−X(l − 1)|r = lim
m→∞

min
l=1,...,m

|X(l)−X(l − 1)|r

≤ lim
m→∞

∑m
l=1 |X(l)−X(l − 1)|r

m
= E|X(1)−X(0)|r =: M a.s.

For α < 0 it follows

inf
l∈N

|X(l)−X(l − 1)|α =

(
inf
l∈N

|X(l)−X(l − 1)|r
)α

r

≤ M
α
r a.s.

and inf l∈N |X(l)−X(l− 1)|α is bounded and thus has �nite expectation. Given α < 0 we

can choose m0 such that[
max

l=1,...,m0

|X(l)−X(l − 1)|
]α

=

[
1

maxl=1,...,m0 |X(l)−X(l − 1)|

]−α

=

[
min

l=1,...,m0

1

|X(l)−X(l − 1)|

]−α

= min
l=1,...,m0

|X(l)−X(l − 1)|α ≤ M
α
r a.s.,

which implies the statement.

Remark 6. Two examples may provide insight of how far the assumptions of Lemma 3

are from Condition 1. If X(t) = tX for some random variable X, then

max
l=1,...,m

|X(l)−X(l − 1)| = X

and thus, Condition 1 depends on the range of �nite moments of X. For the second

example, suppose X(l)−X(l− 1) is an i.i.d. sequence such that P (|X(1)−X(0)| ≤ x) =

− ln 2/ lnx for x ∈ (0, 1/2). This implies, in particular, that E|X(1) − X(0)|r = ∞ for

any r < 0. Moreover,

E

[
max

l=1,...,m
|X(l)−X(l − 1)|

]α
= −

∫ ∞

0

αyα−1P

(
max

l=1,...,m
|X(l)−X(l − 1)| ≤ y

)
dy

= −
∫ ∞

0

αyα−1 1

(ln y)m
dy = ∞,

for every α < 0 and m ∈ N, thus Condition 1 does not hold.

We are now ready to prove a general theorem about H-sssi processes.

Theorem 8. Suppose {X(t), t ≥ 0} is H-sssi stochastic process such that Condition 1

holds and H − 1/q ≥ 0. Then a.s.

H − 1

q
≤ H(t) ≤ H, ∀t ≥ 0.
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Proof. By the same argument as in the beginning of the proof of Theorem 6 it is enough to

take arbitrary γ > H. Given γ we take α < 1/(H−γ) < 0 which implies γ > H−1/α. Due

to Condition 1, we can choose m0 ∈ N such that E [maxl=1,...,m0 |X(lt)−X((l − 1)t)|]α <

∞. Self-similarity then implies that

E

[
max

l=1,...,m0

|X(lt)−X((l − 1)t)|
]α

= tHαE

[
max

l=1,...,m0

|X(l)−X(l − 1)|
]α

= Ct1+(Hα−1).

The claim now follows immediately from Corollary 3 with β = Hα−1 since γ > β/α.

A simple consequence of the preceding is the following statement.

Corollary 4. Suppose that Condition 1 holds. A H-sssi process with all positive order

moments �nite has a trivial spectrum, i.e. d(h) = −∞ for h ̸= H.

This applies to FBM, but also to all Hermite processes, like e.g. Rosenblatt process

(see Section 5.4). Thus, under very general conditions a self-similar stationary increments

process with a nontrivial spectrum must be heavy-tailed. This shows clearly how in�nite

moments can a�ect path properties when the scaling holds. The following simple result

shows this more precisely.

Proposition 3. Suppose {X(t), t ≥ 0} is H-sssi. If γ < H and d(γ) ̸= −∞, then

E|X(1)|q = ∞ for q > 1/(H − γ).

Proof. Suppose E|X(t)|q < ∞ for q > 1/(H − γ). Then for ε > 0 we can apply Markov's

inequality to get

P (|X(t)| ≥ Ktγ) = P
(
|X(1)| ≥ Ktγ−H

)
≤ E |X(1)|

1
H−γ

+ε

K
1

H−γ
+εt−1−ε(H−γ)

≤ Ct1+ε(H−γ).

By Corollary 1 this implies d(γ) = −∞, which is a contradiction.

5.3.2 The case of multifractal processes

Our next goal is to show that in the de�nition of H̃+ one can essentially take the in�mum

over all q < 0. At the moment this makes no sense as τ from De�nition 2 may not be

de�ned in this range. It is therefore necessary to rede�ne the meaning of the scaling

function and thus we work with the more general De�nition 1.

