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Zagreb, 2017
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Foreword

Most of the problems of continuum physics, which are modelled by partial differential
equations, consists of two types of laws:

(1) linear differential relations (conservation laws)
(2) nonlinear pointwise connections (laws of constitution).

Systematic approach to the laws of constitution is possible by using Young (parametrised)
measures, and the connection to the conservation laws is done by compactness by compen-
sation. This approach allows the systematic treatment of many problems of continuum
mechanics, first of which was non-periodic homogenisation. A special case of linear differ-
ential relations is irrotationality of a vector field (which is then locally potential field), and
on that simple, yet so common case in applications, there has been a myriad of results,
more known under the joint name of variational theory of microstructures. More com-
plex example is an application to hyperbolic conservation laws. However, an important
limitation of this theory is that conservation laws are restricted only to linear relations
with constant coefficients.

For evolution equations Young measures, as objects which can not see the direction
of propagation, are not particularly suitable, and one needs to replace them with new
objects. One of such new objects are H-measures, non-negative Radon measures on
co-spherical tangent bundle over the given domain, which depend on both the physical
and the phase variable (which describes the direction of propagation). They have been
introduced independently by Luc Tartar and Patrick Gérard (under the name microlocal
defect measures). In applications the so called localisation principle of H-measures is of
utter importance because it enables us to localise the support of H-measure by using a
partial differential equations which is satisfied by the generating sequence of functions.
An application of the localisation principle of H-measures is a form of compactness by
compensation with linear differential relations, but with variable coefficients which are
continuous functions. That generalisation proved to be useful in applications to the
small amplitude homogenisation (in other words, to problem of mixing materials with
low density contrast) and to optimal design, where important industrial problems are
considered: how to mix available materials with the goal of obtaining a mixture with
optimal physical properties.

Over the course of time, it became evident that classical H-measures, although
successful in some areas, are not entirely suitable for studying problems with different
order of derivatives with respect to different variables, i.e. heat equation, Schödinger
equation, Navier-Stokes equations and vibrating plate equation. Last eight years saw
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development of parabolic H-measures, ultra-parabolic H-measures, fractional H-measures,
one-scale H-measures and microlocal compactness forms.

Even tough localisation principle was shown in the above mentioned cases, obtaining
an appropriate form of compactness by compensation is not always simple. For example,
localisation principle for parabolic H-measures includes fractional derivatives (which are
non-local operators), so it is not entirely clear how to get a corresponding compactness
by compensation result. On the other hand, H-measures are by definition tied to the
Hilbert space L2, which is suitable for linear problems. But by that, the success of
their application to nonlinear problems with solutions in Lp spaces is severely restricted.
A step forward in that direction was done by Nenad Antonić and Darko Mitrović by
introduction of H-distributions as a generalisation of H-measures to the Lp spaces. In
the L2 case, Fourier transform together with Plancherel’s theorem proved to be a very
efficient tool. Unfortunately, in the Lp case it is necessary to use more complex results
and tools of pseudodifferential calculus and analysis, i.e. the Hörmander-Mihlin and the
Schwartz kernel theorem. Additional disadvantage with H-distributions is that they are
not Radon measures anymore, but distributions in the Schwartz sense. By that, some of
the standard tools of the measure theory are not at our disposal. Namely, the Radon-
Nikodym theorem gave a relatively simple representation of H-measures which proved
useful in obtaining compactness by compensation result from the localisation principle.
In the case of distributions, there is no analogue of Radon-Nikodym theorem, which makes
obtaining compactness by compensation from the localisation principle highly nontrivial.

The goal of this thesis is better understanding of H-distributions and its variants,
namely, their localisation principles and compactness by compensation result.

In the first chapter we generalise the known results of the so called First commutation
lemma in the Lp case using a result of Krasnoselskij type.

Then in the second chapter, in order to give a more precise description of H-
distributions, we refine the notion of distributions by introducing a notion of anisotropic
distributions of finite order. We prove the Schwartz kernel theorem for anisotropic dis-
tributions and with its help, we show that H-distributions are anisotropic distributions
of finite order. This leads to the improvement of the existing localisation principle.

In the third chapter, we give a variant of H-distributions and a compactness by com-
pensation result with variable discontinuous coefficients. An application to the nonlinear
equation of parabolic type is given.

I would like to use this opportunity to thank my advisor Nenad Antonić for all
the generous help and moral support during my PhD research, and Darko Mitrović for
interesting problems and joyful moments which followed their investigation. They became
not only my mentors, but my friends as well.

I thank my friends and co-authors Marko Erceg and Andrej Novak. Nowadays I
gladly remember the frustrating afternoons Marko and I spent studying the Schwartz
kernel theorem and nuclear spaces. His enthusiastic suggestions and help shaped the
exposition given in the chapter on the Schwartz kernel theorem.

I would like to thank senior members of our research group: Krešimir Burazin, Ivan
Ivec, Martin Lazar and Marko Vrdoljak on useful discussions and constructive remarks
which lead to the final version of results presented in this thesis.

I would also like to thank junior members of the research group and members of the
Seminar for differential equations and numerical analysis who patiently listened to my
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Christian Klingenberg, Michael Kunzinger, Evgenij Jurjevič Panov, Stevan Pilipović, Luc
Tartar, and Enrique Zuazua. Thank You!

I thank my friends Josip Saratlija, Saša Stanko, Petar Sirković, Luka Rimanić,
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I. The First commutation lemma



H-distributions and compactness by compensation

In this chapter we review and generalise results on compactness of commutators
of multiplication and Fourier multiplier operators by H. O. Cordes in several directions
with respect to the smoothness of multiplication function and by replacing the Fourier
multiplier operator by a more general pseudodifferential operator. We review and improve
the known results both in the standard L2 setting, as well as for general Lp, with 1 <
p <∞. Furthermore, we extend these results to less regular symbols.

Majority of results of this chapter can be found in [6].

1. Overview

In their seminal paper [31], Joseph John Kohn and Louis Nirenberg introduced
pseudodifferential operators as sums of elementary operators on L2 (or the corresponding
Sobolev spaces Hs), which were of the form

Au = F̄(ψF(bu)) ,

where Fu(ξ) = û(ξ) =
∫
e−2πix·ξu(x)dx denotes the Fourier transform, with the inverse

F̄v(x) = v̌(x) =
∫
e2πix·ξv(ξ)dξ. The above elementary operator is a composition Au =

AψMbu, with Mbu = bu. For good enough ψ, the Fourier multiplier operator Aψu :=
(ψû)∨ is a bounded operator on Lp, the sufficient conditions being provided by two
celebrated results: the Marcinkiewicz and the Hörmander-Mihlin theorem [24, Chapter
5.2]. However, for p = 2 a simpler result characterises the space of good ψ as L∞ [24,
Chapter 2.5].

In order to prove that pseudodifferential operators form an algebra (modulo smooth-
ing operators), it was important to know that their commutator

[Aψ,Mb] := AψMb −MbAψ

is an operator of lower order (i.e. that it maps L2 to H1 continuously). In fact, this
means that different quantisations (like Kohn-Nirenberg’s, adjoint or Weyl’s), to a given
function (symbol) associate operators which are equal modulo lower order operators.

A decade later, Heinz Otto Cordes [12] investigated the properties of such commu-
tators, both in the L2 case, improving the earlier boundedness result of Alberto Pedro
Calderón and Rémi Vaillancourt, as well as in the Lp case, for p ∈ 〈1,∞〉.

The L2 result [12, Theorem C] reads:

Theorem 1. If bounded continuous functions b and ψ satisfy

(1) lim
|x|→∞

sup
|h|≤1

∣∣∣b(x + h)− b(x)
∣∣∣ = 0 and lim

|ξ|→∞
sup
|h|≤1

∣∣∣ψ(ξ + h)− ψ(ξ)
∣∣∣ = 0 ,

then the commutator [Aψ,Mb] is a compact operator on L2(Rd).

Theorem 1 in this form appears to be quite useful as it can be seen in several recent
papers. In [39], it was essentially used in the proof of linear instability of 2D water
waves modelled by the Euler equations. In [38], similar results relaying on the same tools
were obtained for nonlinear solitary waves which emerge from several classes of equations
(BBM, KdV, and Boussinesq type equations). In [52], Theorem 1 was applied in order
to derive new formulae for the wave operators for a Friedrichs scattering system with a
rank-one perturbation. We shall pay special attention to the H-measures [60, 23] where
a variant of Theorem 1 was substantially used.
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The First commutation lemma

As for the Lp-compactness, if we additionally assume that ψ satisfies conditions of
either the Hörmander-Mihlin or the Marzinkiewicz multiplier theorem, then the com-
mutator [Aψ,Mb] is Lp-compact. Such a result is used in [51] for deriving Fredholm
property of Douglis–Nirenberg elliptic systems as well as in [13] where the same property
was shown for a class of operators with homogeneous kernels of compact type.

Despite their obvious importance, up to our knowledge, there are no substantial
extensions of the Cordes results. While it seems that one cannot say much more in
the L2-case, than it was said above in Theorem 1, it is unclear what are the precise
properties of commutators when the well known Marcinkiewicz (7) or Hörmander-Mihlin
(5) sufficient conditions for Lp-continuity of the Fourier multiplier operator are fulfilled.

The Marcinkiewicz conditions easily imply compactness of the commutator (we ac-
tually significantly simplify the proof of the less general statement from [12]; see Corollary
1). On the other hand, the Hörmander-Mihlin conditions require a substantially new and
non-trivial proof based on the techniques used in the proof of the Hörmander-Mihlin
theorem.

Finally we analyse a natural extension, when the Fourier multiplier operator is
replaced by a general pseudodifferential operator in the commutator, and provide appro-
priate sufficient conditions for compactness.

The chapter is organised as follows: in the next section we briefly describe our
motivation and compare various L2 results. The third section is devoted to the Lp case,
for p ∈ 〈1,∞〉, while in the fourth section we provide certain conditions under which
the regularity of b can be relaxed (see the conditions of Lemma 5 and Corollary 4).
Although Fourier multipliers do not act between local Lebesgue spaces, the result of
Theorem 4 could be understood in that sense. It also represents the single most important
result of the fourth section. Finally, in the last section we consider the commutators of
pseudodifferential operators and multiplication and provide a new result when symbol
a(x, ξ) satisfies some suitable additional conditions.

2. H-measures and the L2 case

H-measures, independently introduced by Luc Tartar [60] and Patrick Gérard [23],
are defined as Radon measures on the co-spherical bundle over the domain Ω; for a single
parametrisation (Ω ⊆ Rd) they are measures on the product Ω× Sd−1. We often refer to
Ω as the physical space, while ξ ∈ Sd−1 is the dual variable to x ∈ Ω.

Having some practical applications in mind, where the lower regularity of functions
is important, Tartar defined the symbols as continuous functions on the phase space, in
variables x ∈ Ω and ξ ∈ Rd

∗ := Rd \ {0}, satisfying certain additional properties; in the
simplest case they are products p(x, ξ) = b(x)ψ(ξ). In particular, it is assumed that ψ is
defined on Sd−1, and then extended to Rd

∗ by homogeneity:

ψ(ξ) = ψ

(
ξ

|ξ|

)
.

This introduces the projection ξ 7→ ξ
|ξ| , of Rd

∗ onto Sd−1.

In some applications, e.g. when dealing with the heat equation ut− uxx = 0, we are
led to consider some variants [5; 61, Chapter 28]. The symbol of the heat operator is
iτ + ξ2, and the natural scaling is no longer along the rays through the origin, but along
the parabolas τ = cξ2 in the dual space.
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H-distributions and compactness by compensation

Function ψ should be constant along these parabolas, and we can choose a set
of representative points for each parabola. One choice could be the unit sphere Sd−1;
however, the coordinate expression for the projection is not convenient in this case. A
smooth compact hypersurface (in fact, a rotational ellipsoid) we chose in [5] is implicitly
given by:

Pd−1 . . . ρ4(τ, ξ) := τ2 +
|ξ|2

2
= 1 .

For any given point (τ, ξ) ∈ Rd
∗, its projection to Pd−1 is given by (as ρ4 > 0 on Rd

∗, by
choosing positive determination of roots, the projection is uniquely defined)

π(τ, ξ) =

(
τ

ρ2(τ, ξ)
,

ξ

ρ(τ, ξ)

)
.

In particular, from this formula it is clear that we indeed have a projection on Pd−1.
Some further variants were studied in [49, 43, 19].

In general, we shall be able to define a variant H-measure [61, loc. cit.] as long as
we have a smooth compact hypersurface Σ in Rd, and a smooth projection π : Rd

∗ −→ Σ.
For given M,% ∈ R+ we denote the set

Y (M,%) = {(ξ,η) ∈ R2d : |ξ|, |η| ≥M & |ξ − η| ≤ %} ,

which is depicted in Figure 1.

η

ξ

%

Y
M

Figure 1. Set Y (M,%).

Tartar’s First commutation lemma [61, Lemma 28.2] (in its general form) reads

Lemma 1. If b ∈ C0(Rd), while ψ ∈ L∞(Rd) satisfies the condition

(2) (∀ %, ε ∈ R+)(∃M ∈ R+) |ψ(ξ)− ψ(η)| ≤ ε (ss (ξ,η) ∈ Y (M,%)) ,

then [Aψ,Mb] is a compact operator on L2(Rd).

A set of sufficient conditions for (2), which covers both the classical H-measures and
their parabolic variants, is given in the following lemma:
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The First commutation lemma

Lemma 2. Let π : Rd
∗ −→ Σ be a smooth projection to a smooth compact hypersurface

Σ, such that |∇π(ξ)| −→ 0 for |ξ| −→ ∞, and let ψ ∈ C(Σ). Then ψ ◦ π (ψ extended by
homogeneity of order 0) satisfies (2).

Dem. Clearly, taking a constant C resulting from uniform continuity of ψ on the compact
Σ we have:∣∣∣ψ(ξ)− ψ(η)

∣∣∣ =
∣∣∣ψ(π(ξ))− ψ(π(η))

∣∣∣ ≤ C
∣∣∣π(ξ)− π(η)

∣∣∣ ≤ |ξ − η| sup
ζ∈[ξ,η]

|∇π(ζ)| ,

where for the last inequality we applied the Mean value theorem to the projection π.
For |ξ − η| ≤ ρ and ε > 0 given, we can find M large enough such that for

|ξ|, |η| ≥M > ρ the above is bounded by |ε|.
Q.E.D.

Let us check that the last result applies to the two cases of our particular interest
indeed. In both cases we have a continuous function ψ defined on a smooth compact
surface Σ (Sd−1 or Pd−1), and then it is extended to Rd

∗ taking constant values along
certain curves, which transversally intersect Σ and cover the whole space (rays from
the origin, or parts of quadratic parabolas in the parabolic case). It only remains to be
shown that the projections satisfy |∇π(ξ)| −→ 0 for |ξ| −→ ∞. However, it is a matter of
straightforward calculation to check that |∇π| ≤ 1/|ξ| in the first case, and |∇π| ≤ cρ−2

in the second (c being some positive constant).

This result allows for introduction of a class of pseudodifferential operators and
corresponding symbols, which, in contrast to the classical theory, are not required to
be smooth. For the sake of completeness, and in order to stress the importance of the
preceding lemmata, we briefly sketch the procedure bellow. A reader interested into
further details and some applications should consult [60; 61, Chapter 28; 5].

An admissible symbol is a function p ∈ C(Rd×Σ) which can be written in the form
p(x, ξ) =

∑
k bk(x)ψk(ξ), with bk ∈ C0(Rd) and ψk ∈ C(Σ), such that it satisfies the

rapidly converging condition

(3)
∑
k

‖bk‖L∞ ‖ψk‖L∞ <∞ .

We say that an operator L ∈ L(L2(Rd); L2(Rd)) has an admissible symbol p if that
operator can be written as a sum: L =

∑
kAψkMbk(mod K(L2(Rd); L2(Rd))) (i.e. up

to a compact operator on L2(Rd)); where the elementary operators Mbk and Aψk were
defined in the Introduction. Here we implicitly assume that ψk has already been extended
to Rd

∗, i.e. we identify it with ψk ◦ π.
Among all such operators corresponding to a given symbol p we can choose the

standard one: L0 :=
∑

kAψkMbk . It satisfies (for u ∈ L2(Rd) ∩ L1(Rd))

F(L0u)(ξ) =
∑
k

ψk(π(ξ))

∫
Rd
e−2πiξ·xbk(x)u(x) dx =

∫
Rd
e−2πiξ·xp(x, π(ξ))u(x) dx .

Thus, L0 is well defined—it does not depend on the choice of a representation for p.
If we consider operator L :=

∑
kMbkAψk , where Aψk and Mbk are as in the decom-

position of standard operator L0, we have for u ∈ L2(Rd) ∩ F(L1(Rd))

Lu(x) =
∑
k

bk(x)

∫
Rd
e2πiξ·xψk(π(ξ))û(ξ)dξ =

∫
Rd
e2πiξ·xp(x, π(ξ))û(ξ)dξ ,

and this is exactly the operator with symbol p in the framework of classical linear theory.
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H-distributions and compactness by compensation

Remark 1. Note that in classical theory the symbols are additionally assumed to be
smooth; more precisely, we say that a ∈ C∞(Rd ×Rd ; C) is a symbol if

(∀α,β ∈ Nd
0) (∃Cα,β > 0)(∀x ∈ Rd)(∀ ξ ∈ Rd) |∂αx ∂

β
ξ a(x, ξ)| ≤ Cα,β〈ξ〉m−ρ|β|+δ|α| ,

where 0 ≤ δ ≤ ρ ≤ 1, 〈ξ〉 =
√

1 + 4π2|ξ|2, while Cα,β are constants depending only on
α and β. The space of these symbols we denote by Smρ,δ, and with a family of seminorms

(the best constants Cα,β above are the values of corresponding seminorms) it becomes

a Fréchet space. The symbols we defined are global; if for any compact K ⊆ Rd there
are constants such that the above is valid only for x ∈ K, then we get a wider class of
symbols.

The pseudodifferential operator a(x, D) associated to symbol a(x, ξ) is defined by

[a(x, D)u](x) := (aû)∨(x) .

For such operators a similar result to Lemma 1 is valid, even though they do not neces-
sarily satisfy the rapidly converging condition (3), nor they can be expressed as sums of
elementary operators. We shall return to such operators in the last section.

Let us stress that L and L0 differ only by a compact operator on L2(Rd):

L− L0 =
∑
k

(MbkAψk −AψkMbk) =
∑
k

[Mbk ,Aψk ] ,

because by the First commutation lemma each of the commutators is compact, with the
norm less than 2‖bk‖L∞ ‖ψk‖L∞ . Here we have used the well known fact that the uniform
limit of compact operators is compact.

For two operators L and L′ with symbols s =
∑
bmψm and s′ =

∑
b′nψ

′
n, it is

immediate that s+ s′ is also a symbol, and it is the symbol of operator L+ L′. Slightly
more complicated is to check that ss′ is also a symbol (of operator L ◦ L′).

Indeed, ss′ =
∑

m,n(bmb
′
n)(ψmψ

′
n), and the partial sums of this series are bounded:

M∑
m=1

N∑
n=1

‖bmb′n‖L∞‖ψmψ
′
n‖L∞ ≤

( M∑
m=1

‖bm‖L∞‖ψm‖L∞
)( N∑

n=1

‖b′n‖L∞‖ψ
′
n‖L∞

)
.

The remaining arguments are straightforward now.

Remark 2. The results proven in Lemma 1 can be extended in an obvious way to
the case where function b has a limit as |x| → ∞ (i.e. it can be extended to a continuous
function on the one-point Aleksandrov compactification of Rd, which we shall denote
by Rd

∞). Indeed, if we denote the limit by b̃, then the commutator [Aψ,Mb−b̃] satisfies

the conditions of Lemma 1. Since [Aψ,Mb̃] = 0 (keep in mind that b̃ is a constant),

we conclude that [Aψ,Mb] is a compact operator on L2 as well. This has already been
noticed by Tartar [61, p. 342].

Comparing Lemma 1 to Theorem 1, we see that the former allows ψ to be in L∞(Rd),
while the latter requires the corresponding symbol to be continuous and bounded on Rd.
Otherwise, the assumption from Theorem 1 on ψ and the ones from Lemma 1 are readily
equivalent.
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The First commutation lemma

3. A generalisation to Lp(Rd)

In [7], H-distributions were introduced, a generalisation of H-measures to the Lp-
setting, for p > 1 (see also [4, 36, 42]). One of the crucial parts in their construction was
compactness of the commutator C := [Aψ,Mb] on Lp.

Let us first state the Hörmander-Mihlin theorem [24, Theorem 5.2.7.] which gives
sufficient conditions on the symbol of multiplier operator for it to be continuous on all
Lp, p ∈ 〈1,∞〉.

Theorem 2. Let ψ ∈ L∞(Rd) have partial derivatives of order less than or equal to
κ - the least integer strictly greater than d/2 (i.e. κ = [d/2] + 1). If for some A > 0

(4) (∀α ∈ Nd
0) |α| ≤ κ =⇒ |∂αψ(ξ)| ≤ A|ξ|−|α| ,

or

(5) (∀r > 0)(∀α ∈ Nd
0) |α| ≤ κ =⇒

∫
r<|ξ|<2r

|∂αψ(ξ)|2dξ ≤ A2rd−2|α|,

then for any p ∈ 〈1,∞〉 and the associated multiplier operator Aψ there exists a constant
Cd such that

‖Aψ‖Lp→Lp ≤ Cd max{p, 1/(p− 1)}(A+ ‖ψ‖L∞(Rd)).

The condition (4) is called the Mihlin condition, while (5) is called the Hörmander con-
dition. Let us just remark that while the Hörmander condition is more general than the
Mihlin condition, the latter is considerably easier to check.

One can find a variant of the commutator compactness result in [12, Theorem Cp]
under the following conditions:

(6)
(
∀ψ ∈ C2κ(Rd)

)
(∃c > 0)(∀ξ ∈ Rd)

∣∣∣(1 + |ξ|)|α|Dαψ(ξ)
∣∣∣ ≤ c ,

where α ∈ Nd
0, |α| ≤ 2κ, while b satisfies the same conditions as in Theorem 1. A similar

result was stated in [7, Lemma 3.1] for ψ ∈ Cκ(Sd−1) and b ∈ C0(Rd):

Lemma 3. Let (vn) be a bounded sequence, both in L2(Rd) and in Lr(Rd), for some
r ∈ 〈2,∞], and such that vn ⇀ 0 in the sense of distributions. Then Cvn −→ 0 strongly
in Lq(Rd), for any q ∈ [2, r] \ {∞}.

The proof was based on the simple interpolation inequality of Lp spaces, namely
that ‖f‖Lq ≤ ‖f‖θL2‖f‖1−θLr , where 1/q = θ/2 + (1 − θ)/r, but for q = r the proof was
incomplete.

In this section we shall show that commutator C is compact on each Lp(Rd), p ∈
〈1,∞〉. For that we use a result of Mark Aleksandrovič Krasnosel’skij [34], which was
proven only for a bounded domain there. As we were not able to find a proof for the
unbounded domain in the literature, we provide the complete proof below.

Lemma 4. Assume that linear operator A is compact on L2(Rd) and bounded on
Lr(Rd), for some r ∈ 〈1,∞〉. Then A is also compact on Lp(Rd), for any p between 2
and r (i.e. such that 1/p = θ/2 + (1− θ)/r, for some θ ∈ 〈0, 1〉).

7
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Dem. We shall construct a sequence of finite-rank operators Ak on L2(Rd), approxi-
mating A in the operator norm. Notice that the image of the unit ball in L2(Rd) by
A, which we denote by S, is relatively compact, thus precompact in the norm topology
on L2(Rd), so completely bounded, i.e. for any size 1

2k there is an m ∈ N and points

h1, . . . , hm ∈ S such that the balls of radius 1
2k centred around these points cover S. As

L2(Rd)∩L∞(Rd) is dense in L2(Rd), by allowing for a larger mesh size ε := 1/k, we can
replace the hi-s by g1, . . . , gm ∈ L2(Rd) ∩ L∞(Rd).

Choose a bounded measurable set E ⊆ Rd, of positive Lebesgue measure vol(E) > 0,
such that for each i ∈ 1..m

‖gi(1− χE)‖L2(Rd) ≤ ε.

As g1χE , . . . , gmχE are bounded functions on a set of finite measure, they can be approx-
imated in L∞ norm by step functions. In particular, for step functions we can choose
the values on each step to be the average of the function over the corresponding part.
More precisely, for given ε′ = ε/

√
vol(E), we can find a finite disjoint decomposition of

E =
⋃K
i=1Ei, where each Ei is of positive measure, such that the averaging operator

Eg =
K∑
i=1

( 
Ei

g
)
χEi

satisfies
(∀i ∈ 1..m) ‖Egi − giχE‖L∞(Rd) ≤ ε′ .

Let us examine more closely the properties of the averaging operator E .
From its definition it is clear that Eg ≡ 0 outside E. Furthermore, for a given i,

denote m :=
ffl
Ei
g. Now we have, by Jensen’s inequality, that

 
Ei

|m|2 =
∣∣∣ 

Ei

g
∣∣∣2 ≤  

Ei

|g|2 ,

so on each Ei the operator E does not increase the L2 norm. By the additivity of integral
over the domain, we see that E is a non-expansive map on L2(E).

For an arbitrary g ∈ S, let gi be such that ‖g− gi‖L2(Rd) ≤ ε; we have the following

‖Eg − g‖L2(Rd) ≤ ‖E(g − gi)‖L2(Rd) + ‖Egi − gi‖L2(Rd) + ‖gi − g‖L2(Rd)

≤ 2‖g − gi‖L2(Rd) + ‖Egi − gi‖L2(Rd)

≤ 2ε+ ‖Egi − gi‖L2(Rd) ,

where we have used the fact that E is a non-expansive map on L2(E). Concerning the
last term, recalling the choice of E, it follows that

‖Egi − gi‖L2(Rd) ≤ ‖gi(1− χE)‖L2(Rd) +
√

volE ‖Egi − giχE‖L∞(Rd) ≤ 2ε.

Thus, for an arbitrary g ∈ S, we have that ‖Eg − g‖L2(Rd) ≤ 4ε.
By defining Ak := E ◦ A, we obtain a finite-rank operator satisfying

‖A− Ak‖L(L2(Rd);L2(Rd)) = sup
‖f‖

L2(Rd)
≤1
‖Af − EAf‖L2(Rd) = sup

g∈S
‖g − Eg‖L2(Rd) ≤ 4ε.
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The First commutation lemma

To finish the proof, we have to use a simple interpolation argument. Take an arbi-
trary p between 2 and r, for which there is a θ ∈ 〈0, 1〉 such that

1

p
=
θ

2
+

1− θ
r

.

By an application of the Riesz-Thorin interpolation theorem, we have

‖A− Ak‖L(Lp(Rd);Lp(Rd)) ≤ ‖A− Ak‖
1−θ
L(Lr(Rd);Lr(Rd))

‖A− Ak‖θL(L2(Rd);L2(Rd))

≤
(

2‖A‖L(Lr(Rd);Lr(Rd))

)1−θ
(4ε)θ ,

which concludes the proof.
Q.E.D.

Let us notice that, if we knew that A were compact on Lq(Rd) for some q ∈ 〈1,∞〉
(not necessarily equal to 2), then the same proof as above would have remained valid
with 2 replaced by q.

Remark 3. We can avoid using the averaging operator E . Instead, we can use a cut-off
operator MχEf := χEf . It is obvious that MχE : Lp(Rd) −→ Lp(Rd) is a non-expansive
map for each p ∈ 〈1,∞〉. Then we have the following bounds ‖MχEgi − gi‖L2(Rd) ≤ ε

for every i and ‖MχEg − g‖L2(Rd) ≤ 3ε for every g ∈ S. Defining Ãk := MχEA, we have

‖A− Ãk‖L(L2(Rd);L2(Rd)) ≤ 3ε. In this case Ãk is only a compact operator, while Ak from
the previous lemma is of finite rank. This remark is due to Evgenij Jurjevič Panov.

Using the preceding lemma, we can significantly simplify the proof of Theorem Cp
in [12].

Corollary 1. Let the function b be bounded and continuous over Rd and satisfy (1).
Furthermore, assume that function ψ is in Cκ(Rd) and that it satisfies the boundedness
condition in (6) for α such that |α| ≤ κ.

Then the commutator C is a compact operator on Lp(Rd), for any p ∈ 〈1,∞〉.
Dem. First notice that conditions (6) imply condition (1), i.e. we have immediately the
L2 → L2 compactness of commutator C where b ∈ Cb(R

d) and ψ satisfies (6). Indeed, fix
an arbitrary h ∈ Rd. Keeping in mind the Mean value theorem, we know that for some
z = ηx + (1− η)(x + h), where η ∈ [0, 1]:

|ψ(x + h)− ψ(x)| ≤ |∇ψ(z)| |h| ≤ c

(1 + |x|)
|h| → 0 as x→∞.

We have used (6) in the second inequality. Moreover, as noticed in [12], condition in
(6) implies the Hörmander condition (5) of Theorem 2. Since the Hörmander-Mihlin
theorem provides the Lp → Lp boundedness of the Fourier multiplier operator Aψ, we
have the Lp → Lp boundedness of commutator C, and this together with the L2 → L2

compactness and Lemma 4 implies the Lp → Lp compactness of commutator C.
Q.E.D.

We can reach the same conclusion if we replace conditions (6) on ψ by less restrictive
ones required by the following corollary of the Marcinkiewicz multiplier theorem (compare
[24, Corollary 5.2.5] and [57, Theorem IV.6.6’]):

9



H-distributions and compactness by compensation

Corollary 2. Suppose that ψ ∈ Cd(Rd\ ∪dj=1 {ξj = 0}) is a bounded function such
that for some constant A > 0 it holds

(7) |ξα∂αψ(ξ)| ≤ A, ξ ∈ Rd\ ∪dj=1 {ξj = 0}

for every multi-index α = (α1, . . . , αd) ∈ Nd
0 such that |α| ≤ d. Then, the function ψ is

a symbol of Lp-multiplier for p ∈ 〈1,∞〉, and there exists a constant Cd such that

‖Aψ‖Lp→Lp ≤ Cd(A+ ‖ψ‖L∞) max{p, (p− 1)−1}6d .

We can easily prove the following improvement of Theorem Cp in [12]:

Corollary 3. Assume that ψ ∈ Cd(Rd) satisfies (1) and (7). Then commutator C is
compact on Lp(Rd).

Dem. As it has already been mentioned, condition (7) implies the Lp → Lp boundedness,
while (1) gives the L2 → L2 compactness of commutator C. Therefore, according to
Lemma 4, we have the Lp → Lp compactness of commutator C.

Q.E.D.

Let us remark in passing that the Hörmander-Mihlin and the Marcinkiewicz theorem
are not related in the sense that one is a generalisation of the other. Namely, there exist
functions satisfying the Marcinkiewicz theorem, but not the Hörmander-Mihlin (e.g. the

function ξ2
1

ξ2
1+ξ4

2
) while the opposite is clear since the symbol satisfying (5) needs to be

only Cκ-times differentiable.

