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Abstract

In the last decade low-rank tensors decompositions have been established as a new tool

in scientific computing to address large-scale linear and multilinear algebra problems,

which would be intractable by classical techniques. Since tensors can be given only as the

solution of some algebraic equation, it is important to develop solvers working within the

compressed storage scheme. That is what this thesis is concerned with, focusing on Tucker

format, one of the most commonly used low-rank representation of tensors, and Hadamard

product, which features prominently in tensor-based algorithms in scientific computing

and data analysis. Fast algorithms are attained by combining iterative methods, such

as Lanczos method and randomized algorithms, with fast matrix-vector products that

exploit the structure of Hadamard products. Algorithms are implemented in programming

language Julia and a new Julia library for tensors in Tucker format is presented.

Key words

Tensors, Tucker format, Tucker decomposition, higher-order singular value decomposition

(HOSVD), Hadamard products, low-rank approximation.
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Sažetak

Posljednjih godina tenzorske dekompozicije malog ranga postaju bitan alat u znanstvenom

računanju kod rješavanja problema velikih dimenzija linearne i multilinearne algebre, koje

ne možemo riješiti klasičnim tehnikama. S obzirom na to da tenzori mogu biti zadani kao

rješenja neke algebarske jednadžbe, izuzetno je važno razviti algoritme koji rade direktno s

komprimiranim tenzorskim formatima. U ovoj radnji fokusiramo se na Tuckerov format,

jednu od najčešće korǐstenih reprezentacija malog ranga, i Hadamardov produkt, koji

ima veliku ulogu u tenzorskim algoritmima za znanstveno računanje i obradu podataka.

Brze algoritme dobili smo kombinirajući iterativne metode, poput Lanczosove metode i

randomiziranih algoritama, s brzim matrično-vektorskim množenjem koje se temelji na

posebnoj strukturi Hadamardovog produkta. Algoritmi su implementirani u novu Julia

biblioteku.

Ključne riječi

Tenzori, Tuckerov format, Tuckerov rastav, singularna dekompozicija vǐse reda (HOSVD),

Hadamardov produkt, aproksimacija malog ranga.

iii



Contents

Abstract ii
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Chapter 1

Introduction

A tensor X ∈ RI1×I2×···×IN is an N -dimensional array, with the integer In, for n =

1, . . . , N , denoting the size of the nth “dimension”, which is called mode. We say that X

is a tensor of order N . Vectors and matrices are tensors of order 1 and 2, respectively,

and for visualization we use tensors of order 3 (see Figure 1.1). Each element of a tensor

is defined by its N indices and denoted as xi1i2···iN , in = 1, 2, . . . , In, n = 1, 2, . . . , N .

The Hadamard product Z = X ∗ Y for two tensors X,Y ∈ RI1×I2×···×IN is defined as the

entrywise product zi1i2···iN = xi1i2···iNyi1i2···iN , for in = 1, 2, . . . , In, n = 1, 2, . . . , N .

Figure 1.1: Tensors of order one, two and three, with each cube denoting one element.

1.1 Motivation

Tensor decompositions originated with Hitchcock in 1927 [18, 17], but they received scant

attention until the second half on the 20th century, when they became extremely popular,

first in the fields of psychometrics and chemometrics, and later expanding to other fields,

including signal processing, numerical linear algebra, computer vision, numerical analysis,

graph analysis, neuroscience and more [20].

The idea of decomposing a tensor into a core tensor multiplied (or transformed) by a
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matrix along each mode was first introduced by Tucker in 1963 [30]. Today best known as

the Tucker decomposition, during the years it went by many different names – three mode

factor analysis (3MFA/Tucker3), three mode principal component analysis (3MPCA),

N-mode principal component analysis (N-mode PCA), higher order singular value decom-

position (HOSVD) and N-mode singular value decomposition (N-mode SVD).

One of the methods Tucker introduced in his work and referred to as the “Tucker1”

method, today is a well-established approach for obtaining the Tucker decomposition and

is better known as the higher-order singular value decomposition (HOSVD) from the work

of De Lathauwer, De Moor and Vandewalle in 2000 [8], who showed that the HOSVD is

a convincing generalization of the matrix SVD.

There are various applications of the Tucker decomposition, in image processing for

face recognition and human motion, modeling and transferring facial expressions, image

data compression, construction of Kronecker product approximations for preconditioners

and rendering texture in two-dimensional images, for watermarking MPEG videos, in data

mining for identifying handwritten digits, in multimode statistical analysis and clustering,

etc. [20].

The Hadamard product is a fundamental building block of tensor-based algorithms

in scientific computing and data analysis. This is partly because Hadamard products

of tensors correspond to products of multivariate functions. To see this, consider two

functions u, v : [0, 1]N → R and discretizations 0 ≤ ξ
(n)
1 < ξ

(n)
2 < · · · < ξ

(n)
In
≤ 1 of

the interval [0, 1]. Let the tensors X and Y contain the functions u and v evaluated

on these grid points, that is, xi1···iN = u(ξ
(1)
i1
, . . . , ξ

(N)
iN

) and yi1···iN = v(ξ
(1)
i1
, . . . , ξ

(N)
iN

),

for in = 1, . . . , In. Then Z, a tensor containing the function values of the product uv,

satisfies Z = X ∗ Y. Applied recursively, Hadamard products allow to deal with other

nonlinearities, including polynomials in u, such as 1 + u + u2 + u3 + · · · , and functions

that can be well approximated by a polynomial, such as exp(u). Other applications of

Hadamard products include the computation of level sets [9], reciprocals [22], minima and

maxima [11], variances and higher-order moments in uncertainty quantification [6, 10], as

well as weighted tensor completion [12].

The N -tuple of ranks of mode-n matricizations of a tensor of order N is referred to

as the multilinear rank of a tensor, and the Tucker format compactly represents tensors

of low multilinear rank. For an I1× · · · × IN tensor of multilinear rank (R1, . . . , RN) only
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R1 · · ·RN +R1I1 + · · ·+RNIN instead of I1 · · · IN entries need to be stored. This makes

the Tucker format particularly suitable for tensors of low order (say, N = 3, 4, 5) and it

in fact constitutes the basis of the Chebfun3 software for trivariate functions [16].

For function-related tensors, it is known that smoothness of u, v implies that X,Y can

be well approximated by low-rank tensors [14, 26]. In turn, tensor Z = X ∗Y also admits

a good low-rank approximation. This property is not fully reflected on the algebraic

side; the Hadamard product generically multiplies, and thus often drastically increases,

multilinear ranks. In turn, this makes it difficult to exploit low ranks in the design of

computationally efficient algorithms for Hadamard products.

1.2 Contributions of the thesis

The main contribution of this thesis is the development of new algorithms for recompres-

sion of Hadamard products of tensors in Tucker format by combining an existing method

for Tucker decomposition - the higher-order singular value decomposition, with iterative

methods for low-rank matrix approximations, such as Lanczos [27] and randomized [15]

algorithms. These algorithms are based on matrix-vector multiplication, so we exploit

the well-known structure of the Hadamard products to create new fast matrix-vector

multiplication suitable for this particular problem, which results in significant reduction

of computational and memory requirements.

We investigate all possibilities for achieving such reductions, resulting in four differ-

ent algorithms called HOSVD1, HOSVD2, HOSVD3 and HOSVD4. For example, when

dealing with tensors of order N = 3 with modes of equal size I1 = I2 = I3 = I and

all involved multilinear ranks bounded by R, we will see below that the straightforward

recompression technique from HOSVD2 algorithm, based on combining the HOSVD with

the randomized algorithms requires O(IR4 + R8) operations and O(IR2 + R6) memory.

This excessive cost is primarily due to the construction of an intermediate R2 ×R2 ×R2

core tensor, limiting such an approach to small values of R. Algorithms HOSVD3 and

HOSVD4 avoid this effect by exploiting structure when performing multiplications with

the matricizations of Z. The HOSVD4 algorithm requires only O(IR3 + R6) operations

and O(IR2 +R4) memory.
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More precisely:

• HOSVD1 algorithm implements straightforward approach - first create full tensors

out of the given Tucker tensors, multiply them element-wise and then get the Tucker

representation of the product by applying HOSVD, which we speed up by combining

it with randomized algorithm for calculation of factor matrices.

• HOSVD2 algorithm exploits the structure by getting the QR factorization of each

of the factor matrices from the known representation, uses orthonormal matrices

as the resulting factor matrices and multiplies the core tensor by upper triangular

matrices. If needed, it performs additional HOSVD on the resulting core tensor

to achieve requested multilinear rank, using randomized algorithm. This algorithm

gives best results when applied on tenors with small multilinear ranks.

• HOSVD3 algorithm is the one that fully exploits the structure. It calculates factor

matrices by applying Lanczos algorithm combined with structure-exploiting matrix-

vector multiplication and also exploits the structure for core tensor calculation. This

algorithm works good for large tensors with reasonably large multilinear ranks.

• HOSVD4 algorithm calculates factor matrices as orthonormal basis for approxima-

tions of range of the matricized tensor by combining randomized algorithm with

structure-exploiting matrix-vector multiplication with rank-one vectors. The struc-

ture is again exploited to get core tensor and additional HOSVD is performed if nec-

essary, to attain requested multilinear rank. This combination is the most promising

one and we will show that it can work with extremely large tensors with reasonably

large multilinear ranks.

All algorithms presented in this thesis have been implemented in the Julia program-

ming language [5], in order to attain reasonable speed in our numerical experiments at

the convenience of a Matlab implementation. As a by-product of this work, we pro-

vide a novel Julia library called TensorToolbox, which is meant to be a general-purpose

library for tensors and tensors in Tucker format. It is available on https://github.com/

lanaperisa/TensorToolbox.jl and includes all functionality of the ttensor class from

the Matlab Tensor toolbox [3].

The paper following this research is published in SIAM Journal on Scientific Comput-

ing [21].
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1.3 Chapter-by-chapter overview

As stated in the definition of a tensor at the beginning of this chapter, we will only be

interested in tensors with real entries. Even though most of the theory can be generalized

to tensors over field C, this will not be of our interest.

Throughout the text, when needed, we use Julia code to explain how certain operations

are computed. The Julia syntax is very similar to Matlab, though easily understandable.

Chapter 2 is the preliminaries chapter in which we present matrix theory and algo-

rithms needed for our work with tensors. Particularly important are the properties of

different matrix products from Section 2.2 and the details of Lanczos and randomized

algorithms presented in Section 2.3.

In Chapter 3 we introduce basic tensors operations - mode-n matricization and n-mode

product, together with their properties (Section 3.1), define tensors in Tucker format and

explain its importance in Section 3.2, while in Sections 3.3 and 3.4 we present algorithms

for obtaining the Tucker representation of a given tensor – the standard HOSVD algorithm

and its modification HOSVD-AR, together with most important result involving them.

In Section 3.5 we explain how some of the presented operations and algorithms can be

efficiently computed.

In Chapter 4 we introduce the problem of recompression of Hadamard products of

tensors in Tucker format and offer and analyze ideas on how to solve it, introducing new

operations for fast matrix-vector multiplication and calculation of core tensor, which are

then studied in details in Chapter 5.

Chapter 6 includes complexity analysis of the algorithms in Section 6.1, and numer-

ical experiments in Section 6.2, where we compare all four algorithms and provide the

recommendation for which algorithm to use depending on the sizes and multilinear ranks

of the involved tensors.

The functionality of the Julia package is presented in Appendix A.

1.4 Computational environment

All algorithms from this thesis are implemented and tested in Julia version 0.5.2., on a

PC with an Intel(R) Core(TM) i5-3470 quadcore 3.20GHz CPU, 256KB L2 cache, 6MB

L3 cache, and 4GB of RAM. Multithreading is turned on and all four cores are utilized.
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1.5 Notation

Throughout this thesis we follow notation introduced in [20]. Real numbers or scalars are

denoted as lowercase letters x, y ∈ R, vectors as boldface lowercase letters x = (xi) ∈ Rn

and matrices as boldface capital letters A = (aij) ∈ Rm×n. Tensors are denoted by

boldface Euler script letters X = (xi1i2···iN ) ∈ RI1×I2×···×IN (for LATEX formatting see [19,

Appendix A]).

The columns and rows of a matrix are written, respectively, as

A = [ a1 · · · an ] and A =


aT1
...

aTm

 .
We use Julia notation to denote subset of matrix columns and rows. For example, we

can partition matrix A ∈ Rm×n as

A =
[
A[ : , 1 : k ] A[ : , k + 1 : m ]

]
, for any 1 ≤ k ≤ n,

or

A =

 A[ 1 : l, : ]

A[ l + 1 : n, : ]

 , for any 1 ≤ l ≤ m.

Sometimes we will also use short notation A:k = A[ : , k ] and x1:k = x[ 1 : k ] for x ∈ Rn,

1 ≤ k ≤ n.

6



Chapter 2

Preliminaries

In this chapter we provide preliminaries for our work with tensors - Section 2.1 introduces

basic results of linear algebra, vector and matrix norms, inner product and matrix factor-

izations; different matrix products and their properties are presented in Section 2.2, while

Section 2.3 contains theory of iterative methods for low-rank matrix approximation. We

are interested only in matrices with real entries, so we restrict our discussion to field R

whenever possible.

2.1 Matrix analysis

Throughout this section we follow [13] and additionally [29], omitting the proofs that are

not important for our work.

2.1.1 Linear algebra basics

There are two important subspaces associated with a matrix A ∈ Rm×n. The range

(column space) and the null space of A are defined, respectively, as

R(A) = {y ∈ Rm | y = Ax, for some x ∈ Rn} ,

N (A) = {x ∈ Rn | Ax = 0} .

Furthermore, if A = [ a1 · · · an ], then

R(A) = span {a1, · · · , an} .

The rank of a matrix A is defined as

rank(A) = dim(R(A)).

7



Rank is unchanged by left or right multiplication by a non-singular matrix and it

holds rank(A) = rank(AT ), from which it follows rank(A) ≤ min{m,n}. If rank(A) =

min{m,n}, we say that A has full rank.

2.1.2 Norms and inner product

For a vector x = (xi) ∈ Rn we use the 2-norm

‖x‖2 =

√√√√ n∑
i=1

x2i =
√

xTx
(

=
√

x∗x, if x ∈ Cn
)
,

while for a matrix A = (aij) ∈ Rm×n we use two different norms - the (induced) 2-norm

‖A‖2 = sup
x∈Rn

‖Ax‖2
‖x‖2

= sup
x∈Rn

‖x‖2=1

‖Ax‖2,

and the Frobenius norm

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

a2ij =
√

tr(ATA) =
√

tr(AAT ). (2.1)

Here, tr(A) denotes the trace of A, the sum of its diagonal elements, for which

tr(AB) = tr(BA)

holds. For any A ∈ Rm×n, B ∈ Rn×p, matrix norms satisfy

• ‖A‖2 = ‖AT‖2, ‖A‖F = ‖AT‖F ,

• ‖AB‖2 ≤ ‖A‖2‖B‖2, ‖AB‖F ≤ ‖A‖F‖B‖F ,

• ‖AB‖F ≤ ‖A‖F‖B‖2, ‖AB‖F ≤ ‖A‖2‖B‖F . (2.2)

Furthermore, the inner product of matrices A,B ∈ Rm×n,

〈A,B〉 = tr
(
ATB

)
, (2.3)

corresponds to Frobenius norm, ‖A‖F =
√
〈A,A〉. The following property holds,

‖A−B‖2F = ‖A‖2F + ‖B‖2F − 2〈A,B〉. (2.4)

8



2.1.3 Orthogonality and the SVD

A set of Rn vectors {x1, . . . ,xk} is orthogonal if xTi xj = 0, whenever i 6= j, and orthonor-

mal if it is orthogonal and ‖xj‖2 = 1, for every j = 1, . . . , k.

A collection of subspaces S1, . . . ,Sk in Rn is mutually orthogonal if xTy = 0 whenever

x ∈ Si and y ∈ Sj, for i 6= j. The orthogonal complement of a subspace S ⊂ Rn is defined

by

S⊥ =
{
y ∈ Rn | yTx = 0, for all x ∈ S

}
,

and it is easy to show that R(A)⊥ = N (AT ), for any matrix A.

A matrix Q ∈ Rn×n is said to be orthogonal if QTQ = QQT = I, where I is the n×n

identity matrix. Columns qj of the orthogonal Q form an orthonormal basis for Rn. A

rectangular matrix with orthonormal columns, i.e. Q ∈ Rm×n such that QTQ = I, is

called orthonormal.

The vector 2-norm is invariant under orthogonal transformations,

‖Qx‖2 = ‖x‖2, whenever QTQ = I,

and for any m× n orthonormal Q,

‖Q‖2 = 1, ‖Q‖F =
√
n. (2.5)

The matrix 2-norm and the Frobenius norm are also invariant with respect to orthog-

onal transformations - for U and V orthonormal,

‖UAVT‖2 = ‖A‖2, ‖UAVT‖F = ‖A‖F . (2.6)

Theorem 2.1.1. [13, Theorem 2.5.2] For every A ∈ Rm×n there exist orthogonal matrices

U = [ u1 · · · um ] ∈ Rm×m and V = [ v1 · · · vn ] ∈ Rn×n

such that

UTAV = Σ,

where Σ ∈ Rm×n is a diagonal matrix, whose diagonal entries σj are nonnegative and in

nonincreasing order, that is, σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, where p = min{m,n}.

This theorem defines the decomposition known as the singular value decomposition

(SVD) of A,

A = UΣVT . (2.7)
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Entries σ1, . . . , σp are uniquely determined and called the singular values of A, while

orthonormal vectors uj and vj represent the left singular vectors and the right singular

vectors of A, respectively.

The SVD reveals a great deal about the structure of a matrix. If the SVD of A is given

by (2.7), and we define r by σ1 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0, then rank(A) = r and

R(A) = span{u1, . . . ,ur}, (2.8)

N (A) = span{vr+1, . . . ,vn}, (2.9)

and we have the SVD expansion

A =
r∑
j=1

σjujv
T
j .

The matrix 2-norm and the Frobenius norm are connected to the SVD,

‖A‖2 = σ1, ‖A‖F =
√
σ2
1 + σ2

2 + · · ·+ σ2
r , (2.10)

therefore the equivalence

‖A‖2 ≤ ‖A‖F ≤
√
r‖A‖2. (2.11)

Eliminating σr+1 = · · · = σp = 0 from Σ and appropriate columns of U and V in (2.7)

leads to the truncated SVD

A = UrΣrV
T
r , (2.12)

with Ur ∈ Rm×r, Vr ∈ Rn×r orthonormal and Σr = diag(σ1, . . . , σr) ∈ Rr×r.

SVD also defines the best low-rank approximation to a given matrix.

Theorem 2.1.2. [13, Theorem 2.5.3] Let the SVD of A ∈ Rm×n be given by Theo-

rem 2.1.1. If k < r = rank(A) and

Ak =
k∑
j=1

σjujv
T
j ,

then

‖A−Ak‖2 = min
rank(B)≤k

‖A−B‖2 = σk+1

and

‖A−Ak‖F = min
rank(B)≤k

‖A−B‖F =
√
σ2
k+1 + · · ·+ σ2

r .
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The SVD can be computed in O(min{mn2,m2n}) operations, after which it can be

used as a tool for different problems - determining the rank of a matrix can be done by

counting the number of singular values greater than a judiciously chosen tolerance and

finding an orthonormal basis of a range or a null space via (2.8) and (2.9). Also, the

standard method for computing the 2-norm and the Frobenius norm of a matrix is by its

singular values (2.10).

2.1.4 Orthogonal projectors

Let S ⊂ Rn be a subspace. Matrix P ∈ Rn×n is the orthogonal projector onto S if

PT = P, (2.13)

P2 = P, (2.14)

R(P) = S. (2.15)

For any x ∈ S, Px = x. If P is an orthogonal projector, I− P is also an orthogonal

projector, called the complementary projector to P, and it projects onto S⊥, or the

nullspace of P. It is easy to show that (2.13) and (2.14) hold for I − P. We can see

that (2.15) also holds by taking x ∈ N (P). Then

Px = 0 ⇒ (I−P)x = x,

which gives N (P) ⊂ R(I−P). Conversely, for any x ∈ Rn,

P(I−P)x = (P−P2)x = 0,

giving R(I−P) ⊂ N (P). We conclude R(I−P) = S⊥.

If P1 and P2 are each orthogonal projectors onto S, then for any x ∈ Rn we have

‖(P1 −P2)x‖22 = xT (P1 −P2)
T (P1 −P2)x

= xT (P1 −PT
1 P2 −PT

2 P1 + P2)x

= (P1x)T (I−P2)x + (P2x)T (I−P1)x. (2.16)

From R(P1) = R(P2) = S follows P1x = P2x = x, therefore the right-hand side of (2.16)

is zero, showing that the orthogonal projector for a subspace is unique.

If the columns of Q = [ q1 · · · qk ] form an orthonormal basis for a subspace S ⊂ Rn,

then P = QQT is the unique orthogonal projector onto S. Obviously, (2.13) and (2.14)

11



hold. And since every x ∈ S can be written as

x =
k∑
j=1

(qTj x)qj =
k∑
j=1

(qjq
T
j )x,

we have x ∈ R(QQT ), and vise versa, if x ∈ R(QQT ), there exists y ∈ Rn such that

x =
k∑
j=1

(qjq
T
j )y =

k∑
j=1

(qTj y)qj,

following x ∈ S. This gives R(QQT ) = S.

Moreover, if Q is any orthonormal matrix, then P = QQT is a unique projector onto

R(Q).

There are several important orthogonal projectors associated with the singular value

decomposition. Suppose A = UΣVT is the SVD of A ∈ Rm×n and r = rank(A). If we

have the U and V partitionings

U =
[

Ur Ũr

]
, V =

[
Vr Ṽr

]
,

then, from (2.8) and (2.9),

UrU
T
r = projector onto R(A),

ŨrŨ
T
r = projector onto R(A)⊥ = N (AT ),

VrV
T
r = projector onto N (A)⊥ = R(AT ),

ṼrṼ
T
r = projector onto N (A).

Furthermore, for an orthogonal projector P,

‖Px‖2 ≤ ‖x‖2, for any vector x and (2.17)

‖PA‖F ≤ ‖A‖F , for any matrix A. (2.18)

The first inequality follows from the fact that x can be written as a sum of two orthogonal

components x = Px + (I−P)x, therefore ‖x‖2 = ‖Px‖2 + ‖(I−P)x‖2. The second one

follows from the Frobenius norm characterization (2.1),

‖A‖2F − ‖PA‖2F = tr(ATA)− tr(ATPTPA)

= tr(ATA)− tr(ATPA) = tr(AT (I−P) A)

= tr
[
AT (I−P)T (I−P) A

]
12



= ‖ (I−P) A‖2F ≥ 0.