In the next section we will see on the example of the LNC process that when the mul-

tifractal process has all negative order moments �nite, the bound derived in Proposition 2

is sharp. In general, this would not be the case for any multifractal in the sense of De�ni-

tion 1. Take for example a LNMRW, which is a compound process X(t) = B(θ(t)) where

B is BM and θ is an independent LNC. By the multifractality of the cascade for t < 1,

θ(t) =d M(t)θ(1) and multifractality of LNMRW implies X(t) =d (M(t)θ(1))1/2B(1).
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Now by the independence of B and θ, if E|B(1)|q = ∞, then E|X(t)|q = ∞. Since B(1)

is Gaussian, the moments will be in�nite for q ≤ −1.

We thus provide a more general bound which only has a restriction on the moments

of the random factor from De�nition 1. Therefore, if the process satis�es De�nition 1 and

if the random factor M is multifractal by De�nition 2 with scaling function τ , we de�ne

H+ = inf

{
τ(q)

q
− 1

q
: q < 0 & E|M(t)|q < ∞

}
.

Corollary 5. Suppose {X(t), t ∈ T } has stationary increments and Condition 1 holds.

Suppose also it is multifractal by De�nition 1 and the random factor M satis�es De�nition

2 with scaling function τ . If E|M(t)|q < ∞, ∀t ∈ T for some q < 0, then a.s. {X(t)} is

nowhere Hölder continuous of order γ for every

γ ∈
(
τ(q)

q
− 1

q
, +∞

)
.

In particular, a.s.

H(t) ≤ H+, ∀t ∈ T .

Proof. By Condition 1 for m large enough it follows from the multifractal property (4.3)

that

E

[
max

l=1,...,m
|X(lt)−X((l − 1)t)|

]q
= E|M(t)|qE

[
max

l=1,...,m
|X(l)−X(l − 1)|

]q
= Ct1+τ(q)−1.

The claim now follows from Corollary 3 with α = q and β = τ(q)−1 and by the argument

at the beginning of the proof of Theorem 6.

In summary, we provide bounds on the support of the multifractal spectrum. We

show that the lower bound can be derived using positive order moments and link in�nite

moments with path properties for the case of H-sssi process. In general, negative order

moments are not appropriate for explaining the right part of the spectrum. To derive

an upper bound on the support of the spectrum, we use negative order moments of the

maximum of increments. This avoids the nonexistence of the negative order moments,

which is a property of the distribution itself.

5.4 Examples

In this section we list several examples of stochastic processes and investigate how the

results of Sections 5.2 and 5.3 apply in these cases. We also discuss how the multifractal

formalism could be achieved.
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5.4.1 Self-similar processes

It follows from Theorem 8 and Corollary 4 that if H-sssi process is ergodic with �nite

positive order moments, then the spectrum is simply

d(h) =

1, if h = H

−∞, otherwise.

This applies to all Hermite processes, e.g. BM, FBM and Rosenblatt process. Hermite

process {Z(k)
H (t), t ≥ 0} with H ∈ (1/2, 1) and k ∈ N can be de�ned as

Z
(k)
H (t) = C(H, k)

∫ ′

Rk

∫ t

0

(
k∏

j=1

(s− yj)
−( 1

2
+ 1−H

k
)

+

)
dsdB(y1) · · · dB(yk), t ≥ 0,

where {B(t)} is the standard BM and the integral is taken over Rk except the hyperplanes

yi = yj, i ̸= j. The constant C(H, k) is chosen such that E[Z
(k)
H (1)]2 = 1 and (x)+ =

max(x, 0). Hermite processes are H-sssi. For k = 1 one gets the FBM and for k = 2 the

Rosenblatt process. See Embrechts & Maejima (2002) for more details.

Hermite processes have all positive order moments �nite and the increments are ergodic

(see e.g. (Samorodnitsky 2007, Section 7)), so they have a trivial spectrum. The spectrum

of Hermite processes has been studied so far only numerically (Wendt et al. (2012)). We

now discuss heavy tailed examples of H-sssi processes.

Stable Lévy processes

As already discussed in Section 5.1, the spectrum of a strictly α-stable Lévy process is

nontrivial and supported on [0, 1/α]. These are exactly the bounds given in Theorem 8

as in this case H = 1/α and q = α.