Remark 4. A function defined on the sphere Sd−1 and extended by homogeneity to
the whole Rd

∗ satisfies the Hörmander-Mihlin and the Marcinkiewicz conditions (provided
the symbol is of required smoothness), as it has been remarked in [57, Ex. 2, p. 96] and
[24, Ex. 5.2.6]. In these cases, constant A in bounds (5) and (7) can be taken to be equal
to ‖ψ‖Cκ(Sd−1) and ‖ψ‖Cd(Sd−1), respectively. For a symbol defined on a more general

smooth manifold Σ, the condition of the Marcinkiewicz theorem is satisfied [35, Lemma
5] (see Lemma 1 of the third chapter). Now, Lemma 4 combined with Lemma 2 gives
the Lp → Lp compactness of commutator C.

It might be worth noting that this proof can be carried over to the case of mixed-
norm Lebesgue spaces introduced in the sixties by Agnes Ilona Benedek and Rafael
Panzone (for more details v. [4] and references therein).

By Lp(Rd) we denote (with identification of almost everywhere equal functions) the
space of all measurable complex functions f on Rd for which we have

‖f‖p =
(∫

R
· · ·
(∫

R

(∫
R
|f(x1, . . . , xd)|p1dx1

)p2/p1

dx2

)p3/p2

· · · dxd
)1/pd

<∞ .

In other words, for i = 1, . . . , d we compute (in that order) the (quasi)norms ‖ · ‖Lpi in
variable xi. Analogously for some pi =∞, with obvious changes.

In the above proof of Lemma 4, in the last line one should use the version of Riesz-
Thorin theorem for mixed-norm spaces [4, Theorem 5], together with the corresponding
version of Hörmander-Mihlin theorem [4, Theorem 7]. In this way we get the result of
Lemma 3, with assumption that (vn) is bounded in Lr(Rd) for some r ∈ 〈1,∞〉d \ {2},
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implying Cvn → 0 strongly in Lq(Rd) for any q ∈ 〈1,∞〉d such that there exists θ ∈ [0, 1]
satisfying

1

qi
=
θ

2
+

1− θ
pi

, i ∈ 1..d .

This, in turn, allows us to improve the result on existence of H-distributions remov-
ing the previous requirements q ∈ [2,∞]d and q > p′, where 1/pi + 1/p′i = 1:

Theorem 3. Let κ = [d/2] + 1 and p ∈ 〈1,∞〉d. If un ⇀ 0 weakly in Lp
loc(R

d), while

vn
∗
⇀ v in Lq

loc(R
d), for some q ≥ p′, then there exist subsequences (u′n) and (v′n) and

a complex valued distribution µ ∈ D′(Rd × Sd−1), such that for every φ1, φ2 ∈ C∞c (Rd)
and ψ ∈ Cκ(Sd−1), one has

lim
n′ Lp(Rd)〈Aψ(φ1un′), φ2vn′ 〉Lp′(Rd) = lim

n′ Lp(Rd)〈φ1un′ ,Aψ(φ2vn′) 〉Lp′(Rd)

=
〈
µ, φ1φ2 � ψ

〉
.

This is an improvement of the existing results on H-distributions, both on Lebesgue
spaces [7, Theorem 2.1] and mixed-norm Lebesgue spaces [4, Theorem 9].

4. A result under lower regularity of b and the Hörmander condition

A natural question is what we can say about commutator C = [Aψ,Mb] if merely
the Hörmander condition is satisfied. The following holds.

Theorem 4. Let ψ ∈ Cκ(Rd
∗) be bounded and satisfy Hörmander’s condition (5),

while b ∈ Cc(R
d). Then for any un

∗−⇀0 in L∞(Rd) and p ∈ 〈1,∞〉 one has:

(8) (∀ϕ, φ ∈ C∞c (Rd)) φC(ϕun) −→ 0 in Lp(Rd) .

Dem. We need a number of subtle arguments, partly included in the proof of the
Hörmander-Mihlin theorem, for which we refer to [24, Theorem 5.2.7] (we shall follow the
notation of that proof as far as feasible, regarding the notation already used in previous
sections).

As ψ is a bounded function, it is a Fourier multiplier on L2(Rd), so Aψ can be

expressed as a convolution with temperate distribution W := ψ̌ [24, Theorem 2.5.10].

Take ζ̂ ∈ C∞c (Rd) such that supp ζ̂ ⊆ K[0; 2] \K(0; 1/2), and such that∑
j∈Z

ζ̂(2−jξ) = 1 for ξ 6= 0 .

This allows us to decompose ψ as a sum of mj := ψζ̂(2−j ·) and define Kj := m̌j .
Notice that the support of mj is contained in

{
ξ ∈ Rd : 2j−1 ≤ |ξ| ≤ 2j+1

}
. Applying

Hörmander’s condition with r = 2j−1 and r = 2j , it follows that for each α ∈ Nd
0

(9)

∫
Rd
|Dα

ξ mj(ξ)|2dξ =

∫
2j−1≤|ξ|≤2j+1

|Dα
ξ mj(ξ)|2dξ ≤ C0A

22j(d−2|α|) ,

where constant C0 = 1 + 2−d+2|α| does not depend on j. In [24, pp. 367–9] the following
was proven:
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1.
∑m

j=−mKj
∗−−⇀W in S ′ (note that both Kj and

∑m
j=−mKj are functions).

2. There is a constant C̃d > 0 such that the following holds:

sup
j

∫
Rd
|Kj(x)|

(
1 + 2j |x|

)1/4
dx ≤ C̃dÃ ,

sup
j

2−j
∫
Rd
|∇Kj(x)|

(
1 + 2j |x|

)1/4
dx ≤ C̃dÃ .

In particular, this means that both Kj and
∑m

j=−mKj are in L1(Rd).

3. For each x ∈ Rd, we have

|Kj(x)| ≤ cd2
jd‖ψ‖L∞(Rd∗)

,

which shows that
∑

j≤0 |Kj(x)| is bounded on Rd, independently of x.

Moreover, by the first estimate in point 2, for any δ > 0 and j ≥ 0 we have(
1 + 2jδ

)1/4 ∫
|x|≥δ

|Kj(x)|dx ≤ C̃dÃ ,

so
∑

j≥0 |Kj(x)| is summable away from the origin, thus finite almost everywhere. There-

fore,
∑

j∈ZKj represents a well-defined function K on Rd
∗, which coincides with the

distribution W = ψ̌. In particular,

m∑
j=−m

Kj −→ K in L1
loc(R

d
∗) .

Now we depart from the proof of the Hörmander-Mihlin theorem as it is presented
in [24].

Let us first note that A− :=
∑−1

j=−∞Kj is a bounded function on Rd by estimate in

point 3 above, and is therefore also locally summable. The operator defined by A−u :=

A− ∗ u =
(
Â− û

)∨
is a bounded Fourier multiplier operator on L2(Rd). One just needs

to notice that

Â− =
−1∑

j=−∞
K̂j =

−1∑
j=−∞

mj =
−1∑

j=−∞
ψ ζ̂(2−j ·) .

Since the right hand side is bounded by a bounded function ψ, we conclude that Â− is
a bounded function as well. Now we can define C− :=

[
A−,Mb

]
. For fixed x ∈ Rd we

have that

C−(ϕun)(x) =

∫
Rd

(b(y)− b(x))A−(x− y)(ϕun)(y)dy −→ 0 .

Indeed, A−(x− .) is summable over the compact suppϕ, the L1 norm depending only on
L∞ norm of A− and the volume of suppϕ, b is bounded, and the convergence of integrals
follows from the weak-∗ convergence of un. The above argument gives us also the bound

|C−(ϕun)(x)| ≤ c1 ,

12
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independent of x and n.

After multiplication by φ ∈ C∞c (Rd), φC−(ϕun) is compactly supported in x and
bounded, thus in any Lp space, while an application of the Lebesgue dominated conver-
gence theorem gives us that

∫
Rd

∣∣φC−(ϕun)
∣∣p dx −→ 0 .

Similarly, for a fixed δ > 0, A+
δ :=

∑∞
j=0Kj |Rd\K[0;δ] is a summable function, and

by the Riemann-Lebesgue lemma Â+
δ is bounded. For a fixed x ∈ Rd we get

C+
δ (ϕun)(x) =

∫
|x−y|≥δ

(b(y)− b(x))A+
δ (x− y)(ϕun)(y)dy −→ 0 .

Furthermore, the same arguments as above show that C+
δ (ϕun)(x) is bounded indepen-

dently of x and n (the bound depends, of course, on δ).

After multiplication by φ ∈ C∞c (Rd), φC+
δ (ϕun) is compactly supported in x and

bounded, thus in any Lp space, while an application of the Lebesgue dominated conver-
gence theorem gives the convergence to zero.

In a similar manner as we have just done, one can check that the same results a
valid for the operator C+

m,δ which corresponds to A+
m,δ =

∑m
j=0Kj |Rd\K[0;δ].

Finally, set Am,δ :=
∑m

j=0Kj |K[0,δ]. From previous considerations, it follows that

Am,δ −→ K−A−−A+
δ in L1

loc(R
d
∗). Since Âm,δ is a bounded function on Rd

∗ (just notice
that Kj restricted to a bounded set belongs to L1), the corresponding Fourier multiplier
operator Am,δ := Am,δ∗ is bounded on L2(Rd).

Next we shall obtain the bounds for Am,δ, whose proof will differ slightly depending
whether d is odd or even. For odd d, we have d − 2κ = −1, and by using the Hölder
inequality, we get

∫
K[0,δ]

|y||Kj(y)|dy =

∫
K[0,δ]

|y|1−κ|y|κ|Kj(y)|dy

≤

(∫
K[0,δ]

|y|2−2κdy

)1/2(∫
K[0,δ]

|y|2κ|Kj(y)|2dy

)1/2

≤ C

(∫ δ

0
r2−2κ+d−1dr

)1/2 (
2j(d−2κ)

)1/2
= C

(
2j
)−1/2

δ1/2.

In the third line, we rewrote the first integral in the polar coordinates and for the second
integral we used Plancherel’s theorem and estimate (9).

For even d, d − 2κ = −2 and after applying the generalised Hölder inequality we

13
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have: ∫
K[0,δ]

|y||Kj(y)|dy ≤
√∫

K[0,δ]
|y|3−2κdy 4

√∫
K[0,δ]

|y|2κ−2|Kj(y)|2dy ×

× 4

√∫
K[0,δ]

|y|2κ|Kj(y)|2dy

≤ C

(∫ δ

0
r3−2κ+d−1dr

)1/2 (
2j(d−2κ+2)

)1/4 (
2j(d−2κ)

)1/4

= C
(
2j
)−1/2

δ1/2.

If we additionally assume that b ∈ C1
c(R

d), then for fixed x ∈ Rd we have that

Cm,δ(ϕun)(x) =

∫
K[x,δ]

(b(y)− b(x))Am,δ(x− y)(ϕun)(y)dy

=

∫
K[x,δ]

|y − x|Am,δ(x− y)
b(y)− b(x)

|y − x|
(ϕun)(y)dy

≤ ‖∇b‖L∞(Rd)‖ϕ‖L∞(Rd)‖un‖L∞(Rd)

∫
K[x,δ]

|y − x|Am,δ(y − x)dy

≤ ‖∇b‖L∞(Rd)‖ϕ‖L∞(Rd)

(
sup
n
‖un‖L∞(Rd)

)
C0δ

1/2,

uniformly in x,m and n. In the second step we have used the fact that b ∈ C1
c(R

d); in
the last step we have used one of the preceding two estimates (depending on the parity
of d). Let us briefly comment that constant C0 does not depend on m,n and δ, since
geometric series

∑
j(1/
√

2)j is finite and equal to 2 +
√

2.
After multiplication by a test function φ, taking the power p and integrating in x,

we obtain that ‖φCm,δ(ϕun)‖Lp(Rd) is of order δ independently of m and n.
In order to finish, we shall have to use some tools from measure theory. To this end,

define operator C̃m = C− + C+
m,δ + Cm,δ. Then for every fixed u ∈ L2(Rd), C̃m(u) →

C(u) pointwise almost everywhere. Indeed, using the definition of a commutator and
Plancherel’s theorem, we obtain the following bound

‖C̃m(u)− C(u)‖L2(Rd) = ‖(C− + C+
m,δ + Cm,δ)(u)− C(u)‖L2(Rd)

≤
∥∥∥(Â− + Â+

m,δ + Âm,δ − ψ
)
b̂u
∥∥∥

L2(Rd)
+

+ ‖b‖L∞(Rd)

∥∥∥(Â− + Â+
m,δ + Âm,δ − ψ

)
û
∥∥∥

L2(Rd)
.

Before we proceed, let us notice that

Â− + Â+
m,δ + Âm,δ − ψ =

(
A− + A+

m,δ + Am,δ − ψ̌
)∧

=

 −1∑
j=−∞

Kj +
m∑
j=0

Kj |Rd\K[0;δ] +
m∑
j=0

Kj |K[0;δ] − ψ̌

∧

=
(
−
∑
j>m

m̌j

)∧
= −

∑
j>m

ψζ̂(·/2j) ,
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where we have used Kj = m̌j and the decomposition of ψ from the beginning of this proof.

Remembering that the support of ζ̂(·/2j) is contained in
{
ξ ∈ Rd : 2j−1 ≤ |ξ| ≤ 2j+1

}
,

we get the following

∥∥∥(Â− + Â+
m,δ + Âm,δ − ψ

)
û
∥∥∥2

L2(Rd)
=

∫
Rd

∣∣∣∑
j>m

ψ(ξ)ζ̂(ξ/2j)û(ξ)
∣∣∣2dξ ≤

≤‖ψ‖2L∞(Rd)

∫
|ξ|>2m

|û(ξ)|2dξ −→ 0 as m→ 0 .

Thus, we have shown that C̃m(u) −→ C(u) in L2(Rd), which implies pointwise conver-
gence almost everywhere on a subsequence (which we do not relabel). Using this result,
for any compact set K ⊂ Rd and q ∈ 〈1,∞〉, we get

∫
K
|C(u)|qdx = lim

m

∫
K
|C̃m(u)|qdx = lim sup

m

∫
K
|C̃m(u)|qdx ≤

≤ lim sup
m

∫
K
|(C− + C+

m,δ + Cm,δ)(u)|qdx ≤

≤ 3q lim sup
m

∫
K
|C−(u)|q + |C+

m,δ(u)|q + |Cm,δ(u)|qdx ≤

≤ 3q
(∫

K
|C−(u)|qdx +

∫
K
|C+
δ (u)|qdx + lim sup

m

∫
K
|Cm,δ(u)|qdx

)
,

where we have used Fatou’s lemma for the middle integral.
Now we have set up almost everything to conclude the proof. We shall show

that for arbitrary ε > 0, we can find n0 = n0(ε) such that for every n ≥ n0 it holds
‖φC(ϕun)‖q

Lq(Rd)
≤ ε. Indeed, take an arbitrary ε > 0 and define

δ =

(
ε

3q+1C0‖ϕ‖L∞(Rd)‖φ‖L∞(Rd)‖∇b‖L∞(Rd) supn ‖un‖Lq(Rd)

)2

.

Using the convergence results obtained in the first part of the proof, there are n1 = n1(ε)
such that n ≥ n1 implies

∫
Rd |φC−(ϕun)|qdx ≤ ε/3q+1 and n2 = n2(δ(ε)) such that

n ≥ n2 implies
∫
Rd |φC+

δ (ϕun)|qdx ≤ ε/3q+1. From the bound on Cm,δ(ϕun)(x) and the
special form of δ, we get the following bound for every m and n∫

Rd
|φCm,δ(ϕun)|qdx ≤ ε/3q+1 .

Now we conclude that for every n ≥ max{n1, n2}, we get ‖φC(ϕun)‖q
Lq(Rd)

≤ ε.

It still remains to be show that we can use b ∈ Cc(R
d). First, approximate function

b by a sequence (bn) in C1
c(R

d) in the topology of space Cc(R
d). The corresponding

sequence of commutators Ĉn :=
[
Aψ,Mbn

]
converges in the operator norm towards C,

and by the preceding result, each Ĉn satisfies condition (8).
Q.E.D.
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Finally, it is of interest to know whether we can relax the regularity of function b
appearing in the previous theorem. Actually, we have the following lemma.

Lemma 5. Let (un) be a bounded, uniformly compactly supported sequence in
L∞(Rd), converging to 0 in the sense of distributions. Assume that ψ ∈ Cκ(Rd

∗) satisfies
conditions (1) and (5).

Then for any s > 1, each b ∈ Ls(Rd) satisfies

lim
n→∞

‖bAψ(un)−Aψ(bun)‖Lr(Rd) = 0, r ∈ 〈1, s〉.

Dem. The difference between the conditions of this lemma and those in Lemma 1 is in
the regularity of function b. Namely, in Lemma 1 it is assumed that b ∈ C0(Rd) and it is
restricted to the L2 setting. However, we have better assumptions on sequence (un) (in
our case, it belongs to Lp(Rd) for every p ≥ 1).

Indeed, let (bε) by a family of smooth functions with compact support such that
‖bε − b‖Ls(Rd) → 0 as ε→ 0. Then it holds

‖bAψ(un)−Aψ(bun)‖Lr(Rd) ≤ ‖bAψ(un)− bεAψ(un)‖Lr(Rd)

+ ‖bεAψ(un)−Aψ(bεun)‖Lr(Rd) + ‖Aψ(bεun)−Aψ(bun)‖Lr(Rd).

The middle term on the right-hand side here tends to zero as n→∞ according to Lemma
4 with Theorem 1 and the Hörmander-Mihlin theorem. Estimating the other terms on the
right-hand side above by the Hölder inequality and using the Hörmander-Mihlin theorem,
we get

lim
n→∞

‖bAψ(un)−Aψ(bun)‖Lr(Rd) ≤ C‖bε − b‖Ls(Rd) .

Letting ε→ 0, we conclude the proof.
Q.E.D.

Remark 5. We could have used ψ satisfying conditions (1) and (7) to get the same
result.

The conclusion of Lemma 5 remains valid even if b ∈ L∞(Rd). Indeed, denote
by K ⊂ Rd a compact set containing the supports of all un, and by U ⊂ Rd an open
bounded set containing K. To show compactness of the commutator in Lr(Rd), for some
r ∈ 〈1,∞〉, choose q ∈ 〈r,∞〉 and approximate b by test functions in Lq(U). The rest of
the proof goes along the same lines as in the proof of Lemma 5.

A worthy observation is that this result allows us to consider commutators when b
is a characteristic function of a measurable set. This observation proved useful in [20].

Before showing that we can lower the regularity of function b even further, let us
define functions of bounded mean oscillation, in other words, the BMO(Rd) functions.

A locally integrable function f is said to belong to BMO(Rd) if there exists a
constant A > 0 such that the following inequality holds for all balls B ⊆ Rd:

 
B
|f − fB|dx ≤ A ,

where fB is the mean value of f over the ball B. Since the mean oscillation of every
constant function is zero, we identify any two functions in BMO(Rd) that differ by a
constant almost everywhere. The smallest A such that the above inequality holds is taken
to be the norm of f in the resulting quotient space which we still denote by BMO(Rd).
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We are particularly interested in its closed subspace of functions of vanishing mean
oscillation, the space being denoted by VMO(Rd). It is defined as the closure of Cc(R

d)
functions in the BMO(Rd) norm (we use the notation of Coifman and Weiss [11]). For fur-
ther properties of BMO(Rd) and VMO(Rd) spaces, the interested reader should consult
Stein’s book [58] and aforementioned article [11].

Now, we shall show that the commutator C remains compact on Lp(Rd) when
function b belongs to the VMO(Rd) space. We shall use the following well-known result
of Uchiyama on the commutator of multiplication and Riesz transform Rj := Aiξj/|ξ|, for

j ∈ {1, · · · , d} (cf. [64, Theorem 2]):

Theorem 5. Let b ∈ ∪q>1Lqloc(R
d). Then the commutator [Mb, Rj ] is a compact

operator on Lp(Rd), for any p ∈ 〈1,∞〉, if and only if b ∈ VMO(Rd).

Before we proceed, let us show the following lemma

Lemma 6. Let a be a function which is a polynomial in ξ/|ξ| and b ∈ VMO(Rd).
Then the commutator [Mb,Aa] is a compact operator on Lp(Rd), for any p ∈ 〈1,∞〉.
Dem. The proof is by induction on the degree of polynomial a. The basis case a = iξj/|ξ|
is the Uchiyama result. Let us assume that the lemma is valid for all symbols a of degree
smaller or equal to n. Take ã to be a monomial in ξ/|ξ| of order n+ 1. We can write it
in the form ã = i(ξj/|ξ|)a, for some j ∈ {1, · · · , d}, where a is a polynomial in ξ/|ξ| of
order n. The following identity holds:

[Mb,Aã] = [Mb,AaRj ] = [Mb,Aa]Rj +Aa[Mb, Rj ] .

Let us remark that Aa is a bounded operator on Lp(Rd) since a is a smooth bounded
function satisfying the conditions of Hörmander-Mihlin’s (and Marcinkiewicz’s) theorem;
also, the Riesz transform Rj is bounded on Lp(Rd) ([24, Corollary 4.2.8]). It remains to
notice that the commutators on the right hand side of the above’s identity are compact
operators on Lp(Rd). Indeed, Uchiyama’s result gives us the compactness of [Mb, Rj ],
while the compactness of [Mb,Aa] follows from the assumption of the induction.

Q.E.D.

Using the preceding lemma and the Weierstrass’s theorem, we have the following
result for the p = 2 case (cf. [61, p. 336]):

Corollary 4. Let b ∈ L∞(Rd) ∩ VMO(Rd) and ψ ∈ C(Sd−1). Then the commutator
[Mb,Aψ] is compact on L2(Rd).

By now the standard argument (combining L2-compactness and Lp-boundedness of
the commutator with Lemma 4), we have the following result for Lp(Rd):

Corollary 5. Let b ∈ L∞(Rd)∩VMO(Rd) and ψ ∈ Cκ(Sd−1). Then the commutator
[Mb,Aψ] is compact on Lp(Rd), p ∈ 〈1,∞〉.

Notice that, in contrast to Theorem 5 and Lemma 6, we had to assume boundedness
of function b in the last two corollaries in order to secure the boundedness of commutators
on the desired spaces.

At the end of this section, let us mention that Uchiyama’s result is stronger than we
stated in Theorem 5. Namely, the result is valid if we replace Riesz transform operator
with more general Calderon-Zygmund singular integral operator K with smooth kernel.
In other words, if Ω is nonzero smooth function homogeneous of order zero, which satisfies∫

Sd−1
Ω = 0 and |Ω(x)− Ω(y)| ≤ |x− y| for all x,y ∈ Sd−1 ,

17
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then a Calderon-Zygmund singular integral operator K with smooth kernel Ω is given by
(for f ∈ S(Rd)):

(Kf)(x) = p.v.

∫
Rd

Ω(x− y)

|x− y|d
f(y) dy , f ∈ S(Rd) .

Concerning the question of boundedness, a celebrated result of Coifman-Rochberg-Weiss
[10] and Janson [30] states that commutator of Mb and K is bounded on all Lp if and
only if b belongs to the BMO space.

5. Commutators of pseudodifferential operators and multiplication

It is natural to ask ourselves what can be said when, instead of the Fourier multiplier
operator, we have a general pseudodifferential operator a(x, D); that is the one whose
symbol a(x, ξ) cannot be written as a product of a function solely in x and a function
solely in ξ. For a symbol a(x, ξ), they are defined as (see Remark 1):

[a(x, D)u] = (aû)∨ .

Observe that if a(x, ξ) = ψ(ξ) is independent of x, then a(x, D) = Aψ is the Fourier
multiplier operator associated with the symbol ψ, while if a(x, ξ) = b(x) is independent
of ξ, then a(x, D) = Mb is the pointwise multiplication operator by b.

Boundedness (and, as a consequence, compactness as well) is not an easy question for
such operators. For illustration, the L2-boundedness for Fourier multiplier operators and
multiplication operators have been nicely characterised: such operator will be bounded if
and only if ψ or b are bounded functions. Take ψ, b ∈ L2 and consider a(x, ξ) = b(x)ψ(ξ).
In this case a could be unbounded function, but a simple application of the Hölder
inequality shows that a(x, D) is a bounded operator on L2.

In [28, Theorem 1] the following result on L2-boundedness was shown:

Theorem 6. Let Ω = Πd
i=1〈li, rr〉, li < ri, be a bounded open box in Rd and

a : Ω×Rd → C a measurable function whose derivatives ∂αx a in the distributional sense
satisfy the condition:

(∃C > 0)(∀α ∈ {0, 1}d) ‖∂αx a‖L∞(Ω×Rd) ≤ C .

(The smallest constant C > 0 satisfying the above condition on partial derivatives of a
we denote by ‖a‖∗, which is actually the norm on the anisotropic Sobolev space with
dominant mixed derivative, consisting of functions with bounded derivatives up to order
one in each xj . Such spaces have first been studied by S. M. Nikol’skij.) Then a(x, D) is
bounded from L2(Rd) to L2(Ω) with its norm bounded by Cd,Ω‖a‖∗.

For a smooth compact manifold Σ ⊆ Rd, let us denote by C
(d,0)
b (Ω× Σ) the space

of functions which have bounded and continuous derivatives of order up to d with respect
to the first d variables x1, . . . , xd, and are bounded and continuous with respect to the
remaining variables ξ1, . . . , ξd, endowed with the natural norm inherited from anisotropic

Sobolev space W(d,0);∞(Ω× Σ). Take a symbol a ∈ C
(d,0)
b (Ω× Σ) and notice that one

of the constants that satisfy the above theorem’s condition is C = ‖a‖W(d,0);∞(Ω×Rd).

Note that we implicitly assume that a has been extended from Σ to the whole Rd
∗ by

homogeneity of order zero.
Recall that we have denoted by Rd

∞ the one-point Aleksandrov compactification of
Rd, and by C(Rd

∞) we shall denote the space of all continuous functions on Rd with finite
limit at infinity.
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The First commutation lemma

Theorem 7. Let Ω = Πd
i=1〈li, rr〉, li < ri, be a bounded open box in Rd. Then for

any a ∈ C
(d,0)
b (Ω× Σ) and b ∈ C(Rd

∞), the commutator [a(x, D),Mb] is compact from

L2(Rd) to L2(Ω).

Dem. As the first step, let us approximate a by a sequence of tensor products from
Cd(Ω)� C(Σ) [63, Chapter 39], i.e. let us have:

(∀ε > 0)(∃m ∈ N)
(
∃ϕ1, . . . , ϕm ∈ Cd

b(Ω)
)

(∃ψ1, . . . ψm ∈ C(Σ))∥∥∥a− m∑
i=1

ϕi � ψi
∥∥∥

W(d,0);∞(Ω×Σ)
≤ ε .

Next, take an arbitrary sequence un −⇀ 0 in L2(Rd), and estimate the commutator as
follows:

‖[a(x, D),Mb](un)‖L2(Ω) =

=
∥∥∥a(x, D)(bun)±

[ m∑
i=1

ϕi(x)ψi(D)
]
(bun)±b

[ m∑
i=1

ϕi(x)ψi(D)
]
(un)− ba(x, D)(un)

∥∥∥
L2(Ω)

≤
∥∥∥a(x, D)(bun)−

[ m∑
i=1

ϕi(x)ψi(D)
]
(bun)

∥∥∥
L2(Ω)

+
∥∥∥[ m∑

i=1

ϕi(x)ψi(D)
]
(bun)− b

[ m∑
i=1

ϕi(x)ψi(D)
]
(un)

∥∥∥
L2(Ω)

+
∥∥∥b[ m∑

i=1

ϕi(x)ψi(D)
]
(un)− ba(x, D)(un)

∥∥∥
L2(Ω)

= I1 + I2 + I3 .

The terms I1 and I3 can be bounded using Theorem 6:

I1, I3 ≤ Cd,Ω‖b‖L∞(Rd)‖un‖L2(Rd)

∥∥∥a− m∑
i=1

ϕiψi

∥∥∥
W(d,0);∞(Ω×Rd)

≤ C̃ ε ,

where we have used the L2-boundedness of (un).
Concerning the middle term I2, it is enough to bound the L2-norm of each commu-

tator [ϕi(x)ψi(D),Mb](un). To do that, we shall employ the following identity:

(ϕ(x)ψ(D))(u)(x) =

∫
Rd
e2πix·ξϕ(x)ψ(ξ)û(ξ)dξ = ϕ(x) (ψû)∨ (x) =

(
ϕAψ(u)

)
(x).

Thus we have

‖[ϕi(x)ψi(D),Mb](un)‖L2(Ω) = ‖ϕi
(
Aψi(bun)− bAψi(un)

)
‖L2(Ω)

≤ ‖ϕi‖L∞(Ω)

∥∥[Aψi ,Mb](un)
∥∥

L2(Ω)
,

which goes to zero by Lemma 2, since [Aψi ,Mb] is a compact operator.
Therefore

(∀ ε > 0)(∃n0 ∈ N)(∀n ≥ n0) ‖[a(x, D),Mb](un)‖L2(Ω) ≤ ε ,

which implies that [a(x, D),Mb] is compact from L2(Rd) to L2(Ω).
Q.E.D.
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Since any compact subset of Ω can be covered by a union of finite open boxes in Ω,
we get the following result:

Corollary 6. Let Ω be a bounded open subset of Rd, a ∈ C
(d,0)
b (Ω× Σ) such that there

is a compact K ⊆ Ω such that supp a ⊆ K × Σ and b ∈ C(Rd
∞), then the commutator

[a(x, D),Mb] is compact from L2(Rd) to L2(K).

Another condition from which we can obtain compactness on L2 is shown in [29].
For m ∈ R and k ∈ R \ N, Hwang and Lee defined Λmk (Rd × Rd) to be the space of

continuous functions a : Rd ×Rd → C whose derivatives ∂αx a in the distributional sense
satisfy:

There is a constant C > 0 such that for any α ∈ Nd and all x, ξ,h ∈ Rd, we have
1) if |α| ≤ [k] then |∂αx a(x, ξ)| ≤ C〈ξ〉m,
2) if |α| = [k] and |h| ≤ 1 then |∂αx a(x + h, ξ)− ∂αx a(x, ξ)| ≤ C〈ξ〉m|h|k−[k].

The smallest constant C satisfying the above conditions we denote by ‖a‖∗. Define
m(p) = −d|1/p − 1/2|, and let K ⊆ Rd be a compact such that supp a ⊆ K × Rd.
Note that since m(p) ≤ 0 for all p, the first condition implies ‖∂αx a‖L∞(K×Rd) ≤ C,

while the second condition implies (k − [k])-Hölder continuity on the unit ball of the
highest order derivatives in x variable. Also, notice that if we take k > d and a ∈
Λ0
k(R

d ×Rd) ∩ Cd,0(Rd ×Rd), we are in the framework of Corollary 6.

The following result is known [29, Theorem 3.1 and Theorem 3.2].