From (2.17) follows ‖P‖2 ≤ 1, while on the other hand, property (2.14) gives ‖P‖2 =

‖P2‖2 ≤ ‖P‖22, from which it follows ‖P‖2 ≥ 1. Therefore, every orthogonal projector

P 6= 0 satisfies

‖P‖2 = 1. (2.19)

2.1.5 Spectral decomposition of a symmetric matrix

The eigenvalues of a general quadratic matrix A ∈ Rn×n are the n roots of its character-

istic polynomial p(x) = det(xI−A), where det(A) denotes the determinant of a matrix.

The set of these roots is called the spectrum and is denoted by λ(A). Since polynomials

with real coefficients can have complex roots, λ(A) ⊂ C. If λ ∈ λ(A), then the nonzero

vectors x that satisfy

Ax = λx (2.20)

are referred to as the eigenvectors. Obviously, x can be complex, too, so in general we

have x ∈ Cn.

If λ(A) = {λ1, . . . , λn}, then

det(A) = λ1λ2 · · ·λn and tr(A) = λ1 + · · ·+ λn.

Also, we can characterize the matrix 2-norm by its largest eigenvalue

‖A‖2 =
√
λmax(ATA). (2.21)

Setting Λ = diag(λ1, . . . , λn) and X = [ x1 · · · xn ], with xj being the eigenvector

associated with each eigenvalue λj, (2.20) can be written as AX = XΛ. Moreover, if each

eigenvalue has the same number of linearly independent eigenvectors associated with it as

is its multiplicity as the root of the characteristic polynomial, matrix X is non-singular,

so we have

A = XΛX−1. (2.22)

Decomposition (2.22) is called the spectral decomposition or the eigendecomposition of A.
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Theorem 2.1.3. [13, Theorem 7.4.1] For every A ∈ Rn×n, there exists an orthogonal

matrix Q ∈ Rn×n such that

QTAQ = T =


T11 T12 · · · T1k

T22 · · · T2k

. . .
...

Tkk,

 (2.23)

where T is a block upper triangular with same eigenvalues as A. Furthermore, its eigen-

values are the union of eigenvalues of its diagonal blocks Tii, which are either a 1 × 1

matrix containing a real eigenvalue or a 2× 2 matrix with complex conjugate eigenvalues.

Decomposition (2.23) is known as the real Schur decomposition.

If we are, however, dealing with a symmetric matrix A = AT ∈ Rn×n, then its

spectrum will be a subset of R. We can see this by taking an eigenvalue λ of A and its

normalized eigenvector x, ‖x‖2 = 1. Now

Ax = λx ⇒ λ = x∗Ax = x∗ATx = x∗Ax = λ.

It follows that the matrix T from the Schur decomposition (2.23) is upper triangular with

eigenvalues on the diagonal and symmetric, since

T = QTAQ = QTATQ = TT .

So the Schur decomposition of a symmetric matrix A is exactly its spectral decomposi-

tion (2.22) with Q = X and T = diag(λ1, . . . , λn).

From this it follows that the eigenvectors of a symmetric matrix can be chosen to

be real and mutually orthogonal, so the spectral decomposition of a symmetric matrix

A ∈ Rn×n can be written as

A = XΛXT , (2.24)

where X = [ x1 · · · xn ] ∈ Rn×n is orthogonal with eigenvectors of A as columns, and

Λ = diag(λ1, . . . , λn) ∈ Rn×n has eigenvalues of A on the diagonal. This decomposition

can be obtained in O(n3) operations.

If rank(A) = r < n, then A has exactly r nonzero eigenvalues, which follows from

rank(A) = rank(XΛXT ) = rank(Λ),
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so we can eliminate the zero eigenvalues from Λ and the corresponding eigenvectors from

X, and have decomposition

A = XrΛrX
T
r , (2.25)

with Xr n× r orthonormal matrix and Λr r× r diagonal with nonzero diagonal elements.

Symmetric matrices ATA and AAT play a significant role because of their connection

to the SVD (see Theorem 2.1.5) and it can easily be shown that they have non-negative

eigenvalues and the following relation holds

‖ATA‖2 = ‖AAT‖2 = ‖A‖22, (2.26)

which follows from the 2-norm characterization (2.21) and the fact that if λ is an eigenvalue

of a matrix A, then λ2 is an eigenvalue of A2.

In the next two theorems we explain the connection between singular values and

eigenvalues of a symmetric matrix.

Theorem 2.1.4. [29, Theorem 5.5] If A = AT , then the singular values of A are the

absolute values of the eigenvalues of A.

Proof. As stated earlier, when dealing with a symmetric matrix, the spectral decomposi-

tion has the form (2.24) with X orthogonal. Now, we rewrite it as

A = X|Λ|sgn(Λ)XT , (2.27)

where |Λ| and sgn(Λ) denote diagonal matrices whose entries are numbers |λj| and

sgn(λj), respectively. Since sgn(Λ)XT is also orthogonal, (2.27) is the SVD of A, with

singular values |λj|.

Theorem 2.1.5. [29, Theorem 5.4] The nonzero singular values of A ∈ Rm×n are the

square roots of the nonzero eigenvalues of ATA or AAT .

Proof. Let A have SVD (2.7). Then

ATA = (UΣVT )T (UΣVT ) = VΣUTUΣVT = VΣ2VT ,

AAT = (UΣVT )(UΣVT )T = UΣVTVΣUT = UΣ2UT ,

which are spectral decompositions of symmetric matrices ATA and AAT (see (2.24)) with

eigenvalues on the diagonal of matrix Σ2. Since the nonzero diagonal elements of Σ are

σ1 ≥ · · · ≥ σr > 0, with r = rank(A), the nonzero diagonal elements of Σ2 are σ2
1, . . . , σ

2
r ,

from which it follows that the eigenvalues of matrices ATA and AAT are exactly squares

of singular values of A.
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2.1.6 QR factorization

The QR factorization of a matrix A ∈ Rm×n, with m ≥ n, is given by

A = QR,

where Q ∈ Rm×m is orthogonal and R ∈ Rm×n is upper triangular.

Theorem 2.1.6. [13, Theorem 5.2.1] If A = QR is a QR factorization of a full rank

matrix A ∈ Rm×n, with m ≥ n, and A = [ a1 · · · an ] and Q = [ q1 · · · qm ], then

span{a1, . . . , ak} = span{q1, . . . ,qk}, for k = 1, 2 . . . , n.

In particular, if we partition Q =
[

Qn Q̃n

]
, where Qn = Q[ : , 1 : n ], then

R(A) = R(Qn)

R(A)⊥ = R(Q̃n)

and A = QnRn, with Rn = R[ 1 : n , : ].

The factorization A = QnRn is called the truncated QR factorization and it can be

computed in O(mn2) operations.

It holds rank(A) = rank(Rn) and if A has full rank, then setting the diagonal elements

of Rn to be positive makes the truncated factorization uniquely determined.

2.2 Matrix products

Apart from the standard matrix product, several other matrix products play a signifi-

cant role when working with tensors. In the following we present their definitions and

properties.

• Hadamard (element-wise) product : Given A,B ∈ Rm×n,

A ∗B =


a11b11 a12b12 · · · a1nb1n

a21b21 a22b22 · · · a2nb2n
...

...
. . .

...

am1bm1 am2bm2 · · · amnbmn

 ∈ Rm×n.
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• Kronecker product : Given A ∈ Rm×n,B ∈ Rp×q,

A⊗B =


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...

am1B am2B · · · amnB

 ∈ R(mp)×(nq).

• Khatri-Rao product : Given A ∈ Rm×n,B ∈ Rp×n

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 · · · an ⊗ bn

]
∈ R(mp)×n,

where aj and bj denote the jth columns of A and B, respectively.

• Transpose Khatri-Rao product : Given A ∈ Rm×n,B ∈ Rm×p,

A�T B =
(
AT �BT

)T
=


aT1 ⊗ bT1

aT2 ⊗ bT2
...

aTm ⊗ bTm

 ∈ Rm×(np), (2.28)

where aTi and bTi denote the ith rows of A and B, respectively.

Theorem 2.2.1. For matrices and vectors of appropriate size, the following properties

hold:

(1) (A⊗B)T = AT ⊗BT ,

(2) (A⊗B)(C⊗D) = AC⊗BD,

(3) A and B orthogonal ⇒ A⊗B orthogonal,

(4) (A⊗B)(C�D) = AC�BD,

(5) (A⊗B)v = vec(BVAT ), v = vec(V),

(6) (A�B)v = vec(B diag(v)AT ),

(7) (A�T B)v = diag(BVAT ), v = vec(V).

Here, for a matrix A = (aij) ∈ Rn×n, diag(A) = [ a11 a22 · · · ann ]T ∈ Rn, while for a

vector v = (vi) ∈ Rn, diag(v) denotes diagonal n × n matrix with elements v1, v2 . . . , vn

on the diagonal. Vectorized matrix A ∈ Rm×n is a vector of size mn, denoted as vec(A),

obtained by stacking the columns of the matrix on top of one another.

Proof. (1) Directly follows from the definition.
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(2) For A ∈ Rm×n, B ∈ Rp×q, C ∈ Rn×r, D ∈ Rq×s,

(A⊗B︸ ︷︷ ︸
mp×nq

)(C⊗D︸ ︷︷ ︸
nq×rs

) =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB



c11D · · · c1rD

...
. . .

...

cn1D · · · cnrD



=


∑n

k=1 a1kck1BD · · ·
∑n

k=1 a1kckrBD
...

. . .
...∑n

k=1 amkck1BD · · ·
∑n

k=1 amkckrBD


= AC⊗BD ∈ Rmp×rs.

(3) For A ∈ Rm×m and B ∈ Rn×n orthogonal, from (2.2.1.(1)) and (2.2.1.(2)) follows

(A⊗B)T (A⊗B) = (AT ⊗BT )(A⊗B) = ATA⊗BTB = Im ⊗ In

= AAT ⊗BBT = (A⊗B)(AT ⊗BT ) = (A⊗B)(A⊗B)T ,

where Im and In denote identity matrices of order m and n, respectively. From the

definition of Kronecker product, obviously Im ⊗ In = Imn.

(4) For A ∈ Rm×n, B ∈ Rp×q, C ∈ Rn×r, D ∈ Rq×r, from (2.2.1.(2))

(A⊗B︸ ︷︷ ︸
mp×nq

)(C�D︸ ︷︷ ︸
nq×r

) = (A⊗B)
[
c1 ⊗ d1 · · · cr ⊗ dr

]
=
[
(A⊗B)(c1 ⊗ d1) · · · (A⊗B)(cr ⊗ dr)

]
=
[
Ac1 ⊗Bd1 · · · Acr ⊗Bdr

]
= AC�BD.

(5) For A ∈ Rm×n, B ∈ Rp×q and v ∈ Rnq,

(A⊗B)v =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB



v1
...

vnq



=


a11Bv1:q + a12Bvq+1:2q + · · ·+ a1nBv(n−1)q:nq

...

am1Bv1:q + am2Bvq+1:2q + · · ·+ amnBv(n−1)q:nq



= vec

[Bv1:q Bvq+1:2q · · · Bv(n−1)q:nq

]
a11 a21 · · · am1

...
...

...

a1n a2n · · · amn
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= vec

B
[
v1:q vq+1:2q · · · v(n−1)q:nq

]
︸ ︷︷ ︸

V

AT

 .

(6) For A ∈ Rm×n, B ∈ Rp×n and v ∈ Rn, using (2.2.1.(5)),

(A�B)v =
[
a1 ⊗ b1 a2 ⊗ b2 · · · an ⊗ bn

]
v1
...

vn


= (a1 ⊗ b1)v1 + (a2 ⊗ b2)v2 + · · ·+ (an ⊗ bn)vn

= vec(b1v1a
T
1 ) + vec(b2v2a

T
2 ) + · · ·+ vec(bnvna

T
n )

= vec
(
b1v1a

T
1 + b2v2a

T
2 + · · ·+ bnvna

T
n

)

= vec


[
b1 b2 · · · bn

]

v1

v2
. . .

vn




aT1

aT2
...

aTn



 .

(7) For A ∈ Rm×n, B ∈ Rm×p and v ∈ Rnq, using (2.2.1.(5)),

(A�T B)v =


aT1 ⊗ bT1

...

aTm ⊗ bTm

v =


(aT1 ⊗ bT1 )v

...

(aTm ⊗ bTm)v

 =


vec
(
bT1 Va1

)
...

vec
(
bTmVam

)


=


bT1 Va1

...

bTmVam

 = diag




bT1
...

bTm

V
[
a1 · · · am

] .

2.2.1 Complexity reduction using products properties

Properties (2.2.1.(5))– (2.2.1.(7)) enable efficient computation of a matrix-vector product,

when the matrix is given as Kronecker, Khatri-Rao or Transpose Khatri-Rao product of

two matrices. We have implemented these products in Julia, creating functions krontv,

krtv and tkrtv, which can also be used to perform multiplication of the products by a

matrix, in which case the multiplication is done column by column. In the following we
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present details of the functions and their usage, and compare them with the direct way

of computing these multiplications - by first forming the product and then multiplying it

by a vector or a matrix.

The computational environment is as presented in Section 1.4. For numerical exper-

iments, we generate matrices and vectors from the standard normal distribution. In the

case when we multiply the products by a tall matrix, using our functions still shows to

work faster than the direct approach. The results are presented in Figures 2.1, 2.2 and 2.3.

Kronecker product. For matrices A ∈ Rm×n, B ∈ Rp×q and vector v ∈ Rnq, forming

the Kronecker product A ⊗ B requires mnpq multiplications, so the direct way of com-

puting (A ⊗ B)v requires O(mnpq) operations. Using the property (2.2.1.(5)), instead

of forming the Kronecker product, we reshape vector v into q × n matrix V and perform

matrix-matrix multiplication

B︸︷︷︸
p×q

V AT︸︷︷︸
n×m

,

which reduces the number of operations to O(min{np(m + q),mq(n + p)}). Also, this

reduces memory requirements from O(mnpq) to O(mp+ min{np,mq}).

In Julia, function krontv performs this multiplication and it also works with any

matrix V ∈ Rnq×k, k ∈ N; see Figure 2.1.

w=krontv(A,B,v)

W=krontv(A,B,V)

Khatri-Rao product. For matrices A ∈ Rm×n, B ∈ Rp×n and vector v ∈ Rn, forming

the Khatri-Rao product A � B requires mnp multiplications, so the direct way of com-

puting (A�B)v requires O(mnp) operations. Using the property (2.2.1.(6)), instead of

forming the Khatri-Rao product, we perform the multiplication on the right-hand side by

creating n× p matrix whose every column is exactly vector v and performing Hadamard

product instead of the regular multiplication, in one of the two following ways

B diag(v)AT = B︸︷︷︸
p×n

(
[ v | · · · | v ] ∗AT︸ ︷︷ ︸

n×m

)
=
(

B ∗


vT

...

vT


︸ ︷︷ ︸

p×n

)
AT︸︷︷︸
n×m

,

20



n

20 40 60 80 100 120 140 160 180 200

― direct
‐‐‐ krontv

Method

10-6

10-5

10-4

10-3

10-2

10-1

100
Ti

m
e 

(s
)

Kronecker product

(a) Multiplication by a vector.

n

20 40 60 80 100 120 140 160 180 200

― direct
‐‐‐ krontv

Method

10-5

10-4

10-3

10-2

10-1

100

Ti
m

e 
(s

)

Kronecker product

(b) Multiplication by a matrix.

Figure 2.1: Execution times (in seconds) for calculating multiplication of Kronecker prod-

ucts of A,B ∈ Rn×n, by a vector v ∈ Rn2
and a matrix V ∈ Rn2×k, with k = n

4
, directly

(forming the product) and by function krontv. When n ≥ 140 forming the product

becomes too expensive.

ending up with O(mnp) operations. Even though the computational complexity is the

same, direct approach requires formation of mp× n product matrix so by applying prop-

erty (2.2.1.(6)) we reduce memory requirements from O(mnp) to O(mp+ n ·min{m, p}).

Function krtv performs this multiplication in Julia and we can also multiply by any

matrix V ∈ Rn×k, k ∈ N; see Figure 2.2.

w=krtv(A,B,v)

W=krtv(A,B,V)
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(b) Multiplication by a matrix.

Figure 2.2: Execution times (in seconds) for calculating multiplication of Khatri-Rao

product of A,B ∈ Rn×n, by a vector v ∈ Rn and a matrix V ∈ Rn×k, with k = n
10

,

directly (forming the product) and by function krtv.
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Transpose Khatri-Rao product. For matrices A ∈ Rm×n, B ∈ Rm×p and vector

v ∈ Rnp, forming the Transpose Khatri-Rao product A �T B requires mnp multiplica-

tions, so the direct way of computing (A �B)v requires O(mnp) operations. Using the

property (2.2.1.(7)), instead of forming the Transpose Khatri-Rao product, we reshape

vector v into a p× n matrix V and only calculate diagonal elements of BVAT in one of

the two following ways

diag(BVAT ) =
n∑
j=1

( B︸︷︷︸
m×p

V︸︷︷︸
p×n

) ∗A


:j

=

p∑
j=1

B ∗ ( A︸︷︷︸
m×n

VT︸︷︷︸
n×p

)


:j

,

i.e. by summing the columns of the Hadamard products. This way the multiplication is

done in O(mnp) operations. Again, as with Khatri-Rao product, property (2.2.1.(7)) did

not improve the computational complexity, but did improve memory requirements. Form-

ing the Transpose Khatri-Rao product means storing m× np matrix, while by exploiting

property (2.2.1.(7)) we only have to store an m× n or m× p matrix. So all together we

have reduced memory requirements form O(mnp) to O(m ·min{n, p}).

In Julia, we use function tkrtv and it also works with any matrix V ∈ Rnp×k, k ∈ N;

see Figure 2.3.

w=krtv(A,B,v)

W=krtv(A,B,V)
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(a) Multiplication by a vector.
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(b) Multiplication by a matrix.

Figure 2.3: Execution times (in seconds) for calculating multiplication of Transpose

Khatri-Rao product of A,B ∈ Rn×n, by a vector v ∈ Rn2
and a matrix V ∈ Rn2×k,

with k = n
4
, directly (forming the product) and by function tkrtv.
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2.3 Iterative methods for low-rank matrix approxi-

mation

As we will explain in Section 3.3, dealing with tensors in Tucker format requires approx-

imating a dominant low-dimensional subspace for a column space of a matrix Z ∈ Rn×p,

which is usually wide, with n� p. This can be achieved by considering the n×n Gramian

A = ZZT and aiming at a low-rank approximation of the form

A ≈ UΛUT , (2.29)

where matrix U ∈ Rn×r, with r < n, is a basis of the desired subspace and Λ ≈ UTAU.

Moreover, dealing with Hadamard product of tensors in Tucker format will result in

matrix Z having a special structure (4.3) and that, as explained in [29], can be exploited

by iterative methods, which use matrix in the form of a black box :

x −→
BLACK

BOX
−→ Ax.

The iterative algorithm requires nothing more then the ability to determine Ax for any

x, and in this section we present two such algorithms for creating approximation (2.29) -

Lanczos method and randomized algorithm.

2.3.1 Lanczos method

Lanczos method is based on the idea of projecting an n-dimensional problem into a lower-

dimensional Krylov subspace. It is a special case of Arnoldi method, when the matrix we

are dealing with is hermitian or real symmetric, which is the case we are interested in.

Throughout this section we follow [28] and [2].

Description

For a matrix A ∈ Rn×n and a vector x ∈ Rn, the associated Krylov sequence is the

set of vectors x,Ax,A2x,A3x, . . . , which can be computed by the black box in the

form x,Ax,A(Ax),A(A(Ax)), . . . . The corresponding Krylov subspaces are the spaces

spanned by successively larger group of these vectors

Kj(A,x) = span
{
x,Ax,A2x, . . . ,Aj−1x

}
.
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When A and x are known from the context we will simply write Kj.

Since Kj is a subspace of Rn, dim (Kj) ≤ n. The sequence of Krylov subspaces satisfies

Kj(A,x) ⊆ Kj+1(A,x) and AKj(A,x) ⊆ Kj+1(A,x).

If x is an eigenvector of A corresponding to eigenvalue λ, then Ajx = λjx, and

Kj(A,x) = K1(A,x), j = 1, 2, . . . .

In other words, the Krylov sequence terminates in the sense that vectors Ajx after the

first one provide no new information. More generally, we say that a Krylov sequence

terminates at k if k is the smallest integer such that

Kk(A,x) = Kk+1(A,x), (2.30)

and in that case dim (Kk) = dim (Kk+1) = k and Kk is an invariant subspace of A1.

Lanczos method constructs an orthonormal basis of the invariant Krylov subspace

Kk(A,x) for a given symmetric matrix A and a randomly generated vector x. The

randomness assures k = n if A is of full rank, or k = r + 1 if rank(A) = r < n.

The natural basis of Kk is evidently {x,Ax,A2x, . . . ,Ak−1x}, but since the vectors

Ajx converge to the direction of the eigenvector corresponding to the largest eigenvalue

(in modulus) of A, this basis tends to be badly conditioned with increasing dimension k.

Therefore, the Gram-Schmidt orthogonalization (see [13, Section 5.2.7]) process is applied

to the basis vectors.

Suppose that {q1,q2, . . . ,qj} ⊂ Rn is the orthonormal basis for Kj, where j ≤ k. We

construct the vector qj+1 by first orthogonalizing Ajx against q1, . . . ,qj,

rj = Ajx−
j∑
i=1

qiq
T
i Ajx, (2.31)

and then normalizing the resulting vector,

qj+1 =
rj
‖rj‖2

. (2.32)

Then {q1, . . . ,qj,qj+1} is an orthonormal basis of Kj+1, which is called the Lanczos basis

and vectors qi the Lanczos vectors.