Linear fractional stable motion

The spectrum of the LFSM for α ∈ [1, 2), H ∈ (0, 1) and in the long-range dependence

case H > 1/α is supported on [H − 1
α
, H]. Also, increments of the LFSM are ergodic (see

e.g. Cambanis et al. (1987)). Since q = α, sharp bounds on the support of the spectrum

follow from Theorem 8.

Inverse stable subordinator

Lévy process {Y (t), t ≥ 0} such that Y (1) ∼ Sα(σ, 1, 0), 0 < α < 1 is called the stable

subordinator. It is nondecreasing and 1/α-sssi. The inverse stable subordinator {X(t), t ≥
0} is de�ned as

X(t) = inf {s > 0 : Y (s) > t} .
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It is α-ss with dependent, nonstationary increments, nondecreasing and corresponds to

the �rst passage time of the stable subordinator strictly above level t. For more details

see Meerschaert & Straka (2013) and references therein.

The application of the results of the previous section for the inverse stable subordinator

is not straightforward as it has nonstationary increments, yet we can prove that it has a

trivial spectrum such that d(α) = 1.

To derive the lower bound we use Theorem 5. First recall that aα + bα ≤ (a+ b)α for

a, b ≥ 0 and α ∈ (0, 1). Taking a = t − s, b = s when t ≥ s and a = t, b = s − t when

t < s gives that |tα − sα| ≤ |t − s|α. Since {X(t)} has �nite moments of every positive

order we have for arbitrary q > 0 and t, s > 0

E|X(t)−X(s)|q = |tα − sα|qE|X(1)|q ≤ E|X(1)|q|t− s|1+αq−1.

By Theorem 5 there exists modi�cation which is a.s. locally Hölder continuous of order

γ < α−1/q. Since q can be taken arbitrarily large, we can get the modi�cation such that

a.s. H(t) ≥ α for every t ≥ 0.

For the upper bound we use Theorem 7. Given γ > α we choose m ∈ N such that

m > 1/(γ − α). If {Y (t)} is the corresponding stable subordinator, from the property

{X(t) ≤ a} = {Y (a) ≥ t} we have for every t1 < t2 and a > 0

{X(t2)−X(t1) ≤ a} = {YX(t1)+a ≥ t2} = {YX(t1)+a − t1 ≥ t2 − t1}.

By (Bertoin 1998, Theorem 4, p. 77), for every t1 > 0, P (YX(t1) > t1) = 1, thus, on this

event

{YX(t1)+a − t1 ≥ t2 − t1} ⊂ {YX(t1)+a − YX(t1) ≥ t2 − t1}.

Now by the strong Markov property choosing t small enough and stationarity of increments

of {Y (t)} we have

P

(
max

l=1,...,m
|X(s+ lt)−X(s+ (l − 1)t)| ≤ Ktγ

)
= P (X(s+ t)−X(s) ≤ Ktγ, . . . , X(s+mt)−X(s+ (m− 1)t) ≤ Ktγ)

≤ P
(
YX(s)+Ktγ − YX(s) ≥ t, . . . , YX(s+(m−1)t)+Ktγ − YX(s+(m−1)t) ≥ t

)
≤ (P (Y (Ktγ) ≥ t))m =

(
P
(
Y (1) ≥ K− 1

α t1−
γ
α

))m
≤
(
Ctγ−α

)m
,

by the regular variation of the tail for t su�ciently small. Due to the choice of m,

m(γ−α) > 1. This property of the �rst-passage process has been noted in (Bertoin 1998,

p. 96).
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5.4.2 Lévy processes

Suppose {X(t), t ≥ 0} is a Lévy process. The Lévy processes in general do not satisfy

the moment scaling of the form (4.5). As there is no exact moment scaling, Propositions

1 and 2 cannot be applied. Thus, in order to establish bounds on the support of the

spectrum we use other criteria from Section 5.2. We present two analytically tractable

examples to illustrate the use of these criteria.

Inverse Gaussian Lévy process

The inverse Gaussian Lévy process is a subordinator such that X(1) has an inverse Gaus-

sian distribution IG(δ, λ), δ > 0, λ ≥ 0, given by the density

f(x) =
δ√
2π

eδλx−3/2 exp

{
−1

2

(
δ2

x
+ λ2x

)}
, x > 0.

The expression for the cumulant reveals that for each t, X(t) has IG(tδ, λ) distribution.

Lévy measure is absolutely continuous with the density given by

g(x) =
δ√
2π

x−3/2 exp

{
−λ2x

2

}
, x > 0,

thus, the BG index is β = 1/2. See Eberlein & v. Hammerstein (2004) for more details.