Theorem 8. Let k ∈ R+ \N, K as above, a ∈ Λ
m(p)
k (Rd×Rd) and define Ω1 = {x ∈

Rd : d(x, K) ≤ 1}. Then it holds:
a) If p ∈ 〈1, 2] and k > d/2, then a(x, D) is continuous from Lp(Rd) to Lp(K) with

the norm bounded by CK,d,p,kvol(Ω1)1/p‖a‖∗.
b) If p ∈ 〈2,∞〉 and k > d/p, then a(x, D) is continuous from Lploc(R

d) to Lp(K).

In the following, by C[k],0;k−[k],0(Rd ×Rd) we denote the space of functions which
have continuous derivatives in x of order less than or equal to [k] and whose [k]-th
derivative in x is (k− [k])-Hölder continuous, while they are just continuous with respect
to the ξ variable.

Theorem 9. Let k ∈ 〈d2 ,∞〉 \N, with K as above, b ∈ C(Rd
∞), and a ∈ Λ

m(p)
k (Rd ×

Rd) ∩ C[k],0;k−[k],0(Rd ×Rd). Then the following holds:
a) The commutator [a(x, D),Mb] is compact from L2(Rd) to L2(K).
b) For p ∈ 〈1, 2〉, the commutator [a(x, D),Mb] is compact from Lq(Rd) to Lq(K), for

any q ∈ 〈p, 2].
c) For p ∈ 〈2,∞〉, the commutator [a(x, D),Mb] is compact from Lq(Rd) to Lq(K), for

any q ∈ [2, p〉.
Dem. a) Take a symbol a ∈ Λ0

k(R
d ×Rd) ∩ C[k],0;k−[k],0(Rd ×Rd) such that supp a ⊆

K ×Rd.
For each ε > 0, we can approximate a by aε ∈ C∞(Rd ×Rd) in the C[k](Rd ×Rd)

norm:
‖a− aε‖C[k](Rd×Rd) ≤ ε .

Indeed, the convolution with standard mollifier and multiplication with appropriate cut-
off function suffices. Notice that aε is bounded (since a is) and that it has compact
support in x larger than K, but it can be made smaller than Ω1.
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Take an arbitrary sequence un −⇀ 0 in L2(Rd), and estimate the commutator:

‖[a(x,D),Mb](un)‖L2(K) =

= ‖a(x, D)(bun)± aε(x, D)(bun)± baε(x, D)(un)− ba(x, D)(un)‖L2(K)

≤ ‖a(x, D)(bun)− aε(x, D)(bun)‖L2(K) + ‖aε(x, D)(bun)− baε(x, D)(un)‖L2(K)

+ ‖baε(x, D)(un)− ba(x, D)(un)‖L2(K) = I1 + I2 + I3 .

As in the proof of Theorem 7, we can bound the terms I1 and I3 in the following way:

I1, I3 ≤ CK,d,p,k‖b‖L∞(Rd)

√
volΩ1‖un‖L2(Rd)‖a− aε‖C[k](Rd×Rd) ≤ C̃ε ,

where we have used the bound from part a) of Theorem 8 after noticing that ‖a‖∗ can be
bounded by 2‖a‖C[k](Rd×Rd) since the second condition needs to be valid only for |h| ≤ 1.

The middle term I2 goes to zero by applying Corollary 6 to the commutator [aε(x, D),Mb].
Thus, we have proved the claim.

b) Let us examine the relation between classes Λ
m(p)
k (Rd × Rd) and Λ

m(q)
k (Rd × Rd)

for p, q ∈ 〈1, 2〉 and k ∈ R+\N. It is straightforward to see that p < q implies m(p) <
m(q) < m(2) = 0, and that we have the following chain of inclusions

Λ
m(p)
k (Rd ×Rd) ⊆ Λ

m(q)
k (Rd ×Rd) ⊆ Λ0

k(R
d ×Rd) .

This means that for any p ∈ 〈1, 2〉 and a ∈ Λ
m(p)
k (Rd×Rd)∩C[k],0;k−[k],0(Rd×Rd) such

that supp a ⊆ K × Rd, where K ⊆ Rd is compact, the commutator will be a bounded
operator from Lp(Rd) to Lp(K) (result of part (a) of Theorem 8) and compact from
L2(Rd) to L2(K) (result of part (a) of this corollary). Lemma 4 now gives the claim.

c) Let us remark that for p > 2 one has the following chain of inequalities: k > d
2 >

d
p ,

which, together with the inclusions

Λ
m(q)
k (Rd ×Rd) ⊆ Λ

m(p)
k (Rd ×Rd) ⊆ Λ0

k(R
d ×Rd) for p < q ,

and the reasoning as above, implies the claim.
Q.E.D.

Notice that it might be natural to impose conditions on ξ symmetric to those we
already have on x, in the sense that the results on boundedness and compactness in L2

would be valid for both a(x, D) and a(D,x). In fact, having conditions on derivatives
with respect to ξ as well, relinquishes the requirement of having a compact support in
x. In order to show that, we shall use a class of symbols defined in [29]. Let m ∈ R and
k, k′ ∈ R+ \N. Hwang and Lee defined Λmk,k′(R

d × Rd) to be the space of continuous

functions a : Rd ×Rd → C whose derivatives ∂αx ∂
β
ξ a in the distributional sense satisfy

the following:
There is a constant C > 0 such that for any α,β ∈ Nd and x, ξ,h,η ∈ Rd, we have

1) If |α| ≤ [k] and |β| ≤ [k′] then |∂αx ∂
β
ξ a(x, ξ)| ≤ C〈ξ〉m.

2) If |α| = [k], |β| ≤ [k′] and |h| ≤ 1 then |∂αx ∂
β
ξ a(x + h, ξ) − ∂αx ∂

β
ξ a(x, ξ)| ≤

C〈ξ〉m|h|k−[k].
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3) If |α| ≤ [k], |β| = [k′] and |η| ≤ 1 then |∂αx ∂
β
ξ a(x, ξ + η) − ∂αx ∂

β
ξ a(x, ξ)| ≤

C〈ξ〉m|η|k′−[k′].
4) If |α| = [k], |β| = [k′], |h| ≤ 1 and |η| ≤ 1 then

|∂αx ∂
β
ξ a(x + h, ξ + η)− ∂αx ∂

β
ξ a(x + h, ξ)− ∂αx ∂

β
ξ a(x, ξ + η) + ∂αx ∂

β
ξ a(x, ξ)| ≤

≤ C〈ξ〉m|h|k−[k]|η|k
′−[k′].

The smallest constant C such that the above condition holds, we denote by ‖a‖∗.
We have the following result [29, Theorem 3.3 and Theorem 3.4]:

Theorem 10. Let k, k′ ∈ R+ \N and a ∈ Λ
m(p)
k,k′ (Rd ×Rd). The following are valid:

a) If p ∈ 〈1, 2], k > d/2, k′ > d/p, then a(x, D) is continuous from Lp(Rd) to Lp(Rd)
with its norm bounded by Cd,p,k,k′‖a‖∗.

b) If p ∈ 〈2,∞〉, k > d/p, k′ > d/2, then a(x, D) is continuous from Lp(Rd) to Lp(Rd)
with its norm bounded by Cd,p,k,k′‖a‖∗.
The corresponding compactness results are:

Corollary 7. Let k, k′ ∈ R+ \ N, b ∈ C(Rd
∞), and a ∈ Λ

m(p)
k,k′ (Rd × Rd) ∩

C[k],[k′];k−[k],k′−[k′](Rd ×Rd). The following holds:
a) If k, k′ > d/2, then the commutator [a(x, D),Mb] is compact from L2(Rd) to L2(Rd).
b) If p ∈ 〈1, 2〉, k > d/2, k′ > d/p, then the commutator [a(x, D),Mb] is compact from

Lq(Rd) to Lq(Rd), for any q ∈ 〈p, 2].
c) If p ∈ 〈2,∞〉, k, k′ > d/2, then the commutator [a(x, D),Mb] is compact from

Lq(Rd) to Lq(Rd), for any q ∈ [2, p〉.
Dem.

a) We apply the same procedure as in part (a) of Theorem 9 and get the claim.
b) Parts (a) of this corollary and of the preceding theorem, together with Lemma 4

give the claim.
c) Combining part (a) of this corollary together with the part (b) of the preceding

theorem and Lemma 4, we get the claim.
Q.E.D.
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H-distributions and compactness by compensation

We define distributions of anisotropic order, and establish their immediate prop-
erties. The central result is the Schwartz kernel theorem for such distributions, which
represents continuous operators from Cl

c(X) to D′m(Y ) by kernels, which are distributions
of order l in x, but higher, though still finite order in y.

Our main motivation for introducing these distributions is the fact that the H-
distributions, recently introduced generalisation of H-measures are, in fact, distributions
of order 0 (i.e. Radon measures) in x ∈ Rd, and of finite order in ξ ∈ Sd−1. This allows
us to obtain some more precise results on H-distributions, with further applications to
partial differential equations.

1. Introduction

H-measures were introduced by Luc Tartar [60] and independently by Patrick Gérard
[23] to study oscillation and concentration effects in partial differential equations (for
a variant tailored to parabolic problems see [5], and for further generalisations [19]).
However, they are suitable only for problems expressed in the L2 framework. In order to
overcome that limitation, Nenad Antonić and Darko Mitrović introduced H-distributions
[7], as an extension of H-measures to the Lp − Lq context. Some further variants and
existing applications are related to the mixed-norm Lebesgue spaces [4], the velocity
averaging [35] and Lp−Lq compactness by compensation [42] (also see the next chapter).

Before we proceed further, let us introduce the notation which we shall use in the
paper. In what follows, we shall need Fourier multiplier operators defined by functions
on the unit sphere Sd−1 in Rd. Whenever we say that a function ψ ∈ Cκ(Sd−1) is a
symbol of the Fourier multiplier operator (and write Aψ), we shall actually mean that

the symbol is ψ ◦ π, a function homogeneous of order zero on Rd
∗ := Rd \ {0}, where

π : Rd
∗ −→ Sd−1 is the projection onto unit sphere along rays. For boundedness of such

operator, please see Remark 4 of the previous chapter.
For p ∈ [1,∞], by Lploc(R

d) we denote the space of all distributions u such that the
following holds

(∀ϕ ∈ C∞c (Rd)) ϕu ∈ Lp(Rd) .

Actually, C∞c (Rd) can be reduced to G, its subset such that

(∀x ∈ Rd)(∃ϕ ∈ G) Re ϕ(x) > 0,

which can be chosen to be countable. We endow Lploc(R
d) with the locally convex topology

induced by a family of seminorms | · |ϕ,p (for ϕ ∈ G)

|u|ϕ,p := ‖ϕu‖Lp(Rd) .

It can be shown that the definition of Lploc(R
d) and its topology does not depend on

the choice of family G. This definition is equivalent to a definition where one requires
that Lploc functions have finite Lp norms over every compact subset of Rd, which can be
covered by the above one, if we take G to consist of all characteristic functions χK of
compacts K ⊆ Rd (notice that smoothness of functions in G is actually not needed for
the definition of Lploc(R

d) space).

We say that a sequence (un) is bounded in Lploc(R
d) if for every seminorm | · |ϕ,p

there exists Cϕ,p > 0 such that |un|ϕ,p < Cϕ,p uniformly in n. By choosing a countable
G = {ϑl : l ∈ N} such that 0 ≤ ϑl ≤ 1 and χKl ≤ ϑl ≤ χKl+1

, where Kl ⊆ Rd is a
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closed ball of radius l centred around the origin, we can define a metric dp on Lploc(R
d)

by

dp(u, v) := sup
l∈N

2−l
|u− v|ϑl,p

1 + |u− v|ϑl,p
.

With this metric Lploc(R
d) is a Fréchet space for each p ∈ [1,∞], separable for p ∈ [1,∞〉

and reflexive for p ∈ 〈1,∞〉. For p ∈ [1,∞〉, it is also valid that C∞c (Rd) is dense

in Lploc(R
d), while Lp

′
c (Rd), a subspace of Lp

′
(Rd) consisting of all functions in that

space having a compact support, equipped with the topology of strict inductive limit(
Lp
′
c (Rd) =

⋃
l L

p′(Kl)
)

, is the dual of Lploc(R
d). Let us just remark that we could have

replaced Rd by any open set Ω ⊆ Rd and all of the above definitions and conclusions
would remain valid. For omitted proofs and further references, we refer the interested
reader to [2].

Regarding the notation, by 〈·, ·〉 we shall denote various duality products, always
assuming that it is antilinear in the first argument, and linear in the second. In particular,
this will allow us to identify it with the L2 scalar product

〈 f | g 〉L2 =

∫
f(x)g(x)dx = 〈f, g〉 .

In order to precisely state the theorem on H-distributions, we need the notion of
distributions of anisotropic (finite) order, which we introduce in the next section, together
with some immediate properties. The third section is devoted to the proof of the Schwartz
kernel theorem for distributions of anisotropic order, which is the necessary prerequisite
for a precise version of the existence of H-distributions presented in the fourth section,
which basic properties, like the criterion for strong convergence and the connection to
defect measures are covered in the fifth section. Here, the crucial role is played by the

Nemyckĭı operator Φp(u) = |u|p−2u, which maps Lp to Lp
′
.

An important example of a weakly converging sequence is concentration, which
is treated in the sixth section, followed by the investigation how an approximation of
sequences can preserve the H-distribution in the next section. In the last section we
present some applications.

2. Distributions of anisotropic order

Functions differentiable of order l in one variable x, and differentiable of order m
in the other variable y, can easily be defined. This notion has been extended to Sobolev
functions (see e.g. [46]). However, in the theory of distributions of finite order such
distinction, up to our knowledge, has never been made.

As the objects we study will be distributions of order zero in x variable, and dis-
tributions of order κ ∈ N in the other variable ξ (actually, ξ ∈ Sd−1), in this section we
shall sketch such a definition, and extend the classical proofs (cf. [8, 15, 27, 55]) to this
situation.

Every differentiable manifold X is locally diffeomorphic to Rd, which means that
there is a local homeomorphism π : X → Rd, and that the structure of Rd as a differential
manifold is the same as the one obtained by transporting the structure of X by means of
π. For more details, please see [15, Section 16.2.6].
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Thus, by charts and partitions of unity, we will always transfer our situation to
the case where X is a subset of some Euclidean space. Then, using the local nature of
distributions (see [15, Chapter 17.4.2]) and the identification of distributions on manifolds
with distributions on subsets of Euclidean spaces (see [15, Chapters 17.3.7 & 17.4.4]), we
will transfer the obtained results back to the case where X is a manifold.

Let X and Y be open sets in Rd and Rr, and Ω ⊆ X × Y an open set. By Cl,m(Ω)
we denote the space of functions f on Ω, such that for any α ∈ Nd

0 and β ∈ Nr
0, if

|α| ≤ l and |β| ≤ m, ∂α,βf = ∂αx ∂
β
y f ∈ C(Ω). Of course, the order in which derivatives

are taken is not important.
By choosing a sequence of compact sets Kn in Ω, such that Ω =

⋃
n∈NKn and

Kn ⊆ IntKn+1, We can use the definition of seminorms from the Euclidean setting to
define the following increasing sequence of seminorms

pl,mKn(f) := max
|α|≤l,|β|≤m

‖∂α,βf‖L∞(Kn) ,

and Cl,m(Ω) becomes a Fréchet space. This space has the topology of uniform convergence
on compact sets of functions and their derivatives up to order l in x and m in y.

In the case where X and Y are differentiable manifolds of dimensions d and r,
respectively, that is separable metrizable topological spaces equipped with an equivalence
class of smooth atlases (see [15, Chapter 16.1]), we consider smooth sections of vector
bundles instead of functions. We will only consider trivial complex line bundles over the
manifolds.

Notice that if (U,ϕ) is a chart on X and (V, ψ) a chart on Y , then (U ×V, ϕ�ψ) is
a chart on X × Y . For Ω ⊆ X × Y an open set, take at most countable family of charts
(Ui×Vj , ϕi�ψj) such that (Ui×Vj) is a locally finite open covering of Ω. Now, Cl,m(Ω)
is a space of all sections f of the trivial complex line bundle (X × Y ) × C over Ω such
that the mapping (x,y) 7→ f |Ui×Vj ◦ (ϕ−1

i � ψ
−1
j ) belongs to Cl,m(ϕi(Ui)× ψj(Vj)).

For fixed i and j, let us choose a sequence of compact sets Kn = Kn(i, j) in
ϕi(Ui) × ψj(Vj), such that ϕi(Ui) × ψj(Vj) =

⋃
n∈NKn and Kn ⊆ IntKn+1. We de-

fine a corresponding increasing sequence of seminorms:

pl,m
Kn(i,j)

(f) := pl,mKn

(
f |Ui×Vj ◦ (ϕ−1

i � ψ
−1
j )
)
,

where pl,mKn is a seminorm on Cl,m(ϕi(Ui)× ψj(Vj)), as defined in the Euclidean setting.

For a compact set K ⊆ Ω we can consider only those functions which are supported
in K, and define a subspace of Cl,m(Ω)

Cl,m
K (Ω) :=

{
f ∈ Cl,m(Ω) : supp f ⊆ K

}
.

This subspace inherits the topology from Cl,m(Ω), which is, when considered only on the
subspace, a norm topology determined by

‖f‖l,m,K := pl,mK (f) ,

and Cl,m
K (Ω) is a Banach space (it can be identified with a proper subspace of Cl,m(K)).

However, if l = ∞ or m = ∞ (in order to keep the notation simple, we assume that
m = ∞), then we shall not get a Banach space, but a Fréchet space. As it was the
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case in the isotropic situation, note that an increasing sequence of seminorms that makes

Cl,∞
Kn

(Ω) a Fréchet space is given by (pl,kKn), k ∈ N0. Throughout the rest of this section,
we shall consider m ∈ N0 ∪ {∞}, unless explicitly stated otherwise.

We can also consider the space

Cl,m
c (Ω) :=

⋃
n∈N

Cl,m
Kn

(Ω) ,

of all functions with compact support in Cl,m(Ω), and equip it by a stronger topology
than the one induced from Cl,m(Ω): by the topology of strict inductive limit. More
precisely, it can easily be checked that

Cl,m
Kn

(Ω) ↪→ Cl,m
Kn+1

(Ω) ,

the inclusion being continuous. Also, the topology induced on Cl,m
Kn

(Ω) by that of

Cl,m
Kn+1

(Ω) coincides with the original one, and Cl,m
Kn

(Ω) (as a Banach space in that topol-

ogy, or a Fréchet space for m =∞) is a closed subspace of Cl,m
Kn+1

(Ω). Then we have that

the inductive limit topology on Cl,m
c (Ω) induces on each Cl,m

Kn
(Ω) the original topology,

while a subset of Cl,m
c (Ω) is bounded if and only if it is contained in one Cl,m

Kn
(Ω), and

bounded there [8, Theorem 1.3].

Of course, C∞c (Ω) ↪→ Cl,m
c (Ω) is a continuous and dense imbedding. In particular,

by taking l = m = 0, we obtain Cc(Ω), the space of continuous functions with compact
support, its dual being the space of Radon measures (the distributions of order zero).

It is now straightforward to define distributions of order l in x, and order m in y.

Definition. A distribution of order l in x and order m in y is any linear functional on

Cl,m
c (Ω), continuous in the strict inductive limit topology. We denote the space of such

functionals by D′l,m(Ω).

Clearly, in the case of orientable manifolds it holds C∞c (Ω) ↪→ Cl,m
c (Ω) ↪→ D′(Ω),

with continuous and dense imbeddings, thus Cl,m
c (Ω) is a normal space of distributions,

hence its dual D′l,m(Ω) forms a subspace of D′(Ω). If we equip it with a strong topology,

it is even continuously imbedded in D′(Ω).
In order to better understand the properties of elements of D′l,m(Ω), we shall relate

them to tensor products. The first step is to consider the algebraic tensor product Cl
c(X)�

Cm
c (Y ), the vector space of all (finite) linear combinations of functions of the form (φ�

ψ)(x,y) := φ(x)ψ(y). This is a vector subspace of Cl,m
c (X×Y ). By a slight modification

of the proof, we can get an analogous result to [15, 17.10.2]:

Lemma 1. Let X and Y be C∞ manifolds, K,K ′ ⊆ X compacts such that K ⊆
IntK ′, and similarly L,L′ ⊆ Y with L ⊆ IntL′. Then any u ∈ Cl,m

K×L(X × Y ) can
be approximated by a sequence of functions from C∞K′(X) � C∞L′(Y ) in the topology of

C l,mK′×L′(X × Y ).

Dem. Let us just briefly comment the case where our both compacts are contained in the
domains of single charts on X and Y , respectively; the general case follows by usage of
the partition of unity.

The main idea is that for a given u ∈ Cl,m
K×L(X × Y ), we can find a sequence

of polynomials (pn) which approximates u such that its derivatives up to order l in x
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and order m in y approximate corresponding derivatives of u uniformly on each compact.
This can be achieved by a convolution with suitable polynomial approximation of identity.
Taking σ to be a C∞ function onX equal to one onK with support inK ′ and, analogously,
ρ to be C∞ function on Y equal to one on L with support in L′, we get a sequence (σρpn)

approximating u in the topology of C l,mK′×L′(X × Y ). Since every monomial is a tensor
product, we have the claim.

Q.E.D.

The above lemma has an important consequence: a distribution u ∈ D′l,m(X × Y )
is uniquely determined by its values on tensor products.

Lemma 2. Let X and Y be C∞ manifolds. For a linear functional u on Cl,m
c (X × Y ),

the following statements are equivalent
a) u ∈ D′l,m(X × Y ),

b) (∀K ∈ K(X × Y ))(∃C > 0)(∃n ∈ N)(∃I a finite set of indices)(∀Ψ ∈ Cl,m
K (X × Y ))

|〈u,Ψ〉| ≤ C max
(i,j)∈I

pl,m
Kn(i,j)

(Ψ).

Dem. Let u ∈ D′l,m(X×Y ). First we will consider the case where the compact K belongs

to the domain of a single chart (Ui0 × Vj0 , ψi0 � ψj0) on X × Y . The continuity in the
strict inductive limit topology means that for any compact K ⊆ X × Y (it is enough to
consider only an increasing sequence of compacts (Kn(i0, j0)) as above), the restriction

of u to Cl,m
K (X × Y ) is continuous. This implies that there is a neighbourhood of zero

Vε =
{

Ψ ∈ Cl,m
K (X × Y ) : pl,mK (Ψ) 6 ε

}
,

such that |〈u,Ψ〉| 6 1 for Ψ ∈ Vε. On the other hand, for all non-zero Ψ ∈ Cl,m
K (X × Y )

εΨ

pl,mK (Ψ)
∈ Vε,

from which (b) follows with C = 1/ε, I = {(i0, j0)} and n big enough such that K ⊂
IntKn.

Now, let us consider the case when K does not belong only to the domain of a
single chart. As before, we can find a sequence of charts (Ui × Vj , ϕi � ψj) of X × Y
such that (Ui × Vj) forms a locally finite open covering of X × Y . Since K is compact,
there exists its finite covering by the sets Ui × Vj , and the indices (i, j) of such sets
form I. Let (fij) be a smooth partiction of unity subordinate to the open covering

(Ui × Vj). For Ψ ∈ Cl,m
K (X × Y ), we can write Ψ =

∑
(i,j)∈I Ψfij , where every Ψfij has

support contained in the domain of a single chart. The triangle inequality and the case
we considered at the beginning of the proof give us (b).

For the reverse implication, notice that (b) implies that u is a continuous linear

functional on Cl,m
Kn

(X × Y ) for every Kn as above. Hence, u is a continuous linear

functional on Cl,m
c (X × Y ).

Q.E.D.
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In the rest of the proofs in this section, we will, without loss of generality, assume
that we are working on open subsets of Euclidean spaces.

It is straightforward to see that for a linear functional u on Cl,m
c (X ×Y ), statement

(b) of previous lemma implies:

(∀K ∈ K(X))(∀L ∈ K(Y )(∃C > 0)(∃n, ñ ∈ N)(∃IK , IL finite sets of indices)

(∀ϕ ∈ Cl
K(X))(∀ψ ∈ Cm

L (Y )) |〈u, ϕ� ψ〉| ≤ C max
i∈IK

plKn(i)(ϕ) max
j∈IL

pmKñ(j)(ψ) .

The reverse implication would have significantly greater practical use, but, as we will see
at the end of this section, it is not true in general.

We continue with the following result:

Corollary 1. A linear functional u defined on Cl,m
c (X × Y ) is in D′l,m(X × Y ) if and

only if for every sequence (ϕk) converging to zero in Cl,m
c (X × Y ) the scalar sequence

(〈u, ϕk〉) converges to zero.

Dem. Assume u ∈ D′l,m(X×Y ) and let (ϕk) be a sequence converging to zero in Cl,m
c (X×

Y ). Then there exists a compact Kn ⊆ X × Y such that ϕk ∈ Cl,m
Kn

(X × Y ) for every k.

Since u is continuous on Cl,m
Kn

(X × Y ), the claim follows.

Conversely, it is enough to show that u is continuous on every Fréchet space Cl,m
Kn

(X×
Y ) (recall that for l,m < ∞ these spaces are even Banach spaces). We argue by con-

tradiction: suppose that there exists n0 such that u is not continuous on Cl,m
Kn0

(X × Y ).

Then, for some sequence (ϕk) converging to zero in Cl,m
Kn0

(X ×Y ), the sequence (〈u, ϕk〉)
does not converge to zero. Since the imbedding Cl,m

Kn0
(X × Y ) ↪→ Cl,m

c (X × Y ) is contin-

uous, (ϕk) must converge to zero in Cl,m
c (X × Y ), hence (〈u, ϕk〉) must converge to zero

by assumption, which is a contradiction.
Q.E.D.

Now we can define the tensor product of two distributions, as the unique distribution
given by the following theorem (cf. [15, 17.10.3]).

Theorem 1. Let X and Y be C∞ manifolds, u ∈ D′l(X) and v ∈ D′m(Y ). Then(
∃!w ∈ D′l,m(X × Y )

)(
∀ϕ ∈ Cl

c(X)
)(
∀ψ ∈ Cm

c (Y )
)
〈w,ϕ� ψ〉 = 〈u, ϕ〉〈v, ψ〉.

Furthermore, for any Φ ∈ Cl,m
c (X × Y ), function V : x 7→ 〈v,Φ(x, ·)〉 is in Cl

c(X), while
U : y 7→ 〈u,Φ(·,y)〉 is in Cm

c (Y ), and we have that

〈w,Φ〉 = 〈u, V 〉 = 〈v, U〉.

Dem. The uniqueness is clear from Lemma 1. The rest of the proof follows along the same
lines as in the aforementioned proof in [15]. Let us highlight the main parts. First of all,
for Φ of the form f � g where f ∈ Cl

c(X) and g ∈ Cm
c (Y ), we get V (x) = f(x)〈v, g〉 and

〈u, V 〉 = 〈u, f〉〈v, g〉, which equals 〈w,Φ〉. We need to prove that the linear mapping Φ 7→
〈u, V 〉 is continuous on Cl,m

M (X × Y ) for each compact set M in X × Y . Take a sequence

(Φj) converging to zero in Cl,m
M (X × Y ). Since v is a distribution, the corresponding

(Vj) converges to zero uniformly on πM (X). Noticing that ∂αx Vj(x) = 〈v, ∂αx Φj(x, ·)〉, for
|α| 6 l, we conclude that derivatives of Vj up to order l converge to zero uniformly on
πX(M) as well. From this, we get that 〈u, Vj〉 converges to zero.

Q.E.D.
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It is straightforward to check the following claim:

Lemma 3. If u ∈ D′l,m(X × Y ) then, for any ψ ∈ Cl,m(X × Y ), ψu is a well defined

distribution of order at most (l,m).

For u ∈ D′l,m(X × Y ), we define the support of u (and denote it suppu) as the
complement of union of all open sets on which u vanishes.

Theorem 2. Let u ∈ D′l,m(X×Y ) and take F ⊆ X×Y relatively compact set such that

suppu ⊆ F . Then there exists unique linear functional ũ on Q := {ϕ ∈ Cl,m(X × Y ) :
F ∩ suppϕ ⊂ X × Y compactly } such that

a) (∀ϕ ∈ Cl,m
c (X × Y )) 〈ũ, ϕ〉 = 〈u, ϕ〉,

b) (∀ϕ ∈ Cl,m(X × Y )) F ∩ suppϕ = ∅ =⇒ 〈ũ, ϕ〉 = 0.
The domain of ũ is largest for F = suppu.

Dem. Take ϕ ∈ Q and denote K := F ∩ suppϕ. According to Lemma 1, there exists
ψ ∈ C∞c (X ×Y ) such that ψ ≡ 1 on some neighbourhood of K. Decompose ϕ = ϕ0 +ϕ1

where ϕ0 = ψϕ ∈ Cl,m
c (X × Y ), ϕ1 = (1− ψ)ϕ and F ∩ suppϕ1 = ∅. Define ũ by

〈ũ, ϕ〉 = 〈ũ, ϕ0〉+ 〈ũ, ϕ1〉 = 〈u, ϕ0〉.

Obviously, conditions (a) and (b) are satisfied. Let us next check that the extension does
not depend on the decomposition of ϕ: assume that ϕ = ϕ′0+ϕ′1 is another decomposition
as above. It holds

ϕ0 − ϕ′0 = ϕ′1 − ϕ1 ∈ Cl,m
c (X × Y ), F ∩ supp (ϕ0 − ϕ′0) = F ∩ supp (ϕ′1 − ϕ1),

which implies 0 = 〈u, ϕ0 − ϕ′0〉 = 〈u, ϕ0〉 − 〈u, ϕ′0〉. Thus, T̃ is well-defined.
Q.E.D.

The following conjecture, if valid, would give us conditions under which the reverse
implication would hold:

Conjecture. Let X, Y be C∞ manifolds and let u be a linear functional on Cl,m
c (X×Y ).

If u ∈ D′(X × Y ) and satisfies

(∀K ∈ K(X))(∀L ∈ K(Y )(∃C > 0)(∃n, ñ ∈ N)(∃IK , IL finite sets of indices)

(∀ϕ ∈ C∞K (X))(∀ψ ∈ C∞L (Y )) |〈u, ϕ� ψ〉| ≤ C max
i∈IK

plKn(i)(ϕ) max
j∈IL

pmKñ(j)(ψ),

then u can be uniquely extended to D′l,m(X × Y ).
Unfortunately, this conjecture, in general, fails. Let us first see where the stan-

dard straightforward approach to the proof would fail, and after that we will provide a
counterexample which was kindly communicated to us by Evgenij Panov. We will only
consider the case where X and Y are open subsets of Euclidean spaces.

First, one would take an arbitrary compact M ⊆ X × Y . Let L and K be its
projections to X and Y , which are compact. Then replacing them by larger compacts

K ′ and L′, as it was done in Lemma 1, one would approximate any Ψ ∈ Cl,m
K×L(X × Y )

by a sequence (ϕk �ψk) of functions from C∞K′(X)�C∞L′(Y ), and one would be tempted
to define

〈u,Ψ〉 = lim
k
〈u, ϕk � ψk〉.

However, the problem with this approach is in obtaining an appropriate bound for 〈u,Ψ〉.
Naturally, one would like to use the already available bound for the tensor product from
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conjecture’s assumption. Since the number of elements in tensor approximation can be
unbounded (tough, for each element it is finite), the constant for each seminorm from the
definition of anisotropic distributions would be unbounded. Thus, this approach fails to
yield the desired bound.