1S is an invariant subspace of A if AS ⊆ S.
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However, since q1 = x/‖x‖2 and each Aqi can be written as linear combination of

vectors q1,q2, . . . ,qi+1, which follows from (2.31) and (2.32), we have

Kj+1 = span
{
x,Ax, . . . ,Ajx

}
= span

{
q1,Aq1, . . . ,A

jq1

}
= span

{
q1, αq1 + βq2,A(αq1 + βq2), . . . ,A

j−1(αq1 + βq2)
}

= span
{
q1,q2,Aq2, . . . ,A

j−1q2

}
= · · ·

= span {q1,q2, . . . ,qj,Aqj} ,

so instead of orthogonalizing Ajx against q1, . . . ,qj, we can compute qj+1 more econom-

ically by orthogonalizing Aqj against q1, . . . ,qj.

Now, instead of (2.31), the component rj of Aqj orthogonal to q1, . . . ,qj is given by

rj = Aqj −
j∑
i=1

qi
(
qTi Aqj

)
. (2.33)

If rj = 0, then the procedure stops, which means that we have found an invariant

subspace, namely span {q1, . . . ,qj}. If ‖rj‖2 > 0 we obtain qj+1 again by (2.32).

From (2.33), (2.32) and the fact that qj+1 is orthogonal to all q1, . . . ,qj, we get

qTj+1rj = ‖rj‖2 = qTj+1Aqj.

Setting tij = qTi Aqj, (2.33) can be written as

Aqj =

j+1∑
i=1

tijqi.

For j = 1, 2, . . . , k, in the matrix form, we have

A [ q1 q2 · · · qk ] = [ q1 q2 · · · qk qk+1 ]



t11 t12 t13 · · · t1k

t21 t22 t23 · · · t2k

t32 t33 · · · t3k
. . . . . .

...

tk,k−1 tkk

tk+1,k


. (2.34)
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Since we are only interested in the case when A is symmetric, denoting

Qk = [ q1 q2 · · · qk ] , Tk =



t11 t12 t13 · · · t1k

t21 t22 t23 · · · t2k

t32 t33 · · · t3k
. . . . . .

...

tk,k−1 tkk


,

and multiplying (2.34) with QT
k from the left, we get

QT
kAQk = Tk. (2.35)

From here we have that matrix Tk is also symmetric, which makes it tridiagonal, i.e

tij = 0, whenever j > i + 1. Moreover, setting αj = tjj and βj = tj,j+1, equation (2.33)

simplifies to

rj = Aqj − qj
(
qTj Aqj

)︸ ︷︷ ︸
αj

−qj−1
(
qTj−1Aqj

)︸ ︷︷ ︸
βj−1

= Aqj − αjqj − βj−1qj−1. (2.36)

Therefore,

rj = βjqj+1, βj = ‖rj‖2.

This, together with (2.36) and setting β0 = 0, yields a three term recurrence

Aqj = βj−1qj−1 + αjqj + βjqj+1,

or in the matrix form

AQk = Qk



α1 β1

β1 α2 β2

β2 α3
. . .

. . . . . . βk−1

βk−1 αk


︸ ︷︷ ︸

Tk

+βk [ 0 · · · 0 qk+1 ] . (2.37)

The described procedure is called the Lanczos tridiagonalization. However, running it

in floating-point arithmetics can cause Lanczos vectors qj to lose their mutual orthogo-

nality, so reorthogonalization has to be done in each iteration. This loss of orthogonality

happens, as explained in [13], because if βj ← ‖rj‖2 and qj+1 ← rj/βj are computed in
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floating point arithmetics, then βjqj+1 ≈ rj + wj, where ‖wj‖2 ≈ εm‖rj‖2 ≈ εm‖A‖2,

with εm denoting machine epsilon. From this it follows

|qTj+1qi| ≈
|rTj qi|+ εm‖A‖2

|βj|
, i = 1, . . . , j.

So when βj is small, significant departures from orthogonality can be expected and this is

cured by reorthogonalizing rj against q1, . . . ,qj before calculating qj+1 in each step, i.e.

rewriting rj as

rj = rj −
j∑
i=1

qiq
T
i rj.

The Lanczos tridiagonalization with full reorthogonalization is presented in Algo-

rithm 1.

There are other methods for reorthogonalization on line 13, such as semiorthogonal

methods (see [28, Section 5.3.3]), which can lower the overall complexity of the algorithm

in some cases, for example when the involved matrix is very large, but the matrix-vector

multiplication on line 10 can be cheaply performed. However, the presented full orthogo-

nalization fits our needs and we would not significantly benefit from other reorthogonal-

ization methods.

Algorithm 1 stops once k satisfies (2.30) and then, from (2.37), βk = 0 implies

AQk = QkTk.

For simplicity we remove the index and denote Q = Qk and T = Tk as the output of

Algorithm 1.

If A has full rank, then k = n and Q is n × n orthogonal and T n × n symmetric

tridiagonal, which gives A = QTQT . Getting the spectral decomposition (2.24) of T,

T = ÛΛÛT , (2.38)

with Û orthogonal and Λ diagonal, both or order n, and setting

U = QÛ, (2.39)

we have

A = QTQT = QÛΛÛTQT = UΛUT ,

with U n× n orthogonal matrix whose columns are eigenvectors of A and Λ with eigen-

values on the diagonal.
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Algorithm 1 Lanczos tridiagonalization algorithm with reorthogonalization

Given a symmetric matrix A of order n, a tolerance ε, a maximal number of iterations

maxit and optionally requested rank r and oversampling parameter p, the following proce-

dure computes an orthonormal matrix Q and tridiagonal T such that A ≈ QTQT .

1: procedure lanczos tridiag(A, ε = 10−8, maxit = 1000, r = 0, p = 10)

2: maxit = min{n,maxit}

3: if r 6= 0 then

4: maxit = min{maxit, r + p}

5: end if

6: Choose a vector x of length n

7: q = x/‖x‖2
8: Q = [ q ]

9: for k = 1, 2, . . . ,maxit do

10: r = Aq

11: αk = qT r

12: r = r− αkq

13: Reorthogonalize r = r−Q(QT r).

14: Set βk = ‖r‖2 and compute ωk according to (2.41).

15: if ωk < ε then

16: break

17: end if

18: q = r/βk

19: Q = [ Q q ]

20: end for

21: T = tridiag((α1, . . . , αk), (β1, . . . , βk−1))

22: end procedure

On the other hand, if rank(A) = r < n, encountering a zero βk signals the computation

of an exact subspace, in which case Q is n × k orthogonal and T k × k symmetric

tridiagonal. From spectral decomposition (2.38) of T we have

AQ = QT = QÛΛÛT ⇒ A(QÛ) = (QÛ)Λ, (2.40)

therefore Λ contains eigenvalues of A and it has exactly r nonzero elements, so we can
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have (2.38) with Û k×r orthonormal and Λ r×r diagonal; see (2.25). Now k×r orthonor-

mal U from (2.39) contains eigenvectors of A, so A admits spectral decomposition (2.25),

i.e.,

A = UΛUT ,

which also gives A = QTQT .

However, an exact zero or even a small βk is a rarity in practice, so we usually have

k ≥ r + 1. Algorithm 1 can work with given tolerance ε > 0 or predefined dimension

of the subspace r. In other words, we can find a solution to the fixed-precision or the

fixed-rank problem.

In the case of fixed-precision problem, if ‖A‖F can be calculated, we can set ωk =

‖A − QkTkQ
T
k ‖F and use ωk ≤ ε as stopping criterion, since ωk can be computed us-

ing (2.3), (2.4), (2.6) and (2.35), as

ω2
k = ‖A−QkTkQ

T
k ‖2F

= ‖A‖2F + ‖QkTkQ
T
k ‖2F − 2〈A,QkTkQ

T
k 〉

= ‖A‖2F + ‖Tk‖2F − 2tr(AQkTkQ
T
k )

= ‖A‖2F + ‖Tk‖2F − 2tr
[
QkTk (QkTk)

T
]

= ‖A‖2F − ‖Tk‖2F

= ‖A‖2F −
k−1∑
j=1

(
α2
j + 2β2

j

)
− α2

k. (2.41)

Now we have A ≈ QTQT , with Q n× k orthonormal matrix and T k × k symmetric

tridiagonal, and getting spectral decomposition (2.38) of T with Û k×r orthonormal and

Λ r × r diagonal, where r ≤ k is chosen such that

‖T− ÛΛÛT‖F ≤ ε, (2.42)

gives the low-rank approximation (2.29) of A,

A ≈ UΛUT , (2.43)

where U is n× r orthonormal calculated as (2.39).

Formula (2.41) potentially suffers from cancellation and one may instead use heuristic

criterion βk ≤ ε, since, from (2.37),

‖AQk −QkTk‖F = βk‖qk+1‖2 = βk. (2.44)
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Following (2.40), but with approximation instead of equality, from (2.42) and (2.39) we

have (2.43).

When dealing with fixed-rank problem, we add small oversampling parameter p to tar-

get rank r to increase accuracy, and stop Algorithm 1 when k = r+p. Again, from (2.37)

we have (2.44), and, assuming k < rank(A), we have full spectral decomposition (2.38)

of T. Since we were aiming at the r-dimensional approximation of A, we only calculate

first r columns of U in (2.39) and end up with n× r orthonormal matrix U and the r× r

diagonal Λ such that (2.43) holds.

Complexity

In the case when A is a full symmetric matrix of order n and when we are dealing with

fixed-rank problem with given r and oversampling parameter p = 0, Algorithm 1 has a

computational complexity ofO(n2r). Spectral decomposition of the symmetric tridiagonal

T of order r (2.38) requires additional O(r2) operations and creating matrix U from (2.39)

O(nr2) operations. Knowing r ≤ n, the computational cost of Lanczos method is O(n2r).

Furthermore, in Algorithm 1 we have to store n × r matrix Q and scalars α1, . . . , αr

and β1, . . . , βr−1. Additionally, r × r matrix Û in (2.38) and n × r U in (2.43). All

together, this procedure requires O(nr) memory.

As stated in the beginning of Section 2.3, our symmetric matrix A will be given as

A = ZZT , where Z is a n × p matrix, with n < p. In this case, the multiplication from

line 10 in Algorithm 1 will be performed as r = Z(ZTq), requiring O(np) operations for

each of r iterations, which changes overall computational complexity to O(npr). And,

since we have to create vector ZTq in each iteration, we need O(nr + p) memory.

Error analysis

If we stop Algorithm 1 when ‖A−QTQT‖F falls under given tolerance ε, getting spectral

decomposition of T such that (2.42) holds, for n× r matrix U defined as (2.39) follows

‖A−UΛUT‖F ≤ ‖A−QTQT‖F + ‖QTQT −QÛΛÛTQT‖F

≤ ε+ ‖T− ÛΛÛT‖F ≤ 2ε,

In term of the projector UUT , using (2.2) and (2.5), we have

‖A−UUTA‖F ≤ ‖A−UΛUT‖F + ‖UΛUT −UUTA‖F
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≤ 2ε+ ‖AU−UΛUTU‖F

≤ 2ε+ ‖A−UΛUT‖F‖U‖2 ≤ 4ε. (2.45)

2.3.2 Randomized algorithm

Randomized algorithms provide a powerful tool for performing low-rank matrix approx-

imations. Using random sampling for identifying a subspace that captures most of the

action of a matrix and then compressing the matrix to this subspace leads to the desired

low-rank factorization. In many cases, this approach beats its classical competitors in

terms of speed, while usually being on par in terms of accuracy and robustness. Fur-

thermore, it can produce factorizations that are accurate to any specified tolerance above

machine precision, which allows the user to trade accuracy for speed if desired.

Throughout this section we follow [15] to explain how to not only get low-rank ap-

proximation (2.29) for a symmetric matrix, but also how to get the SVD (2.7) of a general

rectangular matrix.

Description

Given general A ∈ Rm×n, the task of computing a low-rank approximation can be split

into two computational stages.

Stage A: Computing an approximate basis for the range of A, i.e. finding an or-

thonormal m× l matrix Q, with l as small as possible, for which

A ≈ QQTA, (2.46)

up to a given tolerance.

Stage B: Given orthonormal Q that satisfies (2.46), compute the desired factorization

of A.

The task in Stage A can be executed very efficiently with random sampling methods,

while Stage B can be computed with well established deterministic methods. Now we

explain each stage in details.

Stage A. A motivational example is very simple. Suppose we seek a basis for the range

of the matrix A with exact rank r. We refer to this problem as the fixed-rank problem. If
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we draw a set of r random vectors ωj (for now, the precise distribution is unimportant)

and form r products

yj = Aωj, j = 1, . . . , r,

then, owing to the randomness, it is likely that the set {ωj : j = 1, . . . , r} forms a linearly

independent set and no linear combination of vectors ωj falls in the null space of A. As

a result, the set {yj : j = 1, . . . , r} of sample vectors is also linearly independent so it

spans the range of A. Therefore, to produce an orthonormal basis for the range of A, we

just need to orthonormalize the sample vectors.

Now, imagine that A = Â+E, where Â is a rank-r matrix containing the information

we seek and E is a small perturbation. We want to obtain a basis that covers as much of

the range of Â as possible, rather then to minimize the number of basis vector. Therefore,

we fix a small number p, and generate r + p samples

yj = Aωj = Âωj + Eωj, j = 1, . . . , r + p.

The perturbation E shifts the direction of each sample vector outside the range of Â,

which can prevent the span of {yj : j = 1, . . . , r} from covering the entire range of Â. In

contrast, the enriched set {yj : j = 1, . . . , r+p} has a much better chance of spanning the

required subspace. We refer to p as oversampling parameter and setting p = 5 or p = 10

has shown to often be adequate.

The most natural way to choose random vectors ωj is from the standard Gaussian

distribution. Then by setting l = r + p, creating matrix Ω =
[
ω1 ω2 · · · ωl

]
and

setting Y = AΩ, we get matrix Q that satisfies (2.46) from truncated QR factorization

of Y. The described procedure is presented in Algorithm 2.

Theorem 2.3.1. [15, Theorem 1.1] Given matrix A ∈ Rm×n, a target rank r ≥ 2 and

an oversampling parameter p ≥ 2, with r + p ≤ min{m,n}, execute Algorithm 2 with a

standard Gaussian test matrix to obtain m× (r + p) orthonormal matrix Q. Then

E‖A−QQTA‖2 ≤
[
1 +

4
√
r + p

p− 1
·
√

min{m,n}
]
σr+1,

where E denoted expectation with respect to the random test matrix and σr+1 is the (r+1)th

singular value of A.

So the resulting error of Algorithm 2 is not far away from best approximation error

σr+1 in norm ‖ · ‖2 (see Theorem 2.1.2), as presented in the following example.
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Algorithm 2 Fixed randomized range finder

Given a matrix A ∈ Rm×n, a target rank r and an oversampling parameter p, the following

procedure computes an m× (r + p) orthonormal matrix Q such that A ≈ QQTA.

1: procedure fixed rand range(A, r, p = 10)

2: l = r + p

3: Draw an n× l Gaussian random matrix Ω.

4: Form the m× l matrix Y = AΩ

5: Construct an m × l matrix Q whose columns form an orthonormal basis for the

range of Y using QR factorization Y = QR

6: end procedure

Example 2.3.1. Let A be matrix of order n = 20 generated by evaluating the function

f(x, y) = 1
x+y

on the grid {0.1, 0.2, 0.3, . . . , 2}. Its sixth and seventh singular values are

σ6 = 2.27423 × 10−4 and σ7 = 1.45739 × 10−5. Running Algorithm 2 with r = 6 and

p = 10 results in matrix Q for which it holds

‖A−QQTA‖2 = 5.889302× 10−15,

while the bound from Theorem 2.3.1 equals 1.30443× 10−4.

However, in practice, the target rank r is rarely known in advance. Randomized

algorithms are usually implemented in an adaptive fashion where the number of samples

is increased until the error satisfies the desired tolerance, so the user does not choose

the oversampling parameter. This type of problem is called the fixed-precision problem.

For a given matrix A and a positive error tolerance ε, we seek a matrix Q with l = l(ε)

orthonormal columns such that

‖A−QQTA‖2 ≤ ε. (2.47)

To check if we have reached the desired tolerance we set a small integer k and use a fact

that for a sequence {ωj : j = 1, 2, . . . , k} of standard Gaussian vectors,

‖(I−QQT )A‖2 ≤ 10

√
2

π
max
j=1,...,k

‖(I−QQT )Aωj‖2, (2.48)

stands with probability at least 1− 10−k. Here, the integer k is used to balance compu-

tational cost and reliability.

This statement follows by setting B =
(
I−QQT

)
A and α = 10 in the following

lemma, whose proof appears in [31].
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Lemma 2.3.2. [15, Lemma 4.1] For B ∈ Rm×n, a positive integer k and real number

α > 1, drawing an independent family {ωj : j = 1, . . . , k} of standard Gaussian vectors

gives

‖B‖2 ≤ α

√
2

π
max
j=1,...,k

‖Bωj‖2

except with probability α−k.

The estimate (2.48) is computationally inexpensive because it requires only a small

number of matrix-vector products and it can be combined with any method for construct-

ing an approximate basis for the range of a matrix.

We incorporate this in Algorithm 2 by generating the basis from Step 5 incrementally.

Starting with an empty matrix Q0, we build Q column by column in the following way:

for j = 1, 2, 3, . . . do

Draw an n× 1 Gaussian random vector ωj and set yj = Aωj.

Compute q̃j = (I−Qj−1Q
T
j−1)yj

Normalize qj = q̃j/‖q̃j‖2, and form Qj = [ Qj−1 qj ].

end for

The vectors q̃j are precisely the vectors that appear in the error bound (2.48), so we

break the loop once we observe k consecutive vectors q̃j whose norms are smaller than

ε/(10
√

2/π).

A potential complication of the method is that the vectors q̃j become small as the basis

starts to capture most of the action of A. In finite-precision arithmetics, their direction is

extremely unreliable. To address this problem, we reproject vector qj onto the R(Qj−1)
⊥.

The procedure is presented in Algorithm 3.

Moreover, when matrix A is symmetric, the columns of Q form a good basis for both

the column space and the row space of A so that we have

A ≈ QQTAQQT . (2.49)

More precisely, when (2.47) is in force, we have

‖A−QQTAQQT‖2 = ‖A−QQTA + QQTA−QQTAQQT‖2

≤ ‖A−QQTA‖2 + ‖QQT
(
A−AQQT

)
‖2 ≤ 2ε. (2.50)
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Algorithm 3 Adaptive randomized range finder

Given a matrix A ∈ Rm×n, a tolerance ε, an integer k, the following procedure computes

an orthonormal matrix Q such that ‖(I − QQT )A‖2 ≤ ε with probability at least 1 −

min{m,n}10−k.

1: procedure adaptive rand range(A, ε = 10−8, k = 10, maxit = 1000)

2: maxit = min{m,n,maxit}

3: Draw standard Gaussian vectors ω1, . . . ,ωk of length n

4: [ y1 y2 · · · yk ] = A[ω1 ω2 · · · ωk ]

5: Set j = 0 and Q = [ ] (m× 0 empty matrix)

6: while max{‖yj+1‖2, ‖yj+2‖2, . . . , ‖yj+r‖2} > ε/(10
√

2/π) and j < maxit do

7: j = j + 1

8: yj ← (I−QQT )yj

9: q = yj/‖yj‖2
10: Q = [ Q q ]

11: Draw a standard Gaussian vector ωj+k of length n

12: yj+k = (I−QQT )Aωj+k

13: for i = j + 1, j + 2, . . . , j + k − 1 do

14: yi ← yi − q(qTyi)

15: end for

16: end while

17: end procedure

The last inequality relies on the fact that ‖QQT‖2 = 1 and that

‖A−AQQT‖2 = ‖
(
A−AQQT

)T ‖2 = ‖A−QQTA‖2.

Stage B. Once we finish Stage A and have orthonormal matrix Q such that (2.46) holds

(or (2.49), in case A is symmetric), we can calculate low-rank approximations of A in

several steps. For a non-symmetric matrix, we are interested in its SVD (2.7), which we get

by applying Algorithm 4, and for a symmetric matrix in its spectral decomposition (2.22),

which we get from Algorithm 5.
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Algorithm 4 Direct SVD

Given an A ∈ Rm×n and orthonormal Q ∈ Rm×l such that ‖A − QQTA‖2 ≤ ε, the

following procedure computes the SVD of A, A ≈ UΣVT , where U ∈ Rm×r, Σ ∈ Rr×r

and V ∈ Rn×r and r ≤ l.

1: Form l × n matrix B = QTA.

2: Compute an SVD of B: B ≈ ŨΣVT , with Ũ ∈ Rl×r, Σ ∈ Rr×r and V ∈ Rn×r, where

r is chosen such that ‖B− ŨΣVT‖2 ≤ ε.

3: Set U = QŨ.

Algorithm 5 Direct spectral decomposition

Given a symmetric A ∈ Rn×n and orthonormal Q ∈ Rn×l such that ‖A−QQTAQQT‖2 ≤

2ε, the following procedure computes the spectral decomposition of A, A ≈ UΛUT , where

U ∈ Rn×r and Λ ∈ Rr×r and r ≤ l.

1: Form l × l matrix B = QTAQ.

2: Compute an spectral decomposition of B: B ≈ ŨΛŨT , with Ũ ∈ Rl×r and Λ ∈ Rr×r,

where r is chosen such that ‖B− ŨΛŨT‖2 ≤ ε.

3: Set U = QŨ.

Complexity

Assume that m× n matrix A and target rank r < min{m,n} are given. Stage A (Algo-

rithm 2) requires O(mnr) operations - O(mnr) for multiplication on line 4 and O(mr2)

for the QR decomposition on line 5; using O(max{m,n}r) memory. In Stage B, when

calculating the SVD of A (Algorithm 4), forming matrix B takes O(mnr) operations, get-

ting its SVD O(nr2) and forming matrix U O(mr2). All together, Stage B takes O(mnr)

operations and O(max{m,n}r) memory.

When A is symmetric with m = n, Stage A takes O(n2r) operations and O(nr)

memory, while in Stage B we use Algorithm 5 to get the spectral decomposition of A,

and it takes O(n2r) operations to form matrix B, O(r3) to get its spectral decompositions

and O(nr2) for forming matrix U; resulting in O(n2r) operations and O(nr) memory in

total.

Since the symmetric matrix A will often be given as A = ZZT , where Z is an n × p

matrix, with n < p (see the beginning of Section 2.3), the multiplication from line 4

in Algorithm 2, with m = n, will be performed as Y = Z(ZTΩ), requiring O(npr)

36



operations, which changes the complexity of Stage A to O(npr) operations and O(pr)

memory. For Stage B, in Algorithm 5 we form matrix B by first setting it to B = QTZ

and then B = BBT , in O(npr) operations and O(pr) memory, which is also the resulting

complexity of Stage B.