Inverse Gaussian distribution has moments of every order �nite and for every q ∈ R we

can express them as

E|X(1)|q =
∫ ∞

0

xqf(x)dx =
δ√
2π

eδλ
(

2

λ2

)q−1/2 ∫ ∞

0

xq−3/2 exp

{
−x− δ2λ2

4x

}
dx

=
δ√
2π

eδλ
(

2

λ2

)q−1/2

K−q+ 1
2
(δλ)2

(
δλ

2

)q− 1
2

=

√
2

π
eδλδq+

1
2λ−q+ 1

2K−q+ 1
2
(δλ),

where we have used (Olver et al. 2010, Equation 10.32.10) and Kν denotes the modi�ed

Bessel function of the second kind. This implies that

E|X(t)|q =
√

2

π
etδλtq+

1
2 δq+

1
2λ−q+ 1

2K−q+ 1
2
(tδλ) ∼ Ctq+

1
2 t−|−q+ 1

2
|, as t → 0,

since Kν(z) ∼ 1
2
Γ(ν)(1

2
z)−ν for z > 0 and K−ν(z) = Kν(z). For any choice of γ > 0

condition of Corollary 1 cannot be ful�lled, so the best we can say is that the lower bound

is 0, in accordance with (4.14). Since negative order moments are �nite, Corollary 2

yields the sharp upper bound on the spectrum. Indeed, given γ > 1/β = 2 we have for

q < 1/(2− γ) < 0

P (|X(t)| ≤ Ktγ) ≤ E|X(t)|q

Kqtγq
≤ Ct−q(γ−2),
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for t su�ciently small. It follows that the upper bound is 2 which is exactly the reciprocal

of the BG index.

Tempered stable subordinator

The positive tempered stable distribution is obtained by exponentially tilting the Lévy

density of the α-stable distribution, 0 < α < 1. The tempered stable subordinator is a

Lévy process {X(t)} such that X(1) has a positive tempered stable distribution given by

the cumulant function

Φ(θ) = logE
[
e−θX(1)

]
= δλ− δ

(
λ1/α + 2θ

)α
, θ ≥ 0,

where δ is the scale parameter of the stable distribution and λ is the tilt parameter. In

this case BG index is equal to α (see Schoutens (2003) for more details). We use Corollary

2 for γ > α to get

P (|X(t)| ≤ Ktγ) ≤ eE
[
e−

X(t)
Ktγ

]
= e1+tΦ(K−1t−γ) = O(e−t1−γ/α

), as t → 0.

As this decays faster than any power of t as t → 0, the upper bound follows.

5.4.3 Multifractal processes

In this subsection, results are applied to examples of processes that are multifractal by

De�nition 1 and 2.

Log-normal cascade

We �rst analyze the log-normal cascade process. The spectrum of the LNC is supported

on the interval
[
1 + 2λ2 − 2

√
2λ2, 1 + 2λ2 + 2

√
2λ2
]
, as follows from (4.16).

The condition τ(q) > 1 of Proposition 1 yields q ∈ (1, 1/(2λ2)). We then get that

H− = 1 + 2λ2 − 2
√
2λ2.

This is exactly the left endpoint of the interval where the spectrum of the cascade is �nite,

in accordance with Proposition 1. This maximal lower bound is achieved for q = 1/
√
2λ2,

which by (4.24) is exactly the point q+0 at which the linearization e�ect occurs. If q− is

the point at which the maximal lower bound H− is achieved, then(
τ(q)

q
− 1

q

)′

=
1

q2
(qτ ′(q)− τ(q) + 1)

must be equal to 0 at q−. This is exactly de�ned in (4.23). Although the range of �nite

moments is not relevant for computing H− in this case, in general it can depend on q.
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For the upper bound, since all negative order moments are �nite we get that

H̃+ = H+ = 1 + 2λ2 + 2
√
2λ2

achieved for q = −1/
√
2λ2, which is equal to q−0 from (4.25). Thus, again, the bound

from Proposition 2 is sharp, giving the right endpoint of the interval where the spectrum

is supported.

Log-normal multifractal random walk

The example of LNMRW illustrates that we may have H̃+ ̸= H+ and that the de�nition

of the scaling function needs to be adjusted to avoid in�nite moments of negative order.