For the counterexample, let us assume l = m = 0 and d = r = 1. First notice that
ln|x − y| ∈ L1

loc(Rx ×Ry), so it can be identified with an elelment of D′(R2). Consider

a distribution u = − 1
π∂yln|x− y|. For g ∈ C0,1(R×R), we get

〈u, g〉 =
1

π

∫
R2

ln|x− y|∂yg(x, y) dxdy .

It follows that u ∈ D′0,1(R × R), and we can extend it to a linear (but not necessarily
continuous) functional on Cc(R×R) (for example, by an application of the Hahn-Banach
theorem). Take g to be of the form ϕ(x)�ψ(y), for ϕ ∈ Cc(R) and ψ ∈ C1

c(R). It holds:

〈u, ϕ� ψ〉 =
1

π

∫
R
ϕ(x)

∫
R

ln|x− y|ψ′(y) dydx ,

and the inner integral, after integration by parts, becomes∫
R

ln|x− y|ψ′(y) dy = lim
ε→0

∫
|y−x|>ε

ln|y − x|ψ′(y) dy

= lim
ε→0

(
(ψ(x− ε)− ψ(x+ ε)) lnε+

∫
|y−x|>ε

ψ(y)

x− y
dy

)

= V.P.

∫
R

ψ(y)

x− y
dy = πHψ(x) ,

where Hψ denotes the Hilbert transform of function ψ ∈ C1
c(R). Since it is an isometry

on L2(R) (see [24, Chapter 5.1.1]), we have the following bound

|〈u, ϕ� ψ〉| =
∣∣∣∣∫

R
ϕ(x)Hψ(x) dx

∣∣∣∣ ≤ ‖ϕ‖L2(R)‖ψ‖L2(R) ≤ |K|‖ϕ‖L∞(R)‖ψ‖L∞(R) ,

for smooth functions ϕ and ψ whose both supports are contained in a compact set K ⊂ R.
Thus, all the assumptions of the conjecture are satisfied, but u /∈ D′0,0(R×R).

To demonstrate that, assume the contrary, that u is a distribution of order 0 on
R2. Take a test-function g whose support does not intersect the diagonal of R2. After
integration by parts, we get the identity

〈u, g〉 =
1

π

∫
R2

g(x, y)

x− y
dxdy .

Now, take a compact set K = [0, 1]× [0, 1], and since u is a distribution of order 0, there
exists a constant CK > 0 such that for any test-function g whose support in in K, we get

|〈u, g〉| ≤ CK‖g‖L∞(R2) .

Take a sequence of non-negative test-functions (gε) such that ‖gε‖L∞(R2) = 1 and whose
supports are contained in the triangle with vertices (0, 0), (1, 1) and (0, 1). Furthermore,
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assume that the distance of supp gε to the diagonal of R2 is ε. Clearly, supports of all gε
and contained in K and they do not intersect the diagonal of R2. Thus, we can write

〈u, gε〉 =
1

π

∫
R2

gε(x, y)

x− y
dxdy =

1

π

∫ 1

0

∫ 1

y+ε

gε(x, y)

x− y
dxdy

≥ 1

π

∫ 1

0

∫ 1

y+ε

1

x− y
dxdy =

1

π

∫ 1

0
ln(1− y) dy − lnε

π

≥ −1

π
− lnε

π
.

On one hand, we have the uniform bound 〈u, gε〉 = |〈u, gε〉| ≤ CK , while on the other
hand, the above bound implies 〈u, gε〉 → ∞ as ε→ 0. A contradiction.

The lack of the above result is the main reason why we need to consider a variant
of the Schwartz kernel theorem for anisotropic distributions.

Remark 1. It might be interesting to see which results from this section remain valid
if we take X and Y to be Cl and Cm manifolds, respectively. If this were the case, then
D′l,m(X × Y ) would not be a subspace of the classical distributions D′(X × Y ), which
could only be defined on C∞ manifolds. However, in the rest of the paper, we shall
consider only Rd and the unit sphere in Rd, which are C∞ manifolds.

3. The Schwartz kernel theorem for distributions of anisotropic order

In this section we shall prove a version of the Schwartz kernel theorem for distribu-
tions of anisotropic order. While doing that, we shall follow the proof in [15, 23.9.2] and
carefully take note of the order of distributions appearing. For other possible approaches,
see the remarks after the proof of the following theorem.

Theorem 3. Let X and Y be two C∞ differentiable manifolds. Then the following
statements hold:

a) Let K ∈ D′l,m(X × Y ). Then for each ϕ ∈ Cl
c(X) the linear form Kϕ, defined by

ψ 7→ 〈K,ϕ�ψ〉, is a distribution of order not more than m on Y . Furthermore, the
mapping ϕ 7→ Kϕ, taking Cl

c(X) with its inductive limit topology to D′m(Y ) with
weak ∗ topology, is linear and continuous.

b) Let A : Cl
c(X) → D′m(Y ) be a continuous linear operator, in the pair of topologies

as above. Then there exists unique distribution K ∈ D′(X × Y ) such that for any
ϕ ∈ C∞c (X) and ψ ∈ C∞c (Y )

〈K,ϕ�ψ〉 = 〈Kϕ, ψ〉 = 〈Aϕ,ψ〉.

Furthermore, K ∈ D′l,r(m+2)(X × Y ).

Dem. a) Let ϕ ∈ Cl
c(X) be an arbitrary function. In order to prove that Kϕ is continuous

on Cm
c (Y ) with strict inductive limit topology, we have to show that for any H ∈ K(Y ),

the mapping ψ 7→ 〈Kϕ, ψ〉 is a continuous functional on Cm
H(Y ). The mapping is clearly

linear since the tensor product is bilinear, while K is linear.
Let us notice that we can assume that X and Y are open subsets of Rd and Rr.

Indeed, first we can take some open covering of Y consisting of chart domains and a
partition of unity (fα) subordinate to that covering such that

∑
α fα(y) = 1 for every
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y ∈ H (note that the sum is finite). Similarly, we can break up ϕ into a finite number of
functions with supports small enough such that each lies in the domain of some chart of
X. In this way, we limit ourselves to considering the domains of a pair of charts for X
and Y . By using the results of [15, Chapter 17.4] (see also [25, Chapter 3.1.4]), we can
identify distributions localised on chart domains with distributions on subsets of Rd and
Rr. Thus, in what follows we shall assume that X and Y are open subsets of Rd and Rr.

We shall therefore show that there exists a constant C > 0 such that for any
ψ ∈ Cm

H(Y ) it holds

|〈Kϕ, ψ〉| 6 C max
|β|6m

‖∂βψ‖L∞(H) ,

for m finite, while for m =∞ we should modify the above to

(∃m′ ∈ N)(∃C > 0)(∀ψ ∈ C∞H (Y )) |〈Kϕ, ψ〉| 6 C max
|β|6m′

‖∂βψ‖L∞(H) ,

To this end, let us remark that since K is a distribution of anisotropic order on
X × Y , which means

(∀M ∈ K(X × Y ))(∃C̃ > 0)(∀Ψ ∈ Cl,m
c (X × Y ))

supp Ψ ⊆M =⇒ |〈K,Ψ〉| 6 C̃ max
|α|6l,|β|6m

‖∂α,βΨ‖L∞(M) ,

with obvious modifications if either l or m is infinite, by taking M to be of the form
L×H, with L ∈ K(X), and Ψ = ϕ� ψ such that suppϕ ⊆ L, we have that

|〈Kϕ, ψ〉| = |〈K,ϕ� ψ〉| 6 C̃ max
|α|6l,|β|6m

‖∂αϕ� ∂βψ‖L∞(L×H)

6 C̃ max
|α|6l

‖∂αϕ‖L∞(L) max
|β|6m

‖∂βψ‖L∞(H)

6 C max
|β|6m

‖∂βψ‖L∞(H) ,

and therefore Kϕ ∈ D′m(Y ).

The linearity of mapping ϕ 7→ Kϕ readily follows from the bilinearity of tensor
product and the linearity of K. For continuity, take an arbitrary L ∈ K(X) and an
arbitrary ψ ∈ Cm

c (Y ). We need to show the existence of C̄ > 0 such that

|〈Kϕ, ψ〉| 6 C̄ max
|α|6l

‖∂αϕ‖L∞(L) .

However, we have already shown that above: just take C̄ = C̃ max|β|6m ‖∂βψ‖L∞(H).

Therefore, the mapping ϕ 7→ Kϕ, from Cl
c(X) to D′m(Y ) is linear and continuous.

b) Let us first prove the uniqueness. By formula

〈K,ϕ�ψ〉 = 〈Kϕ, ψ〉 = 〈Aϕ,ψ〉 ,

a continuous functional K on C∞c (X) � C∞c (Y ) is defined. As it is defined on a dense
subset of C∞c (X × Y ), such K is uniquely determined on the whole C∞c (X × Y ).

The proof of existence will be divided into two steps. In the first step we assume
that X and Y are open subsets of Rd and Rr, and additionally, that the range of A is
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C(Y ) ⊆ D′(m)Y (understood as distributions which can be identified with continuous
functions). This will allow us to write explicitly the action of Aϕ on a test function
ψ ∈ Cm

c (Y ), which will finally enable us to define the kernel K. In the second step, we
shall use a partition of unity and the structure theorem of distributions to reduce the
problem to the first step. Let us begin.

Step I. Assume that X and Y are open and bounded subsets of euclidean spaces, and
that for each ϕ ∈ Cl

c(X), Aϕ ∈ C(Y ). Its action on a test function ψ ∈ Cm
c (Y ) is given

by

〈Aϕ,ψ〉 =

∫
Y

(Aϕ)(y)ψ(y)dy .

The continuity assumption on A implies that A : Cl
c(X) −→ C(Y ) is continuous when

the range is equipped with the weak ∗ topology inherited from D′(m)Y .
As the latter is a Hausdorff space, that operator has a closed graph, but this remains

true even when we replace the topology on C(Y ) by its standard Fréchet topology [45,
Exercise 14.101(a)], which is stronger. Now we can apply the Closed graph theorem [45,
Theorem 14.3.4(b)] (the proof of this form is essentially the same as the classical Banach’s
proof), as Cl

c(X) is barrelled, as a strict inductive limit of barrelled spaces, to conclude
that A : Cl

c(X) −→ C(Y ) is continuous with usual strong topologies on its domain and
range.

For y ∈ Y consider a linear functional Fy : Cl
c(X) −→ C defined by

Fy(ϕ) = (Aϕ)(y) .

Since Aϕ is a continuous function, Fy is well-defined and clearly it is continuous as a
composition of continuous mappings, thus a distribution in D′(l)X.

Let us take a test function Ψ ∈ Cl,0
c (X × Y ). If we fix its second variable, we can

consider it as a function from Cl
c(X) and apply Fy; we are interested in the properties of

this mapping:

y 7→ Fy(Ψ(·,y)) =
(
AΨ(·,y)

)
(y) .

Clearly, it is well defined on Y , with a compact support contained in the projection
πY (supp Ψ). Furthermore, we have the following bounds:∣∣∣Fy(Ψ(·,y))

∣∣∣ =
∣∣∣(AΨ(·,y)

)
(y)
∣∣∣ 6 ‖AΨ(·,y)‖L∞(πY (supp Ψ))

6 C‖Ψ(·,y)‖Cl
πY (supp Ψ)

(X) 6 C‖Ψ‖
Cl,0supp Ψ(X×Y )

.

The proof of continuity is a bit more involved; we shall show sequential continuity:
take a sequence yn → y in Y . Denote H = πX(supp Ψ) and let L ⊆ Y be a compact
such that yn,y ∈ L; Ψ is uniformly continuous on compact H × L. This is also valid for
∂αx Ψ, where |α| 6 l, which results in Ψ(·,yn) −→ Ψ(·,y) in Cl

c(X). As A is continuous,
thus the convergence is carried to C(Y ), i.e. to uniform convergence on compacts of a
sequence of functions AΨ(·,yn) to AΨ(·,y). In particular, this gives that (AΨ(·,yn))(ȳ)−
(AΨ(·,y))(ȳ) is arbitrary small independently of ȳ ∈ L, for large enough n On the other
hand, AΨ(·,y) is uniformly continuous, thus (AΨ(·,y))(ȳ) − (AΨ(·,y))(y) is small for
large n, independently of ȳ ∈ L. In other terms, we have the required convergence

Fyn(Ψ(·,yn)) −→ Fy(Ψ(·,y)) .
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Any continuous function with compact support is summable, so we can define func-

tional K on Cl,0
c (X × Y ):

〈K,Ψ〉 =

∫
Y
Fy(Ψ(·,y)) dy ,

which is obviously linear in Ψ, as Fy is.
In order to show that it is continuous, we cannot follow [15, 23.9.2], as our spaces

are not Montel spaces. However, we can check that K is continuous at zero (with obvious
modifications for l =∞):

(∀H ∈ K(X))(∀L ∈ K(Y ))(∃C > 0)(∀Ψ ∈ Cl,0
c (X × Y ))

supp Ψ ⊆ H × L =⇒ |〈K,Ψ〉| 6 C‖Ψ‖
Cl,0K×L(X×Y )

.

However, the continuity of A : Cl
c(X) −→ C(Y ), for Ψ supported in H × L and the fact

that the support of AΨ(·,y) is contained in L gives us the estimate∣∣∣∫
Y
Fy(Ψ(·,y)) dy

∣∣∣ 6 (volL)C‖Ψ‖
Cl,0K×L(X×Y )

,

as needed.
Finally, it is easy to check that for ϕ ∈ C∞c (X) and ψ ∈ C∞c (Y ), we have:

〈K,ϕ� ψ〉 =

∫
Y
Fy(ϕ� ψ(y))dy =

∫
Y
Fy(ϕ)ψ(y)dy =

∫
Y

(Aϕ)(y)ψ(y)dy = 〈Aϕ,ψ〉 .

Step II. Let (Uα) and (Vβ) be covers of X and Y consisting of relatively compact open
sets. It is sufficient to show existence of distributions Kαβ on Uα × Vβ which satisfy
〈Aϕ,ψ〉 = 〈Kαβ, ϕ � ψ〉 for all ϕ ∈ D(Uα) and ψ ∈ D(Vβ). Indeed, the uniqueness of
distribution K ∈ D′(X × Y ) then follows from the fact that two distributions Kαβ and
Kγδ will coincide on open sets (Uα ∩ Uγ) × (Vβ ∩ Vδ) of X × Y , while the existence of
K will be a result of localisation theorem [15, 17.4.2]. Furthermore, if we assume that
Uα and Vβ lie within domains of some charts of X and Y , in the light of results of [15,
Chapter 17.4] (see also [25, Chapter 3.1.4]), we can identify the distributions localised
to these chart domains with distributions on open subsets of Rd. Thus, without loss of
generality, we assume that U and V are relatively compact open subsets of Rd.

So let us consider an operator Ã : Cl
c(U) → D′m(V ) defined in the following way:

for ϕ ∈ Cl
c(U) and ψ ∈ Cm

c (V )

〈Ãϕ, ψ〉 = 〈Aϕ,ψ〉 .

It is clear that Ã is well-defined and we proceed by observing that by the assumption of
the theorem it is also continuous. Thus, its image is a subset of distributions of order
at most m. Take a relatively compact open neighbourhood W of the closure of V in
Y and pick a smooth cut-off function ρ which is equal to one on the closure of V and
whose support is contained in W . Multiplying a distribution of finite order with ρ does
not change its order. Thus, for ϕ ∈ Cl

c(U), ρÃϕ is an element of the space D′m(W )
and has a compact support. The next step is to use the so called structure theorem for
distributions: from the proof of the Theorem 5.4.1 of [22], it follows that we can write

ρÃϕ =
(
∂m+2

1 . . . ∂m+2
r

) (
Em+2 ∗ (ρÃϕ)

)
,
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where Em+2 is the fundamental solution of the differential operator ∂m+2
1 . . . ∂m+2

r (we
take partial derivatives with respect to the y variable), i.e. it satisfies in the sense of
distributions the following equation

(
∂m+2

1 . . . ∂m+2
r

)
Em+2 = δ0. For the explicit formula

for Em+2, see [22, Chapter 5.4]. Furthermore, in the proof of [22, Theorem 5.4.1], it was

shown that Em+2 ∗ (ρÃϕ) is a continuous function. Denoting by Ẽm+2∗ transpose of the
operator Em+2∗, we write for ϕ ∈ Cl

c(U) and ψ ∈ Cm
c (W )〈

Em+2 ∗ (ρÃϕ), ψ
〉

=
〈
Ãϕ, ρẼm+2 ∗ ψ

〉
,

from which we conclude that the mapping ϕ 7→ Em+2 ∗ (ρÃϕ) is continuous from Cl
c(U)

to D′m(W ). Now we can apply Step I and find a distribution R ∈ D′l,0(U ×W ) such that

for all ϕ ∈ C∞c (U) and ψ ∈ C∞c (W ) it holds〈
Em+2 ∗ (ρÃϕ), ψ

〉
= 〈R,ϕ� ψ〉 .

Taking ϕ ∈ C∞c (U) and ψ ∈ C∞c (V ), we have〈
R,ϕ�

(
∂m+2

1 . . . ∂m+2
r

)
ψ
〉

=
〈
Em+2 ∗ (ρÃϕ),

(
∂m+2

1 . . . ∂m+2
r

)
ψ
〉

= (−1)d(m+2)
〈(
∂m+2

1 . . . ∂m+2
r

) (
Em+2 ∗ (ρÃϕ)

)
, ψ
〉

= (−1)d(m+2)
〈
ρÃϕ, ψ

〉
= (−1)d(m+2)

〈
Ãϕ, ρψ

〉
= (−1)d(m+2)〈Aϕ,ψ〉,

which gives 〈Aϕ,ψ〉 = (−1)d(m+2)
〈(
∂m+2

1 . . . ∂m+2
r

)
R,ϕ� ψ

〉
, where the derivatives are

taken with respect to the variable y. Since R was an element of D′l,0(U×W ), we conclude

that A ∈ D′l,r(m+2)(U × V ).

Q.E.D.

Remark 2. Note that in part ii) of the theorem, we did not get that K ∈ D′l,m(X×Y ),

as one would wish to get while observing the statement in i) part: the order with respect
to x variable remained the same, but the order with respect to the y variable increased
from m to d(m+ 2).

Now, we can have a different look at our Conjecture. From the preceding theorem we
have u ∈ D′l,r(m+2)(X×Y ). Interchanging the roles of X and Y , the same proof as above

would give us u ∈ D′d(l+2),m(X × Y ), where order with respect to y remained the same,

but order with respect to the x variable increased from l to d(l + 2). Since uniqueness
of u ∈ D′(X × Y ) has already been determined, we conclude that u ∈ D′l,r(m+2)(X ×
Y ) ∩ D′d(l+2),m(X × Y ). It might be interesting to see some additional properties of

that intersection. Note that order up to which we got the increase is determined by the
structure theorem for distributions we used in the proof.

Remark 3. If one used a more constructive proof of Schwartz kernel theorem, for
example [56, Theorem 1.3.4], one would end up increasing the order with respect to both
variables x and y. In this case, increasing the order with respect to both variables occurs
naturally because one needs to secure the integrability of the function which is used to
define the kernel function.
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Remark 4. A remark in passing that one interesting approach to the kernel theorem is
given in [63, Chapter 51]. This approach is based on deep results of functional analysis on
tensor products of nuclear spaces of Alexander Grothendieck. The authors are convinced
that this approach might result in further improvements of the preceding theorem.

The structure theorem of distributions used in the second step proved to be pivotal
in reducing our general situation to the specific one resolved in the first step. Let us
consider the following two results from [63]:

Corollary 2. Let Ω be an open subset of Rd. Then following holds:
a) [Corollary 1, p. 261] A distribution in Ω is of order less than or equal to m if and

only if it is equal to a finite sum of derivatives of order less than or equal to m of
Radon measures in Ω.

b) [Corollary 1, p. 263] Every Radon measure in Ω is a finite sum of derivatives of order
less than or equal to 2d of continuous functions.

It is clear that combining these two results one can represent a distribution of order
less than or equal to m as a finite sum of derivatives of order less than or equal to 2d+m of
continuous functions. We could have used this in the second step of the proof of Theorem
3: for each element of the sum we would have obtained a corresponding distribution of
order less than or equal to 2d + m in the ξ variable. However, one can easily see that
that this representation is not unique.

In the end, let us notice that the kernel K identified in part (b) of Theorem 3 would
belong to the space D′l,2r+m(X ×Y ), which is a slight improvement of estimated order in
the ξ variable which Theorem 3 gives.

Let us now see two easy examples (compare with [27, Chapter V]).
In the first example, let A : Cl

c(X) → Cl
c(X) be the identity mapping (Aϕ) (x) =

ϕ(x), where X ⊂ Rd is an open set. Following the construction given in Step I of Theorem
3, its kernel K has support contained in the diagonal {(x,x) : x ∈ X} ⊂ X ×X and is
given by

〈K,Φ〉 =

∫
X

Φ(x,x) dx, Φ ∈ C
l,d(l+2)
c (X ×X) .

In the second example, let f : X → Y be a continuous function between two subsets
of Rd and Rr, and take A : Cl

c(Y ) → Cl
c(X) defined by Aϕ = ϕ ◦ f . Its kernel K has

support contained in the graph of f and is given by

〈K,Φ〉 =

∫
X

Φ(x, f(x)) dx, Φ ∈ C
d(l+2),l
c (X × Y ) .

4. H-distributions

An important result that was used in the proof of existence of H-measures was
the First commutation lemma [60], which stated that the commutator of multiplication
and Fourier multiplier operator was compact on L2(Rd). We will need a variant of this
result for the Lp(Rd) spaces, which was shown in [6]. It is a consequence of the following
Krasnoselskij type lemma (for details and proofs, see [6]):

Lemma 4. Assume that linear operator A is compact on L2(Rd) and bounded on
Lr(Rd), for some r ∈ 〈1,∞〉\{2}. Then A is also compact on Lp(Rd), for any p between
2 and r (i.e. such that 1/p = θ/2 + (1− θ)/r, for some θ ∈ 〈0, 1〉).
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With this result in hand, one just needs to use Tartar’s First commutation lemma on
L2(Rd) for compactness, and the Hörmander-Mihlin theorem for boundedness on Lp(Rd),
for all p ∈ 〈1,∞〉, to conclude the following:

Corollary 3. If b ∈ C0(Rd) and ψ ∈ Cκ(Sd−1), then the commutator Aψb − bAψ is

compact on Lp(Rd), for all p ∈ 〈1,∞〉.
We are now ready to reprove the theorem on existence of H-distributions [7], showing

that they are actually distributions of order 0 (Radon measures) in x, and of order κ in
ξ.

Theorem 4. If un −⇀ 0 in Lploc(R
d) and vn

∗−⇀ v in Lqloc(R
d) for some p ∈ 〈1,∞〉 and

q ≥ p′, then there exist subsequences (un′), (vn′) and a complex valued distribution µ ∈
D′(Rd×Sd−1), such that, for every ϕ1, ϕ2 ∈ Cc(R

d) and ψ ∈ Cκ(Sd−1), for κ = [d/2]+1,
one has:

lim
n′→∞

∫
Rd
Aψ(ϕ1un′)(x)(ϕ2vn′)(x)dx = lim

n′→∞

∫
Rd

(ϕ1un′)(x)Aψ(ϕ2vn′)(x)dx

= 〈µ, ϕ1ϕ2 � ψ〉,

where Aψ : Lp(Rd) −→ Lp(Rd) is the Fourier multiplier operator with symbol ψ ∈
Cκ(Sd−1). Moreover, µ belongs to the space D′0,d(κ+2)(R

d × Sd−1), i.e. it is a distribution

of order 0 in x and of order not more than d(κ+ 2) in ξ.

Before we proceed with the proof, let us just give a remark concerning the dual
product we wrote above. In the proof, it will become evident that the bilinear mapping
(ϕ, ψ) 7→ 〈µ, ϕ�ψ〉 is continuous in the product topology of Cc(R

d)×Cκ(Sd−1). In turn,
we can extend it by continuity to the whole product space.

Dem. The first equality above is clear, as the adjoint of Aψ is Aψ. Without loss of

generality, we may assume that p ≤ 2 (if p > 2, we would use the first equality in the
statement of the theorem and proceed as in the case p ≤ 2).

The rest of the proof follows along the same lines as in [7], after noting that

lim
n Lp

′

〈
Aψ(ϕ2v), ϕ1un

〉
Lp

= 0 .

Indeed, as q ≥ p′, we have that ϕ2v ∈ Lp
′
(Rd), thus Aψ(ϕ2v) ∈ Lp

′
(Rd) as well, and we

can pass to the limit in the product.
Take ϑl and Kl as in the definition of metric dp on Lploc(R

d) in the introduction;
therefore suppϕ2 ⊆ Kl ⊆ suppϑl for some l ∈ N, and we have:

lim
n Lp

′

〈
Aψ(ϕ2vn), ϕ1un

〉
Lp

= lim
n Lp

′

〈
Aψ
(
ϕ2ϑl(vn − v)

)
, ϕ1un

〉
Lp

= lim
n Lp

′

〈
Aψ(ϑl(vn − v)), ϕ1ϕ2ϑlun

〉
Lp

= lim
n Lp

′

〈
Aψ(ϑlvn), ϕ1ϕ2ϑlun

〉
Lp

=: lim
n
µn,l(ϕ1ϕ2, ψ) .

In the second equality we have used the version of First commutation lemma for Lp(Rd)
spaces. The final expression shows that each integral is indeed a bilinear functional
depending on ϕ = ϕ1ϕ2 and ψ.
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Furthermore, by the Hölder inequality and the continuity of Fourier multiplier op-
erator, we have

|µn,l(ϕ, ψ)| ≤ ‖ϕϑlun‖Lp‖Aψ(ϑlvn)‖Lp′ ≤ C̃‖ψ‖Cκ(Sd−1)‖ϕ‖CKl(Rd) ,

where the constant C̃ is given by C̃ = C|un|ϑl,p|vn|ϑl,p′ , C depending only on d and p
and comes from continuity of Fourier multiplier Aψ.

For l ∈ N, we can bound |un|ϑl,p and |vn|ϑl,p′ by constants independent of n and

apply Lemma 3.2 from [7], obtaining operators Dl ∈ L(CKl(R
d); (Cκ(Sd−1))′), such that

Dl is an extension of Dl−1.
This allows us to define the operator D on Cc(R

d): for ϕ ∈ Cc(R
d) we take l ∈ N

such that suppϕ ⊆ Kl, and set Dϕ := Dlϕ, which satisfies:

‖Dϕ‖(Cκ(Sd−1))′ ≤ CKl‖ϕ‖CKl(Rd) .

As this operator D is continuous when restricted to each CKl(R
d), D is continuous on

the strict inductive limit of these spaces as well, i.e. on Cc(R
d).

Finally define µ(ϕ, ψ) := 〈Dϕ,ψ〉. D can be restricted to an operator D̃ defined only
on C∞c (Rd), remaining continuous (as CKl(R

d) norm is one of the seminorms defining

the topology on C∞Kl(R
d)). Moreover, the space (Cκ(Sd−1))′ of distributions of order

κ is a subspace of D′(Sd−1). Thus we have a continuous operator from C∞c (Rd) to
D′(Sd−1), which by the Schwartz kernel theorem can be identified to a distribution from
D′(Rd × Sd−1); thus µ ∈ D′(Rd × Sd−1).

We want to show that µ is actually in the space D′0,d(κ+2)(R
d × Sd−1), i.e. that it

could be extended to a continuous linear functional on C
0,d(κ+2)
c (Rd×Sd−1). In the same

way as above, we obtain the following bound with ϕ := ϕ1ϕ2:

|〈µ, ϕ� ψ〉| ≤ C‖ψ‖Cκ(Sd−1)‖ϕ‖CKl(Rd) ,

where C does not depend on ϕ and ψ. Now we just need to apply the Schwartz kernel

theorem to conclude that µ is a continuous linear functional on C
0,d(κ+2)
c (Rd × Sd−1).

Q.E.D.

In fact, taking into account the discussion after Theorem 3, we conclude that µ is a
distribution of order not more than 2d+ κ in the ξ variable.

Remark 5. For q ∈ 〈1,∞〉, weak and weak-∗ convergence coincide since Lqloc(R
d) is

reflexive.

Remark 6. The preceding theorem only gives us an upper bound of the order in ξ.
To illustrate, in the case p = q = 2, H-distribution is actually an H-measure, which is of
order 0 in ξ.

We shall say that (un) and (vn) form a pure pair of sequences if the associated
H-distribution is unique for all subsequences.

If (un) and (vn) are Lp and Lq sequences, respectively, defined on an open set
Ω ⊆ Rd, extending them by zero to the whole space, we would still retain weak and
weak-∗ convergence of corresponding sequences to corresponding limits. Then, applying
the preceding theorem, we get that the corresponding H-distribution is supported on
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ClΩ× Sd−1. Indeed, the claim follows easily if one takes test functions supported within
the complement of the closure ClΩ. The analogous statement holds for Lploc(Ω) and
Lqloc(Ω) sequences, if we can extend them by zero to the whole space, which is not always

possible (for example, take an L1
loc(〈0, 1〉) function x 7→ 1

|x| , which can not be extended

to an L1
loc(R

d) function).
Similar reasoning leads to the following result:

Corollary 4. Let (un) and (vn) be sequences from the preceding theorem. If there
exist closed sets F1 and F2 of Rd such that un keep their support in F1 and vn in F2,
then the support of any H-distribution corresponding to subsequences of (un) and (vn)
is included in (F1 ∩ F2)× Sd−1.

5. Basic properties

One of the useful features of H-measures is that they can determine if a weakly
converging L2

loc sequence, converges strongly in the same space. Namely, an L2
loc sequence

will converge to zero strongly if and only if the corresponding H-measure is zero. In this
section we prove an analogous property for H-distributions.

Canonical choice of Lp
′

sequence corresponding to an Lp sequence (un) is given by

vn = Φp(un), where Φp is an operator from Lp(Rd) to Lp
′
(Rd) defined by Φp(u) = |u|p−2u.

Before we proceed, let us state some properties of operator Φp, p ∈ 〈1,∞〉, which
we will need later. First of all, Φp is a nonlinear Nemytskii operator, thus it is continuous

from Lp(Rd) to Lp
′
(Rd) and additionally we have the following bound

‖Φp(u)‖Lp′(Rd) ≤ ‖u‖
p/p′

Lp(Rd)
.

Moreover, it is continuous from Lploc(R
d) to Lp

′

loc(R
d). Indeed, take an arbitrary seminorm

| · |ϑk,p′ from the definition of the metric dp′ and any u ∈ Lploc(R
d) to get

|Φp(u)|p
′

ϑk,p′
= ‖ϑkΦp(u)‖p

′

Lp
′
(Rd)

=

∫
Rd
|ϑk(x)|p

′
|u(x)|(p−1)p′dx =

∫
Rd
|ϑk(x)|p

′
|u(x)|pdx

≤
∫
Rd
|ϑk+1(x)|p|u(x)|pdx = ‖ϑk+1u‖pLp(Rd)

= |u|pϑk+1,p
.