Error analysis

For a rectangular A, from (2.47) and Step 2 of Algorithm 4 we have

‖A−UΣVT‖2 = ‖A−QQTA + QQTA−QÛΣVT‖2

≤ ‖A−QQTA‖2 + ‖Q
(
B− ÛΣVT

)
‖2 ≤ 2ε.

Similarly, for a symmetric A, from (2.50) and Step 2 of Algorithm 5 we have

‖A−UΛUT‖2 = ‖A−QQTAQQT + QQTAQQT −QÛΛÛTQT‖2

≤ ‖A−QQTAQQT‖2 + ‖Q
(
B− ÛΛÛT

)
QT‖2 ≤ 3ε,

and in term of the projector UUT , similarly as in (2.45), using (2.5), we have

‖A−UUTA‖2 ≤ ‖A−UΛUT‖2 + ‖UΛUT −UUTA‖2

≤ 3ε+ ‖A−UΛUT‖2‖U‖2 ≤ 6ε. (2.51)

2.3.3 Lanczos method vs. randomized algorithm

According to experiments from [4], Lanczos and randomized algorithms described above

are often quite similar in terms of the number of matrix-vector multiplications needed to

attain a certain accuracy. For slow singular value decays, randomized algorithms tend to

require slightly more iterations. On the other hand, when dealing with fixed-rank problem,

randomized algorithm can perform the matrix-vector multiplication AΩ in blocks. Also,

using a random matrix Ω that has some internal structure allows to evaluate the product

AΩ rapidly. Therefore, we will use randomized algorithm when A is explicitly available or

when we can benefit from the structure of Ω. When A is only available via matrix-vector

products, we use the Lanczos algorithm.

37



Chapter 3

Tensors in Tucker format and the

HOSVD

In this chapter we present basic tensor theory, operations like mode-n matricization and n-

mode product, the HOSVD algorithm and its modification together with their properties,

and we also explain how the presented operations and the HOSVD can be efficiently

computed.

3.1 Tensors - basic operations and properties

Let X,Y ∈ RI1×I2×···×IN . The (Frobenius) norm is defined as

‖X‖F =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

x2i1i2···iN ,

and the inner product as

〈X,Y〉 =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

xi1i2···iNyi1i2···iN .

Obviously ‖X‖2F = 〈X,X〉.

A tensor X ∈ RI1×I2×···×IN is called diagonal if xi1i2···iN 6= 0 only if i1 = i2 = · · · = iN .

The same way we generalize Hadamard product of matrices to tensors (see Chapter 1),

we can generalize Kronecker product from Section 2.2 to tensors.

The Kronecker product of two tensors X ∈ RI1×···×IN and Y ∈ RJ1×···×JN is a tensor

Z = X⊗ Y ∈ RI1J1×···×INJN with entries

zk1···kN = xi1···iNyj1···jN , kn = jn + (in − 1)Jn, n = 1, . . . , N. (3.1)
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Fixing a subset of indices of a tensor creates a subtensor. In particular, Hadamard

product X ∗ Y is a subtensor of Kronecker product X⊗ Y.

Furthermore, for Hadamard and Kronecker product of tensors, just as with matrices,

it holds

‖X⊗ Y‖F = ‖X‖F‖Y‖F and ‖X ∗ Y‖F ≤ ‖X‖F‖Y‖F , (3.2)

which can easily be shown.

3.1.1 Matricization of a tensor

Two types of subtensors are particularly important.

Fibers of a tensor are defined by fixing every index but one. Leaving index n free

creates mode-n fibers (also sometimes called mode-n vectors). A matrix column is a

mode-1 fiber and a matrix row is a mode-2 fiber. Third-order tensors have column, row

and tube fibers denoted by x:jk, xi:k, xij:, respectively, see Figure 3.1.

Slices of a tensor are two-dimensional sections of a tensor, obtained by fixing all but

two indices. Third-order tensors have horizontal, lateral and frontal slices, denoted by

Xi::, X:j:, X::k, respectively, see Figure 3.2. Frontal slices are sometimes denoted more

compactly as Xk and are of greatest importance, since they are used to display tensors

in computers; see Figure 3.3.

Tensors can be transformed into a matrix or a vector by processes called matricization

(unfolding, flattening) and vectorization. In the following we define these operations.

Definition 3.1.1. The mode-n matricization of a tensor X ∈ RI1×···×IN is a process of

transforming the tensor into an In × I1 · · · In−1In+1 · · · IN matrix, denoted as X(n), by

arranging mode-n fibers of the tensor into columns of the resulting matrix. Formally,

tensor element (i1, . . . , iN) is mapped to matrix element (in, j), where

j = 1 +
N∑
k=1
k 6=n

(ik − 1)Jk, Jk =
k−1∏
m=1
m6=n

Im.

We will refer to X(n) as the matricized tensor X or the mode-n matricization of X.

So we use the term matricization do denote the transformation, but also the matrix.

Sometimes, the mode-n matricization is defined with different ordering of the columns,

but in general, the specific permutation is not important so long as it is consistent across

related calculations [20].
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Figure 3.1: Fibers of a third-order tensors. Taken from [20].

Figure 3.2: Slices of a third-order tensors. Taken from [20].

Figure 3.3: In programming languages, tensors are displayed by their frontal slices, i.e.,

by fixing all indices except the first two.
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Example 3.1.1. Let X ∈ R4×3×2 be defined by its frontal slices

X1 =


1 5 9

2 6 10

3 7 11

4 8 12

 , X2 =


13 17 21

14 18 22

15 19 23

16 20 24

 , (3.3)

then the three mode-n matricizations are

X(1) =


1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

 ,

X(2) =


1 2 3 4 13 14 15 16

5 6 7 8 17 18 19 20

9 10 11 12 21 22 23 24

 ,

X(3) =

 1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

 .

Definition 3.1.2. To vectorize a tensor X ∈ RI1×···×IN means to arrange its mode-1

fibers into one column. The result is an I1 · · · IN vector, denoted as vec(X).

Obviously, this definition fits standard matrix vectorization, where mode-1 fibers are

exactly columns of the matrix, and vec (X) = vec
(
X(1)

)
.

Example 3.1.2. For tensor X from Example 3.1.1, we have

vec(X) =


1

2
...

24

 .

Now we can express norm and inner product of a tensor in terms of matrix or vector

norm of matricized and vectorized tensor.

Proposition 3.1.1. Let X,Y ∈ RI1×···×IN . Then the following equalities hold:

(1) ‖X‖F = ‖X(n)‖F , n = 1, . . . , N ,
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(2) ‖X‖F = ‖ vec(X)‖2,

(3) 〈X,Y〉 = vec(X)T vec(Y),

(4) ‖X− Y‖2F = ‖X‖2F + ‖Y‖2F − 2〈X,Y〉.

Proof. All properties follow directly from the definitions of Frobenius norm and inner

product of tensors.

3.1.2 Tensor-matrix multiplication: The n-mode product

We can multiply a tensor by a matrix or a vector, by each of its modes. We call that

product the n-mode product.

Definition 3.1.3. The n-mode (matrix) product of a tensor X ∈ RI1×···×IN and a matrix

U ∈ RJ×In, denoted by X×n U, is a tensor of size I1 × · · · × In−1 × J × In+1 × · · · × IN ,

computed by multiplying each mode-n fiber of X by U. Element-wise,

(X×n U)i1···in−1jin+1···iN =
In∑
in=1

xi1···iNujin . (3.4)

Proposition 3.1.2. If X ∈ RI1×···×IN and U ∈ RJ×In, then

Y = X×n U ⇔ Y(n) = UX(n). (3.5)

Proof. Elements of Y are given by (3.4). Applying mode-n matricization, element

(i1, . . . , in−1, j, in+1, . . . , in) maps to element (j, k), with

k = 1 +
N∑
l=1
l 6=n

(il − 1)
l−1∏
m=1
m6=n

Im;

see Definition 3.1.1. On the other side, (j, k) element of matrix UX(n), with k as stated

above, is exactly
In∑
in=1

ujin
(
X(n)

)
ink

=
In∑
in=1

ujinxi1···iN ,

which proves the statement.

Example 3.1.3. Let X be the tensor from Example 3.1.1 and let U =

1 3 5

2 4 6

. Then

the 2-mode product of X and U is

Y = X×2 U ∈ R4×2×2
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with frontal slices

Y1 =


61 76

70 88

79 100

88 112

 , Y2 =


169 220

178 232

187 244

196 256

 .
Proposition 3.1.3. For tensors and matrices of appropriate size, the n-mode product

has the following properties:

(1) X×n (A + B) = X×n A + X×n B

(2) X×m A×n B = X×n B×m A, m 6= n,

(3) X×n A×n B = X×n (BA),

(4) 〈X,Y×n A〉 = 〈X×n AT ,Y〉,

(5) if U is an orthonormal matrix, then

(i) Y = X×n U ⇒ X = Y×n UT ,

(ii) ‖X‖F = ‖X×n U‖F ,

(6) Y = X×1 A(1) ×2 A(2) ×3 · · · ×N A(N) ⇔

Y(n) = A(n)X(n)

(
A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1)

)T
.

(7) ‖X×1 A(1) ×2 A(2) ×3 · · · ×N A(N)‖F ≤ ‖X‖F‖A(1)‖F‖A(2)‖F · · · ‖A(N)‖F .

Proof. (1) Denoting Y = X×n (A + B), from (3.5) we have

Y(n) = (A + B) X(n) = AX(n) + BX(n),

from which it follows Y = X×n A + X×n B.

(2) Let Y = X×m A and Z = X×n B and, without loss of generality, assume m < n.

Then for every set of indices, from (3.4),

(Y×n B)i1···im−1jim+1···in−1kin+1···iN =
In∑
in=1

yi1···im−1jim+1···iN bkin

=
In∑
in=1

(
Im∑
im=1

xi1···iNajim

)
bkin =

Im∑
im=1

(
In∑
in=1

xi1···iN bkin

)
ajim

=
Im∑
im=1

zi1···in−1kin+1···iNajim = (Z×m A)i1···im−1jim+1···in−1kin+1···iN .

(3) Denoting Y = X×n A×n B, from (3.5) we have

Y(n) = B (X×n A)(n) = BAX(n),

from which it follows Y = X×n (BA).
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(4) Follows directly from definition of inner product and Definition 3.1.3.

(5) For I1 × · · · × IN tensor X and J × In orthonormal matrix U, Y = X ×n U is a

tensor of size I1 × · · · In−1 × J × In+1 × · · · × IN . From (3.5) follows Y(n) = UX(n)

and multiplying this from the left with UT , we get X(n) = UTY(n), from which it

follows X = Y×n UT .

Furthermore, from (3.1.1.(1)) and orthogonal invariance of matrix Frobenius norm (2.6),

we have

‖X×n U‖F = ‖UX(n)‖F = ‖X(n)‖F = ‖X‖F .

(6) Let X be I1 × · · · × IN tensor and A(n) Jn × In matrices. By Definition 3.1.1, each

yj1···jN element of J1 × · · · × JN tensor Y is mapped to yjnk element of matrix Y(n),

with

k = 1 +
N∑
l=1
l 6=n

(jl − 1)
l−1∏
m=1
m 6=n

Jm.

We will prove the statement by showing that every element

(
X×1 A(1) ×2 A(2) ×3 · · · ×N A(N)

)
j1···jN

maps to element[
A(n)X(n)

(
A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1)

)T]
jnk

,

with k as stated.

From Definition 3.1.3, we have

(
X×1 A(1) ×2 A(2) ×3 · · · ×N A(N)

)
j1···jN

=

I1∑
i1=1

· · ·
IN∑
iN=1

xi1···iNa
(1)
j1i1
· · · a(N)

jN iN
.

On the other hand, by denoting Mn =
(
A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1)

)T
,

we have

(
A(n)X(n)Mn

)
jnk

= A(n)[ jn , : ]
(
X(n)Mn

)
[ : , k ]

=
In∑
in=1

a
(n)
jnin

(
X(n)Mn

)
[ in , k ]

=
In∑
in=1

a
(n)
jnin

În∑
i=1

X(n)[ in , i ]Mn[ i , k ], (3.6)

44



with În = I1 · · · In−1In+1 · · · IN . Now, X(n)[ in , i ] = xi1···iN , with

i = 1 +
N∑
l=1
l 6=n

(il − 1)
l−1∏
m=1
m 6=n

Im.

From the definition of Kronecker product follows that the same i stands in

Mn[ i , k ] = ã
(N)
iN jN
· · · ã(n+1)

in+1jn+1
ã
(n+1)
in−1jn−1

· · · ã(1)i1j1 ,

with ã
(m)
imjm

denoting an element of A(m)T . Using these conclusions, we can rewrite (3.6)

as
I1∑
i1=1

· · ·
IN∑
iN=1

xi1···iNa
(1)
j1i1
· · · a(N)

jN iN
,

which completes the proof.

(7) Follows directly from (3.1.3.(6)), (3.1.1.(1)) and (3.2).

For a matrix X, i.e. tensor of orderN = 2, applying matricization from Definition 3.1.1

results in

X(1) = X, X(2) = XT .

If we multiply X by each mode with matrices A and B of appropriate sizes, from (3.1.3.(6))

follows

Y = X×1 A×2 B ⇔ Y = AXBT , (3.7)

so the SVD (2.7) of a matrix X can be rewritten in terms of the n-mode product as

X = UΣVT = Σ×1 U×2 V. (3.8)

Also, we can use the n-mode product to get any element of a tensor. If X = (xi1i2···iN ) ∈

RI1×I2×···×IN , then

xi1i2···iN = X×1 eTi1 ×2 eTi2 ×3 · · · ×N eTiN , (3.9)

where ein is the in-th unit vector of length In, for n = 1, . . . , N .

Definition 3.1.4. The n-mode (vector) product of a tensor X ∈ RI1×···×IN and a vector

v ∈ RIn, denoted by X ×̄n v, is a tensor of order N − 1 and size I1 × · · · × In−1 × In+1 ×

· · ·×IN , computed as inner product of each mode-n fiber of X and vector v. Element-wise,

(X ×̄n v)i1···in−1in+1···iN =
In∑
in=1

xi1i2···iNvin .
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Example 3.1.4. Let X be the tensor from Example 3.1.1 and let v = [ 1 2 3 4 ]T .

Then

X ×̄1 v =


30 150

70 190

110 230

 .
Proposition 3.1.4. The following property holds

X ×̄m v ×̄n w = (X ×̄m v) ×̄n−1 w = (X ×̄n w) ×̄m v, for m < n.

3.2 Tensors in Tucker format and the multilinear rank

As explained in Section 1.1, Tucker format is one of the most commonly used low-rank

representations of tensors, particularly suitable for function-related tensors of low order

(N = 3, 4, 5).

Definition 3.2.1. A tensor X ∈ RI1×I2×···×IN is said to be in Tucker format if it can be

represented as

X = F×1 A(1) ×2 A(2) ×3 · · · ×N A(N), (3.10)

were F ∈ RR1×R2×···×RN is a tensor called the core tensor and A(n) ∈ RIn×Rn are matrices

called the factor matrices, with Rn ∈ N, for n = 1, 2, . . . , N . Element-wise,

xi1i2···iN =

R1∑
r1=1

R2∑
r2=1

· · ·
RN∑
rN=1

fr1r2···rNa
(1)
i1r1

a
(2)
i2r2
· · · a(N)

iNrN
.

We will also refer to the right-hand side of (3.10) as the Tucker representation of X.

Integers Rn usually satisfy Rn ≤ In, since then, instead of storing I1I2 · · · IN entries of

tensor X, we can use its Tucker representation and store only R1R2 · · ·RN +
∑N

n=1 InRn;

see Figure 3.4. However, we still refer to (3.10) as Tucker format, even if Rn > In, for one

or more n.

Example 3.2.1. Let X be 100 × 100 × 100 tensor which can be represented in Tucker

format (3.10) with F of size 10×10×10 and matrices A(n) of size 100×10, for n = 1, 2, 3.

Using this representation, instead of storing 1003 = 106 entries of tensor X, we only

have to store 4 · 103 elements - 103 elements of F and 3 · 100 · 10 elements for matrices

A(1),A(2),A(3).
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Figure 3.4: Tucker representation of a tensor of order 3.

From (3.8) we see that, in terms of tensors, the SVD of a matrix is exactly its Tucker

format, with the diagonal matrix Σ being the core tensor (or the “core matrix”) and

matrices of left and right singular vectors U,V the factor matrices.

However, in general, Tucker representation of a tensor of order N is not unique. For ex-

ample, let U ∈ RR1×R1 be orthogonal matrix, then from (3.1.3.(3)) follows the equivalence

of (3.10) and

X = (F×1 U)×1 A(1)UT ×2 A(2) ×3 A(3) ×4 · · · ×N A(N). (3.11)

Sometimes, we will want the factor matrices of tensor X from (3.10) to be orthonor-

mal (or orthogonal, if square), and in that case we can orthogonalize them by performing

the truncated QR decomposition (see Section 2.1.6) and update core tensor by prop-

erty (3.1.3.(3)),

X = F×1 Q(1)R(1) ×2 · · · ×N Q(N)R(N)

=
(
F×1 R(1) ×2 · · · ×N R(N)

)︸ ︷︷ ︸
F̃

×1Q
(1) ×2 · · · ×N Q(N). (3.12)

Furthermore, addition of two tensors in Tucker format preserves the format. Assume

we have two tensors of order N = 2 given in their Tucker formats, X = F×1 A(1)×2 A(2)

and Y = G×1 B(1) ×2 B(2). From (3.7) follows

X + Y = A(1)FA(2)T + B(1)GB(2)T

=
[
A(1) B(1)

]F

G

A(2)T

B(2)T
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=

F

G

×1

[
A(1) B(1)

]
×2

[
A(2) B(2)

]
,

so the factor matrices of X + Y are obtained by concatenating factor matrices of X and

Y, respectively, and the “core matrix” is a block diagonal matrix with “core matrices” of

X and Y on the diagonal.

When dealing with tensors of order N ≥ 3, the generalization is straightforward.

Given X = F ×1 A(1) ×2 · · · ×N A(N) and Y = G ×1 B(1) ×2 · · · ×N B(N), the Tucker

representation of X + Y is given by

X + Y = diag (F,G)×1

[
A(1) B(1)

]
×2 · · · ×N

[
A(N) B(N)

]
, (3.13)

where diag (F,G) denotes a tensor of order N whose two diagonal blocks are F and G; for

N = 3 see Figure 3.5. For more details on basic operations of tensors in Tucker format

see [23].

Figure 3.5: Block diagonal tensor of order N = 3 with tensors F and G on the diagonal.

Two terms are closely related to Tucker representation of a tensor - the n-rank and

the multilinear rank.

Definition 3.2.2. The n-rank of a tensor X ∈ RI1×···×IN , denoted rankn(X), is the rank

of its mode-n matricization X(n),

rankn(X) = rank(X(n)).

Definition 3.2.3. The multilinear rank of a tensor X ∈ RI1×···×IN is the N-tuple of

n-ranks, (
rank1 (X) , . . . , rankN (X)

)
.

For a tensor X with Tucker representation (3.10), from (3.1.3.(6)) follows that each

mode-n matricization of X can be written as

X(n) = A(n)F(n)

(
A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1)

)T
. (3.14)
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Since A(n) is an In×Rn matrix, assuming Rn ≤ In gives rankn(X) ≤ Rn. Vice versa,

any tensor can be represented in Tucker format with Rn = rankn(X). In that case the

core tensor is the smallest possible and the storage reduction is maximal.

However, if the multilinear rank of a tensor is too large to achieve significant storage re-

duction, we can approximate the tensor by a Tucker representation with lower multilinear

rank

X ≈ F×1 A(1) ×2 A(2) ×3 · · · ×N A(N), F ∈ RR1×···×RN . (3.15)

Now the right-hand size of (3.15) is a tensor with multilinear rank (R1, . . . , RN), where

Rn < rankn(X).

The process of obtaining Tucker representation (3.10) of a given tensor is called the

Tucker decomposition.

3.3 The Higher-order SVD

One way to compute the Tucker decomposition (3.10) of a given tensor is the method

known as the higher-order singular value decomposition (HOSVD). In the following, we

present the results from [8], which also show that the HOSVD is indeed a convincing

generalization of the matrix SVD (2.7), justifying its name.

Theorem 3.3.1. ([8, Theorem 2]) Every tensor X ∈ RI1×I2×···×IN can be written as

X = F×1 A(1) ×2 A(2) ×3 · · · ×N A(N), (3.10 revisited)

in which

(1) A(n) =
[
a
(n)
1 a

(n)
2 · · · a

(n)
In

]
∈ RIn×In is an orthogonal matrix,

(2) F ∈ RI1×I2×···×IN is a tensor of which the subtensors Fin=α, obtained by fixing the

nth index to α, have the properties of

(i) all-orthogonality:

〈Fin=α,Fin=β〉 = 0, when α 6= β,

(ii) ordering:

‖Fin=1‖F ≥ ‖Fin=2‖F ≥ · · · ≥ ‖Fin=In‖F ≥ 0,

for all possible values of n.
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The norms ‖Fin=i‖F , symbolized by σ
(n)
i , are n-mode singular values and the vectors a

(n)
i

are n-mode singular vectors of X.

Proof. Assume we are given tensors X,F ∈ RI1×I2×···×IN , related by (3.10), in which

A(1),A(2), . . . ,A(N) are orthogonal matrices. Or, in matrix format

X(n) = A(n)F(n)

(
A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1)

)T
. (3.14 revisited)

Now, consider the particular case when matrix A(n) is obtained from the SVD of X(n) as

X(n) = A(n)Σ(n)B(n)T , (3.16)

in which B(n) is orthogonal and Σ(n) = diag(σ
(n)
1 , σ

(n)
2 , . . . , σ

(n)
In

), with

σ
(n)
1 ≥ σ

(n)
2 ≥ · · · ≥ σ

(n)
Rn

> σ
(n)
Rn+1 = · · · = σ

(n)
In

= 0,

where Rn ≤ In. Using the Kronecker product property (2.2.1.(3)) and comparing (3.14)

and (3.16) shows that

F(n) = Σ(n)B(n)T
(
A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1)

)
.