The scaling function is de�ned for the range of �nite moments, which is (−1, 1/λ2) as

explained earlier. However, if we consider τ as the scaling function of the random factor

M(c) = c1/2eΓc de�ned in (4.8), then the de�nition of τ makes sense for all q ∈ (−∞, 1/λ2).

The spectrum is supported on the interval
[
1/2 + λ2 −

√
2λ2, 1/2 + λ2 +

√
2λ2
]
and given

by (4.17).

The random factor M(c) is the source of multifractality, has the same scaling function

(4.9), but all negative order moments are �nite. Thus we get

H− = 1/2 + λ2 −
√
2λ2,

H̃+ =
3

2
+

3λ2

2
,

H+ = 1/2 + λ2 +
√
2λ2.

H− and H+ give the sharp bounds, while H̃+ is a�ected by the divergence of negative

order moments. This shows that when the multifractal process has in�nite negative order

moments, one should specify scaling in terms of the random factor. The optimal bounds

H− and H+ are attained for q− =
√
2/λ2 and q+ = −

√
2/λ2, respectively.

5.5 Robust version of the partition function

In Section 5.2 using Corollary 3 we managed to avoid the problematic in�nite moments

of negative order and prove results like Theorem 8 and Corollary 5. When the scaling

function (1.4) is estimated from the data, spurious concavity may appear for negative

values of q, due to the e�ect of diverging negative order moments. We use the idea of

Corollary 3 to develop a more robust version of the partition function.

Instead of using increments in the partition function (1.2), we can use the maximum

of some �xed number m of the same length increments. This will make the negative order

moments �nite for some reasonable range and prevent divergencies. The underlying idea
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resembles the wavelet leaders method, where leaders are formed as the maxima of the

wavelet coe�cients over some time scale (see Ja�ard et al. (2007)). Since m is �xed, this

does not a�ect the true scaling. The same idea can be used for q > 0 by an argument

following from Corollary 1. It is important to stress that the estimation of the scaling

function makes sense only if the underlying process is known to possess scaling property

of the type (4.3).

Suppose {X(t)} has stationary increments and X(0) = 0. Divide the interval [0, T ]

into ⌊T/(mt)⌋ blocks each consisting of m increments of length t and de�ne the modi�ed

partition function:

S̃q(T, t) =
1

⌊T/(mt)⌋

⌊T/(mt)⌋∑
i=1

max
l=1,...,m

|X(imt+ lt)−X(imt+ (l − 1)t)|q . (5.10)

One can see S̃q(T, t) as a natural estimator of the moment in (5.9). Analogously we de�ne

the modi�ed scaling function as in (1.4) by using S̃q(n, ti):

τ̃N,T (q) =

∑N
i=1 ln ti ln S̃q(n, ti)− 1

N

∑N
i=1 ln ti

∑N
j=1 ln S̃q(n, ti)∑N

i=1 (ln ti)
2 − 1

N

(∑N
i=1 ln ti

)2 . (5.11)

The de�nition can be altered only for q < 0 although there is no much di�erence between

two forms when q > 0.

To illustrate how this modi�cation makes the scaling function more robust we present

several examples comparing (1.4) and (5.11). We generate sample paths of several pro-

cesses and estimate the scaling function by both methods. We also estimate the spectrum

numerically using (4.18). The results are shown in Figures 5.1-5.4. Each �gure shows the

estimated scaling functions and the estimated spectrum by using standard de�nition (1.4)

and by using (5.11). We also added the plots of the scaling function that would yield the

correct spectrum via multifractal formalism and the true spectrum of the process.

For the BM (Figure 5.1) and the α-stable Lévy process (Figure 5.2) we generated

sample paths of length 10000 and used α = 1 for the latter. LFSM (Figure 5.3) was

generated using H = 0.9 and α = 1.2 with path length 15784. Finally, the sample path of

the LNMRW of length 10000 was generated with λ2 = 0.025 (Figure 5.4). For each case

we take m = 20 in de�ning the modi�ed partition function (5.10).

In all the examples considered, the modi�ed scaling function is capable of yielding

the correct spectrum of the process with the multifractal formalism. As opposed to the

standard de�nition, it is una�ected by diverging negative order moments. Moreover, it

captures the divergence of positive order moments which determines the shape of the

spectrum.
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Figure 5.1: Brownian motion
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Figure 5.2: Stable Lévy process α = 1
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Figure 5.3: LFSM H = 0.9, α = 1.2
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Figure 5.4: LNMRW λ2 = 0.025
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