From here we conclude that Φp maps bounded sets in Lploc(R
d) topology to bounded sets

in Lp
′

loc(R
d) topology. Moreover, if (un) is a bounded sequence in Lploc(R

d), then from the
above bound we get

|Φp(un)|ϑk,p′ ≤ |un|
p/p′

ϑk+1,p
< C

p/p′

ϑk+1,p
,

from which follows that (Φp(un)) is a bounded sequence in Lp
′

loc(R
d), which is (semi-

)reflexive space. This implies that (Φp(un)) is weakly precompact in Lp
′

loc(R
d) (see [45,

Theorem 15.2.4]).
To conclude, take arbitrary ε > 0, u ∈ Lploc(R

d) and k ∈ N. The continuity of Φp

guarantees the existence of δ > 0 such that

(∀v ∈ Lp(Rd))
(
‖v − ϑk+1u‖Lp(Rd) < δ =⇒ ‖Φp(v)− Φp(ϑk+1u)‖Lp′(Rd) < ε

)
.
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Take v ∈ Lploc(R
d) such that |v − u|ϑk+1,p < δ. We have the following:

|Φp(v)− Φp(u)|ϑk,p′ =
∥∥∥ϑk(Φp(v)− Φp(u)

)∥∥∥
Lp
′
(Rd)

=
∥∥∥ϑkϑk+1

(
Φp(v)− Φp(u)

)∥∥∥
Lp
′
(Rd)

=
∥∥∥ϑk(Φp(ϑk+1v)− Φp(ϑk+1u)

)∥∥∥
Lp
′
(Rd)

≤ ‖Φp(ϑk+1v)− Φp(ϑk+1u)‖Lp′(Rd) < ε.

Since k was arbitrary, we conclude that Φp : Lploc(R
d) −→ Lp

′

loc(R
d) is continuous.

Now we can state the main result of this section:

Lemma 5. For a sequence (un) in Lploc(R
d), p ∈ 〈1,∞〉, the following are equivalent

a) un → 0 in Lploc(R
d),

b) for every sequence (vn) satisfying conditions of the existence theorem, (un) and (vn)
form a pure pair and the corresponding H-distribution is zero.

Dem. For the first implication, it is enough to notice that due to the compact support
of test function ϕ1 and boundedness properties of the Fourier multiplier operator Aψ, we

get that Aψ(ϕ1un)→ 0 in Lp(Rd), thus

lim
n

∫
Rd
Aψ(ϕ1un)(x)ϕ2vn(x)dx = 0.

Take a sequence (Φp(un)). We have already concluded that it is bounded and weakly

precompact in Lp
′

loc(R
d). Taking symbol ψ to be equal to one (so that Aψ is the identity)

and test functions ϕ1 and ϕ2, we get

0 = lim
n′

∫
Rd

(ϕ1un′)(x)(ϕ2vn′)(x)dx = lim
n′

∫
Rd
ϕ1(x)ϕ2(x)|un′(x)|pdx,

which implies un′ → 0 in Lploc(R
d). From here we conclude that the whole sequence (un)

converges to zero strongly in Lploc(R
d) as well. If this were not the case, we could find a

subsequence which either converges to some nontrivial limit, which is impossible due to
the weak convergence to zero, or diverges, which is impossible due to boundedness of the
sequence.

Q.E.D.

Remark 7. Let us notice that in the previous Lemma, we have proved that the two
claims in (a) and (b) are equivalent to

b’) un and (Φp(un)) form a pure pair and the corresponding H-distribution is zero.

Remark 8. It is easy to see that claim in (b) does not imply strong convergence to
zero in Lp(Rd) of the sequence (un) in Lp(Rd). Indeed, take a nontrivial u ∈ Lpc(R

d)
and unit vector e ∈ Sd−1. Define a sequence un(x) = u(x− ne) which weakly converges
to zero in Lp(Rd). Support of un goes to infinity so the corresponding H-distribution is
zero, while un does not converge to zero strongly in Lp(Rd).
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Let (un) be a sequence weakly converging to 0 in Lploc(R
d). Then the sequence

(|un|p) is bounded in L1
loc(R

d), so |un|p
∗−⇀ ν in D′(Rd) (up to a subsequence). Since all

the elements of the sequence (|un|p) are positive (in terms of distributions), the limit ν
is a positive distributions, hence (unbounded) Radon measure.
On the other hand, let µ be any H-distribution corresponding to the above chosen subse-
quence of (un) and (Φp(un)). Taking ψ to be equal to one and test functions ϕ1, ϕ2 such
that ϕ2 is equal to one on the support of ϕ1, we get the following connection between µ
and ν:

〈µ, ϕ1 � 1〉 = lim
n

∫
Rd
ϕ1|un|pdx = 〈ν, ϕ1〉.

We sum this observation in the following corollary:

Corollary 5. Let (un) converge weakly to zero in Lploc(R
d), for p ∈ 〈1,∞〉, and let

(|un|p) converge weakly-∗ to a measure ν in the space of unbounded Radon measures
M(Rd). Then for all ϕ ∈ C∞c (Rd), it holds

〈µ, ϕ� 1〉 = lim
n

∫
Rd
ϕ|un|pdx = 〈ν, ϕ〉,

where µ is any H-distribution corresponding to some subsequences of (un) and (Φp(un)).

Let us see what happens when we change positions of sequences (un) and (vn):

lim
n→∞

∫
Rd

(ϕ1vn)(x)Aψ(ϕ2un)(x)dx = lim
n→∞

∫
Rd

(ϕ2un)(x)Aψ(ϕ1vn)(x)dx =

= lim
n→∞

∫
Rd

(ϕ2un)(x)Aψ(ϕ1vn)(x)dx =

=
〈
µ, ϕ1ϕ2 � ψ

〉
=
〈
µ, ϕ1ϕ2 � ψ

〉
,

where µ is a H-distribution corresponding to sequences (un) and (vn).
Next, we turn our attention to the relation between H-distributions corresponding

to conjugated sequences. First we will prove some auxiliary results. It is easy to see that

for every v ∈ S(Rd) it holds: v̂(ξ) =
∫
Rd e−2πix·ξv(x)dx =

∫
Rd e2πix·ξv(x)dx = v̌(ξ) and

analogously v̌ = v̂. Using these, we arrive at the following chain of equalities valid for
any ψ ∈ Cκ(Sd−1)

Aψ(v) = (ψv̂)∨ = (ψv̌)∨ =
(
ψv̌
)∨

= ψ̂v̌.

Let us rewrite the last term above:

ψ̂v̌(x) =

∫
Rd

e−2πiξ·xψ(ξ)v̌(ξ)dξ =

∫
Rd

e2πiη·xψ(−η)v̌(−η)dη =

∫
Rd

e2πiη·xψ̃(η)v̂(η)dη

=
(
ψ̃v̂
)∨

(x) = A
ψ̃

(v)(x),

where we have used the change of variables η = −ξ and the notation ṽ(x) = v(−x).
Since Aψ (and A

ψ̃
) are continuous on Lp(Rd), while S(Rd) is dense in Lp(Rd), we have

showed that for every v ∈ Lp(Rd) it holds Aψ(v) = A
ψ̃

(v). Now, we can write
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lim
n
〈Aψ(ϕ1un), ϕ2vn〉 = lim

n
〈Aψ(ϕ1un), ϕ2vn〉 = lim

n

〈
A
ψ̃

(ϕ1un), ϕ2vn

〉
= lim

n
〈A

ψ̃
(ϕ1un), ϕ2vn〉 =

〈
µ, ϕ1ϕ2 � ψ̃

〉
= 〈µ, ϕ1ϕ2 � ψ̃〉 = 〈µ̃, ϕ1ϕ2 � ψ〉,

where µ is the H-distribution corresponding to subsequences of (un) and (vn) and in the
last step the tilde operation is taken only with respect to the ξ variable. We have proved
the following lemma:

Lemma 6. Let (un) and (vn) form a pure pair of sequences and let µ be the corre-
sponding H-distribution. The following holds

a) The H-distribution corresponding to (vn) and (un) is µ,
b) (un) and (vn) is a pure pair and the corresponding H-distribution is µ̃, where the

tilde operation is taken only with respect to the dual variable.

6. Example with concentrations

Vitali’s convergence theorem gives sufficient and necessary conditions under which
a sequence of Lp functions will converge strongly to a measurable function in Lp. One of
them is uniform integrability which implies that there are no concentration effects in the
sequence. Hence, it is of interest to consider concentration effects in weakly converging
sequences.

Take u from Lpc(R
d), for some p ∈ 〈1,∞〉 and define a sequence un(x) = n

d
pu(n(x−

z)) for some z ∈ Rd. A simple change of variables shows that ‖un‖Lp(Rd) = ‖u‖Lp(Rd)

and that it weakly converges to 0 in Lp(Rd). Indeed, the sequence is bounded, while by
taking a continuous test function ϕ with compact support we get

∫
Rd
un(x)ϕ(x)dx =

∫
Rd
nd/pu(n(x− z))ϕ(x)dx =

∫
Rd
nd/p−du(y)ϕ(y/n+ z)dy =

=
1

nd/p
′

∫
Rd
u(y)χsuppu(y)ϕ(y/n+ z)dy ≤

6
(vol(suppu)

nd

)1/p′

‖u‖Lp(Rd) max
Rd
|ϕ|,

where we have used the change of variables in the second equality and the Hölder in-
equality in the last step. Passing to the limit, we get our claim.

We will show that the H-distribution corresponding to sequences (un) and (Φp(un))
is given by δz � ν, where ν is a distribution on Cκ(Sd−1) defined for ψ ∈ Cκ(Sd−1) by

〈ν, ψ〉 =

∫
Rd
u(x)Aψ̄(|u|p−2u)(x)dx.

Before we proceed, we will need the following two lemmata:

43



H-distributions and compactness by compensation

Lemma 7. Let u ∈ Lp(Rd) and un(x) = nd/pu(n(x− z)). Then, for every ϕ ∈ C(Rd)
it holds

ϕun − ϕ(z)un −→ 0 in Lp(Rd).

Dem. Using the change of variables y = n(x− z), we get

∫
Rd
|ϕ(x)un(x)− ϕ(z)un(x)|pdx =

∫
Rd
|ϕ(x)n

d
pu(n(x− z))− ϕ(z)n

d
pu(n(x− z))|pdx

=

∫
Rd
|ϕ(y/n+ z)− ϕ(z)|p|u(y)|pdy,

which goes to 0, by the Lebesgue dominated convergence theorem.

Q.E.D.

Lemma 8. For any ψ ∈ Cκ(Sd−1), v ∈ Lp(Rd), p ∈ 〈1,∞〉, z ∈ Rd and n ∈ N it holds

(
Aψv(n(· − z))

)
(x) = (Aψv)(n(x− z)).

Dem. For v ∈ S(Rd), we have

(
Aψv(n(· − z))

)
(x) = F̄

(
ψ(ξ/|ξ|)

∫
Rd
e−2πiy·ξv(n(y − z))dy

)
(x) =

= F̄
(
n−de−2πiz·ξψ(ξ/|ξ|)

∫
Rd
e−2πi ζn ·ξv(ζ)dζ

)
(x) =

= n−dF̄
(
e−2πiz·ξψ(ξ/|ξ|)v̂(ξ/n)

)
(x) =

= n−d
∫
Rd
e2πi(x−z)·ξψ(ξ/|ξ|)v̂(ξ/n)dξ =

=

∫
Rd
e2πiη·(n(x−z))ψ(η/|η|)v̂(η)dη =

= (Aψv)(n(x− z)),

where we have used the change of variables n(y − z) = ζ in the second equality and
nη = ξ in the penultimate one. Since S(Rd) is dense in Lp(Rd), while Aψ is continuous

on Lp(Rd), we get the claim.

Q.E.D.

Taking test functions ϕ1 and ϕ2 to be continuous with compact supports and ϕ2 to
be equal to one on the set suppu ∪ (z + suppu), we get the following
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〈µ, ϕ1ϕ2 � ψ〉 = lim
n

∫
Rd

ϕ1(x)un(x)Aψ̄(ϕ2|un|p−2un)(x)dx

= lim
n

∫
Rd

ϕ1(x)ndu(n(x− z))Aψ̄
(
ϕ2|u|p−2(n(· − z))u(n(· − z))

)
(x)dx

= lim
n

∫
Rd

ϕ1(z)ndu(n(x− z))Aψ̄
(
ϕ2|u|p−2(n(· − z))u(n(· − z))

)
(x)dx

= lim
n
ϕ1(z)

∫
Rd

u(y)Aψ̄
(
χsuppuϕ2(·/n+ z)|u|p−2u

)
(y)dy

= lim
n
ϕ1(z)

∫
Rd

u(y)Aψ̄(|u|p−2u)(y)dy

= ϕ1(z)
〈
u,Aψ̄(|u|p−2u)

〉
,

where µ denotes the H-distribution corresponding to subsequences of (un) and (Φp(un)).
We have used the preceding lemmata in the third and fourth equalities, and the change
of variables y = n(x − z) in the fourth one. In the last step we have noticed that the
expression on the right hand side does not depend on n anymore. Using the corollary on
the support of the H-distribution, we finally arrive at

〈µ, ϕ1 � ψ〉 = ϕ1(z)
〈
u,Aψ̄(|u|p−2u)

〉
.

Remark 9. If we had chosen u and p such that u ∈ Lrc(R
d) where r ≥ max{2, 2p− 2}

(case r =∞ included), we would have been able to use Plancherel’s theorem and rewrite
the integral in polar coordinates to get

〈µ, ϕ1 � ψ〉 = ϕ1(z)

∫
Rd
û(ξ)ψ(ξ/|ξ|)(|u|p−2u)∧(ξ)dξ

= ϕ1(z)

∫
Sd−1

∫ ∞
0

û(tη)ψ(η)(|u|p−2u)∧(tη)td−1dt dη,

since the given bound on r implies r ≥ 2 and r ≥ p.

7. Perturbations

Let (un) be a sequence weakly converging to 0 in Lploc(R
d) for some p ∈ 〈1,∞〉 and

hn
∗−⇀ h in Lqloc(R

d) for q ≥ p′. Consider a sequence (dn) strongly converging to zero

in Lploc(R
d). Then un + dn −⇀ 0 in Lploc(R

d) and we may ask ourselves if there exists a
connection between the H-distribution µ corresponding to subsequences of (un) and (hn)
and the H-distribution µd corresponding to subsequences of (un+dn) and (hn). It is easy
to see that these two H-distributions are the same:

∫
Rd
ϕ1(un + dn)Aψ̄(ϕ2vn)dx =

∫
Rd
ϕ1unAψ̄(ϕ2vn)dx +

∫
Rd
ϕ1dnAψ̄(ϕ2vn)dx.
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The left hand side goes to 〈µd, ϕ1ϕ̄2 � ψ〉, the second term on the right hand side goes
to 0 according to one of the preceding results, while the first term goes to 〈µ, ϕ1ϕ̄2�ψ〉.

In the above, we could have perturbed sequence (hn) with a sequence strongly
converging to zero in Lqloc(R

d) as well. We would still get the same conclusion. In
particular, for p = q = 2 we obtain a similar result for H-measures.

Now, let us turn our attention to generating sequences. We would like to know if
we could use a smoother sequence to obtain the same H-distribution. Assume that we
are given a family of sequences (umn ) in C∞c (Rd) such that umn −→ un in Lploc(R

d), as

m → ∞. We can always find such approximating sequences since the space C∞c (Rd) is
dense in Lploc(R

d) for p < ∞. Using the Cantor diagonal procedure, we can extract a

subsequence vk = u
m(k)
k such that dp(vk, uk) ≤ 1/k. It is straightforward to see that vk

weakly converges to zero in Lploc(R
d): for every ϕ ∈ Lp

′
c (Rd) it holds∫

Rd
vkϕ =

∫
Rd

(vk − uk)ϕ+

∫
Rd
ukϕ.

The claim follows from the strong convergence of (vk − uk) and the weak convergence of
(uk).

Lemma 9. Sequences (vn) and (un) generate the same H-distribution. In other words,

for all ϕ1, ϕ2 ∈ C∞c (Rd), ψ ∈ Cκ(Sd−1) and any sequence hn
∗−⇀ h in Lqloc(R

d) for q ≥ p′,
it holds

lim
n

∫
Rd
ϕ1vnAψ̄(ϕ2hn)dx = lim

n

∫
Rd
ϕ1unAψ̄(ϕ2hn)dx.

Dem. By the Hölder inequality, we get

lim
n

∫
Rd
|ϕ1(vn − un)Aψ̄(ϕ2hn)dx| ≤ lim

n
||ϕ1(vn − un)||Lp(Rd)||Aψ̄(ϕ2hn)||Lp′(Rd)

≤ Cψ lim
n
||ϕ1(vn − un)||Lp(Rd)||ϕ2hn||Lp′(Rd),

where we have used boundedness of the Fourier multiplier operator Aψ̄ in the second

inequality. Since the sequence (ϕ2hn) is bounded in Lp
′
, we get that the right hand side

goes to zero.
Q.E.D.

If q < ∞, we can approximate hn with smooth sequences in Lqloc(R
d) as well.

Analogously as we did with (un), we would arrive at a smooth sequence (gn) such that
dq(gk, hk) ≤ 1/k. We have the following:

Corollary 6. If q ∈ [p′,∞〉, pairs (un), (hn) and (vn), (gn) generate the same H-
distribution. In other words, for all ϕ1, ϕ2 ∈ C∞c (Rd) and ψ ∈ Cκ(Sd−1), it holds:

lim
n

∫
Rd
ϕ1vnAψ̄(ϕ2gn)dx = lim

n

∫
Rd
ϕ1unAψ̄(ϕ2hn)dx.

As a consequence, we get a similar statement in the case of H-measures:

Corollary 7. If the sequence (un) in L2(Rd) generates an H-measure, then there exists
a smooth sequence which generates the same H-measure.
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The corollary above covers the case when we use (Φp(un)), the canonical Lp
′

loc-
sequence associated with (un). We could approximate it with some other sequence in

Lp
′

loc. However, it would be convenient if we could choose smooth sequence (vn) approx-
imating (un) such that (Φp(vn)) approximates (Φp(un)). This can be achieved because

Φp : Lploc(R
d) −→ Lp

′

loc(R
d) is continuous: repeating the construction from the beginning

of this section, we need to choose m(k) ∈ N such that for vk = u
m(k)
k it holds both

dp(vk, uk) ≤ 1/k and dp′(Φp(vk),Φp(uk)) ≤ 1/k.

Corollary 8. Two pairs of sequences (un), (Φp(un)) and (vn), Φp(vn)), where (vn)
is chosen as above, generate the same H-distribution. In other words, for any ϕ1, ϕ2 ∈
C∞c (Rd) and ψ ∈ Cκ(Sd−1), it holds:

lim
n

∫
Rd
ϕ1vnAψ̄(ϕ2Φp(vn))dx = lim

n

∫
Rd
ϕ1unAψ̄(ϕ2Φp(un))dx.

Our next step is to show that we can improve the regularity of the symbol ψ ∈
Cκ(Sd−1). Since unit sphere Sd−1 is a compact (d− 1)-dimensional surface in Rd, there
exists an at most denumerable smooth partition of unity (fj) on Sd−1 with corresponding
one-to-one local parametrisations (Ψj), where Ψj : Uj −→ Sd−1, for some open set Uj ⊆
Rd (cf. [15, Chapter 16, Section 4]). Since Sd−1 is a smooth surface, we can choose smooth
Ψj such that Ψ−1

j are smooth as well (this follows from the Inverse function theorem).

Locally, on each Uj , we can approximate (fjψ) ◦Ψj : Uj −→ R with C∞ functions (ψjk)k
(for example, using convolution with the standard mollifier) in the topology of the space

Cκ(Uj). Thus, (ψjk ◦ Ψ−1
j )k are smooth approximations of fjψ in the space Cκ(Sd−1).

Now, for every k ∈ N we can choose ψk ∈ C∞(Sd−1) such that ‖ψ − ψk‖Cκ(Sd−1) < 1/k.
We have the following lemma:

Lemma 10. Let un −⇀ 0 in Lploc(R
d) for some p ∈ 〈1,∞〉 and hn

∗−⇀ h in Lqloc(R
d)

for q ≥ p′. Let ψ ∈ Cκ(Sd−1) and ψk ∈ C∞(Sd−1) be as above. Then for every ϕ1, ϕ2 ∈
C∞c (Rd) it holds

lim
n

∫
Rd
ϕ1unAψ(ϕ2hn)dx = lim

k
lim
n

∫
Rd
ϕ1unAψk(ϕ2hn)dx.

Dem. Similarly as we did for the bound of µn,l in the proof of the existence of H-
distributions, we arrive at the following

∣∣∣ lim
n

∫
Rd
ϕ1unAψ−ψk(ϕ2hn)dx

∣∣∣ ≤ Cd,p‖ϕ1ϕ2‖CKl(Rd)‖ψ − ψk‖Cκ(Sd−1)

≤
Cd,p
k
‖ϕ1ϕ2‖CKl(Rd).

Letting k →∞, we get the conclusion.

Q.E.D.

47



H-distributions and compactness by compensation

Remark 10. Throughout this article we have used symbols associated to functions
ψ ∈ Cκ(Sd−1) by composing ψ with projection π from Rd \ {0} to Sd−1. As it is well
known in the theory of pseudodifferential calculus, we can replace such symbols with
ψ̃ ∈ Cκ(Rd) functions which are identically equal to ψ ◦ π only for large |ξ|. Indeed, one
needs to notice that η(ξ) := ψ(ξ)− (ψ ◦ π)(ξ) is a bounded Cκ(Rd \ {0}) function with
compact support. Thus, Aη is a compact operator on Lp(Rd) which, for un −⇀ 0 in
Lploc(R

d), implies that

0 = lim
n

∫
Rd
Aη(ϕ1un)(x)(ϕ2vn)(x)dx = lim

n

∫
Rd
A
ψ̃

(ϕ1un)(x)(ϕ2vn)(x)dx−

− lim
n

∫
Rd
Aψ◦π(ϕ1un)(x)(ϕ2vn)(x)dx.

Hence,

lim
n

∫
Rd
A
ψ̃

(ϕ1un)(x)(ϕ2vn)(x)dx =
〈
µ, ϕ1ϕ2 � ψ

〉
,

where we understand the right hand side in the sense of existence theorem on H-distributi-
ons.
A similar observation for H-measures is due to Panov.

8. Localisation principle and compactness by compensation

Next, we present a localisation principle for H-distributions. The proof of the fol-
lowing result follows along the same lines as proof of Theorem 4.1. in [7].

Theorem 5. Assume that un −⇀ 0 in Lploc(R
d) and fn −→ 0 in W−1,q

loc (Rd) for some
p ∈ 〈1,∞〉 and q ∈ 〈1, d〉, such that they satisfy

d∑
i=1

∂i(ai(x)un(x)) = fn(x) ,

where ai ∈ Cc(R
d). Take an arbitrary sequence (vn) bounded in L∞loc(R

d), and by µ
denote the H-distribution corresponding to some subsequences of sequences (un) and
(vn). Then,

d∑
i=1

ai(x)ξiµ(x, ξ) = 0

in the sense of distributions on Rd × Sd−1.

One can use Marcinkiewicz’s theorem instead of Hörmander-Mihlin’s for continuity
of the Fourier multipliers. After using Lemma 5 from [35], one obtains H-distributions
which require a higher regularity of the symbol ψ ∈ Cd(Sd−1). This approach was used
in [35, 42] where they had a variant of H-measures and H-distributions on manifolds
different than unit sphere. Application of the Marcinkiewicz theorem allowed them to
have a different, yet simpler proof of the corresponding localisation principle. Mimicking
the proof of [42, Proposition 11], we obtain the following version of localisation principle:

48



Anisotropic distributions

Theorem 6. Assume that un −⇀ 0 in Lploc(R
d) and vn −⇀ 0 in Lp

′

loc(R
d), where

p ∈ 〈1,∞〉 and q ∈ [p′,∞〉. Furthermore, assume that (un) satisfies:

Gn := div (aun) −→ 0 in W−1;p(Rd) ,

where a = (a1, . . . , ad) ∈ Cc(R
d; Rd). Then,

(1)
d∑
i=1

ai(x)ξiµ(x, ξ) = 0

in the sense of distributions on Rd × Sd−1, where µ is the H-distribution corresponding
to some subsequences (un) and (vn).

A result of this type was already announced in Remark 12 in [42] (see also Remark

4 of the next chapter). Remark that the function (x, ξ) 7→
∑d

i=1 ai(x)ξi belongs to
Cc(R

d)⊗ C∞(Sd−1) since we have a polynomial in ξ in the expression.
The most general variant of compactness by compensation was given in [42], where

authors generalised result given for L2 in [60, 49] to the Lp − Lq setting. We will present
those results in the next chapter. We will comment on the case when q = p′ in several
remarks throughout the chapter. It will correspond to the case we have here. For the
convenience of the reader and completeness, we will briefly state the main result here:

First, let us define a variable bilinear form q(x;λ, η) := Q(x)λη, where Q ∈ C(Rd)
is a real function, and introduce the set:

ΛD =
{
µ ∈ D′0,d(d+2)(R

d × Sd−1) :
d∑
i=1

aiξiµ = 0
}
.

Let us introduce a definition (compare it with the Definition in the next chapter):
Definition. We say that the set ΛD, bilinear form q, and H-distribution µ ∈

D′0,d(d+2)(R
d × Sd−1) satisfy the strong consistency condition if µ belongs to ΛD and for

every non-negative φ ∈ Cc(R
d) it holds:

〈Qφ⊗ 1, µ〉 ≥ 0 .

To formulate the compactness by compensation result, we will need the following trun-
cation operator for l ∈ N:

Tl(u) =

{
u, |u| < l
0, |u| ≥ l

.

The compactness by compensation result now reads (for proof see Corollary 1 of the
next chapter):

Theorem 7. Assume that sequences (un) and (vn) are bounded in Lp(Rd) and Lp
′
(Rd)

and converge toward u and v in the sense of distributions. Furthermore, assume that

for every l ∈ N, the sequences (Tl(vn)) converge weakly in Lp
′
(Rd) toward hl, where

truncation operator is understood pointwisely. In addition, assume that there exists

V ∈ Lp
′
(Rd) such that |vn| ≤ V , and that (1) holds.

Let q(x;un, vn) ⇀ ω in the sense of distributions. If for every l ∈ N, the set ΛD,
the bilinear form q, and the H-distributions µl corresponding to the sequences (un − u)
and (Tl(vn)− hl) satisfy the strong consistency condition, then it holds

q(x;u, v) ≤ ω in D′(Rd) .

If we have equality in the strong consistency condition, then we have equality in the above
conclusion as well.
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As noticed in Remark 6 of the next chapter, the assumption on existence of V is
necessary.
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H-distributions and compactness by compensation

In this chapter we investigate conditions under which, for two sequences (ur) and
(vr) weakly converging to u and v in Lp(Rd; RN ) and Lq(Rd; RN ), respectively, 1/p +

1/q ≤ 1, a quadratic form q(x; ur,vr) =
N∑

j,m=1
qjm(x)ujrvmr converges toward q(x; u,v)

in the sense of distributions. The conditions involve fractional derivatives and variable
coefficients, and they represent a generalisation of the known compactness by compensa-
tion theory. The proofs are accomplished using an appropriate variant of H-distributions.
We apply the developed techniques to a nonlinear (degenerate) parabolic equation.

The results of this chapter are mostly contained in [42].

1. Introduction

The compactness by compensation theory proved to be a very useful tool in in-
vestigating problems involving partial differential equations (both linear and nonlinear).
Suppose, for instance, that we aim to solve a nonlinear partial differential equation which
we write symbolically as A[u] = f , where A denotes a given nonlinear operator. One
of usual approaches is to approximate it by a collection of nicer problems Ar[ur] = fr,
where (Ar) is a sequence of operators which is somehow close to A. Then we try to prove
that the sequence (ur) converges toward a solution to the original problem A[u] = f . In
general, it is relatively easy to obtain weak convergence on a subsequence of (ur) towards
some function u. Due to the nonlinear nature of A, this does not mean that u will repre-
sent a solution to the original problem A[u] = f . However, in some cases, the nonlinearity
of A can be compensated by certain properties of the sequence (ur) (see [7, 16, 40] and
references therein). The theory which investigates such phenomena is called compactness
by compensation and it was introduced in the works of F. Murat and L. Tartar [44,60].

The most general version of the classical result of compensated compactness theory
has been recently proved in [49]. Let us briefly recall it. First, we introduce anisotropic
Sobolev spaces W−1,−2;p(Rd), where −1 is with respect to x1, . . . , xν and −2 is with
respect to xν+1, . . . , xd, as a subset of tempered distributions

{u ∈ S ′ : ∃v ∈ Lp(Rd), kû = v̂},

where k(ξ1, ξ2) =
√

1 + (2π|ξ1|)2 + (2π|ξ2|)4, ξ1 ∈ Rν , ξ2 ∈ Rd−ν . It is Hörmader’s
class Bp,k and the Banach space with dual Bp′,1/k (see chapter 10 of [27]).

Assume that the sequence (ur) = (u1r, . . . , uNr) is bounded in Lp(Rd; RN ), 2 ≤
p ≤ ∞, and converges in D′(Rd) to a vector function u. Let q = p

p−1 if p <∞, and q > 1
if p =∞. Assume that the sequences

(1)
N∑
j=1

ν∑
k=1

∂xk(asjkujr) +
N∑
j=1

d∑
k,l=ν+1

∂xkxl(bsjklujr),

for s = 1, . . . ,m, are precompact in the anisotropic Sobolev space W−1,−2;q
loc (Rd). The

(variable) coefficients asjk and bsjkl belong to L2q̄(Rd), q̄ = p
p−2 if p > 2, and to the space

C(Rd) if p = 2.

52



Compactness by compensation

Next, introduce the set

(2)

Λ(x) =
{
λ ∈ RN | (∃ξ ∈ Rd \ {0})(∀s = 1, . . . ,m)

N∑
j=1

(
i

ν∑
k=1

asjk(x)ξk −
d∑

k,l=ν+1

bsjkl(x)ξkξl

)
λj = 0

}
.

Consider the bilinear form on RN

(3) q(x;λ,η) = Q(x)λ · η,

where Q is a symmetric matrix with coefficients

qjm ∈
{

Lq̄loc(R
d), p > 2

C(Rd), p = 2
, j,m = 1, . . . , N.

Finally, let q(x; ur,ur) ⇀ ω weakly-∗ in the space of Radon measures.
The following theorem (Theorem 1 of [49]) holds

Theorem 1. Assume that q(x;λ,λ) ≥ 0 for all λ ∈ Λ(x), a.e. x ∈ Rd. Then
q(x; u(x),u(x)) ≤ ω in the sense of measures. If q(x;λ,λ) = 0 for all λ ∈ Λ(x),
a.e. x ∈ Rd, then q(x; u(x),u(x)) = ω.

The connection between q and Λ given in the previous theorem, we shall call the
consistency condition.