This equation implies that for arbitrary orthogonal matrices A(1),A(2), . . . ,A(n−1),A(n+1),

. . . ,A(N), matrix F(n) has orthogonal rows. Since rows of F(n) are exactly vec(Fin=1),

vec(Fin=2), . . . , vec(Fin=In), we can write the orthogonality property in terms of inner

products using (3.1.1.(3))

vec(Fin=α)T vec(Fin=β) = 〈Fin=α,Fin=β〉 = 0, when α 6= β.

Also, by (3.1.1.(2))

‖Fin=1‖F = ‖ vec(Fin=1)‖2 = ‖
(
F(n)

)
1:
‖2 = σ

(n)
1 .

By constructing the matrices A(1), · · · ,A(n−1),A(n+1), · · · ,A(N) in the same way as

A(n), F will satisfy all the conditions from the theorem. So if we calculate every A(n)

from the SVD of X(n), using (3.1.3.(5-i)) we get F from

F = X×1 A(1)T ×2 A(2)T ×3 · · · ×N A(N)T .
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Algorithm 6 HOSVD for computing Tucker decomposition of a tensor X.

1: procedure HOSVD(X)

2: for n = 1, . . . , N do

3: A(n) ← left singular vectors of X(n)

4: end for

5: F← X×1 A(1)T ×2 A(2)T ×3 · · · ×N A(N)T

6: return F,A(1),A(2), . . . ,A(N)

7: end procedure

The preceding proof indicates how to calculate the higher-order singular value decom-

position of a given tensor. As presented in Algorithm 6, computing the HOSVD of a

tensor X ∈ RI1×···×IN leads to computation of SVDs of In× I1 · · · In−1In+1 · · · IN matrices

X(n), for n = 1, 2, . . . , N .

Remark 3.3.2. If the HOSVD of X is given as in Theorem 3.3.1, then

X(n) = A(n)Σ(n)B(n)T

is the SVD of X(n), where the diagonal matrix Σ(n) ∈ RIn×In and the orthonormal matrix

B(n) ∈ RI1···In−1In+1···IN×In are defined as

Σ(n) = diag
(
σ
(n)
1 , σ

(n)
2 , . . . , σ

(n)
In

)
,

B(n)T = F̂(n)

(
A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1)

)T
,

in which F̂(n) is a normalized version of F(n),

F(n) = Σ(n)F̂(n).

If rankn(X) = Rn ≤ In, then we can calculate the truncated SVD (2.12) of each

matrix X(n) and get Tucker representation of X with factor matrices A(n) of size In×Rn

and core tensor of size R1 ×R2 × · · · ×RN .

Also, we can use HOSVD to get approximation of X by a tensor of multilinear rank

(R1, . . . , RN) (3.15), when rankn(X) > Rn, if we set columns of each factor matrix A(n) to

contain Rn leading left singular vectors, in which case matrices A(n) will be orthonormal;

we discuss this in details in Corollary 3.3.4. And the process of obtaining such approx-

imation is presented in Algorithm 7 and called the truncated HOSVD. It yields the low

multilinear rank approximation to a given tensor.
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Algorithm 7 Truncated HOSVD for computing approximate Tucker decomposition of a

tensor X with predefined multilinear rank.

1: procedure HOSVD(X, R1, R2, . . . , RN)

2: for n = 1, . . . , N do

3: A(n) ← Rn leading left singular vectors of X(n)

4: end for

5: F← X×1 A(1)T ×2 A(2)T ×3 · · · ×N A(N)T

6: return F,A(1),A(2), . . . ,A(N)

7: end procedure

In contrast to the matrix case, where SVD yields the best low-rank approximation (see

Theorem 2.1.2) for all unitarily invariant norms, tensor X̂ resulting from the truncated

HOSVD is usually not optimal. However it satisfies a quasi-optimal condition

‖X− X̂‖F ≤
√
Nmin

{
‖X− Y‖F

∣∣∣ rankn(Y) ≤ Rn, n = 1, . . . , N
}
,

which we prove in Corollary 3.3.4, and the truncated HOSVD is a well-established ap-

proach to obtain such approximation.

Some properties and consequences of Theorem 3.3.1 are discussed below, for full list

of properties see [8].

• In case of tensors of order 3, all-orthogonality means that all horizontal slices (see

Figure 3.2) of F are mutually orthogonal matrices and the same property stands for

lateral and frontal slices.

• The n-mode singular values are uniquely defined. When the n-mode singular value

is distinct from other n-mode singular values, then its n-mode singular vector is

determined up to the sign, while the n-mode singular vectors corresponding to the

same n-mode singular value are unique up to the multiplication with an orthogonal

matrix, as shown in (3.11).

Corollary 3.3.3. Let the Tucker representation of X be given as in Theorem 3.3.1 and

let X have multilinear rank (R1, . . . , RN). Then the following holds

‖X‖2F =

R1∑
i=1

(
σ
(1)
i

)2
= · · · =

RN∑
i=1

(
σ
(N)
i

)2
= ‖F‖2F .
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Proof. Directly from (3.1.3.(5-ii)).

Corollary 3.3.4. Let the Tucker representation of X be given as in Theorem 3.3.1 and

let X have multilinear rank (R1, . . . , RN). Define a tensor

X̂ = F̂×1 Â(1) ×2 · · · ×N Â(N)

by discarding the smallest n-mode singular values σ
(n)
I′n+1, σ

(n)
I′n+2, , . . . , σ

(n)
Rn

for given values

of I ′n, i.e. set F̂ = F[1 : I ′1, 1 : I ′2, . . . , 1 : I ′N ] and Â(n) = A(n)[ : , 1 : I ′n], for n = 1, . . . , N .

Then

(1) 〈X, X̂〉 = ‖F̂‖2F ,

(2) ‖X− X̂‖2F ≤
N∑
n=1

Rn∑
in=I′n+1

σ
(n)
in

2
≤ N min

rankn(Y)≤I′n,
n=1,...,N

‖X− Y‖2F .

Proof. (1) By (3.1.3.(3)) and (3.1.3.(4))

〈X, X̂〉 =〈F×1 A(1) ×2 · · · ×N A(N), F̂×1 Â(1) ×2 · · · ×N Â(N)〉

=〈
(
F×1 A(1) ×2 · · · ×N A(N)

)
×1 Â(1)T ×2 · · · ×N Â(N)T , F̂〉

=〈F×1 Â(1)TA(1) ×2 · · · ×N Â(N)TA(N), F̂〉

=〈F̂, F̂〉 = ‖F̂‖2F .

(2) From (3.3.4.(1)), (3.1.1.(4)) and Corollary 3.3.3 we have

‖X− X̂‖2F =‖X‖2F − 2〈X, X̂〉+ ‖X̂‖2F = ‖F‖2F − ‖F̂‖2F

=

R1∑
i1=1

R2∑
i2=1

· · ·
RN∑
iN=1

f 2
i1i2···iN −

I′1∑
i1=1

I′2∑
i2=1

· · ·
I′N∑
iN=1

f 2
i1i2···iN

=

R1∑
i1=I′1+1

R2∑
i2=I′2+1

· · ·
RN∑

iN=I′N+1

f 2
i1i2···iN

≤
R1∑

i1=I′1+1

R2∑
i2=1

· · ·
RN∑
iN=1

f 2
i1i2···iN +

R1∑
i1=1

R2∑
i2=I′2+1

· · ·
RN∑
iN=1

f 2
i1i2···iN

+ · · ·+
R1∑
i1=1

R2∑
i2=1

· · ·
RN∑

iN=I′N+1

f 2
i1i2···iN

=

R1∑
i1=I′1+1

σ
(1)
i1

2
+

R2∑
i2=I′2+1

σ
(2)
i2

2
+ · · ·+

RN∑
iN=I′N+1

σ
(N)
iN

2
.

This proves the first inequality, while the second one follows from the fact that

Rn∑
in=I′n+1

σ
(n)
in

2
= ‖X−X×n Pn‖2F ,
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where Pn = Â(n)Â(n)T is an orthogonal projector. Namely, setting F̂n = Frn=1:I′n ,

‖X−X×n Pn‖2F =‖F− F̂n‖2F = ‖F‖2F + ‖F̂n‖2F − 2〈F, F̂n〉

=
Rn∑
in=1

‖Frn=in‖2F +

I′n∑
in=1

‖Frn=in‖2F − 2

I′n∑
in=1

‖Frn=in‖2F

=
Rn∑

in=I′n+1

‖Frn=in‖2F .

Now, for any Y with rankn(Y) ≤ I ′n, for n = 1, . . . , N ,

‖X− Y‖2F = ‖X(n) −Y(n)‖2F = ‖X(n) −PnX(n) −
(
Y(n) −PnX(n)

)
‖2F

= ‖X(n) −PnX(n)‖2F + ‖Y(n) −PnX(n)‖2F ,

which follows from (3.1.1.(4)) and
(
X(n) −PnX(n)

)T (
Y(n) −PnX(n)

)
= 0. This

gives

‖X−X×n Pn‖2F = ‖X(n) −PnX(n)‖2F ≤ ‖X− Y‖2F ,

which completes the proof.

Instead of specifying the desired multilinear rank of the approximate Tucker represen-

tation, we can also specify tolerance ε > 0 and discard singular vectors whose associated

singular values are lower than ε. The procedure is desribed in Algorithm 8.

Algorithm 8 Truncated HOSVD for computing approximate Tucker decomposition of a

tensor X with given tolerance.

1: procedure HOSVD(X, ε)

2: for n = 1, . . . , N do

3: A(n) ← leading left singular vectors of X(n) whose associated singular values

4: are greater or equal to ε

5: end for

6: F← X×1 A(1)T ×2 A(2)T ×3 · · · ×N A(N)T

7: return F,A(1),A(2), . . . ,A(N)

8: end procedure
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The HOSVD as generalization of the SVD

HOSVD shows a clear analogy with matrix SVD. In Section 3.2 we have explained that

getting the SVD of a matrix actually provides its Tucker representation in terms of ten-

sors. Furthermore, in Theorem 3.3.1 the left and right singular vectors of a matrix are

generalized as the n-mode singular vectors and the role of the singular values is taken

over by the norms of the (N − 1)th-order subtensors of the core tensor. Notice that in

the matrix case (3.8), the singular values also correspond to the norm of the rows and the

columns of the “core matrix” Σ.

The essential difference is that that F is a full tensor and not diagonal, but instead F

obeys the condition of all-orthogonality. In general it is impossible to reduce higher-order

tensors to a diagonal form by means of orthogonal transformations, which is easily shown

by counting degrees of freedom: diagonality of core tensor containing I nonzero elements

would imply that the decomposition would exhibit not more than I(
∑N

n=1 In + 1−N(I +

1)/2) degrees of freedom, while the original tensor contains I1I2 · · · IN independent entries.

Only in the second-order case both quantities are equal for I = min{I1, I2}. However,

notice that in the matrix case (3.8) Σ is all-orthogonal as well; due to the diagonal

structure, the scalar product of two different rows and columns also vanishes. Also, the

n-mode singular values are by definition non-negative and real, like in the matrix case.

3.4 HOSVD based on approximate ranges

Here we present a modification of the HOSVD algorithm from Section 3.3, which, for a

given X, gets its factor matrices by approximating an orthonormal basis for the range of

X(n), instead of calculating its leading left singular vectors. Afterward, the core tensor is

calculated the usual way. The procedure is presented in Algorithm 9 and we refer to it as

HOSVD-AR.

Corollary 3.4.1. For X ∈ RI1×···×IN , let its Tucker representation be given by Algo-

rithm 9, with step 3 obtained such that for each n = 1, 2, . . . , N ,

‖
(
I−A(n)A(n)T

)
X(n)‖F ≤ ε, (3.17)

for some ε > 0. Then

‖X−F×1 A(1) ×2 · · · ×N A(N)‖F ≤ Nε.
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Algorithm 9 HOSVD for computing Tucker decomposition of a tensor X based on

approximate ranges.

1: procedure HOSVD-AR(X)

2: for n = 1, 2, . . . , N do

3: A(n) ← orthonormal basis for approximation of range of X(n)

4: end for

5: F← X×1 A(1)T ×2 A(2)T ×3 · · · ×N A(N)T

6: return F,A(1),A(2), . . . ,A(N)

7: end procedure

Proof. Setting Pn = A(n)A(n)T , we rewrite X as

X = X×1 P1 + X×1 (I−P1)

= X×1 P1 ×2 P2 + X×1 P1 ×2 (I−P2) + X×1 (I−P1) = · · ·

= X×1 P1 ×2 · · · ×N PN +
N∑
n=1

X×1 P1 ×2 · · · ×n−1 Pn−1 ×n (I−Pn).

Now,

‖X−F×1 A(1) ×2 · · · ×N A(N)‖F

= ‖X−
(
X×1 A(1)T ×1 · · · ×N A(N)T

)
×1 A(1) ×2 · · · ×N A(N)‖F

= ‖X−X×1 P1 ×2 · · · ×N PN‖F

≤
N∑
n=1

‖X×1 P1 ×2 · · · ×n−1 Pn−1 ×n (I−Pn)‖F

≤
N∑
n=1

‖X×n (I−Pn)‖F ≤ Nε,

where the first inequality in the last line follows from (2.18).

For step 3 of Algorithm 9, we use Stage A of the randomized algorithm (see Sec-

tion 2.3.2).1 Given ε, (3.17) can be achieved by setting ε = ε/
√
In in Algorithm 3,

assuming In ≤
∏N

k=1
k 6=n

Ik; see (2.47) and (2.11).

However, when adapting Algorithm 9 to give approximation of X of predefined mul-

tilinear rank in combination with randomized algorithm for fixed range (Algorithm 2),

the required oversampling parameter will lead to a basis that is unnecessarily large. We

1This combination is presented in [7] under name HOSVD-RandSVD.
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mitigate this effect by recompressing the core tensor. Algorithm 10 contains the truncated

version of the algorithm.

Algorithm 10 Truncated HOSVD for computing Tucker decomposition of a tensor X

based on approximate ranges.

1: procedure HOSVD-AR(X, R1, R2, . . . , RN)

2: for n = 1, 2, . . . , N do

3: Apply Algorithm 2: Q(n) = fixed rand range(X(n), Rn)

4: end for

5: F̃← X×1 Q(1)T ×2 Q(2)T ×3 · · · ×N Q(N)T

6: Apply Algorithm 7: (F, Ã(1), Ã(2), . . . , Ã(N)) = HOSVD(F̃, R1, . . . , RN)

7: for n = 1, 2, . . . , N do

8: A(n) ← Q(n)Ã(n)

9: end for

10: return F,A(1),A(2), . . . ,A(N)

11: end procedure

The additional step changes the error bound from Corollary 3.4.1.

Corollary 3.4.2. For X ∈ RI1×···×IN , let its Tucker representation be given by Algo-

rithm 10, with step 3 obtained such that for each n = 1, 2, . . . , N ,

‖
(
I−Q(n)Q(n)T

)
X(n)‖F ≤ ε

and by requiring the 2-norm of the truncated n-mode singular values of F̃ not to be larger

than ε, for some ε > 0. Then

‖X−F×1 A(1) ×2 · · · ×N A(N)‖F ≤ (N +
√
N)ε.

Proof. Setting X̃ = F̃×1 Q(1) ×2 · · · ×N Q(N), Corollary 3.4.1 gives

‖X− X̃‖F ≤ Nε,

while Corollary 3.3.4 gives

‖F̃−F×1 Ã(1) ×2 · · · ×N Ã(N)‖F ≤
√
Nε.

Now, using (3.1.3.(3)) and (3.1.3.(5-ii)),

‖X−F×1A
(1) ×2 · · · ×N A(N)‖F
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≤ ‖X− X̃‖F + ‖X̃−F×1 A(1) ×2 · · · ×N A(N)‖F

≤ ‖X− X̃‖F + ‖F̃−F×1 Ã(1) ×2 · · · ×N Ã(N)‖F ≤ (N +
√
N)ε.

If X has multilinear rank (R1, . . . , RN), from (2.11) we know that

‖
(
I−A(n)A(n)T

)
X(n)‖F ≤

√
Rn‖

(
I−A(n)A(n)T

)
X(n)‖2,

while Theorem 2.3.1 gives the expectation for ‖
(
I−A(n)A(n)T

)
X(n)‖2.

3.5 Efficient computation of the tensor operations

In this section we explain the connection between matricized Kronecker product of tensors

and the Kronecker product of matricized tensors, and discuss the efficient way to compute

the matrix-vector multiplication, when matrix is exactly matricized Kronecker product

of tensors. Furthermore, we explain how to efficiently create tensor if we are only given

its Tucker representation and we calculate the complexity of such procedure, together

with presenting complexity of the HOSVD algorithm and a way to improve it. From

these observations we have created Julia procedures for solving the presented problems;

for details see Appendix A.

3.5.1 Matricization of Kronecker products of tensors

Given two tensors X ∈ RI1×···×IN and Y ∈ RJ1×···×JN , we will be interested in matrix-vector

products

(X⊗ Y)(n) v and (X⊗ Y)T(n) w, (3.18)

where v and w are vectors of appropriate size. Matrix (X⊗ Y)(n) is the mode-n matri-

cization of the Kronecker product of tensors and

(X⊗ Y)T(n) ≡
[

(X⊗ Y)(n)

]T
its transposition. Creating matrix (X⊗ Y)(n) directly requires first forming an I1J1 ×

I2J2× · · · × INJN tensor X⊗Y and then matricizing it into an InJn×
∏N

k=1
k 6=n

IkJk matrix.

The problem here is that this matrix can be too large to store. But if we could

substitute (X⊗ Y)(n) with X(n) ⊗Y(n), then we could just apply the property (2.2.1.(5))
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and avoid explicitly forming the Kronecker product X⊗Y, as explained in Section 2.2.1.

So the question is - what is the relation between (X⊗ Y)(n) and X(n) ⊗Y(n)?

The matricization of X ⊗ Y is in general not equal to the Kronecker product of ma-

tricizations of X and Y, but is somewhat similar.

Lemma 3.5.1. For two tensor X ∈ RI1×···×IN and Y ∈ RJ1×···×JN , there exists a permu-

tation matrix Pn, only depending on the sizes of X, Y and the mode n ∈ {1, 2, . . . , N} of

the matricization, such that

(X⊗ Y)(n) =
(
X(n) ⊗Y(n)

)
Pn. (3.19)

In [24, 25] this statement is presented and proved through block tensors and block

matricizations. We offer alternative, for our purpose simpler proof.

Proof. The Kronecker product of two tensors is a tensor that consists of all possible com-

binations of elements of these two tensors and the mode-n matricization just rearranges

the elements of the tensor into a matrix.

Let us denote elements of tensor X as xi1i2···iN and elements of Y as yj1j2···jN , and left

and right matrices from (3.19) as

Ln = (X⊗ Y)(n) , Rn =
(
X(n) ⊗Y(n)

)
.

Then Ln and Rn are obviously of the same size and elements of both matrices are exactly

xi1i2···iNyj1j2···jN , for some set of indices {(i1, . . . , iN), (j1, . . . , jN)}. Now we will compare

how the elements of X and Y map on matrices Ln and Rn.

As defined in (3.1), the elements of tensor Z = X⊗ Y are zk1k2···kN = xi1i2···iNyj1j2···jN ,

where kn = jn + (in − 1)Jn, for n = 1, . . . , N . Performing mode-n matricization on Z

maps its elements in the following way (see Definition 3.1.1),

(k1, k2, . . . , kN) −→

kn, 1 +
N∑
l=1
l 6=n

(kl − 1)
l−1∏
m=1
m 6=n

ImJm


=

jn + (in − 1)Jn, 1 +
N∑
l=1
l 6=n

[
jl + (il − 1)Jl − 1

] l−1∏
m=1
m 6=n

ImJm


=

jn + (in − 1)Jn, 1 +
N∑
l=1
l 6=n

[
(jl − 1) + (il − 1)Jl

] l−1∏
m=1
m 6=n

ImJm

 ,
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and this gives us the rule how elements of X and Y map into elements of matrix Ln.

On the other hand, by first performing the n-mode matricization on tensors X and Y

with mappings

(i1, i2, . . . , iN) −→

in, 1 +
N∑
l=1
l 6=n

(il − 1)
l−1∏
m=1
m6=n

Im

 for X(n), and

(j1, j2, . . . , jN) −→

jn, 1 +
N∑
l=1
l 6=n

(jl − 1)
l−1∏
m=1
m 6=n

Jm

 for Y(n),

and then multiplying X(n) = (xl1l2) and Y(n) = (ym1m2) by the Kronecker product, we get[
X(n) ⊗ Y(n)

]
k1k2

= xl1l2ym1m2 , where

k1 = m1 + (l1 − 1)Jn,

k2 = m2 + (l2 − 1)J1J2 . . . Jn−1Jn+1 . . . JN .

Including previous conclusions we get the rule for mapping elements of X and Y into

elements of matrix Rn:

(k1, k2) = (m1 + (l1 − 1)Jn,m2 + (l2 − 1)J1J2 . . . Jn−1Jn+1 . . . JN)

=

jn + (in − 1)Jn, 1 +
N∑
l=1
l 6=n

(jl − 1)
l−1∏
m=1
m 6=n

Jm +

1 +
N∑
l=1
l 6=n

(il − 1)
l−1∏
m=1
m 6=n

Im − 1

 N∏
m=1
m6=n

Jm


=

jn + (in − 1)Jn, 1 +
N∑
l=1
l 6=n

(jl − 1) + (il − 1)
l−1∏
m=1
m 6=n

Im

N∏
m=l
m6=n

Jm

 l−1∏
m=1
m 6=n

Jm

 .

Comparing mappings for Ln and Rn, we see that the row indices are identical but the

column indices are not. In order to prove that the matrices are equal up to the column

permutation, we still have to show that if two pairs of indices map to the same column

in Ln, they also map to the same column in Rn.

Matrix Ln is the mode-n matricization of tensor Z, so the columns of Ln are the mode-

n fibers of Z, i.e. vectors obtained by fixing every index of Z but nth, meaning that the

two set of indices ((i1, . . . , iN), (j1, . . . , jN)) and ((i′1, . . . , i
′
N), (j′1, . . . , j

′
N)) will map to the

same column of Ln only if il = i′l and jl = j′l, for every l 6= n. Since neither column

mappings include indices in and jn, the equality of column indices easily proves.
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Using Lemma 3.5.1, from (2.2.1.(5)) and (2.2.1.(1)) follows

(X⊗ Y)(n) v =
(
X(n) ⊗Y(n)

)
Pnv︸︷︷︸

ṽ

= vec
(
Y(n)ṼXT

(n)

)
, ṽ = vec(Ṽ),

and

(X⊗ Y)T(n) w = PT
n

(
XT

(n) ⊗YT
(n)

)
w = PT

n vec
(
YT

(n)WX(n)

)︸ ︷︷ ︸
w̃

, w = vec(W),

and the problem of computing (3.18) comes down to correctly permuting vectors v and w̃,

both of length I1J1 · · · In−1Jn−1In+1Jn+1 · · · INJN and applying computations from above.