We would like to formulate and extend the results from Theorem 1 to the Lp −
Lq framework for appropriate (greater than one) indices p and q where p < 2. More
precisely, we want to find conditions on two vector-valued sequences (ur) and (vr) weakly
converging to u and v in Lp(Rd) and Lq(Rd), respectively, to ensure that the sequence
(q(x; ur,vr)), where q is the bilinear form from (3), satisfies

(4) lim
r→∞

q(x; ur,vr) = q(x; u,v) in D′(Rd).

Ideally, it should be 1/p + 1/q = 1. Due to technical obstacles (see Remark 3), we are
able to prove (4) only when 1/p + 1/q < 1. However, under additional assumptions on

the sequences (ur) and (vr), we are also able to obtain the optimal Lp − Lp
′
-variant of

the compactness by compensation. Here and in the sequel, 1/p+ 1/p′ = 1.
This extension will be done in the next section. In the last section we shall show

how to apply this result to a (nonlinear) parabolic type equation.

2. The main result

In order to formulate the Lp − Lq variant of the compactness by compensation, we
need H-distributions.

Let us recall that H-measures describe the loss of strong precompactness for se-
quences belonging to Lp for p ≥ 2, and they were the basic tool in the mentioned work on
compactness by compensation [49]. The variant of H-distributions that we are basically
going to use is formulated in [36, 37]. Let us recall its definition.
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We need multiplier operators with symbols defined on a manifold P determined by
an d-tuple α = (α1, . . . , αd) ∈ Rd

+, where αk ∈ N or αk ≥ d

P =
{
ξ ∈ Rd :

d∑
k=1

|ξk|2αk = 1
}
.

The manifold P is smooth enough and we are able to associate an Lp multiplier to a
function defined on P as follows. We define the projection from Rd \ {0} to P by means
of the mapping

(πP(ξ))j = ξj

(
|ξ1|2α1 + . . .+ |ξd|2αd

)−1/2αj
, j = 1, . . . , d, ξ ∈ Rd\{0}.

That composition ψ◦πP is indeed an Lp multiplier was shown in Lemma 5 of [35]. Because
of its importance in definition and applications of a variant of H-distributions which we
are going to use in this chapter, we state it here and briefly comment on its proof:

Lemma 1. For any ψ ∈ Cd(P), the composition ψ ◦ πP is an Lp-multiplier, p ∈ 〈1,∞〉,
and the operator norm of the corresponding Fourier multiplier operator depends only on
p, d and ‖ψ‖Cd(P).

Dem. The first step is to use the Faa di Bruno formula (see [26]) to reduce the proof to
showing that each coordinate function (πP)j satisfies conditions of Corollary 2 of the first
chapter. Then one proceeds by the induction argument. It is not hard to see that for the
first derivatives one has:

ξk∂k(πP(ξ))j = −αk
αj
πj(ξ)π2αk

k (ξ) if k 6= j ,

ξj∂j(πP(ξ))j = −πj(ξ)
(

1− π2αj
j (ξ)

)
.

Hypothesis is that for β ∈ Nd
0 such that |β| = m it holds

ξβ∂β(πP(ξ))j = Pβ ((πP(ξ))1, ·, (πP(ξ))d) ,

for some polynomial Pβ. For γ ∈ Nd
0 such that |γ| = m + 1, notice that we can write

γ = ei + β for some |β| = m and some ei canonical vector. We have:

∂γ(πP(ξ))j = ∂i∂
γ(πP(ξ))j = ∂i

(
1

ξβ
Pβ ((πP(ξ))1, ·, (πP(ξ))d)

)
,

and we proceed as in the base step. Now, let us just notice that in each step we had a
finite number of continuous functions defined on a compact manifold.

Q.E.D.

The following statement holds [36]:

Theorem 2. Let (un) be a bounded sequence in Lp(Rd), p > 1, and let (vn) be
a bounded sequence of uniformly compactly supported functions in L∞(Rd) weakly
converging to 0 in the sense of distributions. Then, after passing to a subsequence
(not relabelled), for any p̄ ∈ 〈1, p〉 there exists a continuous bilinear functional B on

Lp̄
′
(Rd)⊗ Cd(P) such that for every ϕ ∈ Lp̄

′
(Rd) and ψ ∈ Cd(P) it holds

(5) B(ϕ, ψ) = lim
n→∞

∫
Rd
ϕ(x)un(x)(AψP

vn)(x)dx ,

where AψP
is the (Fourier) multiplier operator on Rd associated to ψ ◦πP and 1

p̄ + 1
p̄′ = 1.

The bound of the functional B is equal to CuCv Cd,q, where Cu is the Lp-bound of

the sequence (un); Cv is the Lq-bound of the sequence (vn) where 1
p + 1

p̄′ + 1
q = 1; and

Cd,q is the constant from Corollary 2 of the first chapter.
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We shall now prove that we can extend the bilinear functional B from the previous

theorem to a functional on Lp̄
′
(Rd; Cd(P)). We shall need the following theorem a proof

of which in the case of real functionals can be found in [36].

Theorem 3. Let B be a (complex valued) continuous bilinear functional on Lp(Rd)⊗
E, where E is a separable Banach space and p ∈ 〈1,∞〉. Then B can be extended as a
(complex valued) continuous functional on Lp(Rd;E) if and only if there exists a (non-

negative) function b ∈ Lp
′
(Rd) such that for every ψ ∈ E and almost every x ∈ Rd, it

holds

(6) |B̃ψ(x)| ≤ b(x)‖ψ‖E ,

where B̃ is a bounded linear operator E → Lp
′
(Rd) defined by 〈B̃ψ, ϕ〉 = B(ϕ, ψ),

ϕ ∈ Lp(Rd).

Dem. The proof goes along the lines of the proof of Theorem 2.1 of [36] when we
separately consider real (Re ) and imaginary (Im ) parts of the functional B and the
operator B̃. Let us briefly recall it.

Let us assume that (6) holds. In order to prove that B can be extended as a linear
functional on Lp(Rd;E), it is enough to obtain an appropriate bound on the following
dense subspace of Lp(Rd;E):

(7)
{ N∑
j=1

ψjχj(x) : ψj ∈ E,N ∈ N
}
,

where χi are characteristic functions associated to mutually disjoint, finite measure sets.

For an arbitrary function g =
N∑
i=1

ψiχi from (7), the bound follows easily once we

notice that ∣∣∣B( N∑
j=1

ψjχj

)∣∣∣ :=
∣∣∣ N∑
j=1

B(χj , ψj)
∣∣∣ =

∣∣∣ ∫
Rd

N∑
j=1

B̃ψj(x)χj(x)dx
∣∣∣

≤
∫
Rd
b(x)

N∑
j=1

χj(x)‖ψj‖Edx ≤ ‖b‖Lp′(Rd)‖g‖Lp(Rd;E).

In order to prove the converse, take a countable dense set of functions from the unit
ball of E, and denote them by ψj , j ∈ N. Assume that the functions ψ−j := −ψj are also

in E. For each function B̃ψj ∈ Lp
′
(Rd) denote by Dj the corresponding set of Lebesgue

points, and their intersection by D = ∩jDj .
For any x ∈ D and k ∈ N denote

bk(x) = max
|j|≤k

Re (B̃ψj)(x) =
k∑
|j|=1

Re (B̃ψj)(x)χkj (x)

where χkj0 is the characteristic function of set Xk
j0

of all points x ∈ D for which the above
maximum is achieved for j = j0. Furthermore, we can assume that for each k the sets
Xk
j are mutually disjoint. The sequence (bk) is clearly monotonic sequence of positive
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functions, bounded in Lp
′
(Rd), whose limit (in the same space) we denote by bRe . Indeed,

choose ϕ ∈ Lp(Rd), g =
k∑
|j|=1

ϕ(x)χkj (x)ψj ∈ Lp(Rd;E), and consider:

∫
Rd
bk(x)ϕ(x)dx = Re

∫
Rd
B̃

k∑
|j|=1

ψjχ
k
j (x)ϕ(x)dx


= Re

 k∑
|j|=1

B(χkjϕ, ψj)

 = Re (B(g)) ≤ C‖g‖Lp(Rd;E) ≤ C‖ϕ‖Lp(Rd),

where C is the norm of B on (Lp(Rd;E))′. Since ϕ ∈ Lp(Rd) is arbitrary, we get that

(bk) is bounded in Lp
′
(Rd).

As D is a set of full measure, for every ψj we have

|Re (B̃ψj)(x)| ≤ bRe (x), (a.e. x ∈ Rd).

We are able to obtain a similar bound for the imaginary part of B̃ψj . In other words,

there exists bIm ∈ Lp
′
(Rd) such that

|Im (B̃ψj)(x)| ≤ bIm (x), (a.e. x ∈ Rd).

The assertion now follows since (6) holds for b = bRe + bIm on the dense set of functions
ψj , j ∈ N. For details see (12) below.

Q.E.D.

We need the following lemma which will also be used in the last section.

Lemma 2. If the real symbol ψ ∈ Cd(P) of the multiplier operator Aψ is an even

function (ψ(ξ) = ψ(−ξ)), then for every real u ∈ Lp(Rd), p > 1, Aψ(u) is a real function

for a.e. x ∈ Rd.
If the real symbol ψ ∈ Cd(P) of the multiplier operator Aψ is an odd function

(ψ(ξ) = −ψ(−ξ)), then for every real u ∈ Lp(Rd), p > 1, Aψ(u) is a purely imaginary

function for a.e. x ∈ Rd.

Dem. Assume first that the symbol ψ is an even function. It is enough to prove that,
for arbitrary real functions u, v ∈ L2(Rd) ∩ Lp(Rd), it holds∫

vAψ(u)dx =

∫
vAψ(u)dx.

This follows from the Plancherel theorem, and the change of variables ξ 7→ −ξ. Indeed,∫
vAψ(u)dx =

∫
vAψ(u)dx =

∫
ψ(ξ)v̂(ξ)û(ξ)dξ = (ξ 7→ −ξ)

=

∫
ψ(ξ)v̂(ξ)û(ξ)dξ =

∫
vAψ(u)dx.

The proof is the same when the symbol is odd.
Q.E.D.
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Now, we can prove the following result, a proof of which can be found in [37]. For
the sake of completeness, we give a slightly different proof here.

Lemma 3. The bilinear functional B defined in Theorem 2 can be extended by

continuity to a functional on Lp̄
′
(Rd; Cd(P)). The bound of the extension is equal to

2p
′+1CuCv Cd,p′ , 1/p+ 1/p̄′ + 1/q = 1 (with the notation of Theorem 2). In fact, we can

remove the factor 2p
′

from the bound (see Remark 2).

Dem. We will show that B satisfies conditions of Theorem 3, namely, that there exists
a function b ∈ Lp̄(Rd) such that for every ψ ∈ Cd(P), ‖ψ‖Cd(P) ≤ 1 and almost every

x ∈ Rd it holds

(8) |(B̃ψ)(x)| ≤ b(x)‖ψ‖Cd(P),

where B̃ : Cd(P) → Lp̄(Rd) is a bounded linear operator defined by 〈B̃ψ, ϕ〉 = B(ϕ, ψ),

ϕ ∈ Lp̄
′
(Rd).

We proceed as follows: choose a dense countable set E of functions ψj , j ∈ N, from
the set {ψ ∈ Cd(P): ‖ψ‖Cd(P) ≤ 1}. Define functions ψ−j(ξ) = −ψj(ξ) and add them to

E. Moreover, add the linear combinations of the form ψej (ξ) = 1
2(ψj(ξ) + ψj(−ξ)) and

ψoj (ξ) = 1
2(ψj(ξ) − ψj(−ξ)) for j ∈ Z \ {0} to E as well. Remark that functions ψej are

even, while ψoj are odd (in the sense of Lemma 2) and that the set E is still countable
and dense.

For each j choose a function B̃ψj from Lp̄(Rd) and denote by Dj the corresponding

set of Lebesgue points (for definiteness, we can take B̃ψj to be the precise representative
of the class (see Chapter 1.7. of [21]). The set Dj is of full measure, and thus the set
D = ∩jDj as well.

For any x ∈ D and k ∈ N denote (i =
√
−1 below)

(9) bek(x) := max
|j|≤k

B̃ψej (x) =
k∑
|j|=1

B̃ψej (x)χkj (x) ∈ R+,

(10) bok(x) := max
|j|≤k

iB̃ψoj (x) =
k∑
|j|=1

iB̃ψoj (x)χ̃kj (x) ∈ R+,

where χkj0 (χ̃kj0 respectively) is a characteristic function of the set of all points for which
the above maximum is achieved for ψej0 (ψoj0 respectively) and it has not been achieved
for ψej (ψoj respectively), −k ≤ j < j0.

First, note that we can make sure that χkj have disjoint supports for fixed k: define

χkj to be equal to one on the set{
x ∈ D : (B̃ψej )(x) = bek(x) & (∀l < j)(B̃ψel )(x) < bek(x)

}
,

and extend it with zero to the whole Rd.
Next, we shall prove that the sequence of functions (bek) is bounded in Lp̄(Rd).

To this effect, take an arbitrary φ ∈ Cc(R
d), and denote K = suppφ. Since (vn) is a
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bounded sequence of uniformly compactly supported functions in L∞(Rd), it belongs to
Lq(Rd) for every q ∈ 〈1,∞〉. Since p̄ < p, we can find q > 1 such that 1/q + 1/p̄′ = 1/p′.

Fix such q. Choose r > 1 such that q = r′p′. Denote by χk,εj ∈ Cc(R
d), j = 1, . . . , k

smooth approximations of characteristic functions from (9) on K such that (note that
‖χkj‖L∞ ≤ 1)

‖χk,εj − χ
k
j‖Lmax{p′,r}(K) ≤

ε

2k
.

As before, denote by Cu an Lp bound of (un) and by Cv an Lq bound of (vn).
According to (9) and the definition of operator B̃, we have

|Lp̄(Rd)〈b
e
k, φ〉Lp̄′(Rd)| =

∣∣∣ lim
n→∞

∫
Rd

k∑
|j|=1

(φunχ
k
j )(x)(Aψej vn)(x)dx

∣∣∣
≤ lim sup

n→∞

∫
Rd

 k∑
|j|=1

|un|pχkj (x)

1/p k∑
|j|=1

χkj |φAψej vn|
p′ (x)

1/p′

dx

≤ lim sup
n→∞

∥∥∥ k∑
|j|=1

|un|pχkj
∥∥∥1/p

L1(Rd)

∥∥∥ k∑
|j|=1

χkj |φAψej vn|
p′
∥∥∥1/p′

L1(Rd)

≤ lim sup
n→∞

‖un‖Lp(Rd)

 k∑
|j|=1

∥∥∥|χkjφAψej vn|p′∥∥∥L1(Rd)

1/p′

≤ 2p
′
lim sup
n→∞

‖un‖Lp(Rd)

( k∑
|j|=1

∥∥∥|(χkj − χk,εj )φAψej vn|
p′
∥∥∥

L1(Rd)

+
k∑
|j|=1

∥∥∥|χk,εj φAψej vn|
p′
∥∥∥

L1(Rd)

)1/p′

≤ 2p
′
lim sup
n→∞

‖un‖Lp(Rd)

( k∑
|j|=1

∥∥∥|(χkj − χk,εj )||φAψej vn|
p′
∥∥∥

L1(Rd)

+
k∑
|j|=1

∥∥∥χk,εj φAψej vn
∥∥∥p′

Lp
′
(Rd)

)1/p′

≤ 2p
′
Cu lim sup

n→∞

( k∑
|j|=1

∥∥∥χkj − χk,εj ∥∥∥
Lr(K)

∥∥∥Aψej (φvn)
∥∥∥p′

Lq(Rd)

+
k∑
|j|=1

∥∥∥Aψej (χk,εj φvn)
∥∥∥p′

Lp
′
(Rd)

)1/p′

,

where in the second step we have used discrete version of Hölder inequality and the fact
that | limn an| ≤ lim supn |an|; in the third we have used Hölder inequality and in the fifth

an inequality (|a| + |b|)p′ ≤ 2p
′
(|a|p′ + |b|p′); in the sixth step to every term of the first

sum we applied the inequality |a|p′ ≤ |a| which is valid for |a| ≤ 1, after noticing that
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0 ≤ χk,εj ≤ 1 gives ‖χkj − χ
k,ε
j ‖L∞ ≤ 1 (we can obtain such functions by convolution with

the standard Friderichs mollifier). Finally, in the last step we have used a version of the
First commutation lemma (see Remark 4 and Lemma 2 of the first chapter) and Hölder
inequality with 1/r+1/r′ = 1 remembering that r′p′ = q. By means of the Marcinkiewicz

multiplier theorem (Corollary 2 of the first chapter) and properties of the functions χk,εj
it follows

|〈bek, φ〉| ≤ 2p
′
Cu lim sup

n→∞

εCφCp′q,d ‖vn‖p′Lq(Rd)
+Cp

′

p′,d

k∑
|j|=1

‖χk,εj φvn‖p
′

Lp
′
(Rd)

1/p′

,

where Cp′,d is the constant from Corollary 2 from the first chapter (recall that ‖ψej‖Cd(P) ≤
1), while Cφ = ‖φ‖p

′

L∞(Rd)
. By letting ε→ 0, we conclude

|〈bek, φ〉| ≤ 2p
′
CuCp′,d lim sup

n→∞

 k∑
|j|=1

‖χkjφvn‖
p′

Lp
′
(Rd)

1/p′

since χk,εj → χkj in Lp
′
(K). Since supports of functions χkj are disjoint and remembering

the choice of q, we get

k∑
|j|=1

‖χkjφvn‖
p′

Lp
′
(Rd)
≤ ‖φvn‖p

′

Lp
′
(Rd)
≤
(
‖φ‖Lp̄′(Rd)‖vn‖Lq(Rd)

)p′
,

since
k∑
|j|=1

(χkj )
p′ =

k∑
|j|=1

χkj ≤ 1. From this, it follows

(11) |〈bek, φ〉| ≤ 2p
′
CuCd,p′Cv‖φ‖Lp̄′(Rd),

where all the constants on the right hand side do not depend on k. Since Cc(R
d) is dense

in Lp̄
′
(Rd) we conclude that the sequence (bek) is bounded in Lp̄(Rd). Noticing that (bek)

is a non-decreasing sequence of positive functions, it follows from Beppo-Levi’s theorem
on monotone convergence that its (pointwise) limit be is an Lp̄(Rd) function.

In the completely same way, we conclude that (bok) converges toward bo ∈ Lp̄(Rd).

The function b = be+bo satisfies (8) for B̃ψ when ψ = ψej+ψ
o
j′ for some j, j′ ∈ Z\{0}.

On the other hand, every ψ ∈ Cd(P) can be represented as a sum of odd and even
functions as follows ψ(ξ) = 1

2(ψ(ξ) + ψ(−ξ)) + 1
2(ψ(ξ) − ψ(−ξ)) and we conclude that

(8) holds for any ψ ∈ E. By continuity, the statement can be generalised to an arbitrary
ψ ∈ Cd(P): take a sequence (ψn) ⊆ E such that ψn → ψ in Cd(P) and write

(12)

∫
Rd
|(B̃ψ)(x)|ϕ(x)dx ≤

∫
Rd
|(B̃ψ − B̃ψn)(x)|ϕ(x)dx +

∫
Rd
|(B̃ψn)(x)|ϕ(x)dx

≤ on(1) +

∫
Rd
b(x)ϕ(x)dx,

for arbitrary ϕ ∈ C∞c (Rd; R+
0 ) where we have used continuity of B̃. Due to arbitrariness

of the function ϕ, the result follows from Theorem 3. Remark finally that from (11)
and the equality b = be + bo, it follows that the bound of the extension is equal to

2p
′+1CuCvCd,p′ .

Q.E.D.
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Remark 1. Note that if the set L := {ψ ∈ Cd(P): ‖ψ‖Cd(P) ≤ 1} were at most

countable, we could have defined b ∈ Lp̄(Rd) in the following straightforward way

b(x) = supψ∈L|(B̃ψ)(x)|.

However, L is uncountable, so this definition does not necessarily result in a mea-
surable function. Taking supremum over a countable dense subset of L would result in a
measurable function which may not be Lp̄-function.

Remark 2. In the fourth step of calculation to get desired bound on bek of the preceding
lemma, we have a sum of expressions of the form ‖χφAψvn‖Lp′ . Instead of regularising
characteristic functions χ, we could have proceeded in a different manner. First, we have

χφ ∈ Lp̄
′

and p′ < p̄′, and so by an application of Lemma 5 of the first chapter, we get

‖χφAψvn −Aψ(χφvn)‖Lp′ → 0 ,

thus, we do not get the factor of 2p
′

in the bound on B. In the same calculation in [42],
we made a small oversight and here we gave a detailed correction of our argument, which

resulted in an additional factor 2p
′

in the bound. However, as this remark shows, the
bound on B given in [42] is still correct, but it requires Lemma 5 from the first chapter,
which was not known at the time of writing article [42].

Now, we are ready to prove a variant of compactness by compensation in the Lp−Lq

framework. Before we proceed, we recall that the dual of the space Lp(Rd; Cd(P)) is the

space Lp
′
w∗(R

d; Cd(P)′) of weakly-∗ measurable functions B : Rd → Cd(P)′ such that∫
Rd ‖B(x)‖p

′

Cd(P)′dx is finite (for details see p.606 of [17]).

We first need to extend the notion of H-distributions from Theorem 2 as follows.

Theorem 4. Let (ur) be a sequence of uniformly compactly supported functions
weakly converging to zero in Lp(Rd), p > 1, and let (vr) be a bounded sequence of
uniformly compactly supported functions in Lq(Rd), 1/q + 1/p < 1, weakly converging
to 0 in the sense of distributions. Then, after passing to a subsequence (not relabelled),

for any p̄ ∈ 〈1, pq
p+q 〉 there exists a continuous bilinear functional B on Lp̄

′
(Rd) ⊗ Cd(P)

such that for every ϕ ∈ Lp̄
′
(Rd) and ψ ∈ Cd(P), it holds

(13) B(ϕ, ψ) = lim
r→∞

∫
Rd
ϕ(x)ur(x)(AψP

vr)(x)dx ,

where AψP
is the (Fourier) multiplier operator on Rd associated to ψ ◦ πP.

The bilinear functional B can be continuously extended to a linear functional on

Lp̄
′
(Rd; Cd(P)).

Dem. Introduce the truncation operator

(14) Tl(v) =

{
v, |v| < l
0, |v| ≥ l

, l ∈ N,

and rewrite vr in the form

vr(x) = Tl(vr)(x) + (vr − Tl(vr))(x),
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Compactness by compensation

where Tl(vr) is understood pointwisely. Notice that

(15) lim sup
l,r→∞

‖vr − Tl(vr)‖L1(K) = 0

for any relatively compact measurable K ⊆ Rd. Indeed, denote by

Ωl
r = {x ∈ Rd : |vr(x)| > l}.

It holds

(16) lim
l→∞

sup
r∈N

meas(Ωl
r) = 0.

The latter follows since (vr) is bounded in Lq(Rd) and

sup
r∈N

∫
Rd
|vr(x)|qdx ≥ sup

r∈N

∫
Ωlr

lqdx ≥ lq sup
r∈N

meas(Ωl
r).

Now, we simply use the Hölder inequality∫
K
|vr − Tl(vr)|dx =

∫
K∩Ωlr

|vr|dx ≤ meas(K ∩ Ωl
r)

1/q′‖vr‖Lq(K)

and this tends to zero uniformly with respect to r and l according to (16) and the
boundedness of (vr) in Lq(Rd). Thus, (15) is proved. Since (vr), and therefore (Tl(vr))
are bounded in Lq(Rd), (15) and interpolation inequalities imply that for any q̄ ∈ [1, q〉
(17) lim sup

l,r→∞
‖vr − Tl(vr)‖Lq̄(K) = 0.

Next, denote by µl the H-distribution corresponding to (ur) and (Tl(vr)) in the sense of
Theorem 2. From here and (15), we conclude that we can rewrite the right-hand side of
(13) in the form

(18)

lim
r→∞

∫
Rd
ϕ(x)ur(x)(AψP

vr)(x)dx

= lim
r→∞

(∫
Rd
ϕ(x)ur(x)AψP

(Tl(vr))(x)dx+

∫
Rd
ϕ(x)ur(x)AψP

(vr−Tl(vr))(x)dx

)
= 〈µl, ϕψ〉+ ol(1),

where ol(1)→ 0 as l→∞ follows from (17) and the application of the Hölder inequality
as follows: ∣∣∣ ∫

Rd
ϕ(x)ur(x)AψP

(vr−Tl(vr))(x)dx
∣∣∣

≤ Cd,q̄‖ϕ‖Lp̄′(Rd) ‖ψ‖Cd(P ) sup
r
‖ur‖Lp(Rd) sup

r
‖vr−Tl(vr)‖Lq̄(Rd),

where 1/p̄′ + 1/p+ 1/q̄ = 1 (and obviously q̄ < q implying that we can apply (17)).
Since ψ ◦ πP is an Lq̄-multiplier (see Lemma 1), by the Hölder inequality used with

the exponents p̄′, p, and q̄ < q, we get∣∣∣ ∫
Rd
ϕ(x)ur(x)(AψP

Tl(vr))(x)dx
∣∣∣ ≤ Cd,q̄‖ϕ‖Lp̄′(Rd)‖ur‖Lp(Rd)‖ψ‖Cd(P )‖Tl(vr)‖Lq̄(Rd)

≤ CuCv Cd,q̄‖ϕ‖Lp̄′(Rd)‖ψ‖Cd(P )

From here, after passing to the limit r → ∞ and using the continuity of extension from

Lemma 3, we conclude that (µl) is bounded sequence in (Lp̄
′
(Rd;Cd(P))′= Lp̄w∗(R

d;Cd(P)′)
(remark that the bound of (µl) is 2CuCv Cd,p′). Since Lp̄w∗(R

d; Cd(P)′) is dual of the
Banach space, according to the Banach-Alaoglu theorem, (µl) admits a weak-∗ limit
µ ∈ Lp̄w∗(R

d; Cd(P)′) along a subsequence. The functional µ satisfies (13).
Q.E.D.
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Remark 3. In the case 1/p + 1/q = 1, the same proof gives us continuous bilinear
functional on C(Rd)⊗Cd(P). We cannot use Lemma 3 anymore, but using the Schwartz
kernel theorem, we can (only) extend it to a distribution from D′0,d(d+2)(R

d×P). There-

fore, our variant of the compactness by compensation is confined on Lp − Lq framework
for 1/p+1/q < 1. However, under additional assumptions, we are able to prove the result
in the optimal case 1/p+ 1/q = 1 (Corollary 1).

Before we proceed, let us recall the definition of fractional derivatives. For α ∈
R+, we define ∂αxk to be a pseudodifferential operator with a polyhomogeneous symbol
(2πiξk)

α, i.e.

∂αxku = ((2πiξk)
αû(ξ))̌ .

In the sequel, we shall assume that sequences (ur) and (vr) are uniformly compactly
supported. This assumption can be removed if the orders of derivatives (α1, . . . , αd)
are natural numbers. Otherwise, since the Leibnitz rule does not hold for fractional
derivatives, the former assumption seems necessary.

Let us now introduce the localisation principle corresponding to an H-distribution.

Lemma 4. Assume that sequences (ur) and (vr) are bounded in Lp(Rd; RN ) and
Lq(Rd; RN ), where 1/p + 1/q < 1, and converge toward 0 and v = (v1, . . . , vN ) in the
sense of distributions.

Furthermore, assume that the sequence (ur) satisfies, for every s = 1, . . . ,M :

(19) Grs :=
N∑
j=1

d∑
k=1

∂αkxk (asjkujr)→ 0 in W−α1,...,−αd;p(Rd),

where αk ∈ N or αk > d, k = 1, . . . , d, and asjk ∈ Ls̄
′
(Rd), s̄ ∈ 〈1, pq

p+q 〉.
Finally, by µjm denote the H-distribution (Theorem 4) corresponding to a pair of

subsequences of (ujr) and (vmr − vm). Then the following relations hold in the sense of
distributions for m = 1, . . . , N , s = 1, . . . ,M (i =

√
−1 below)

(20)
N∑
j=1

n∑
k=1

asjk(2πiξk)
αkµjm = 0.

Dem. Assume, without loosing any generality, that v = 0. Denote by Bψ the Fourier
multiplier operator with the symbol

(ψ ◦ πP)(ξ)
(1− θ(ξ))

(|ξ1|2α1 + . . .+ |ξd|2αd)
1/2

,

where θ is a cutoff function equal to one in a neighbourhood of zero.
According to Lemma 1, for any ψ ∈ Cd(P) and any ŝ > 1, the multiplier operator

Bψ : L2(Rd) ∩ Lŝ(Rd) → Wα1,...,αd;ŝ(Rd) is bounded (with Lŝ norm considered on the
domain of Bψ); indeed, one just needs to notice that the symbol of ∂αkxk ◦ Bψ given by

(ψ ◦ πP)(ξ)
(1− θ(ξ))(2πiξk)

αk

(|ξ1|2α1 + . . .+ |ξd|2αd)
1/2

,
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is a smooth, bounded function satisfying conditions of Marcinkiewicz’s multiplier theorem
(Theorem IV.6.6’ of [57] or Corollary 2 of the first chapter).

Insert in (19) the test function grm given by:

(21) grm(x) = Bψ(φvmr)(x), m ∈ {1, . . . , N}

where ψ ∈ Cd(P) and φ ∈ C∞c (Rd). We get

(22)

∫
Rd
Grsgrmdx =

∫
Rd

N∑
j=1

n∑
k=1

asjkujrA
(ψ◦πP)(ξ)

(1−θ(ξ))(2πiξk)αk

(|ξ1|2α1+...+|ξd|
2αd)

1/2

(φvmr)dx

=

∫
Rd

N∑
j=1

n∑
k=1

asjkujrA
(ψ◦πP)(ξ)

(2πiξk)αk

(|ξ1|2α1+...+|ξd|
2αd)

1/2

(φvmr)dx

−
∫
Rd

N∑
j=1

n∑
k=1

asjkujrA
(ψ◦πP)(ξ)

θ(ξ)(2πiξk)αk

(|ξ1|2α1+...+|ξd|
2αd)

1/2

(φvmr)dx.

Due to the boundedness properties of operator Bψ mentioned above and the compact

support of φ, the sequence (grm) is bounded in Wα1,...,αd;t(Rd) for t ∈ 〈1, q]. Letting r →
∞ in (22), we get (20) after taking into account Theorem 4 and the strong convergence
of (Grs). Note that the second summand in the above identity goes to 0 because of the
compact support of the function θ.

Q.E.D.

Remark 4. In the case 1/p+ 1/q = 1, taking into account Remark 3 and coefficients
asjk from the space C0(Rd), we get the same result as in (20) for distributions µjm from

D′(Rd × P).

We can now formulate conditions under which (4) holds. We call them the strong
consistency conditions. They represent a generalisation of the standard consistency con-
ditions given above.

As before, let s̄ ∈ 〈1, pq
p+q 〉 be a fixed number for given p, q > 1. Introduce the set

(23)

ΛD =
{
µ = (µ1, . . . , µN ) ∈Ls̄w∗(R

d; (Cd(P))′)N :

N∑
j=1

d∑
k=1

(2πiξk)
αkasjkµj = 0, s = 1, . . . ,M

}
,

where the given equality is understood in the sense of Ls̄w∗(R
d; (Cd(P))′).

Remark 5. Let us notice the difference between the ΛD and set Λ from (2). In the case
of H-measures, an application of the Radon-Nikodym theorem yields a nice representation
of the measure, which in turn simplifies the definition of the set Λ. There is no known
variant of Radon-Nikodym result for distributions.

Although at the moment we do not have the definitive answer, we are inclined to
believe that it is also negative for variant of H-distributions we are using in this chapter.
Namely, in situations when we are dealing with Bôchner spaces Lp(Rd;E), existence of
some version of Radon-Nikodym result will mostly depend on the properties of the dual

63



H-distributions and compactness by compensation

E′ (see results of [14]). In some cases, one of the sufficient conditions that is easy to
check is separability: if E′ were separable, then it would have Radon-Nikodym property.
Unfortunately, while Cd(P) is separable Banach space, its dual (Cd(P))′ is not (in much
simpler situation, remember that Dirac distributions form a discrete uncountable subset
of the space of Radon measures). This is also a reason why the dual of Lp(Rd; Cd(P))

includes some non-Bôchner-measurable functions. Thus, the space
(
Cd(P)

)′
does not

posses Radon-Nikodym property (also compare characterisation of Theorem IV.1 in [14]).

Let us assume that
(24)

coefficients of the bilinear form q from (3) belong to the space Lt(Rd), where t ≥ s̄′.

Remark that since s̄ ∈ 〈1, pq
p+q 〉 and t ≥ s̄′, it also must be 1/t+ 1/p+ 1/q < 1.

Definition. We say that the set ΛD, bilinear form q from (3) satisfying (24), and
the matrix µ = [µjm]j,m=1,...,N , µjm ∈ Ls̄w?(R

d; (Cd(P))′) satisfy the strong consistency
condition if for every fixed m ∈ {1, . . . , N}, the N-tuple (µ1m, . . . , µNm) belongs to ΛD,
and it holds

(25)
N∑

j,m=1

〈φqjm ⊗ 1, µjm〉 ≥ 0, φ ∈ C∞c (Rd; R+
0 ).

Under the given strong consistency condition, we have the following theorem:

Theorem 5. Assume that sequences (ur) and (vr) are bounded in Lp(Rd; RN )
and Lq(Rd; RN ), where 1/p + 1/q < 1, and converge toward u and v in the sense of
distributions. Assume that (19) holds.

Assume that
q(x; ur,vr) ⇀ ω in D′(Rd)

for the bilinear form q from (3) satisfying (24).
If the set ΛD, the bilinear form (3), and the (matrix of) H-distributions µ corre-

sponding to the sequences (ur−u) and (vr−v) satisfy the strong consistency condition,
then it holds

(26) q(x; u,v) ≤ ω in D′(Rd).

If in (25) stands equality, then we have equality in (26) as well.

Dem. Let us abuse the notation by denoting ur = ur − u ⇀ 0 and vr = vr − v ⇀ 0 as
r →∞.

Remark that, according to Theorem 4, for any non-negative φ ∈ D(Rd)

(27) lim
r→∞

∫
Rd

N∑
j,m=1

qjmujrvmrφ dx =
〈
φ

N∑
j,m=1

qjm ⊗ 1, µjm

〉
,

where µjm is a H-distribution corresponding to sequences ujr, vmr ⇀ 0. Since, ac-
cording to the localisation principle (20), for every fixed m ∈ {1, . . . , N}, the N -tuple
(µ1m, . . . , µNm) belongs to ΛD, we conclude from the strong consistency condition that

〈
φ

N∑
j,m=1

qjm ⊗ 1, µjm

〉
≥ 0.
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From here, (27), and the fact that (since q is bilinear)

q(x; ur,vr) ⇀ ω − q(x; u,v) ≥ 0 in D′(Rd),

the statement of the theorem follows.
Q.E.D.

If we assume that the sequence (vn) is bounded in Lp
′
(Rd; RN ) and additionally

assume that it can be well approximated by the truncated sequence (Tl(vn)), l ∈ N, we
can state the optimal variant of the compensated compactness as follows.

Corollary 1. Assume that

◦ sequences (ur) and (vr) are bounded in Lp(Rd; RN ) and Lp
′
(Rd; RN ), where 1/p+

1/p′ = 1, and converge toward u and v in the sense of distributions;

◦ for every l ∈ N, the sequences (Tl(vr)) converge weakly in Lp
′
(Rd; RN ) toward hl,

where the truncation operator Tl from (14) is understood coordinatewise;

◦ there exists a vector valued function V ∈ Lp
′
(Rd; RN ) such that |vr| ≤ V holds

coordinatewise for every r ∈ N;
◦ (19) holds with askl ∈ C0(Rd) and qjm ∈ C(Rd).

Assume that

q(x; ur,vr) ⇀ ω in D′(Rd).

If for every l ∈ N, the set ΛD, the bilinear form (3), and the (matrix of) H-distributions
µl corresponding to the sequences (ur−u) and (Tl(vr)−hl)r satisfy the strong consistency
condition, then it holds

(28) q(x; u,v) ≤ ω in D′(Rd).

If in (25) stands equality, then we have equality in (28) as well.

Dem. For every l ∈ N, notice that (q(x; ur, Tl(vr)))r is bounded in Lp(Rd):

∫
Rd
|q(x; ur, Tl(vr))|pdx ≤ N2(p−1)

N∑
j,m=1

∫
Rd
|qjm|p|ujr|p|Tl(vmr)|pdx

≤ CN,l,p max
j,m

(‖qjm‖pL∞(K)
‖ujr‖pLp(K)

),

where K ⊆ Rd is a compact set (remember that sequences (ur), (vr) are uniformly
compactly supported). Therefore, the sequence (q(x; ur, Tl(vr))) (we remind that l is
fixed) admits a weak limit in Lp(Rd) (and thus in D′(Rd)) along a subsequence. Using
a diagonal procedure, we can extract a subsequence (not relabelled) such that for every
l ∈ N it holds

q(x; ur, Tl(vr)) ⇀ ωl in D′(Rd).

where ωl is a weak limit of (q(x; ur, Tl(vr)))r. According to the assumptions of the
corollary on the strong consistency conditions involving µl and the sequences (ur − u)
and (Tl(vr)− hl)r, and Theorem 5 (remark that (Tl(vr))r is bounded), it holds

(29) q(x; u,hl) ≤ ωl in D′(Rd).
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We will finish the corollary if we show that for every non-negative function ϕ ∈ C∞c (Rd)
it holds

∫
Rd(ω − q(x; u,v))ϕdx ≥ 0. It holds

(30)∫
Rd

(ω − q(x; u,v))ϕdx =

∫
Rd

(ω − q(x; ur,vr))ϕdx

+

∫
Rd

(q(x; ur,vr)− q(x; ur, Tl(vr)))ϕdx

+

∫
Rd

(q(x; ur, Tl(vr))− ωl)ϕdx +

∫
Rd

(ωl − q(x; u,hl))ϕdx

+

∫
Rd

(q(x; u,hl)− q(x; u,v))ϕdx.

Since the left hand side of (30) does not depend on r and l, we can take lim sup
l→∞

lim
r→∞

there. The first summand on the right hand side of the expression goes to zero according
to the assumptions of the corollary; the third summand goes to zero according to the
definition of ωl; we have established in (29) that the fourth summand is non-negative.
Let us show that the second summand in (30) goes to zero:∣∣∣ ∫

Rd
(q(x; ur,vr)− q(x; ur, Tl(vr)))ϕdx

∣∣∣ ≤ ∫
Rd
|ϕQur · (vr − Tl(vr))|dx

≤ ‖Qur‖Lp‖ϕ (vr − Tl(vr))‖Lp′ ,

where we have used the Hölder inequality. Since vr−Tl(vr)→ 0 pointwise, according to
the assumption |vr| ≤ V and the Lebesgue dominated convergence theorem, we conclude
that ‖ϕ (vr − Tl(vr))‖Lp′ → 0 as l, r →∞ (or as l→∞ uniformly with respect to r).
For the last summand, we will proceed in a similar manner. Let us notice that we can
write

q(x; u,hl)− q(x; u,v) = Qu · (hl − v)

= Qu · ((hl − Tl(vr)) + (Tl(vr)− vr) + (vr − v)).

The first and the last summand on the right hand side of the last expression will go to zero
according to the assumptions of the corollary. Concerning the second summand, from the
Lebesgue dominated convergence theorem as before, we conclude lim sup

l→∞
lim
r→∞

‖(Tl(vr)−

vr)ϕ‖L1(Rd) = 0. This concludes the proof.
Q.E.D.

Remark 6. The condition concerning existence of the dominating function V from
the previous theorem might look superfluous. However, as the following example shows,
we cannot avoid it. Indeed, consider the case d = N = 1, a = a111 = 0. Let

ur(x) = vr(x) =

{
r, |x| < r−2

0, |x| ≥ r−2 .

Then, ‖ur‖2 = 2 for all r ∈ N. Clearly, ur = vr ⇀ 0 weakly as r → ∞, while
Tl(ur)→ 0 as r →∞ strongly in L2(R) for every l ∈ N. Therefore, the H-distributions
µl corresponding to the sequences (ur) and (Tl(vr)) are trivial: µl ≡ 0. Thus, the strong
consistency condition is satisfied with the equality sign, but q(ur, vr) = u2

r ⇀ 2δ(x) 6=
0 = q(0, 0).

This remark is thanks to Evgenij Jurjevič Panov.
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In a conclusion of the section, we would like to make a comment concerning a
connection between the standard consistency condition and, at least at first sight stronger,
the strong consistency condition. To this end, note that we can rewrite the consistency
condition (2) in the following form (we shall omit the second order derivatives since they
have no influence on the reasoning below):

ΛF =
{
λ : Rd × Sd−1 → RN :

N∑
j=1

ν∑
k=1

asjk(x)ξkλj(x, ξ) = 0, s = 1, . . . ,M
}

and
q(x;λ(x, ξ),λ(x, ξ)) ≥ 0 for all λ ∈ ΛF and all (x, ξ) ∈ Rd × Sd−1.

Having such a representation of the consistency condition, it seems reasonable to ask
whether ΛD is a closure of ΛF in the sense of distributions. If this is the case, the
generalisation presented here holds under the standard consistency condition. At this
moment, we do not have any answer to this question.

However, we shall present an example showing that our approach can be used.

3. Application to nonlinear parabolic equation

Let us consider the nonlinear parabolic type equation

(31) L(u) = ∂tu−
d∑

k,l=1

∂xlxk(akl(t,x)g(t,x, u))

on Ω = 〈0,∞〉 × V , where V is an open subset of Rd. We assume that

u ∈ Lp(Ω), g(t,x, u) ∈ Lq(Ω), 1 < p, q,

akl ∈ Lsloc(Ω), where 1/p+ 1/q + 1/s < 1,

and that the matrix function A = [akl]k,l=1,...,d is strictly positive definite on Ω, i.e.

Aξ · ξ > 0, ξ ∈ Rd \ {0}, a.e. (t,x) ∈ Ω.

Furthermore, assume that g is a Carathèodory function and non-decreasing with respect
to the third variable.

The following theorem holds.

Theorem 6. Assume that sequences
◦ (ur) and g(·, ur) are such that ur, g(ur) ∈ L2(R+ ×Rd) for every r ∈ N;
◦ that they are bounded in Lp(R+ × Rd), p ∈ 〈1, 2], and Lq(R+ × Rd), q > 2,

respectively, where 1/p+ 1/q < 1;
◦ ur ⇀ u and, for some, f ∈W−1,−2;p(R+ ×Rd), the sequence

L(ur) = fr → f strongly in W−1,−2;p(R+ ×Rd).

Under the assumptions given above, it holds

L(u) = f in D′(R+ ×Rd).
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Dem. Let us first define all functions on R × Rd by extending them with zero out of
R+×Rd. Denote by w a distributional limit of g(·, ur) along not relabelled subsequence.
Our first step is to show that the product of ur and g(·, ur) converges to uw in the sense
of distributions. To do that, denote

(32) u1r = ur − u, u2r = g(·, ur)− w.

Note that the following sequence of equations is satisfied

(33) ∂tu1r −
d∑

k,l=1

∂xlxk(aklu2r) = fr − f,

and that fr − f tends to zero strongly in W−1,−2;p(R+ ×Rd). Introduce
(34)

ΛD=
{
µ = (µ1, µ2)∈Ls

′
w?(R

+ ×Rd; Cd+1(P)′)2 : −2iπξ0µ1 + 4π2
d∑

k,l=1

ξkξlaklµ2 =0
}
,

and remark that, according to the localisation principle given in Lemma 4,

(35) (µ12, µ22) ∈ ΛD

for H-distributions µ12 and µ22, corresponding to sequences (φu1r) and (φu2r), and (φu2r)
and (φu2r), respectively. Above, φ ∈ C2

c(R
+ ×Rd) is fixed.

From the localisation principle, for ψ ∈ Cd+1(P) (here and in the sequel, symbols
are real functions) and ϕ ∈ C2

c(R
d), it holds

(36) i〈−2πξ0ψϕ, µ12〉+
〈

4π2
d∑

k,l=1

ξkξlakl(·, ·)ψϕ, µ22

〉
= 0.

Remark that for any ψ ∈ Cd+1(P) the function fψ = 〈ψ, µj2〉 is in Ls
′
(R+ × Rd),

j = 1, 2. For the functions fψ, where ψ belongs to a dense countable subset E of Cd+1(P)

containing a dense subset of odd and even functions (which we may choose since Cd+1(P)
is separable and we can represent every function as a sum of even and odd functions
ψ(ξ) = 1

2(ψ(ξ) + ψ(−ξ)) + 1
2(ψ(ξ) − ψ(−ξ))), and the functions akl, k, l = 1, . . . , d,

denote by D ⊆ R+ × Rd the set of their common Lebesgue points (which is of full
measure).

Now, fix (t0,x0) ∈ D. According to the Plancherel theorem, we get

(37)

∫
ϕvAψ(ϕv) =

∫
ϕ̂v ψϕ̂v ∈ R

for all v ∈ L2(R+ × Rd), real bounded multipliers ψ, and ϕ ∈ C2
c(R

d). From here we
conclude that

(38)
〈

4π2
d∑

k,l=1

ξkξlakl(t0,x0)ψϕ, µ22

〉
∈ R
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for any real multiplier ψ. Indeed, for a scalar matrix A(t0,x0), taking into account that
4π2A(t0,x0)ξ · ξ ≥ 0, we notice that 4π2A(t0,x0)ξ · ξψ⊗ϕ is a real function in ξ (where
ϕ is constant with respect to ξ). Insert symbol 4π2(A(t0,x0)ξ ·ξψ/ρP)⊗ϕ and sequences
ur = vr = φu2r into definition (13) of H-distributions where

ρP =
(
ξ2
0 +

d∑
j=1

ξ4
j

)1/2
.

Now, the claim follows once we notice that, due to equation (37), equation (13) gives us
a limit of real numbers.

On the other hand, from Lemma 2, we conclude that for any odd ψ, the function

(39)
〈

4π2
d∑

k,l=1

ξkξlakl(t0,x0)ψϕ, µ22

〉
∈ iR.

Thus, from (38) and (39), we conclude that for any odd function ψ it must be

(40)
〈

4π2
d∑

k,l=1

ξkξlakl(t0,x0)ψϕ, µ22

〉
= 0.

Taking into account (40), assuming ψ ∈ E, and inserting (t,x) = (t0,x0) into (36), we
conclude that for all points from D, it holds

(41) 〈−2πξ0ψ, µ12(t0,x0, ·)〉 = 0.

Now, since ur ∈ L2(R+ ×Rd) for every r ∈ N, we can test (33) by ϕA(1−θ)ψP/ρP
(ϕu1r)

where θ is a compactly supported even smooth function equal to one in a neighbourhood
of zero. Then, we let r →∞ and use the Plancherel theorem to obtain a relation similar
to (36) (remark that A(1−θ)ψP/ρP

is a compact Lp → Lp operator for any p > 1):

(42)

lim
r→∞

∫
Rd+1

−2πi
(1− θ(ξ))ξ0

ρP(ξ)
ψP(ξ)F(ϕu1r)F(ϕu1r)dξ

+
〈

4π2
d∑

k,l=1

ξkξlakl(·, ·)ψϕ, µ12

〉
= 0,

where, as usual, ψP = ψ ◦ ρP. Denote by

(43)

Ir(ψP)=

∫
Rd+1

−2πi
(1− θ(ξ))ξ0

ρP(ξ)
ψP(ξ)F(ϕu1r)F(ϕu1r)dξ

=

∫
Rd+1

−2πi
(1− θ(ξ))ξ0

ρP(ξ)
ψP(ξ)|F(ϕu1r)|2dξ.

We shall prove that for every even ψ

(44) Ir(ψP) = 0.
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Clearly, for any real ψ, it holds (see (43))

(45) Ir(ψP) ∈ iR.

However, from Lemma 2, we conclude that for any even ψ, it holds

Ir(ψP) =

∫
R+×Rd

ϕ(x)u1r(t,x)∂t(A(1−θ)ψP/ρP
(ϕu1r))(t,x)dtdx

=

∫
R+×Rd

ϕ(x)u1r(t,x)∂t(A(1−θ)ψP/ρP
(ϕu1r))(t,x)dtdx ∈ R.

Being both purely real for any even ψ and purely imaginary for any ψ (see (45)), it follows
that Ir(ψP) must be zero for any even ψ. From here, (44) follows.

Now, since the function ϕ ∈ C2
c(R

d+1) is arbitrary, from (42) we get the following
relation for every (Lebesgue) point (t,x) ∈ D and even ψ2 ∈ E:

(46)
〈

4π2
d∑

k,l=1

ξkξlakl(t,x)ψ2, µ12(t,x, ·)
〉

= 0.

Since the set D is of full measure, summing the results from (41) and (46), we
conclude that for any odd symbol ψ1 ∈ E and even symbol ψ2 ∈ E, we have

〈2πξ0ψ1ϕ, µ12〉+
〈

4π2
d∑

k,l=1

ξkξlakl(t,x)ψ2ϕ, µ12

〉
= 0.

Thus, by taking ψ1 = ξ0ψ and ψ2 = ψ for an even symbol ψ ∈ E, we conclude:

(47)
〈(

2πξ2
0 + 4π2

d∑
k,l=1

ξkξlakl(t,x)
)
ψϕ, µ12

〉
= 0.

Since µ12 is continuous on Ls(Rd+1;Cd+1(P)), we conclude that (47) holds for any even
ψ ∈ Cd+1(P).

Since the function

f(t,x, ξ) =
ϕ

2πξ2
0 + 4π2

d∑
k,l=1

ξkξlakl

∈ Ls(R+ ×Rd; Cd+1(P))

is even with respect to the variable ξ, we conclude from (47) (we can put f instead ϕψ
there) that

(48) 〈1⊗ ϕ, µ12〉 = 0.

From (35) and (48), we conclude that the following bilinear form

q(x;λ,η) = λ1η2, λ = (λ1, λ2), η = (η1, η2),

satisfies the strong consistency condition with the set ΛD introduced in (34). Now we
can apply Theorem 5 to conclude that

(49) q(x; (u1r, u2r), (u2r, u2r)) = u1ru2r ⇀ 0 = q(x; (0, 0), (0, 0)) in D′(R+ ×Rd)
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since both u1r = ur−u and u2r = g(·, ur)−w weakly converge to 0. Using the bilinearity
of q, we conclude

(50) urg(·, ur) ⇀ uw in D′(R+ ×Rd).

Our next step is to identify g(·, u) as a weak limit of g(·, ur). To do that we will
employ the theory of Young measures. Up to this moment we didn’t need any assumption
on the function g itself, only on the sequence g(·, ur).
Denote by ηt,x the Young measure associated to a subsequence of the sequence (ur). Since
g is a Carathèodory function, from (32) and (50), it holds [50]:

(51)

{
u(t,x) =

∫
λdηt,x(λ),

w(t,x) =
∫
g(t,x, λ)dηt,x(λ),

and

u(t,x)

∫
g(t,x, λ)dηt,x(λ) = u(t,x)w(t,x) =

∫
λg(t,x, λ)dηt,x(λ).

The latter equality implies

(52)

∫
(λ− u(t,x))g(t,x, λ)dηt,x(λ) =∫ (

λ− u(t,x)
)(
g(t,x, λ)− g(t,x, u(t,x))

)
dηt,x(λ) = 0,

because∫
(λ− u)g(t,x, u)dηt,x(λ) = g(t,x, u)

∫
λdηt,x(λ)− g(t,x, u)u

∫
dηt,x(λ)

= g(t,x, u)u− g(t,x, u)u

= 0,

where function u does not depend on λ and we have used first equality in (51) and the
fact that ηt,x is a probability measure.

Since g is non-decreasing with respect to λ, we conclude from (52)

g(t,x, λ) = g(t,x, u(t,x)) on suppηt,x,

which implies

w(t,x) =

∫
g(t,x, λ)dηt,x(t,x) = g(t,x, u(t,x)).

From here, we finally conclude that

L(ur) ⇀ L(u) = f in D′(R+ ×Rd).

Q.E.D.
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In this chapter we review the notion of distributions on manifolds and recall clas-
sical results of compactness by compensation theory, namely the div-rot lemma and the
Quadratic theorem.

In the Euclidean case Rd, one of the conceptually simplest examples of distributions
are locally integrable functions. Namely, for f ∈ L1

loc(R
d), one defines its associated

distribution Tf on D(Rd) by the following mapping rule:

ϕ 7→
∫
Rd
f(x)ϕ(x) dx ,

i.e. we identify f with fdx. In the case of a manifold X, there is no invariant way of
integrating the product fϕ in order to identify f with a linear form Tf . This is the place
where currents come into play. In this chapter, we will shortly describe notions needed
to define distributions on manifolds as currents.

An alternative approach would be to define distributions on manifolds simply as
distributions in the local coordinates which behave in a prescribed way with the change
of coordinates. For that one still needs the theory of densities, a special case of currents
of de Rham. For this alternative approach and the connection between the one we will
present here, see [27, Chapter VI] and books [55, Chapter IX] and [25, Chapter 3].

Compactness by compensation theory has been applied to many problems of calculus
of variations, homogenisation theory, fluid mechanics, nonlinear elasticity and conserva-
tion laws. The first and most well-known result of the theory is the the div-rot lemma,
shown by Tartar and Murat. Later, Tartar generalised the div-rot lemma to a setting that
includes general differential operators with constant coefficients. This is the result known
as the Quadratic theorem. A variant with variable continuous coefficients was given in
[60] with the help of H-measures. A further generalisation to the case of discontinuous
coefficients was shown by Panov in [49]. For further historical remarks and applications,
please see [61, 44, 59].

To end the introduction, let us remark that there are two essentially different ap-
proaches to prove the div-rot lemma. One uses harmonic analysis and it was the approach
Murat and Tartar used, while the second one uses Hodge decomposition theory and it
was used by Robin, Rogers and Temple (see [54, 41, 61, 32, 33]). For a short overview of
compactness by compensation theory, the reader is referred to [62].

1. Distributions on manifolds

Material of this section will follow the exposition and use the notation of Volume
3 of [15]. In the following numbers in the square brackets will denote the corresponding
chapter, section and subsection in [15].

[16.1.3] A differentiable manifold is a separable metrizable topological space X on
which is given an equivalence class of atlases (or equivalently, a saturated atlas).

[16.12.1] A differential fibration is a triple λ = (X,B, π) in which X and B are
differential manifolds and π is a C∞-mapping of X into B which is surjective and satisfies
the following condition of local triviality:

(LT) for each b ∈ B there exists an open neighbourhood U ∈ B of b, a differential
manifold F and a diffeomorphism ϕ : U × F → π−1(U) such that π(ϕ(y, t)) = y for all
y ∈ U and t ∈ F .
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It is easy to see that π is a submersion. X is called the space of fibration λ, manifold
B its base, and the mapping π its projection. For b ∈ B, the preimage Xb = π−1(b) is
called the fiber of λ over b. Sometimes, we will say that X is a differential fiber bundle
with base B and projection π, and that the submanifold Xπ(x) is the fiber through the
point x ∈ X.

If f is a mapping of a set E into B, the mapping f ′ : E → X is called a lifting of f
if π(f ′(z)) = f(z) for all z ∈ E.

[16.12.6] A section of a fibration (X,B, π) (or a section of the differential fiber bundle
X) is any mapping s : B → X (not necessarily continuous) such that π ◦s = 1B (in other
words, s is a lifting of 1B).

[16.15.1] Let (E,B, π) be a differential fibration such that for each b ∈ B the fiber
Eb = π−1(b) is endowed with the structure of a finite-dimensional complex (resp. real)
vector space. Then E, endowed with the structure defined by the fibration (E,B, π) and
the vector space structures on the fibers Eb, is said to be a complex (resp. real) vector
bundle if the following condition holds:

(VB) for each b ∈ B, there exists an open neighbourhood U ⊂ B of b, a finite-
dimensional complex (resp. real) vector space F , and a diffeomorphism ϕ : U × F →
π−1(U) such that π(ϕ(y, t)) = y for all y ∈ U and t ∈ F , and such that for each y ∈ U
the partial mapping ϕ(y, ·) is C-linear (resp. R-linear) bijection of the vector space F
onto the vector space Ey.

Condition (VB) is equivalent to the following:

(VB’) for each b ∈ B, there exists an open neighbourhood U ⊂ B of b, an integer
n = n(b) and n mappings si : U → E of class C∞ such that π ◦ si = 1U for each i and
such that the mapping ϕ : (y, ξ1, · · · , ξn) 7→ ξ1s1(y) + · · · + ξnsn(y) is a diffeomorphism
of U ×Cn (resp. U ×Rn) onto π−1(U).

π−1(U)
ϕ←−−−− U × F

π

y π1

y
U

1U−−−−→ U

The dimension of the vector space Eb over C (resp. over R) is called the rank of E
at b and denoted by rkb(E). Condition (VB) implies that rkb(E) is constant on each
connected component of B. When rkb(E) is constant its value is called the rank of E. A
vector bundle E of rank 1 is called a line-bundle.

[16.15.1] Now, for differential fibration (E,B, π), assume that dimF = dimπ−1(x) =

d̄ for every x and that (U,ϕ) satisfies condition (VB). Denote by ρ : F → Cd̄ (resp. ρ :

F → Rd̄) an isomorphism. For V ⊂ U , let (V, ψ) be a chart on B. Then (π−1(V ), (ψ ×
ρ) ◦ ϕ−1) is a chart on E at each point of the fiber π−1(x). This chart on E is called a
fibered chart.

E ⊃ π−1(V ) 3 z
(ψ×ρ)◦ϕ−1

7−→
(
ψ(π(z)), ρ

(
π2(ϕ−1(z))

) )
∈ ψ(V )×Cd̄ ,

π−1(V )
ϕ←−−−− V × F ψ×ρ−−−−→ ψ(V )×Cd̄ .
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Rn
E

z

π−1(V )
p

X

U
V

π

π
ψ(V )

ψ(p)

ψ

ψ

Figure 1. Diagram of the mappings from [16.15.1].

[17.2] For E complex (resp. real) vector bundle with base B and projection π, we
denote by E(B; C) (resp. E(B; R)) a set of C∞ mappings of B into C (resp. R), and
by Γ(B,E) (or just Γ(E)) a set of all C∞-sections of E. In case where U is open in B,
we could consider the vector bundle induced on π−1(U) and analogously define the set
Γ(U,E) of C∞-sections of E over U . For r ∈ N0, by Γr(U,E) we denote the vector space
of Cr-sections of E over U . For notational conveniences, set Γ∞(U,E) = Γ(U,E).

[16.15.4] For a differential manifold M , let T (M) be the union of all the pairwise
disjoint tangent spaces Tx(M), x ∈ M . Denote by oM : T (M) → M the mapping such
that for hx ∈ Tx(M), oM (hx) = x. There exists a unique structure of differential manifold
on T (M) such that (T (M),M, oM ) is a fibration (the tangent spaces Tx(M) being the
fibers) and such that the following condition holds:

(TB) for each chart c = (U,ϕ, n) on M , the mapping φc : (x, h) 7→ (dxϕ)−1h of
U ×Rn onto o−1

M (U) is a diffeomorphism. Here dxϕ : Tx(M)→ Rn is a differential of ϕ
at the point x.

The vector space structures of Tx(M) and the fibration (T (M),M, oM ) define on T (M) a
structure of the real vector bundle called the tangent bundle of the differential manifold
M . The dual T (M)∗ of the tangent bundle T (M) is called the cotangent bundle.

[17.2] Let X be a pure manifold of dimension n and let (E,X, π) be a complex vector
bundle of rank N over X. For U an open subset of X, we can endow the space Γr(U,E),
r ∈ N0∪{∞}, with the structure of a Hausdorff locally convex topological space. Indeed,
let (Vα, ϕα, n) be at most denumerable family of charts of U such that Vα form a locally
finite open covering of U , and such that E is trivializable over each Vα. For each α, let
z 7→ (ϕα(π(z)), v1α(z), · · · , vNα(z)) be a diffeomorphism of π−1(Vα) onto ϕ(Vα) × CN ,
the vjα being linear on each fiber π−1(x). Let p′s,m,α be a family of seminorms on the

standard space E(r)(ϕα(Vα)) = Cr(ϕα(Vα)). For each section u ∈ Γr(U,E), define

ps,m,α(u) =
N∑
j=1

p′s,m,α(vjα ◦ u|Vα ◦ ϕ−1
α ) .

It can be checked that ps,m,α are seminorms which distinguish points and that the fol-
lowing property holds:

(SN) a sequence (uk) of section of Γr(U,E) converges to zero if and only if, for each
chart (V, ϕ, n) of X over which E is trivialisable, each diffeomorphism

z 7→ (ϕ(π(z)), v1(z), · · · , vN (z))
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of π−1(V ) onto ϕ(V )×CN , where the vj are linear on each fiber π−1(x), each compact
K ⊂ ϕ(V ) and each multi-index ν such that |ν| ≤ r, the sequence ((Dνwjk)|K))k
converges uniformly to zero for j ∈ 1..N , where wjk(t) = vj(uk(ϕ

−1(t))) for t ∈ ϕ(V ).

It is equivalent to:

(SN’) a sequence (uk) of section of Γr(U,E) converges to zero if and only if, for
each α, the sequence of restrictions (uk|Vα) converges to zero in Γr(Vα, E); and Γr(Vα, E)

is isomorphic to
(
E(r)(ϕα(Vα))

)N
.

[17.2.2] The spaces Γr(U,E), for r ∈ N0 ∪ {∞}, are separable Fréchet spaces.
In the case when X = Rn and E = X × C is the trivial complex line bundle over X,
Γ(U,E) is the standard space E(U) = C∞(U), while Γr(U,E) = Cr(U).