So we do not need an explicit expression for Pn, which is tedious anyway, but only the

realization of a matrix-vector product, when the matrix is either Pn or PT
n . Assuming now

v is any vector of length I1J1 · · · In−1Jn−1In+1Jn+1 · · · INJN , we explain how to calculate

Pnv and PT
nv.

To get Pnv, we first reshape v into a tensor V of size J1 × I1 × · · · × Jn−1 × In−1 ×

Jn+1 × In+1 × · · · × JN × IN , which matches the structure of a row on the left-hand side

of (3.19). In order to match the structure of a row on the right-hand side of (3.19), we

need to apply the perfect shuffle permutation

πn =
[
1 3 5 · · · (2N − 3) 2 4 · · · (2N − 2)

]
(3.20)

to the modes of V, that is, Ṽ(i1, . . . , i2N−2) = V(πn(i1), . . . , πn(i2N−2)). The vectorization

of Ṽ yields Pnv.

In Julia, the above procedure can be easily implemented using the commands reshape

and permutedims for reshaping and permuting the modes of a multivariate array, respec-

tively.

perfect shuffle = [ [2*k−1 for k=1:N−1]; [2*k for k=1:N−1] ]

tenshape = vec([J[setdiff([1:N],n)] I[setdiff([1:N],n)]]')

w = vec(permutedims(reshape(v,tenshape),perfect shuffle))

A matrix-vector product PT
nv is computed in an analogous fashion. First, v is reshaped

into a tensor V of size J1×· · ·×Jn−1×Jn+1×· · ·×JN × I1×· · ·× In−1× In+1×· · ·× IN .

After applying the inverse permutation of (3.20) to the modes of V, the vectorization of

this tensor yields PT
nv.

tenshape=[J[setdiff([1:N],n)];I[setdiff([1:N],n)]]

vec(permutedims(reshape(w,tenshape),invperm(perfect shuffle)))
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3.5.2 The n-mode multiplication

Now we explain how to efficiently perform the n-mode multiplication when multiplying a

tensor by a matrix in each mode. This procedure is equivalent with the process of creating

full tensor out of its Tucker representation.

Given the core tensor F ∈ RR1×···×RN and the factor matrices A(n) ∈ RIn×Rn from

Tucker representation of tensor X ∈ RI1×···×IN (3.10), we create (full) tensor X by multi-

plying the core tensor by the factor matrices one by one,

X = F×1 A(1)︸ ︷︷ ︸
X(1)

×2 A(2)

︸ ︷︷ ︸
X(2)···

×3 · · · ×N A(N). (3.21)

Since order of the multiplication is not important (see (3.1.3.(2))), we perform multipli-

cation in such order that tensors X(1),X(2), . . .X(N−1) are smallest possible, meaning we

reorder modes {1, 2, . . . , N} such that values In −Rn are in descending order.

For simplicity let us assume that that order is exactly {1, 2, . . . , N}. First, we form

I1 ×R2 ×R3 × · · · ×RN tensor X(1) from its mode-1 matricization

X
(1)
(1) = A(1)︸︷︷︸

I1×R1

F(1)︸︷︷︸
R1×

N∏
n=2

Rn

in O(I1R1R2 · · ·RN) operations. Then, we form I1× I2×R3×R4× · · · ×RN tensor X(2)

from its mode-2 matricization as

X
(2)
(2) = A(2)︸︷︷︸

I2×R2

X
(1)
(2)︸︷︷︸

R2×I1
N∏

n=3
Rn

in O(I1I2R2R3 · · ·RN) operations. We continue in the similar fashion:

• I1 × I2 × I3 ×R4 × · · · ×RN tensor X(3) in O(I1I2I3R3R4 · · ·RN) operations,

• I1 × · · · × I4 ×R5 × · · · ×RN tensor X(4) in O(I1I2I3I4R4 · · ·RN) operations,

• · · ·

• I1 × I2 × · · · × IN−1 ×RN tensor X(N−1) in O(I1 · · · IN−1RN−1RN) operations,

• I1 × I2 × · · · × IN tensor X in O(I1 · · · INRN) operations.
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So the overall complexity of (3.21) is

O

(
N∑
n=1

n∏
i=1

Ii

N∏
j=n

Rj

)
operations and O

(
N∑
n=1

n∏
i=1

Ii

N∏
j=n+1

Rj

)
memory. (3.22)

Remark 3.5.2. We will be interested in the simplified case when X is an I × · · · × I

tensor of order N , with given core tensor F of size R×· · ·×R and I ×R factor matrices

A(n), for n = 1, . . . , N , with additional assumption R < I. Setting I = In, R = Rn,

for n = 1, . . . , N , from (3.22) follows the complexity of O(INR) operations and O(IN)

memory. Further simplification on tensors of order N = 3 gives the complexity of O(I3R)

operations and O(I3) memory.

3.5.3 The HOSVD

Assume we are given I1 × · · · × IN tensor X whose multilinear rank is (R1, . . . , RN)

and we want to run the truncated HOSVD algorithm (Algorithm 7) to get its Tucker

representation (3.10) with R1× · · · ×RN core tensor F and In×Rn factor matrices A(n),

for n = 1, 2, . . . , N .

First, with assumption In ≤ I1 · · · In−1In+1 · · · IN , calculating Rn left singular vectors

of In×I1 · · · In−1In+1 · · · IN mode-n matricizations X(n) by getting their SVDs using stan-

dard methods requires O(I1 · · · In−1I2nIn+1 · · · IN) operations (see Section 2.1.3), but this

can be reduced to O(I1 · · · In−1InIn+1 · · · INRn) by using iterative methods, for example

randomized algorithm presented in Section 2.3.2. In that case, forming nth factor matrix

requires O(I1 · · · In−1In+1 · · · INRn) memory.

Creating core tensor goes analogously to process explained in Section 3.5.2, with the

complexity (3.22).

All together, the complexity of the truncated HOSVD combined with the randomized

algorithm is

O

(
max

n=1,...,N
Rn ·

N∏
n=1

In +
N−1∑
n=1

n∏
i=1

Ii

N∏
j=n

Rj

)
operations and

O

 max
n=1,...,N

Rn ·
N∏
i=1
i 6=n

Ii +
N∑
n=1

n∏
i=1

Ii

N∏
j=n+1

Rj

 memory. (3.23)

Remark 3.5.3. When X is an I × · · · × I tensor with multilinear rank (R, . . . , R) and

R < I, the Tucker representation of X obtained by the truncated HOSVD algorithm will
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include core tensor F of size R×· · ·×R and I×R factor matrices A(n), for n = 1, . . . , N .

Setting I = In, R = Rn, for n = 1, . . . , N , from (3.23) follows that the computational

requirement for this simplified case is O(INR) operations and O(IN) memory. Further

simplification to tensors of order N = 3 gives the complexity of O(I3R) operations and

O(I3) memory.
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Chapter 4

Recompression of Hadamard

products by HOSVD

In this chapter we discuss different ways of adjusting HOSVD algorithms from Sections 3.3

and 3.4 to give Tucker representation of Hadamard products of tensors given in their

Tucker formats. We set motivation for forming new operations with Hadamard products

that we later discuss in details in Chapter 5.

4.1 Hadamard products of tensors in Tucker format

Given two tensors X,Y ∈ RI1×···×IN in their Tucker formats

X = F×1 A(1) ×2 · · · ×N A(N), Y = G×1 B(1) ×2 · · · ×N B(N), (4.1)

with F ∈ RQ1×···×QN , A(n) ∈ RIn×Qn and G ∈ RP1×···×PN , B(n) ∈ RIn×Pn , we are interested

in getting the Tucker representation of their Hadamard product X ∗ Y.

The following lemma gives an explicit expression for that representation.

Lemma 4.1.1. Given two tensors X,Y as in (4.1), for Z = X ∗ Y it holds that

Z = (F⊗ G)×1

(
A(1) �T B(1)

)
×2 · · · ×N

(
A(N) �T B(N)

)
. (4.2)

Proof. For simplicity we offer proof for the case when X and Y are tensors of order N = 3.

The generalization is straightforward.

First, we will show the following equality holds,

(F×n aT )⊗ (G×n bT ) = (F⊗ G)×n (aT ⊗ bT ),
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for vectors a ∈ RQn , b ∈ RPn . Without loss of generality, we assume n = 1. By (3.1) and

Definition 3.1.3, for every k2, k3 we have[
(F×1 aT )︸ ︷︷ ︸
1×Q2×Q3

⊗ (G×1 bT )︸ ︷︷ ︸
1×P2×P3

]
1k2k3

= (F×1 aT )1i2i3 (G×1 bT )1j2j3

= f1i2i3a1 g1j2j3b1

= (F⊗ G)1k2k3 (aT ⊗ bT )1

=
[
(F⊗ G)×1 (aT ⊗ bT )

]
1k2k3

Now, using (3.9) and (3.1.3.(3)), this implies

(
X ∗ Y

)
i1i2i3

= xi1i2i3yi1i2i3

=
(
X×1 eTi1 ×2 eTi2 ×3 eTi3

)
(Y×1 eTi1 ×2 eTi2 ×3 eTi3)

=
(
F×1 eTi1A

(1) ×2 eTi2A
(2) ×3 eTi3A

(3)
)
⊗
(
G×1 eTi1B

(1) ×2 eTi2B
(2) ×3 eTi3B

(3)
)

= (F⊗ G)×1 (eTi1A
(1) ⊗ eTi1B

(1))×2 (eTi2A
(2) ⊗ eTi2B

(2))×3 (eTi3A
(3) ⊗ eTi3B

(3))

= (F⊗ G)×1 eTi1(A
(1) �T B(1))×2 eTi2(A

(2) �T B(2))×3 eTi3(A
(3) �T B(3))

=
(

(F⊗ G)×1

(
A(1) �T B(1)

)
×2

(
A(2) �T B(2)

)
×3

(
A(3) �T B(3)

))
i1i2i3

,

which completes the proof.

Representation (4.2) offers Tucker representation of Z = X ∗ Y with factor matrices

equal to Transpose Khatri-Rao product of factor matrices of X and Y and core tensor

to Kronecker product of core tensors of X and Y. This core tensor (F ⊗ G) is of size

Q1P1 × · · · × QNPN and this can be very large, even exceed the size of the tensor itself,

which makes the representation (4.2) not always useful by itself; see Example 4.1.1.

Example 4.1.1. Let X and Y be tensors of size 100× 100× 100 generated by evaluating

functions

f(x, y, z) =
1

x+ y + z
, g(x, y, z) =

1√
x+ y + z

on the grid {0.1, 0.2, . . . , 10} for x, y, z. Then X and Y both have approximate multilinear

rank (12, 12, 12), so they admit Tucker representation (4.1) with core tensors F and G of

size 12 × 12 × 12. Using representation (4.2) for Z = X ∗ Y results in its core tensor of

size 144× 144× 144, which is not only bigger then Z itself, but also a lot bigger then the

actual multilinear rank of Z, which, obtained by discarding singular values smaller then

10−8 is (13, 13, 13).
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So the representation (4.2) does not give any information about the multilinear rank

of the Hadamard product Z, but it does give it a structure. Now getting the SVD of the

matrix Z(n) in Algorithms 6, 7 and 8, or the basis for its approximate range in Algorithms 9

and 10 can be done more efficiently, since it admits the structure

Z(n) =
(
A(n) �T B(n)

)
(F⊗ G)(n)

[(
A(N) �T B(N)

)
⊗ · · · ⊗

(
A(n+1) �T B(n+1)

)
⊗
(
A(n−1) �T B(n−1))⊗ · · · ⊗ (A(1) �T B(1)

)]T
. (4.3)

We are going to use this structure as a starting point for developing algorithms for

efficient calculation of Tucker representation of Hadamard products of tensors given in

Tucker format.

There are two types of problems that we deal with. Either we want to get the Tucker

representation

Z = H×1 C(1) ×2 · · · ×N C(N),

with H of size equal to multilinear rank of Z, where the equality stands up to a certain

tolerance, which we call the fixed-precision problem, or we want to approximate Z

with Tucker representation of lower multilinear rank

Z ≈H×1 C(1) ×2 · · · ×N C(N),

with H of predefined size R1 × · · · × RN , with Rn < rankn(Z) for one or more n, which

we refer to as the fixed-rank problem.

In both cases we want to recompress Tucker representation (4.2) of Z = X ∗ Y using

HOSVD algorithms; Algorithms 7 and 10 for fixed-rank problem and Algorithms 8 and 9

for fixed-precision problem.

4.2 Recompression by HOSVD

In this section we present ideas on how to modify the HOSVD algorithms to work with

Hadamard products, and propose structure-exploiting operations that can improve the

computations, which we thoroughly analyze in Chapter 5.

First three of the presented algorithms are based on the HOSVD algorithm from

Section 3.3, while the last one is based on the HOSVD-AR algorithm from Section 3.4,

and all of them can be adapted to solve both fixed-rank and fixed-precision problem; for

details on usage see Appendix A.2.
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4.2.1 Algorithms

HOSVD1. The straightforward approach for getting Tucker representation of Z = X∗Y

with X and Y given in their Tucker formats (4.1) is to first create full tensors X and Y out

of their Tucker representations, multiply them element-wise and then apply the HOSVD

algorithm on Z.

Since HOSVD includes calculation of left singular vectors of matricizations Z(n), which

are matrices of size In × I1 · · · In−1In+1 · · · IN , it seems reasonable to work with In × In
Gramians Z(n)Z

T
(n) and speed up the algorithm using an iterative method. As discussed

in Section 2.3.3, when the matrix is explicitly available, as in this case, we want to use

randomized algorithm (Section 2.3.2), because the matrix-vector multiplication can be

done in blocks. The resulting procedure is described in Algorithm 11.

Algorithm 11 HOSVD1

1: Create Z = full(X) ∗ full(Y).

2: for n = 1, . . . , N do

3: C(n) ← left singular vectors of Z(n) by applying randomized algorithm to Z(n)Z
T
(n)

4: end for

5: H← Z×1 C(1)T ×2 · · · ×N C(N)T

6: return H,C(1), . . . ,C(N)

This approach includes creating full I1 × I2 × · · · × IN tensor Z and then iteratively

computing eigenvectors of In × In matrices Z(n)Z
T
(n). This can be computationally chal-

lenging, so in the following we investigate ways to exploit the structure of Z (4.2) to speed

up the algorithm.

HOSVD2. Factor matrices in the representation (4.2) of Z are of size In ×QnPn, so if

QnPn < In, for every n, we can combine HOSVD algorithm with a standard recompression

technique and reduce the cost. For this purpose, we first orthonormalize the columns of

the factor matrices
(
A(n) �T B(n)

)
by the truncated QR decompositions and then apply

property (3.1.3.(3)):

Z = (F⊗ G)×1

(
A(1) �T B(1)

)︸ ︷︷ ︸
Q(1)R(1)

×2 · · · ×N
(
A(N) �T B(N)

)︸ ︷︷ ︸
Q(N)R(N)
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=
(

(F⊗ G)×1 R(1) ×2 · · · ×N R(N)
)

︸ ︷︷ ︸
Ĥ

×1Q
(1) ×2 · · · ×N Q(N).

The new core tensor Ĥ is a tensor of size P1Q1× · · · ×PNQN and it can be efficiently

computed using properties of matricization of Kronecker products from Section 3.5.1 and

matrix Kronecker product property (2.2.1.(5)), which we study in details in Section 5.3.

Also, it has the same multilinear rank as Z, so getting the HOSVD of Ĥ gives the Tucker

representation of Z, again by using the property (3.1.3.(3)):

Z =
(
H×1 C̃(1) ×2 · · · ×N C̃(N)

)
×1 Q(1) ×2 · · · ×N Q(N)

= H×1 (Q(1)C̃(1))×2 · · · ×N (Q(N)C̃(N)).

In the case of performing the truncated HOSVD on Ĥ, we will end up with approxi-

mation, not equality. And again we can use the combination of HOSVD and randomized

algorithm applied on Ĥ(n)Ĥ
T
(n). The resulting procedure is described in Algorithm 12.

Algorithm 12 HOSVD2

1: for n = 1, . . . , N do

2: Ĉ(n) ← A(n) �T B(n).

3: Compute QR decomposition Ĉ(n) = Q(n)R(n).

4: end for

5: Ĥ← (F⊗ G)×1 R(1) ×2 · · · ×N R(N)

6: Apply Algorithm 6 in combination with randomized algorithm applied to Ĥ(n)Ĥ
T
(n)

on line 3: (H, C̃(1), . . . , C̃(N)) = HOSVD(Ĥ)

7: for n = 1, . . . , N do

8: C(n) ← Q(n)C̃(n)

9: end for

10: return H,C(1), . . . ,C(N)

HOSVD3. The iterative methods presented in Section 2.3 are based on fast matrix-

vector multiplication, therefore another way to make use of the structure (4.2) is to create

structure-exploiting matrix-vector multiplication and adjust the HOSVD algorithm to use

an iterative method in combination with this new multiplication. This way we avoid

creating full tensor Z or its factor matrices from representation (4.2). Again, we work
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with In× In Gramians Z(n)Z
T
(n) and now use Lanczos method (Section 2.3.1), since we do

not have Z explicitly available; see the discussion in Section 2.3.3. Apart from adjusting

Lanczos method to use the new multiplication in order to calculate factor matrices C(n),

we can improve the calculation of the core tensor by also exploiting the structure (4.2)

and using property (3.1.3.(3)):

H = Z×1 C(1)T ×2 · · · ×N C(N)T

=
[

(F⊗ G)×1

(
A(1) �T B(1)

)
×2 · · · ×N

(
A(N) �T B(N)

) ]
×1 C(1)T ×2 · · · ×N C(N)T

= (F⊗ G)×1 C(1)T
(
A(1) �T B(1)

)
×2 · · · ×N C(N)T

(
A(N) �T B(N)

)
. (4.4)

This approach is presented in Algorithm 13, while the new matrix-vector calculation and

the structure-exploiting calculation of core tensor are studied in Sections 5.1 and 5.3,

respectively.

Algorithm 13 HOSVD3

1: for n = 1, . . . , N do

2: C(n) ← left singular vectors of Z(n) by applying Lanczos algorithm to Z(n)Z
T
(n) in

combination with structure-exploiting matrix-vector multiplication

3: end for

4: H← (F⊗ G)×1 C(1)T
(
A(1) �T B(1)

)
×2 · · · ×N C(N)T

(
A(N) �T B(N)

)
5: return H,C(1), . . . ,C(N)

HOSVD4. As explained in Section 2.3.3, one of the advantages of the randomized algo-

rithm over Lanczos is that we can introduce structure in the random matrix to fit the struc-

ture of the given matrix and speed up the matrix-vector multiplication. We will combine

this with the HOSVD-AR algorithm, finding an orthonormal basis for the range of matri-

ces Z(n). Without loss of generalization let us assume n = 1. Then (3.1.3.(6)), (2.2.1.(1))

and (2.28) give

Z(1) =
(
A(1) �T B(1)

)
(F⊗ G)(1)

[ (
A(N) �T B(N)

)
⊗ · · · ⊗

(
A(2) �T B(2)

) ]T
=
(
A(1) �T B(1)

)
(F⊗ G)(1)

[ (
A(N)T �B(N)T

)
⊗ · · · ⊗

(
A(2)T �B(2)T

) ]
.

Setting rank-1 vector w = wN⊗ · · · ⊗w2, with w2, . . . ,wN randomly generated vectors

of appropriate size, the multiplication Z(1)w can be done by applying property (2.2.1.(2)),

Z(1)w =
(
A(1) �T B(1)

)
(F⊗ G)(1)

[ (
A(N)T �B(N)T

)
wN ⊗ · · · ⊗

(
A(2)T �B(2)T

)
w2

]
.
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Here, we do not form vector w of length I2I3 · · · IN , but only vectors wn of lengths In, for

n = 2, . . . , N . This multiplication will be studied in details in Section 5.2.

This approach uses orthonormal basis of the range of Z(n) to compress the size of the

tensor. Then we update the core tensor Ĥ as in (4.4). When dealing with fixed-rank

problem, this can result in Ĥ being larger than the requested rank, so we additionally

perform HOSVD algorithm on it and update factor matrices accordingly. When dealing

with fixed-precision problem, we can skip line 5, set C̃(n) to be identity matrices and

H = H̃. This procedure is presented in Algorithm 14.

Algorithm 14 HOSVD4

1: for n = 1, . . . , N do

2: Q(n) ← orthonormal basis for approximation of range of Z(n)

3: end for

4: H̃← (F⊗ G)×1 Q(1)T
(
A(1) �T B(1)

)
×2 · · · ×N Q(N)T

(
A(N) �T B(N)

)
5: Apply Algorithm 6: (H, C̃(1), . . . , C̃(N)) = HOSVD(H̃)

6: for n = 1, . . . , N do

7: C(n) ← Q(n)C̃(n)

8: end for

9: return H,C(1), . . . ,C(N)

4.2.2 Error and perturbation analysis

Let Z be the Hadamard product of tensors X and Y from (4.1) and let the multilinear

rank of Z be (R1, . . . , RN). Furthermore, let

Ẑ = H×1 C(1) ×2 · · · ×N C(N)

be output of the algorithms HOSVD1, HOSVD2, HOSVD3 and HOSVD4 as the solution

of the fixed-precision problem with given ε > 0.

Error analysis

HOSVD1. In Algorithm 11, we compare Ẑ with Z calculated on line 1. Applying

property (3.1.3.(3)),

‖Z− Ẑ‖F = ‖Z−H×1 C(1) ×2 · · · ×N C(N)‖F
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= ‖Z−Z×1 C(1)C(1)T ×2 · · · ×N C(N)C(N)T‖F .

Setting Pn = C(n)C(n)T , the same way as in the proof of Corollary 3.4.1, gives

‖Z−Z×1 P1 ×2 · · · ×N PN‖F ≤
N∑
n=1

‖Z×n (I−Pn) ‖F .

Now, since we have obtained matrices C(n) from the randomized algorithm applied on

Z(n)Z
T
(n), assumption

‖ (I−Pn) Z(n)Z
T
(n)‖2 ≤ ε,

can be achieved using ε = ε/6; see (2.51). This, together with (2.26) and (2.19) gives

‖ (I−Pn) Z(n)‖22 = ‖ (I−Pn) Z(n)Z
T
(n) (I−Pn) ‖2

≤ ‖ (I−Pn) Z(n)Z
T
(n)‖2 ‖I−Pn‖2 ≤ ε.

From (2.11) we have

‖ (I−Pn) Z(n)‖F ≤
√
Rn‖ (I−Pn) Z(n)‖2 ≤

√
Rnε, (4.5)

which, by (3.1.1.(1)), gives the bound

‖Z− Ẑ‖F ≤
√
ε

N∑
n=1

√
Rn.

HOSVD2. In Algorithm 12 we apply HOSVD algorithm on tensor Ĥ, using randomized

algorithm on Ĥ(n)Ĥ
T
(n) to get factor matrices. Since Ĥ inherits the multilinear rank from

Z, then the same way as in HOSVD1, running randomized algorithm with ε = ε/6 gives

‖Ĥ−H×1 C̃(1) ×2 · · · ×N C̃(N)‖F ≤
√
ε

N∑
n=1

√
Rn.

Comparing Ẑ to Z from (4.2), from orthonormality of matrices Q(n) and (3.1.3.(5-ii))

follows

‖Z− Ẑ‖F = ‖Ĥ×1 Q(1) ×2 · · · ×N Q(N)−(
H×1 C̃(1) ×2 · · · ×N C̃(N)

)
×1 Q(1) ×2 · · · ×N Q(N)‖F

= ‖Ĥ−H×1 C̃(1) ×2 · · · ×N C̃(N)‖F ≤
√
ε

N∑
n=1

√
Rn.
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HOSVD3. Algorithm 13 gets factor matrices by applying Lanczos algorithm with

structure exploiting matrix-vector multiplication on matrices Z(n)Z
T
(n), where Z is given

by (4.2). Again, following the procedure for HOSVD1 - setting Pn = C(n)C(n)T and

assuming

‖ (I−Pn) Z(n)Z
T
(n)‖F ≤ ε,

which can be achieved using ε = ε/4 as tolerance for Lanczos algorithm (see (2.45)) and

using 2-norm and Frobenius norm equivalence (2.11), we obtain the bound

‖Z− Ẑ‖F ≤
√
ε

N∑
n=1

√
Rn.

HOSVD4. Algorithm 14 describes a variant of the HOSVD-AR algorithm, which uses

Stage A of the randomized algorithm combined with rank-1 matrix-vector multiplication

applied on matrix Z(n), where Z is given by (4.2). Now, since with fixed precision problem

matrix C(n) is exactly matrix Q(n), the output of Algorithm 3, with Pn = C(n)C(n)T ,

‖ (I−Pn) Z(n)‖F ≤ ε

can be achieved using ε = ε/
√
Rn; see (2.11). From Corollary 3.4.1 we have

‖Z− Ẑ‖F ≤ Nε.

With the above analysis we have proved the following theorem.

Theorem 4.2.1. Let Z be the Hadamard product of tensors X and Y from (4.1) and

let the multilinear rank of Z be (R1, . . . , RN). Denoting Ẑ to be output of the algorithms

HOSVD1, HOSVD2, HOSVD3 and HOSVD4 as the solution of the fixed-precision problem

with given ε > 0, algorithms HOSVD1, HOSVD2 and HOSVD3 admit the bound

‖Z− Ẑ‖F ≤
√
ε

N∑
n=1

√
Rn, (4.6)

while for the HOSVD4 algorithm the following bound holds,

‖Z− Ẑ‖F ≤ Nε. (4.7)

The fact that HOSVD4 algorithm gives best results in terms of accuracy is expected,

since it is the only of the four algorithms not working with Gramians Z(n)Z
T
(n), but directly

with matrices Z(n).
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Perturbation analysis

Let tensors X and Y admit perturbations

X̃ = X + δX, Ỹ = Y + δY,

where ‖δX‖F ≤ εP and ‖δY‖F ≤ εP , for some small positive εP . Denoting Z̃ = X̃ ∗ Ỹ, we

are interested in bounding ‖Z̃− Ẑ‖F . Rewriting Z̃ as Z̃ = Z + δZ gives

‖Z̃− Ẑ‖F = ‖Z + δZ− Ẑ‖F ≤ ‖Z− Ẑ‖F + ‖δZ‖F ,

so, depending which algorithm we are using, we can use the results from Theorem 4.2.1 to

bound the first term, while δZ has to be determined. This can be done easily by applying

the linearity of Hadamard products,

Z̃ = X̃ ∗ Ỹ = (X + δX) ∗ (Y + δY) = X ∗ Y︸ ︷︷ ︸
Z

+X ∗ δY + δX ∗ Y + δX ∗ δY︸ ︷︷ ︸
δZ

.

Now, by (3.2) and Corollary 3.3.3 and by ignoring the terms of order O(ε2P ), we get

‖δZ‖F = ‖X ∗ δY + δX ∗ Y + δX ∗ δY‖F

≤ ‖X‖F‖δY‖F + ‖δX‖F‖Y‖F + ‖δX‖F‖δY‖F

≤ εP‖X‖F + εP‖Y‖F + ε2P ≈ εP (‖F‖F + ‖G‖F ) .

Theorem 4.2.2. Let Z be the Hadamard product of tensors X and Y from (4.1), and

let Ẑ and ε be given as in Theorem 4.2.1. If the perturbations of X and Y are given as

X̃ = X + εPX
P and Ỹ = Y + εPY

P , with εP small positive number and ‖XP‖F ≤ 1 and

‖YP‖F ≤ 1, and we denote Z̃ = X̃ ∗ Ỹ, then ‖Z̃− Ẑ‖F admits the following bounds. For

the HOSVD1, HOSVD2 and HOSVD3 algorithms,

‖Z̃− Ẑ‖F ≤
√
ε

N∑
n=1

√
Rn + εP (‖F‖F + ‖G‖F ) , (4.8)

while for the HOSVD4 algorithm,

‖Z̃− Ẑ‖F ≤ Nε+ εP (‖F‖F + ‖G‖F ) . (4.9)

Remark 4.2.3. If matricizations Z(n) have quickly decaying singular values, then the

difference between the 2-norm and the Frobenius norm will not be large, and instead of
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the term
√
Rn in (4.5) we will have some constant Cn > 1, and in that case (4.6) can be

replaced with

‖Z− Ẑ‖F ≤
√
ε

N∑
n=1

Cn = C
√
ε, (4.10)

and (4.8) can be replaced by

‖Z̃− Ẑ‖F ≤ C
√
ε+ εP (‖F‖F + ‖G‖F ) , (4.11)

with C > N depending on the singular values of matrices Z(n).

For numerical results on accuracy and perturbation bounds see Section 6.2.2.
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Chapter 5

Exploiting structure in the

recompression of Hadamard

products

In Chapter 4 we have set ideas on how to use the known structure (4.2) of Hadamard

products of tensors in Tucker format to efficiently compute the Tucker representation of

the products. Here, we create and analyze the new structure-exploiting operations needed

for the algorithms proposed in Section 4.2.

Throughout this chapter, to simplify the expressions, we will restrict the discussion to

tensors of order N = 3 with same size in each mode and simplified Tucker representations.

Let X,Y ∈ RI×I×I be tensors given in their Tucker formats

X = F×1 A(1) ×2 A(2) ×3 A(3), Y = G×1 B(1) ×2 B(2) ×3 B(3), (5.1)

with F,G ∈ RR×R×R and A(n),B(n) ∈ RI×R, for n = 1, 2, 3 and R < I. Now, Hadamard

product Z = X ∗ Y is an I × I × I tensor and admits Tucker representation

Z = (F⊗ G)×1

(
A(1) �T B(1)

)
×2

(
A(2) �T B(2)

)
×3

(
A(3) �T B(3)

)
. (5.2)

5.1 Fast matrix-vector multiplication with Z(n)Z
T
(n)

Given tensor Z in format (5.2), we develop a fast algorithm for multiplying Z(n)Z
T
(n) ∈

RI×I , where Z(n) is the mode-n matricization of tensor Z (see Definition 3.1.1), with a

vector v ∈ RI .
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Without loss of generality, we will assume n = 1. From (3.1.3.(6)), we have

Z(1) =
[

(F⊗ G)×1

(
A(1) �T B(1)

)
×2

(
A(2) �T B(2)

)
×3

(
A(3) �T B(3)

) ]
(1)

=
(
A(1) �T B(1)

)
(F⊗ G)(1)

[ (
A(3) �T B(3)

)
⊗
(
A(2) �T B(2)

) ]T
.

Now, using Kronecker product property (2.2.1.(1)) and definition of Transpose Khatri-Rao

product (2.28), it follows

Z(1)Z
T
(1) =

(
A(1) �T B(1)

)
(F⊗ G)(1)

[ (
A(3) �T B(3)

)
⊗
(
A(2) �T B(2)

) ]T
[ (

A(3) �T B(3)
)
⊗
(
A(2) �T B(2)

) ]
(F⊗ G)T(1)

(
A(1) �T B(1)

)T
=
(
A(1) �T B(1)

)
(F⊗ G)(1)

[ (
A(3)T �B(3)T

)
⊗
(
A(2)T �B(2)T

) ]
[ (

A(3) �T B(3)
)
⊗
(
A(2) �T B(2)

) ]
(F⊗ G)T(1)

(
A(1)T �B(1)T

)
.

We perform the matrix-vector multiplication w = Z(1)Z
T
(1)v in five steps.

Step 1. w1 =
(
A(1)T �B(1)T

)
v

Step 2. w2 = (F⊗ G)T(1) w1

Step 3. w3 =
[ (

A(3) �T B(3)
)
⊗
(
A(2) �T B(2)

) ]
w2,

w4 =
[(

A(3)T �B(3)T
)
⊗
(
A(2)T �B(2)T

)]
w3

Step 4. w5 = (F⊗ G)(1) w4

Step 5. w =
(
A(1) �T B(1)

)
w5

In the following, we discuss an efficient implementation for each of these steps.

Step 1. To get w1 we apply property (2.2.1.(6))

w1 =
(
A(1)T �B(1)T

)
v = vec

(
B(1)T diag(v)A(1)

)
.

To calculate this we have to form R×R matrix

W1 = B(1)T︸ ︷︷ ︸
R×I

diag(v) A(1)︸︷︷︸
I×R

.

Performing this matrix multiplication as explained in Section 2.2.1 requires O(IR2)

operations and O(IR) memory.
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Step 2. For w2 we first apply property (3.19) and then (2.2.1.(5))

w2 = (F⊗ G)T(1) w1 =
[ (

F(1) ⊗G(1)

)
P1

]T
= PT

1

(
FT

(1) ⊗GT
(1)

)
w1

= PT
1 vec

(
GT

(1)W1F(1)

)
.

Here we have to form R2 ×R2 matrix W̃2

W̃2 = GT
(1)︸︷︷︸

R2×R

W1︸︷︷︸
R×R

F(1)︸︷︷︸
R×R2

,

which requires O(R5) operations and O(R4) memory, while the cost for applying PT
1 on

vec(W̃2) – using the techniques described in Section 3.5.1, is negligible.

Step 3. We present two variants for performing Step 3 and, as will be explained below,

the choice of the variant depends on the relation between I and R.

Variant A. First, we create vector w3 by reshaping vector w2 into R2 ×R2 matrix

W2 and applying property (2.2.1.(5))

w3 =
[ (

A(3) �T B(3)
)
⊗
(
A(2) �T B(2)

) ]
w2 = vec

[(
A(2) �T B(2)

)
W2

(
A(3)T �B(3)T

)]
.

Now we perform the first multiplication and create matrix which we denote as W̃3 and

use cj to denote jth column of W2, for j = 1, . . . , R2,

W̃3 =
(
A(2) �T B(2)

)
W2 =

(
A(2) �T B(2)

)
[ c1 · · · cR2 ] .

Each column of the resulting matrix is calculated by reshaping vector cj, which is of

length R2, into R×R matrix Cj and applying property (2.2.1.(7)),(
A(2) �T B(2)

)
cj = diag

(
B(2)︸︷︷︸
I×R

Cj A(2)T︸ ︷︷ ︸
R×I

)
, j = 1, . . . , R2,

which is then calculated as explained in Section 2.2.1 in O(IR2) operations for each cj.

Hence, O(IR4) operations and O(IR2) memory in total for computing W̃3 ∈ RI×R2
. The

matrix

W3 = W̃3

(
A(3)T �B(3)T

)
=
[ (

A(3) �T B(3)
)
W̃T

3

]T
is computed analogously - letting c̃j ∈ RR2

denote the jth column of W̃T
3 for j = 1, . . . , I,

and reshaping it into R×R matrix C̃j, the jth column of WT
3 is given by(

A(3) �T B(3)
)
c̃j = diag

(
B(3)︸︷︷︸
I×R

C̃j A(3)T︸ ︷︷ ︸
R×I

)
, j = 1, . . . , I. (5.3)
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Therefore, the computation of W3 ∈ RI×I from W̃3 requires O(I2R2) operations and

O(I2) memory.

We compute w4 by first using property (2.2.1.(5)) as

w4 =
[(

A(3)T �B(3)T
)
⊗
(
A(2)T �B(2)T

)]
w3 = vec

[(
A(2)T �B(2)T

)
W3

(
A(3) �T B(3)

)]
.

Letting dj denote the jth column of W3, the jth column of

W̃4 =
(
A(2)T �B(2)T

)
W3 =

(
A(2)T �B(2)T

)
[ d1 · · · dI ]

is given by (
A(2)T �B(2)T

)
dj = vec

(
B(2)T︸ ︷︷ ︸
R×I

diag(dj) A(2)︸︷︷︸
I×R

)
, (5.4)

which is computed as in Section 2.2.1 in O(IR2) operations, for j = 1, . . . , I. Therefore,

the computation of W̃4 ∈ RR2×I requires O(I2R2) operations and O(IR) memory. Anal-

ogously, the jth column of WT
4 =

[
W̃4

(
A(3)�T B(3)

)]T
is computed from the jth column

d̃j of W̃4

T
via

(
A(3)T �B(3)T

)
d̃j = vec

(
B(3)T diag(d̃j)A

(3)
)
, j = 1, . . . , R2.

This requires O(IR4) operations and O(IR2) memory for all columns of W4.

Overall, Variant A of Step 3 has the complexity of O(I2R2 + IR4) operations and

O(I2 + IR2) memory.

Variant B. For tensors of large mode sizes the quadratic growth with respect to I

in the complexity of Variant A is undesirable. We can avoid this by utilizing (2.2.1.(2))

first:

w4 =
[(

A(3)T �B(3)T
)
⊗
(
A(2)T �B(2)T

)]
w3

=
[(

A(3)T �B(3)T
)
⊗
(
A(2)T �B(2)T

)][(
A(3) �T B(3)

)
⊗
(
A(2) �T B(2)

)]
w2

=
[(

A(3)T �B(3)T
)(

A(3) �T B(3)
)
⊗
(
A(2)T �B(2)T

)(
A(2) �T B(2)

)]
w2

= vec
[(

A(2)T �B(2)T
)(

A(2) �T B(2)
)
W2

(
A(3)T �B(3)T

)(
A(3) �T B(3)

)]
.

As in Variant A, we first perform

W̃3 =
(
A(2) �T B(2)

)
W2,
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which requires O(IR4) operations and O(IR2) memory. Then, analogous to (5.4), we

compute the R2 ×R2 matrix

W3 =
(
A(2)T �B(2)T

)
W̃3

withinO(IR4) operations andO(IR3) memory. Now, analogous to (5.3), the computation

of the R2 × I matrix

W̃4 = W3

(
A(3)T �B(3)T

)
requires again O(IR4) operations and O(R4) memory. Finally, as in Variant A, we com-

pute

W4 = W̃4

(
A(3) �T B(3)

)
within O(IR4) operations and O(IR2) memory.

In total, Variant B has complexity of O(IR4) operations and O(IR2 +R4) memory.

Comparison of variants. Comparing the computational complexities of Variant A

and Variant B, we see that Variant B avoids the term I2R2 in the complexity of Variant A.

However, this does not mean that Variant B is always the better choice. Let us compare

the sizes of the intermediate matrices created by the two variants:

W̃3 W3 W̃4 W4

Variant A I ×R2 I × I R2 × I R2 ×R2

Variant B I ×R2 R2 ×R2 R2 × I R2 ×R2

We see a difference in matrix W3, which is in both variants calculated column by column

and in the cases when I < R2 Variant B will take more time to calculate this matrix. So,

in terms of storage requirements it could be preferable to use Variant A when I < R2.

In this situation, term IR4 dominates computational complexity of Variant A, so Variant

A turns out to be faster than Variant B. This can be clearly seen in Figure 5.1, which

shows that a matrix-vector multiplication based on Variant A becomes faster for R ≥

35 ≈
√

1000 =
√
I; see Section 1.4 for a description of the computational environment.

To conclude, we will use Variant A when I < R2 and Variant B otherwise.

Step 4. In the fourth step, similar to the second step, we use properties (3.19) and (2.2.1.(5))

w5 = (F⊗ G)(1) w4 =
(
F(1) ⊗G(1)

)
P1w4︸ ︷︷ ︸

ŵ4

.
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Figure 5.1: Execution time in seconds for matrix-vector multiplication with

Z(1)Z
T
(1) for random tensors X and Y with I = 1000 and ranks R =

10, 15, 20, 25, 30, 31, 32, 33, 34, 35, 40, 45, 50 using either Variant A or Variant B in Step

3.

The permutation matrix P1 is costlessly applied as explained in Section 3.5.1. Then,

reshaping ŵ4 into R2 ×R2 matrix Ŵ4, we get

w5 = vec

G(1)︸︷︷︸
R×R2

Ŵ4 FT
(1)︸︷︷︸

R2×R

 ,

by forming R×R matrix W5 = G(1)Ŵ4F
T
(1), in O(R5) operations and O(R4) memory.

Step 5. In the final step we calculate

w =
(
A(1) �T B(1)

)
w5 = diag

(
B(1)︸︷︷︸
I×R

W5 A(1)T︸ ︷︷ ︸
R×I

)
.

Again, making use of the fact that we only need diagonal elements, we get vector w in

O(IR2) operations and O(IR) memory.

Summary. All together, performing matrix-vector multiplication w = Z(1)Z
T
(1)v by

exploiting the structure can be done inO(I2R2+IR4+R5) operations andO(I2+IR2+R4)

memory when using Variant A in Step 3 (for I < R2), and O(IR4 + R5) operations and

O(IR2 +R4) memory, when using Variant B (for I ≥ R2).
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5.2 Fast multiplication of Z(n) with a rank-1 vector

Another multiplication we are interested in is the multiplication of Z(n) with a rank-1

vector, where Z(n) ∈ RI×I2 is the mode-n matricization of tensor Z with structure (5.2)

and rank-1 vector is a vector of the form w = x⊗ y with x,y ∈ RI .

Again, without loss of generality we assume n = 1. Then

Z(1)w =
(
A(1) �T B(1)

)
(F⊗ G)(1)

[(
A(3) �T B(3)

)
⊗
(
A(2) �T B(2)

)]T
w

=
(
A(1) �T B(1)

)
(F⊗ G)(1)

[(
A(3)T �B(3)T

)
⊗
(
A(2)T �B(2)T

)]
(x⊗ y) .

Applying property (2.2.1.(2)) gives

Z(1)w =
(
A(1) �T B(1)

)
(F⊗ G)(1)

[(
A(3)T �B(3)T

)
x⊗

(
A(2)T �B(2)T

)
y
]
.

Now we compute vectors x̃ =
(
A(3)T �B(3)T

)
x, and ỹ =

(
A(2)T �B(2)T

)
y, both of

length R2, within O(IR2) operations and O(IR) memory using procedure from Sec-

tion 2.2.1, and then form vector of length R4

z1 = x̃⊗ ỹ (5.5)

in O(R4) operations. It follows

Z(1)w =
(
A(1) �T B(1)

)
(F⊗ G)(1) z1.

To calculate the product

(F⊗ G)(1) z1︸︷︷︸
R4×1

=
(
F(1) ⊗G(1)

)
P1z1︸︷︷︸
R4×1

,

we first perform the permutation z2 = P1z1 as discussed in Section 3.5.1. Reshaping

vector z2 into R2 ×R2 matrix Z2 and using (2.2.1.(5)),

z3 =
(
F(1) ⊗G(1)

)
z2 = vec

G(1)︸︷︷︸
R×R2

Z2 FT
(1)︸︷︷︸

R2×R

 ,

where forming R × R matrix Z3 = G(1)Z2F
T
(1) requires O(R5) operations and O(R3)

memory. Applying (2.2.1.(7)), last step

z =
(
A(1) �T B(1)

)
z3 = diag

(
B(1)︸︷︷︸
I×R

Z3 A(1)T︸ ︷︷ ︸
R×I

)
,

as discussed in Section 2.2.1, requires O(IR2) operations and O(IR) memory.
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Summary. The matrix-vector product Z(n)w, where w is a rank-1 vector and Z(n) the

mode-n matricization of tensor Z with structure (5.2), can be performed in O(IR2 +R5)

operations and O(IR +R4) memory.

5.3 Calculating core tensor of Hadamard product

Assuming that we have calculated orthonormal factor matrices C(1),C(2),C(3) of the

Tucker representation of tensor Z,

Z ≈H×1 C(1) ×2 C(3) ×3 C(3),

where Z has structure (5.2), we now discuss the efficient computation of the core tensor

H.

From Section 3.3 we know that we can get H as

H = Z×1 C(1)T ×2 C(3)T ×3 C(3)T .

Exploiting the structure of Z, as in the N -dimensional case (4.4), we get

H = (F⊗ G)×1 C(1)T
(
A(1) �T B(1)

)
×2 C(2)T

(
A(2) �T B(2)

)
×3 C(3)T

(
A(3) �T B(3)

)
.