[17.3.1] For p ∈ N, a section over A of the complex bundle
( p∧

T (X)∗
)

(C)
of tangent

p-covectors is called a complex-valued differential p-form on A. For p = 0 we define these

to be complex-valued functions. The set Γr
(
X, (

p∧
T (X)∗)(C)

)
, r ∈ N0 ∪ {∞}, of

differential p-forms of class Cr on X is usually denoted by E(r)
p (X).

For a compact setK ⊂ X, denote byD(r)
p (X;K) the vector subspace of E(r)

p (X) consisting
of the complex differential p-forms of class Cr with support contained in K, and by

D(r)
p (X) the space of all complex differential p-forms of class Cr with compact support.

When p = 0 or r =∞, we drop them from notation.
A complex p-current (or a current of dimension p) on X is a linear form T on Dp(X)

whose restriction to each Fréchet space Dp(X;K) is continuous.

For a linear form T on Dp(X) the following are equivalent:
i) T is a p-current,
ii) for every sequence (uk) of C∞ differential p-forms, with supports contained in the

same compact set K and which converge to zero in Ep(X), the sequence (T (uk))
tends to zero in C,

iii) for each compact set K of X, there exist integers s,m and a finite number of indices
α1, · · · , αr, together with a constant CK ≥ 0, such that for each C∞ p-form u with
support contained in K, we have

|T (u)| ≤ CK sup
i
ps,m,αi(u) .

[17.3.2] A p-current T is said to be of order smaller or equal to r if the restriction of

T to Dp(X;K) is continuous with respect to the topology induced by that of D(r)
p (X;K),

for every compact K ⊂ X. The order of a current is the smallest integer r with such
property.

A 0-current on X is called a distribution on X.

[17.6.1] A vector bundle
p∧
T (X)∗ can be identified with a subbundle of the real

vector bundle
( p∧

T (X)∗
)

(C)
which is the direct sum

p∧
T (X)∗ ⊕ i

p∧
T (X)∗. Then

E(r)
p (X) is equal to E(r)

p,R(X) + iE(r)
p,R(X), where E(r)

p (X) is the space of real differential
p-forms of class Cr on X.

A p-current on X is said to be real if its restriction to Ep,R(X) is real-valued.
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[17.4.4] Let X and X ′ be two pure manifolds of the same dimension n, and let
π : X ′ → X be a local diffeomorphism. Then for each current on T on X there exists a
unique current T ′ on X ′ with the following property: for each open subset U ′ ⊂ X ′ such
that the restriction πU ′ : U ′ → π(U ′) is a diffeomorphism, we have πU ′(T

′
U ′) = Tπ(U ′),

where by TU we denote restriction of a current T to a set U . The current T ′ is called the
inverse image of T by π.

[17.5.1] Let β be a locally integrable differential (n − p)-form on X, 0 ≤ p ≤ n.

For each p-form α ∈ D(0)
p (X) with compact support, the linear form α 7→

∫
β ∧ α is a

p-current (of order 0). We denote it by Tβ. Restricting the mapping β 7→ Tβ to the space

E(0)
n−p(X) of continuous differential (n− p)-forms, it becomes injective. This allows us to

identify the continuous differential (n− p)-form β with the p-current Tβ (of order 0).
Let us consider two examples:

1) If ν is locally integrable n-form, then the mapping f 7→
∫
fν is a distribution (0-

current) on X denoted by Tν (it is positive if and only if ν(x) ≥ 0 almost everywhere
with respect to the orientation of X).

2) If f is locally integrable complex function on X, then the mapping ν 7→
∫
fν is an

n-current on X (of order 0) denoted by Tf .

In the end, we would like to comment how we identify functions with currents in
the case when X is an oriented differential pure manifold of dimension n (that is, to say
a bit more about the second example above).

[17.5.3] First, let us fix a smooth differential n-form ν0 which belongs to the orien-
tation of X. Every differential n-form can be uniquely written in the form fν0, where
f is a complex-valued function on X. The form fν0 is locally integrable if and only if
function f is locally integrable. The linear mapping f 7→ fν0 is a bijection of locally
integrable complex-valued functions on X onto the space of locally integrable differential
n-forms on X. We normally write Tf instead of Tfν0

and identify the function f with

the corresponding distribution Tf (that is Tfν0
). To illustrate in the case Rd with the

canonical orientation, we could take ν0 to be the canonical n-form dξ1 ∧ dξ2 ∧ · · · ∧ dξn.
Furthermore, on orientable manifolds, by fixing ν0, we can identify n-currents with

distributions since g 7→ gν0 is an isomorphism of the spaces D0(X) and Dn(X). Every
n-current can be expressed as gν0 7→ T (g), where T is a distribution. We denote this n-
current by T|ν0

. With this notation, for every locally integrable complex-valued function
f on X, we have (Tf )|ν0

= Tfν0
.

2. Compactness by compensation

The material of this section heavily follows the exposition in [41, 9].
For Ω ⊂ R3 open set, let us introduce the following function spaces:

L2
div (Ω) = {v ∈ L2(Ω; C3) : div v ∈ L2(Ω)} ,

L2
rot (Ω) = {v ∈ L2(Ω; C3) : rot v ∈ L2(Ω; C3)} .

These spaces are Banach spaces when equipped with the corresponding graph norms.

Lemma 1. Let Ω be an open subset of R3 and assume:

En ⇀ E in L2(Ω; R3),
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Dn ⇀ D in L2(Ω; R3),

div Dn bounded in L2(Ω),

rot En bounded in L2(Ω; R3).

Then
Dn · En ⇀ D · E

in the sense of distributions.

Dem. Multiplying by φ ∈ D(Ω) and ψ ∈ D(Ω) such that ψ = 1 on suppφ, and extending
by zero to the whole R3, we have the following functions:

en = φEn, dn = ψDn,

e = φE, d = ψD.

From the conditions of the lemma, we have that (en) is bounded in L2
rot (R3), while (dn)

is bounded in L2
div (R3), and

en ⇀ e, dn ⇀ d in L2(R3; R3).

Since supports are compact, we have the following two equalities:

(53)

∫
Ω

Dn · Enφ dx =

∫
R3

dn · en dx,

(54)

∫
Ω

D · Eφ dx =

∫
R3

d · e dx.

Let us apply the Fourier transform to dn: since dn weakly converges to D in L2(R3; R3)

we obtain boundedness of the sequence (d̂n) in L2(R3), and convergence d̂n ⇀ d̂ in the
space of tempered distributions S ′. This gives us uniqueness of the accumulation point:
d̂n ⇀ d̂ in L2. Since (dn) is bounded in L2

div (R3), after applying the Fourier transform,

we obtain boundedness of the sequence (ξ · d̂n) in L2.
Completely analogously, we obtain convergence ên ⇀ e in L2(R3), and boundedness

of sequence (ξ× ên) in L2. Similarly, on the limit we get that ξ · d̂ and ξ× ê are bounded
in L2.

Let us decompose d̂ and ê on two components: one in the direction of ξ: d̂>, ê> and
the other perpendicular to ξ: d̂⊥, ê⊥

d̂ = d̂> + d̂⊥, ê = ê> + ê⊥.

Our previous considerations imply that |ξ|d̂> and |ξ|ê⊥ are bounded in L2, and since

‖d̂>‖L2 ≤ ‖d̂‖L2 and ‖ê⊥‖L2 ≤ ‖ê‖L2 , after applying Cauchy-Schwarz inequality, we get:

|ξ| d̂> · ê> ∈ L1,

|ξ| d̂⊥ · ê⊥ ∈ L1,

which implies |ξ| d̂ · ê ∈ L1 after summing up.

Similarly, because L2-bounds are uniform in n, we boundedness of (|ξ| d̂n · ên) in L1.
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Additionally, we have:

‖d̂n‖L∞(R3;R3) ≤ ‖dn‖L1(R3;R3) = ‖dn‖L1(ω;R3)

≤ c1‖dn‖L2(ω;R3) ≤ c1‖dn‖L2(ω;R3) ≤ C,

where ω = suppψ, and the last inequality follows from the weak L2-convergence of
sequence (dn). The same weak L2-convergence of (dn) gives:

d̂n(ξ) =

∫
ω
e−2πix·ξdn(x) dx→

∫
ω
e−2πix·ξd(x) dx = d̂(ξ).

In the same manner we get ‖ên‖L∞(R3;R3) ≤ C and ên(ξ)→ ê(ξ). An application of the

Lebesgue theorem on dominated convergence, for every bounded set B ⊆ R3, gives:

d̂n · ên → d̂ · ê strongly u L1(B).

Since |ξ| d̂n · ên and |ξ| d̂ · e are bounded, we get:

d̂n · en → d̂ · ê strongly u L1(R3),

that is, ∫
R3

d̂n · ên dξ →
∫
R3

d̂ · ê dξ,

from where, by the Plancherel theorem, we have∫
R3

dn · en dx→
∫
R3

d · e dx.

The claim of the lemma now follows from (53) and (54).
Q.E.D.

Let Ω ⊂ Rd be open. For a sequence of functions (un) satisfying the following
constraint: (

d∑
k=1

Ak∂kun

)
bounded in L2

loc(Ω; Rq) ,

where Ak ∈Mq,r(R) are constant real matrices, we define the following sets:

V =
{

(λ, ξ) ∈ Rr ×Rd :
d∑

k=1

ξkA
kλ = 0

}
,

Λ =
{
λ ∈ Rr : (∃ξ ∈ Rd \ {0}) (λ, ξ) ∈ V

}
.

Let us look at the example where for vn,wn ∈ L∞(Ω; Rd) it holds:

vn ⇀ v weakly−∗ in L∞(Ω; Rd) ,

wn ⇀ w weakly−∗ in L∞(Ω; Rd) ,

(div vn) is bounded in L2
loc(Ω) ,
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(rot wn) is bounded in L2
loc(Ω; Rd) .

Conditions on the derivatives imply that the set V has the following form:

V =
{

((λ,µ), ξ) ∈ R2d ×Rd : λ · ξ = 0 & µ⊗ ξ − ξ ⊗ µ = 0
}
,

which under convention that nul-vector is parallel to every vector, reads

V =
{

((λ,µ), ξ) ∈ R2d ×Rd : λ ⊥ ξ & µ ‖ ξ
}
.

This gives the set Λ:

Λ =
{

(λ,µ) ∈ Rd ×Rd : λ · µ = 0
}
.

Before showing Tartar’s Quadratic theorem, let us show the following lemma:

Lemma 2. Let set Λ be given:

Λ :=
{
λ ∈ Rr : (∃ ξ ∈ Rd \ {0})

d∑
k=1

ξkA
kλ = 0

}
,

for fixed matrices Ak ∈ Mq,r(R), k ∈ 1..d, and assume Q ∈ Mr(R) is a constant matrix
such that it holds

(∀λ ∈ Λ) Q(λ) := Qλ · λ > 0 .

Denote by Q̃ hermitian extension of quadratic form Q to the whole Cr defined by

Q̃(λ) := Qλ · λ̄ .

It holds:
(∀ ε > 0)(∃Cε ∈ R)(∀λ ∈ Cr)(∀η ∈ Rd)

|η| = 1 =⇒ Re Q̃(λ) >− ε|λ|2 − Cε
q∑
i=1

∣∣∣∑
j,k

aijkλjηk

∣∣∣2 .
Dem. Assume the opposite, that there exists ε > 0 such that for every Cε = n ∈ N
exist λn ∈ Cr and ηn ∈ Rr, such that |ηn| = 1 and

(55) Re Q̃(λn) < −ε|λn|2 − n
q∑
i=1

∣∣∣∑
j,k

aijkλ
n
j η

n
k

∣∣∣2 .
Scaling the above inequality, we could have chosen λn such that |λn| = 1. Such sequence
(λn) is relatively compact, and on the subsequence we have convergence:

λn −→ λ

ηn −→ η .

Let us define a bilinear form β on Rr ×Rr by β(λ1,λ2) := Qλ1 · λ2. For λ1,λ2 ∈ Λ, it
holds

Q̃(λ1 + λ2i) = Q(λ1) +Q(λ2) + (β(λ1,λ2) + β(λ2,λ1))i .
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And for λ = λ1 + λ2i ∈ Λ + iΛ, we get

Re Q̃(λ) = Q(λ1) +Q(λ2) > 0 .

Re Q̃ is a continuous function on unit sphere, thus (55) implies

q∑
i=1

∣∣∣∑
j,k

aijkλ
n
j η

n
k

∣∣∣2 6 −ε− Re Q̃(λn)

n
6
C

n
.

On the limit we get
q∑
i=1

∣∣∣∑
j,k

aijkλjηk

∣∣∣2 = 0 ,

which in turn gives λ ∈ Λ + iΛ, so it implies

Re Q̃(λ) > 0 .

From (55) we get
Re Q̃(λ) = lim

n
Re Q̃(λn) 6 −ε < 0 ,

which is a contradiction.
Q.E.D.

Now we state and prove the Quadratic theorem:

Theorem 1. Let Ω ⊆ Rd be open, and Λ ⊆ Rr be defined as in Lemma 2. Let Q be a
real quadratic form on Rr non-negative on Λ:

(∀λ ∈ Λ) Q(λ) > 0 .

Furthermore, assume that sequence (un) satisfies

(P1) un −⇀ u weakly in L2
loc(Ω; Rr) ,

(P2)
(∑

k

Ak∂kun
)

relatively compact in H−1
loc(Ω; Rq) .

Then every subsequence of (Q ◦ un) converging to its accumulation point L, satisfies

L > Q ◦ u

in the sense of distributions.

Dem.
Step I: Assume that (after passing to a subsequence) Q ◦ un −⇀ L weakly in D′(Ω).
From (P1) and (P2) for vn := un − u, we get

(56) vn −⇀ 0 weakly in L2
loc(Ω; Rr) .

(57)
( d∑
k=1

Ak∂kv
n
)

is relatively compact in H−1
loc(Ω; Rq) .
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Let β : Rr × Rr −→ R be a bilinear form defined as in Lemma 2, such that for any
a ∈ Rr, it holds

Q(a) = β(a, a) .

Now, the following

Q(vn) = β(un − u, un − u) = Q(un)− β(un, u)− β(u, un) +Q(u) ,

together with
Q(un) −⇀ L

β(un, u) −⇀ β(u, u) = Q(u)

β(u, un) −⇀ β(u, u) = Q(u) ,

in the space of distributions, gives

Q ◦ vn −⇀ L−Q ◦ u =: m.

The claim will follow once we show m > 0.
Step II: Take a real test function ϕ on Ω, and define functions with compact support
wn := ϕvn. It holds

(58) wn −⇀ 0 weakly in L2(Ω; Rr)

and ∑
k

Ak∂kwn = ϕ
∑
k

Ak∂kv
n +

∑
k

∂kϕAk∂kv
n .

Both sequences in the above sum are relatively compact in H−1(Ω; Rq) (the second one
is bounded in L2(Ω; Rq) and has a uniform support in a compact, thus it is relatively
compact in H−1(Ω; Rq)). For the left hand side of equality now follows:(∑

k

Ak∂kwn
)

is relatively compact in H−1(Ω; Rq) ,

and on the subsequence (not relabelled), it holds∑
k

Ak∂kwn −→ L̃ strongly in H−1(Ω; Rq) .

After imbedding to the space of distributions, from (58), since derivation is continuous
operator, we get

(∀ k ∈ 1..d) ∂kwn −⇀ 0

in the space of distributions, and this implies L̃ = 0, i.e.

(59)
∑
k

Ak∂kwn −→ 0 strongly in H−1(Ω; Rq) .

Step III: Notice that the following holds in the space of distributions

Q ◦ wn = ϕ2Q ◦ vn −⇀ ϕ2m,
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i.e. for arbitrary ψ ∈ D(Ω)∫
Rd
Q ◦ wnψ −→ D′(Ω)〈ϕ2m,ψ 〉D(Ω) .

Since

D′(Ω)〈ϕ2m,ψ 〉D(Ω) = D′(Ω)〈m,ψϕ2 〉D(Ω) ,

and
supp (Q ◦ wn) ⊆ suppϕ ,

choosing ψ such that ψ|suppϕ
= 1, we get∫

Rd
Q ◦ wn −→ D′(Ω)〈m,ϕ2 〉D(Ω) .

Notice that in order to show that m > 0 in the sense of distributions, it is enough to
show

(60) lim
n

∫
Rd
Q ◦ wn > 0 .

Step IV: Let Q̃ be the hermitian extension of the quadratic form Q as in Lemma 2.
Extend wn by zero outside Ω, and apply the Fourier transform to get

ŵn(ξ) :=

∫
Rd

wn(x)e−2πiξ·xdx

The Plancherel theorem now gives:∫
Rd
Q ◦ wn =

∫
Rd
Q̃ ◦ wn =

∫
Rd
Q̃ ◦ ŵn =

∫
Rd

Re Q̃ ◦ ŵn ,

so (60) equivalent to

(61) lim
n

∫
Rd

Re Q̃ ◦ ŵn > 0 .

Step V: Since supp wn ⊆ suppϕ =: K ∈ K(Ω), we can integrate only over K in the
expression for the Fourier transform:

ŵn(ξ) :=

∫
K

wn(x)e−2πiξ·xdx .

For fixed ξ, the function x 7→ e−2πiξ·x belongs to L2(K; C). This together with wn −⇀ 0
u L2(Ω; Rr) implies

ŵn −→ 0 (ss) .

From boundedness of (wn) in L2(Ω; Rr) and supp wn ⊆ K, we get the boundedness of
the same sequence in L1(K; Rr). Since it holds

|ŵn(ξ)| 6
∫
K
|wn(x)||e−2πiξ·(x)|dx =

∫
K
|wn(x)|dx ,
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we get that the sequence

(ŵn) is bounded in L∞(Rd; Cr) .

Lebesgue theorem on dominated convergence now implies

ŵn −→ 0 strongly in L2
loc(R

d; Cr) ,

while quadratic nature of form Q̃ gives

(62)

∫
K(0,R)

Re Q̃ ◦ ŵn −→ 0 ,

where R is positive arbitrary number.
Taking Fourier transform of (59), we get

2πi√
1 + |ξ|2

∑
k

ξkA
kŵn −→ 0 strongly in L2(Rd; Cq) .

Inequality 1
|ξ| 6

2√
1+|ξ|2

, valid for |ξ| > 1, gives:

(63)
1

|ξ|
∑
k

ξkA
kŵn −→ 0 strongly u L2(S; Cq) ,

where we have denoted S := Rd \K(0, 1). Now, Lemma 2 with notation

λ = ŵn(ξ) , η =
ξ

|ξ|
,

implies

Re Q̃ ◦ ŵn(ξ) > −ε|ŵn(ξ)|2 − Cε
q∑
i=1

∣∣∣∑
j,k

aijk
ŵnj (ξ)ξk

|ξ|

∣∣∣2 ,
and after integration we arrive to

(64)

∫
S

Re Q̃ ◦ ŵn(ξ)dξ > −ε
∫
S
|ŵn(ξ)|2dξ − Cε

q∑
i=1

∫
S

∣∣∣∑
j,k

aijk
ŵnj (ξ)ξk

|ξ|

∣∣∣2dξ .
Since Fourier transform is an isometry on L2(Rd; Cr), and weak convergence of (wn)
implies its boundedness in L2(Rd; Rr), there exists constant C > 0, such that∫

Rd
|ŵn|2 6 C , n ∈ N .

Passing to the limit in (64), from (63) we get

lim
n

∫
S

Re Q̃ ◦ ŵn > −εC .

This implies

lim
n

∫
S

Re Q̃ ◦ ŵn > 0 ,

which together with (62) gives the claim.
Q.E.D.
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Remark 1. Notice that sequence (Q ◦ un) always has a convergent subsequence in
the space of distributions. Indeed, since Q is a quadratic form and (un) is bounded in
L2
loc(Ω; Rr), it implies boundedness of vn := Q◦un in L1

loc(Ω). Thus, for any test function
ϕ, the sequence (ϕvn) is bounded in L1(Ω), and consequently in Mb(Ω) as well. This
implies the existence of a subsequence weakly-∗ converging inMb(Ω), and in turn in the
space of distributions as well. Moreover, if Φ ⊆ D(Ω) is countable, by Cantor’s diagonal
procedure we can extract a subsequence of the sequence (vn) (not relabelled), such that
for every ϕ ∈ Φ, (ϕvn) converges in the space of distributions. Let Φ be a set of functions
(ϕn), such that ϕn is identically equal to one on the set{

x ∈ Ω : d(x,Fr Ω) >
1

n

}
∩K(0, n) .

Then
(∀ψ ∈ D(Ω))(∃n0 ∈ N) n > n0 =⇒ ϕn|suppψ

= 1 .

For fixed ψ ∈ D(Ω) denote by nψ the smallest n0 satisfying the above property. Now for
every n > nψ it holds

D′(Ω)〈 vn, ψ 〉D(Ω) = D′(Ω)〈ϕnψv
n, ψ 〉D(Ω) −⇀ lψ .

Taking

D′(Ω)〈 v, ψ 〉D(Ω) := lψ ,

we get vn −⇀ v in the space of distributions.

Corollary 1. Under assumptions of Theorem 2, assume that the quadratic form Q
additionally satisfies

(∀λ ∈ Λ) Q(λ) = 0 .

Then for every sequence (un) satisfying (P1) and (P2), it holds

Q ◦ un −⇀ Q ◦ u u D′(Ω) .

Dem. Applying Theorem 2 to forms Q and −Q, we conclude that every subsequence
of (Q ◦ un) converging in the distributions, must converge to Q ◦ u. Preceding remark
implies that every subsequence of (Q ◦ un) has a weakly converging subsequence in the
distributions, which implies that the whole sequence converges to Q ◦ u.

Q.E.D.

Using the calculation of the set Λ from the example we considered before Lemma 2,
we can prove a improved version of the div-rot lemma than the one given in Lemma 1:

Corollary 2. Assume that the sequences (vn) and (wn) satisfy

vn −⇀ v weakly in L2
loc(Ω; Rd) ,

wn −⇀ w weakly in L2
loc(Ω; Rd) ,

(div vn) is relatively compact in H−1
loc(Ω) ,

(rot wn) is relatively compact in H−1
loc(Ω; Rd) .

Then it holds
vn · wn −⇀ v · w weakly in D′(Ω) .
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Dem. We have already shown

Λ =
{

(λ,µ) ∈ Rd ×Rd : λ · µ = 0
}
,

and since Q(λ,ν) = λ·ν, the conditions of the Corollary 1 are satisfied. Set un = (vn,wn)
and the claim follows from its application.

Q.E.D.

Remark 2. In fact, it can be shown that Q(λ,ν) = aλ · ν, a ∈ R, is the only non-
affine function (up to an affine function) which is sequentially weakly−∗ continuous on
sequences satisfying the conditions of Corollary 2.

87





Literature

Literature

[1] Jelena Aleksi�c, Darko Mitrovi�c: On the compactness for two dimensional scalar
conservation law with discontinuous flux, Comm. Math. Sci. 7 (2009) 963–971.

[2] Nenad Antoni�c, Kre�simir Burazin: On certain properties of spaces of locally
Sobolev functions, in Proceedings of the Conference on applied mathematics and
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Summary

Summary

H-measures are matrix Radon measures describing the behaviour of weak limits of
quadratic quantities. They proved to be very successful tool in investigations of asymp-
totic limits of quadratic quantities. However, they turned insufficient for nonlinear prob-
lems. Recent investigations resulted with the introduction of variant H-measures, so
called H-distributions, which surmount some of the noted inadequacies, and allow the
treatment of terms involving sequences of Lp functions.

Basic tools for the construction of aforementioned microlocal objects are pseudod-
ifferential and singular integral operators. In the L2 case, Fourier transform together
with Plancherel’s theorem proved to be a very efficient tool. However, in the Lp case one
needs to use the theory of Fourier multipliers (Marcinkiewicz theorem, Hörmander-Mihlin
theorem) which requires a higher regularity of the space of test functions, together with
corresponding bounds on derivatives.

There are two crucial steps in the construction of the above mentioned microlocal
objects. First one is an application of the First commutation lemma to pass from trilinear
functional to a bilinear one, while the second one is an application of the Schwartz kernel
theorem to identify the obtained bilinear functional with an element from the dual of
smooth functions on the product domain.

We showed the Krasnoselskij type of result for unbounded domains, and with its
help we lowered the regularity of the symbol needed for a variant of the First commuta-
tion lemma for the Lp spaces. We also showed how the same idea can be used to improve
the results on existence of H-distributions on the Lebesgue spaces with mixed norm. Fur-
thermore, we we studied how further we can lower the regularity of the Sobolev multiplier
under the assumption that the symbol of the Fourier multiplier operator satisfies only the
Hörmander condition. Whats more, in the case when the symbol of the Fourier multiplier
is defined on the unit sphere, Luc Tartar showed that the result remains valid in the L2

case even when we have coefficients from the VMO space (the space of functions of van-
ishing mean oscillations). We arrived at the same conclusion in the Lp space. In the end
we showed a variant of the First commutation lemma in the case when we have general
pseudodifferential operator instead of the Fourier multiplier operator. For that we used
the bounds from Hwang’s results on boundedness of pseudodifferential operators.

To give a better description of H-distributions, we refined the notion of distributions
by introducing a notion of anisotropic distributions of finite order. Those are distributions
which have different order in different coordinate directions. The main obstacle was
adjusting the Schwartz kernel theorem to this new notion. We used Dieudonne’s approach
which used the structure theorem of distributions. An advantage of this approach is that
the order of distribution increases only with respect to one variable, while it remains
unchanged with respect to the other. This allowed us to consider partial differential
equations with continuous coefficients in the localisation principle of H-distributions. Up
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to now, we could only consider the smooth case. Let us emphasise that continuous
coefficients were optimal in the L2 case.

Motivated by Panov’s approach in the article on ultra-parabolic H-measures, we
showed a variant of compactness by compensation. For that we used a variant of H-
distributions, which we obtained from a result on the extension of the bilinear function-
als to Bôchner spaces. This variant of H-distributions allowed us to consider variable
discontinuous coefficients in differential restrictions and quadratic form. What is more,
the derivatives in differential restrictions could be of fractional order. Because of that,
we do not have symbols defined on the unit sphere, but on a more general manifold.
For this reason we had to use the Marcinkiewicz multiplier theorem for continuity of the
Fourier multiplier operators. We applied this new variant of compactness by compensa-
tion to a nonlinear degenerate equation of parabolic type, for which the known theory of
H-measures was not adequate.

Keywords: H-measures, H-distributions, Fourier multiplier, kernel theorem, compact-
ness by compensation.
Mathematics subject classification 2010: 35B99, 35D30, 35S05, 42B15, 46F05.
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Sažetak

Sažetak

H-mjere su matrične Radonove mjere koje opisuju slabi limes kvadratičnih izraza.
Pokazale su se kao vrlo uspješan alat za proučavanje asimptotičkog ponašanja kvadratič-
nih izraza. No, nisu dovoljno dobre za promatranje nelinearnih zadaća. Nedavna is-
traživanja su rezultirala uvodenjem inačica H-mjera, nazvanih H-distribucijama, koje uk-
lanjaju neke od uočenih nedostataka, i omogućuju proučavanje izraza koji sadrže nizove
Lp funkcija.

Osnovni alati za konstrukciju navedenih mikrolokalnih objekata su pseudodiferen-
cijalni i singularni integralni operatori. U slučaju L2 funkcija, Fourierova pretvorba je
preko Plancherelovog teorema vrlo efikasan alat. Medjutim, u Lp teoriji moramo koristiti
teoriju Fourierovih množitelja (posebno Marcinkiewiczev ili Hörmander-Mihlinov teorem)
koja zahtijevaja i veću regularnost prostora probnih funkcija, te odgovarajuće ocjene na
derivacije.

Dva su ključna koraka u dokazu egzistencije ovih mikrolokalnih objakata. Prvi je
korǐstenje prve komutacijske leme da bi se iz trilinearnog funkcionala dobio bilinearni
funckional, dok je drugi primjena Schwartzovog teorema o jezgri kako bi se dobiveni bi-
linearni funkcional poistovjetio s elementom duala glatkih funkcija na produktnoj domeni.

Pokazali smo Krasnosel’skijev tip rezultata za neograničene domene, te pomoću
njega smanjili regularnost simbola potrebnu za varijantu prve komutacijske leme za
Lp prostore. Vidjeli smo da se ista ideja može iskorititi i za pobolǰsanje rezultata
na Lebesgueove prostore s mješovitom normom. Nadalje, proučili smo koliko možemo
smanjiti regularnost Soboljevljevog množitelja uz pretpostavku da simbol Fourierovog
množitelja zadovoljava samo Hörmanderov uvjet. Štovǐse, u slučaju kad je simbol Fouri-
erovog množitelja definiran na sferi, Tartar je pokazao da rezultat u L2 ostaje valjan i za
koeficijente iz prostora VMO (prostora funkcija s ǐsčezavajućim srednjim oscilacijama).
Mi smo došli do istog zaključka i za Lp slučaj. Na kraju smo pokazali varijantu prve ko-
mutacijske leme za slučaj kad umjesto Fourierovog množitelja imamo općeniti pseudodife-
rencijalni operator. Za to smo koristili ocjene iz Hwangovih rezultata o neprekidnosti
pseudodiferencijalnih operatora.

Za bolji opis H-distribucija, profinili smo pojam distribucije uvodenjem pojma ani-
zotropnih distribucija konačnog reda. To su distribucije koje imaju raličit red u različitim
koordinatnim smjerovima. Glavna prepreka u tom smjeru je bila prilagodba Schwartzovog
teorema o jezgri. Koristili smo Dieudonneov dokaz koji koristi strukturni teorem za dis-
tribucije. Prednost ovog pristupa u odnosnu na ostale leži u činjenici da se red jezgre
povećava samo po jednoj varijabli, dok po drugoj ostaje nepromijenjen. Ovo nam je
omogućilo da u lokalizacijskom svojstvu H-distribucija promatramo jednadžbe čiji koefi-
cijenti vǐse nisu glatke funkcije, već su samo neprekidne. Naglasimo da su neprekidni
koeficijenti bili optimalni u L2 slučaju.

Motivirani Panovljevim pristupom ultraparaboličkim H-mjerama, pokazali smo var-
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ijantu kompaktnosti kompenzacijom. Za to nam je bila potrebna varijanta H-distribucija
koju smo dobili koristeći rezultat o proširenju bilinearnih funkcionala na Bôchnerove pros-
tore. Ova varijanta H-distribucija nam je omogućila korǐstenje koeficijenata u kvadratnoj
formi i u diferencijalnim ograničenjima koji su varijabilne prekidne funkcije. Štovǐse,
derivacije u diferencijalnim ograničenjima mogu biti i razlomljenog reda. Iz tog razloga,
nemamo vǐse simbol definiran na sferi, vec na općenitijoj mnogostrukosti, za što smo
trebali koristiti Marcinkiewiczev teorem za neprekidnost Fourierovih množitelja. Do-
biveni rezultat kompaktnosti kompenzacijom smo primijenili na nelinearnu degeneriranu
jednadžbu paraboličkog tipa za koju poznata L2 teorija nije bila dostatna.

Ključne riječi: H-mjere, H-distribucije, Fourierov množitelj, teorem o jezgri, kompakt-
nost kompenzacijom.
Mathematics subject classification 2010: 35B99, 35D30, 35S05, 42B15, 46F05.
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