To simplify the complexity considerations, we assume that the size of each matrix C(n)

is I × R, matching the sizes of A(n) and B(n). First, for n = 1, 2, 3, we calculate R2 × R

matrices

D(n) =
(
A(n)T �B(n)T

)
C(n),

by first forming the Khatri-Rao product in O(IR3) operations and O(IR2) memory. We

rewrite

H = (F⊗ G)×1 D(1)T ×2 D(2)T ×3 D(3)T (5.6)

in terms of the mode-1 matricization

H(1) = D(1)T (F⊗ G)(1)
(
D(3) ⊗D(2)

)
=

(D(3)T ⊗D(2)T︸ ︷︷ ︸
R2×R4

)
(F⊗ G)T(1)︸ ︷︷ ︸

R4×R2

D(1)︸︷︷︸
R2×R


T

.

We start multiplying from the right and again use properties (3.19) and (2.2.1.(5)) column

by column

M = (F⊗ G)T(1) D(1) = PT
1

(
FT

(1) ⊗GT
(1)

)
D(1),
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and we do not store the entire matrix M, since its size is R4×R, and we have to multiply(
D(3)T ⊗D(2)T

)
by M column by column again, anyway.

Denoting the jth column of D(1) as dj ∈ RR2
and reshaping it into R×R matrix Dj,

we calculate the jth column of M,

mj = P1

(
FT

(1) ⊗GT
(1)

)
dj = P1 vec

GT
(1)︸︷︷︸

R2×R

Dj F(1)︸︷︷︸
R×R2

 (5.7)

in O(R5) operations, and perform another multiplication using that column right away

by reshaping mj into R2 ×R2 matrix Mj

(
D(3)T ⊗D(2)T

)
mj = vec

D(2)T︸ ︷︷ ︸
R×R2

Mj D(3)︸︷︷︸
R2×R

 , (5.8)

which has complexity O(R5) and gives the jth row of H(1), for j = 1, . . . , R. After we

calculate all columns, we simply reshape the matrix into a tensor.

Summary. All together, the computation of core tensor H requires O(IR3 + R6) op-

erations and O(IR2 +R4) memory.

Remark 5.3.1. When dealing with general tensors X and Y of order N as in (4.1),

after we calculate factor matrices C(n) ∈ RIn×Rn of Z = X ∗ Y, we want to perform the

multiplication (5.6) by choosing the mode-n matricization that will give biggest memory

reduction. We choose mode n such that PnQn −Rn is maximal, since then

M = PT
n (FT

(n) ⊗GT
(n))︸ ︷︷ ︸

N∏
i=1
i 6=n

PiQi×PnQn

D(n)︸︷︷︸
PnQn×Rn

is of size
N∏
i=1
i 6=n

PiQi ×Rn.
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Chapter 6

Algorithmic complexities and

numerical experiments

This chapter includes detailed analysis of the combination of algorithms presented in

Section 4.2 and operations from Chapter 5. In Section 6.1 we provide complexity analysis

and Section 6.2 contains numerical experiments which prove our theoretical conclusions.

6.1 Algorithmic complexities

6.1.1 Complexities for N = 3

To calculate the complexities of the algorithms from Section 4.2 we again assume we are

dealing with tensors X and Y or order N = 3 as in (5.1), and that we want to get the

Tucker representation of Z = X ∗ Y,

Z ≈H×1 C(1) ×2 C(2) ×3 C(3),

with H of size R×R×R. In other words, assume we are solving the fixed-rank problem.

HOSVD1 algorithm

The straightforward approach is presented in Algorithm 11 and we refer to it as the

HOSVD1. It forms full tensors X and Y out of their Tucker representations, which

requires O(I3R) operations and O(I3) memory (see Section 3.5.2), after which we need

another O(I3) operations for creating their Hadamard product Z = X ∗ Y.
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Next step is to use randomized algorithm to get R left singular vectors of matricizations

Z(n) by getting spectral decomposition of I × I matrices Z(n)Z
T
(n), for n = 1, 2, 3, which

requiresO(I3R) operations andO(I2R) memory (see Section 2.3.2). Additionally, O(I3R)

operations and O(I3) memory is needed to form the core tensor (see Section 3.5.2).

All together, the HOSVD1 algorithm requires O(I3R) operations and O(I3) memory.

HOSVD2 algorithm

The approach which exploits structure (5.2) by performing the QR decomposition of each

factor matrix from (5.2), was presented in Algorithm 12 and we call it the HOSVD2.

First, forming the I ×R2 factor matrices Ĉ(n) = A(n)�T B(n), for n = 1, 2, 3, requires

O(IR2) operations (see Section 2.2.1), and creating their QR decompositions Ĉ(n) =

Q(n)R(n) another O(IR4) operations, where matrices Q(n) are of size I × R2 and R(n)

of size R2 × R2. Now updating tensor Ĥ can be done similarly as in Section 5.3, with

I = R2 and D(n) = R(n)T , through steps (5.7) and (5.8), resulting in O(R8) operations

and O(R4) memory.

Performing HOSVD on R2 × R2 × R2 tensor Ĥ in combination with randomized al-

gorithm applied on matrices Ĥ(n)Ĥ
T
(n) with predefined multilinear rank (R,R,R) requires

O(R7) operations and O(R6) memory (see Sections 3.5.3). Finally, updating I×R factor

matrices needs O(IR3) operations.

In total, the HOSVD2 algorithm requires O(IR4 + R8) operations and O(IR2 + R6)

memory.

HOSVD3 algorithm

The HOSVD3 algorithm uses the combination of Lanczos method and structure-exploiting

matrix-vector multiplication from Section 5.1, together with calculation of core tensor

from Section 5.3. It is presented in Algorithm 13.

To get R left singular vectors of matrix Z(n) we have to perform R matrix-vector

multiplications inside Lanczos method, and each multiplication requires O(I2R2 + IR4 +

R5) operations and O(I2+IR2+R4) memory if using Variant A of Step 3, or O(IR4+R5)

operations and O(IR2+R4) memory if using Variant B. Additionally, performing spectral

decomposition on R × R tridiagonal symmetric matrix and forming the matrix of R left

singular vectors requires O(IR2) operations and O(IR) memory (see Section 2.3.1). The
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calculation of core tensor requires O(IR3 +R6) operations and O(IR2 +R4) memory.

Depending on the variant used in Step 3 of matrix-vector multiplication, which depends

on the relation between I and R, we end up with:

• if I < R2, the HOSVD3 algorithms requires O(I2R3 + IR5 + R6) operations and

O(I2 + IR2 +R4) memory,

• if I ≥ R2, the HOSVD3 algorithms requiresO(IR5+R6) operations andO(IR2+R4)

memory.

HOSVD4 algorithm

The HOSVD4 algorithm, presented in Algorithm 14, uses randomized algorithm for cal-

culation of left singular vectors of matrices Z(n), but instead of multiplying matrix with

random vectors, we multiply with Kronecker products of random vectors, which follows

the structure of the matrices.

To get R left singular vectors, we need to perform R such multiplication, each of which

requires O(IR2 +R5) operations, as explained in Section 5.2. Updating core tensor Ĥ as

in Section 5.3 requires O(IR3 +R6) operations and O(IR2 +R4) memory.

All together, the HOSVD4 algorithm results in O(IR3 +R6) operational and O(IR2 +

R4) memory requirements.

6.1.2 Complexities for N > 3

The discussion above on the complexity easily generalizes to N > 3, with X ∈ RI×···×I ,

F ∈ RR×···×R and A(n) ∈ RI×R, for n = 1, 2 . . . , N , and R < I.

HOSVD1 algorithm

From Section 3.5.2 we know that forming full tensors X and Y out of their Tucker repre-

sentation requires O(INR) operations and O(IN) memory, while multiplying Z = X ∗ Y

takes O(IN) operations. Applying randomized algorithm to I × I matrix Z(n)Z
T
(n), with

I× IN−1 matrix Z(n), to get R leading left singular vectors Z(n) takes O(INR) operations

and O(IN−1R) memory (see Section 2.3.2). Finally, forming the core tensor is equiva-

lent to forming full tensors X and Y. All together, HOSVD1 algorithm requires O(INR)

operations and O(IN) memory.
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HOSVD2 algorithm

Just as with N = 3, we first form I × R2 factor matrices Ĉ(n), n = 1, 2, . . . , N , within

O(IR2) operations and their QR decompositions withinO(IR4) operations, usingO(IR2+

R4) memory. Now we have to update R2 × · · · × R2 tensor Ĥ of order N , which again

can be done similarly as in Section 5.3, with I = R2 and D(n) = R(n)T of size R2 × R2.

Matrices F(1) and G(1) are now R×RN−1 matrices, so creating R2 vectors mj from (5.7),

now of size R2N−2, takes O(R2N+1) operations. The multiplication (5.8) is then done in

a loop as (
R(N) ⊗ · · · ⊗R(3) ⊗R(2)

)
mj =

[ (
R(N) ⊗ · · · ⊗R(3)

)
⊗R(2)

]
mj,

by applying Kronecker product property (2.2.1.(5)) in each iteration; all together resulting

in O(R2N+2) operations and O(R2N) memory.

Running HOSVD algorithm on tensor Ĥ in combination with randomized algorithm

applied on matrices Ĥ(n)Ĥ
T
(n) for getting R left singular vectors of Ĥ(n) requires O(R2N+1)

operations and O(R2N−1) memory (see Section 3.5.3). Finally, for updating I ×R factor

matrices we need O(IR3) operations.

Overall, the complexity for HOSVD2 algorithm is O(IR4 + R2N+2) operations and

O(IR2 +R2N) memory.

HOSVD3 algorithm

When generalizing matrix-vector multiplication from Section 5.1 to order N > 3, Step 1

and Step 5 remain the same, they require O(IR2) operations and O(IR) memory, while

Step 2 and Step 4 now apply on R2 × · · · × R2 tensor F ⊗ G, resulting in O(R2N−1)

operations and O(R2N−2) and O(RN) memory, respectively.

Step 3 will be performed in a loop; for Variant A, we first create vector w3 in N − 2

steps by

w3 =
[ (

A(N) �T B(N)
)
⊗ · · · ⊗

(
A(3) �T B(3)

)
⊗
(
A(2) �T B(2)

) ]
w2 =

=
[{ (

A(N) �T B(N)
)
⊗ · · · ⊗

(
A(3) �T B(3)

)}
⊗
(
A(2) �T B(2)

) ]
w2

and then w4 similarly, in O(
∑N−1

n=1 I
nR2(N−n)) operations and O(

∑N−1
n=1 I

N−nR2n−2) mem-

ory. In Variant B we get vector w4 in N − 2 steps by

w4 =
[(

A(N)T �B(N)T
)
⊗ · · · ⊗

(
A(2)T �B(2)T

)]
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[(
A(N) �T B(N)

)
⊗ · · · ⊗

(
A(2) �T B(2)

)]
w2

=
[(

A(N)T �B(N)T
)(

A(N) �T B(N)
)
⊗ · · · ⊗

(
A(2)T �B(2)T

)(
A(2) �T B(2)

)]
w2

=
[{(

A(N)T �B(N)T
)(

A(N) �T B(N)
)
⊗ · · · ⊗

(
A(3)T �B(3)T

)(
A(3) �T B(3)

)}
⊗
(
A(2)T �B(2)T

)(
A(2) �T B(2)

)]
w2,

requiring O(IR2N−2) operations and O(IR2N−2) memory. To get R left singular vectors

of matrix Z(n) we have to do this multiplication R times. The rest of the Lanczos method

takes O(IR2) operations.

Forming the core tensor following the procedure described in Section 5.3 requires

creating R vectors mj of length R2N−2 from (5.7), which is done within O(R2N) operations

and O(R2N−2) memory, and then the multiplication (5.8), which we perform in a loop as(
D(N)T ⊗ · · · ⊗D(3)T ⊗D(2)T

)
mj =

[ (
D(N)T ⊗ · · · ⊗D(3)T

)
⊗D(2)T

]
mj,

ending up with the complexity of O(R2N) operations and O(R2N−2) memory.

Overall, for HOSVD3 algorithm,

• when I < R2, using Variant A in Step 3 of matrix-vector multiplication,

O(
N−1∑
n=1

InR2(N−n)+1) operations and O(
N−1∑
n=1

IN−nR2n−2 +R2N−2) memory

is required,

• while when I ≥ R2 and Variant B is used in Step 3 of matrix-vector multiplication,

it requires

O(IR2N−1 +R2N) operations and O(IR2N−4 +R2N−2) memory.

HOSVD4 algorithm

Performing matrix-vector multiplication from Section 5.2, where the vector we are multi-

plying with is now of the form w = xN ⊗ · · · ⊗ x2, with xn of length I, requires forming

vectors x̃n =
(
A(n)T �B(n)T

)
xn, for n = 2, 3 . . . , N , and that takes O(IR2) operations

and O(IR) memory. Then we form vector z1 of length R2N−2 from (5.5) as

z1 = x̃N ⊗ x̃N−1 ⊗ · · · ⊗ x̃2
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in O(R2N−2) operations. Afterward, we follow the procedure from Section 5.2, which

overall, including now different dimension of tensors F and G, requires O(IR2 + R2N−1)

operations and O(RN) memory.

Inside Stage A of the randomized algorithm we perform R such matrix-vector multi-

plications, while Stage B with matrix Z(n) of size I × IN−1 requires O(INR) operations;

see Section 2.3.2.

Forming R × · · · × R core tensor Ĥ goes exactly as with HOSVD3 algorithm within

O(R2N) operations and O(R2N−2) memory.

All together, HOSVD4 algorithm requires O(IR3 + R2N) operations and O(IR2 +

R2N−2) memory.

6.2 Numerical experiments

We have implemented and tested our algorithms HOSVD1, HOSVD2, HOSVD3 and

HOSVD4 from Section 4.2, analyzed in Section 6.1, for both fixed-rank and fixed precision

problem and on tensors of different order, size and multilinear rank. The computational

environment is set in Section 1.4.

6.2.1 Execution times for function-related tensors

To test our algorithms, we generate function-related tensors X, Y by evaluating the func-

tions

f(x, y, z) =
1

x+ y + z
, g(x, y, z) =

1√
x+ y + z

on the grid {0.1, 0.2, . . . , I/10} for x, y, z. The following table reports the approximate

multilinear ranks (R,R,R) of X, Y, and Z = X ∗ Y obtained when discarding singular

values smaller than 10−8:

I = 50 I = 100 I = 200 I = 400

X 11 12 15 17

Y 11 12 15 17

Z 12 13 15 17

We first apply Algorithm 8 with ε = 10−8 to get Tucker representations of X and Y

and then run the four different HOSVD algorithms to get Tucker representation of Z,

targeting an accuracy of 10−8, and then compare the results.
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Figure 6.1: Execution times (in seconds) of HOSVD algorithms applied to function-related

tensors from Section 6.2.1.

Figure 6.1 shows the execution times. Except for I = 50, HOSVD4 outperforms

all other algorithms. For example, for I = 400, HOSVD4 requires 0.16 seconds while

HOSVD3, the next best algorithm, requires 2 seconds.

6.2.2 Accuracy and perturbation bounds

We compared the accuracy of the algorithms studied in Section 4.2.2 in dependence of the

oversampling parameter p used in Lanczos tridiagonalization algorithm (Algorithm 1) and

Stage A of the randomized algorithm (Algorithm 2). We used the Tucker representations

XT and YT of the function-related tensors X and Y from Section 6.2.1 with I = 50 and

required the multilinear rank to be (R,R,R), with R = 9 and R = 15. Figure 6.2 shows

the resulting errors calculated as ‖full(XT ) ∗ full(YT )− full(T)‖F , where T is the output

of the corresponding algorithm. Generally, it can be said that very small values of p

are sufficient for all algorithms, in the sense that the limiting accuracy determined by

the choice of R is reached. HOSVD4 is more accurate in situations where the limiting

accuracy is below O(10−8), because it works directly with Z(n) instead of the Gramian

Z(n)Z
T
(n).

To test the error and perturbation bounds from Section 4.2.2 we will rerun the algo-

rithms on the same function-related tensors with I = 50, now defining ε = εP = 10−8,

setting p = 10 and using tolerances for Lanczos and randomized algorithms as explained

in Section 4.2.2. We perturb tensors X and Y as X̃ = X+ εPX
P and Ỹ = Y+ εPY

P , with

XP and YP randomly generated tensors such that ‖XP‖F ≤ 1 and ‖YP‖F ≤ 1.
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Figure 6.2: Error of HOSVD3 and HOSVD4 versus oversampling parameter p = 0, 1, 2, 10.

Tensor Z denotes the exact Hadamard product, tensor Ẑ output of our algorithms

and Z̃ the exact Hadamard product of the perturbed tensors. Since each matricization

Z(n) has quickly decaying singular values, precisely

34.2866, 9.29112, 1.96579, 0.365423, 0.0620113, 0.00973023, 0.00141463,

0.000191021, 2.4126× 10−5, 2.86846× 10−6, 3.179× 10−7, 2.38147× 10−8,

we can use Remark 4.2.3 and, since the first two singular values dominate, set Cn =
√

2,

i.e. C = N
√

2. We use Berr to denote error bounds (4.10) and (4.7) and Bpert to denote

perturbation bounds (4.11) and (4.9). The results are presented in Table 6.1.

Table 6.1: Comparison of real errors with bounds from Section 4.2.2 for algorithms

HOSVD1, HOSVD2, HOSVD3 and HOSVD4.

‖Z− Ẑ‖F Berr ‖Z̃− Ẑ‖F Bpert

HOSVD1 4.1134214× 10−5 4.2426406× 10−4 4.1134219× 10−5 4.2625748× 10−4

HOSVD2 4.113422× 10−5 4.2426406× 10−4 4.1134226× 10−5 4.2625748× 10−4

HOSVD3 4.1440793× 10−5 4.2426406× 10−4 4.1440794× 10−5 4.2625748× 10−4

HOSVD4 4.0898896× 10−11 3× 10−8 1.082579× 10−9 2.0234116× 10−6
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6.2.3 Execution times for random tensors

To test fixed-rank problem, we choose tensors X and Y of prescribed multilinear rank by

letting all coefficients of the Tucker format contain random numbers from the standard

normal distribution.

Tensors of order N=3

Setting X and Y to be I×I×I tensors of multilinear rank (R,R,R), we measure the time

needed by our algorithms for truncating Z = X ∗ Y back to multilinear rank (R,R,R).

The times obtained for I = 50, 100, 200, 400 with respect to R are shown in Figure 6.3.
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Figure 6.3: Execution times (in seconds) of HOSVD algorithms applied to random tensors

of size I × I × I and multilinear rank (R,R,R).

As expected the performance of HOSVD1, based on forming the full tensor Z, depends

only mildly on R. All other algorithms have a cost that is initially smaller than HOSVD1

but grows as R increases. The observed breakeven points match the theoretical breakeven

points between R = O(I2/5) and R = O(I3/5) quite well.

For larger I, it is impossible to store Z and hence Figure 6.4 only displays the times

of HOSVD2, HOSVD3, and HOSVD4 for I = 500, 900. Among these three algorithms,

HOSVD4 is nearly always the best.
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Figure 6.4: Execution times (in seconds) of HOSVD algorithms applied to random tensors

of size I × I × I and multilinear rank (R,R,R).

Figure 6.5 shows the performance of HOSVD4 with respect to R and I. Note that

some of the displayed configurations, such as I = 5 000 and R = 90, are intractable for

any other algorithm discussed in this thesis.
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Figure 6.5: Execution times (in seconds) of HOSVD4 applied to random tensors of size

I × I × I and multilinear rank (R,R,R).

What about when tensors X and Y have different multilinear ranks? Figure 6.6 shows

execution times for the four algorithms in that case, when X and Y are I × I × I tensors,

one tensor has multilinear rank (R,R,R) and another (10R, 10R, 10R), with I = 200 and

I = 400, and requested multilinear rank for Z is (20, 20, 20). Again HOSVD4 algorithm

stands out.

Same is in the case when X and Y have modes of different sizes and different n-

ranks. Several combinations are presented in Figure 6.7, where the size of tensors X and

Y is stated in the title of each subfigure and their multilinear ranks, together with the

requested multilinear rank for Z, are stated in the caption.
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Figure 6.6: Execution times (in seconds) of HOSVD algorithms applied to random tensors

of size I × I × I and multilinear ranks (R,R,R) and (10R, 10R, 10R) with requested

multilinear rank of the Hadamard product (20, 20, 20).
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Figure 6.7: Execution times (in seconds) of HOSVD algorithms applied to random ten-

sors X and Y of different sizes, with P and Q being the multilinear ranks of X and Y,

respectively, and R the requested multilinear rank for the product Z = X ∗ Y.
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Tensors of order N=4 and N=5

Now we set X and Y to be I × · · ·× I tensors of multilinear rank (R, . . . , R) and measure

the time needed by our algorithms for truncating Z = X ∗ Y back to multilinear rank

(R, . . . , R). Figure 6.8 shows results for N = 4 and Figure 6.9 for N = 5.

As with tensors of order N = 3, when increasing I, forming full tensor Z becomes

impossible, so HOSVD1 algorithm does not work, while HOSVD2 works only for small

R. HOSVD4 gives best results for these cases, too.
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Figure 6.8: Execution times (in seconds) of HOSVD algorithms applied to the Hadamard

product of random tensors of size I × I × I × I and multilinear rank (R,R,R,R).
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Figure 6.9: Execution times (in seconds) of HOSVD algorithms applied to the Hadamard

product of random tensors of size I × I × I × I × I and multilinear rank (R,R,R,R,R).
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6.2.4 Conclusion and recommendation

Based on observations from the previous sections, we conclude the following recommen-

dation:

• Use HOSVD1 when Z fits into memory and the involved multilinear ranks are

expected to exceed I3/5.

• In all other situations, use HOSVD4.

6.2.5 Testing complexities

Here we test that the presented complexities of algorithms HOSVD1, HOSVD2, HOSVD3

and HOSVD4 match their actual complexities. Using randomly generated tensors X and

Y, as in Section 6.2.3, of size I × I × I and multilinear ranks (R,R,R), with t(I, R) we

denote the time needed by our algorithms to recompress Z = X ∗ Y to multilinear rank

(R,R,R). We measure times for two different pairs (I1, R1) and (I2, R2) and compare the

ratio t(I1, R1)/t(I2, R2) with the expected ratio e, which is for each algorithm defined as

follows:

• HOSVD1. Since I3 is the dominating term in the complexity of HOSVD1 algorithm,

we choose I2 = 2I1 and R1 = R2, so the expected ratio is

e =
R1I

3
1

R2I32
=

R1I
3
1

R123I31
=

1

23
,

• HOSVD2. Choosing I2 = 24I1 and R2 = 2R1, we have

e =
R4

1I1 +R8
1

R4
2I2 +R8

2

=
R4

1I1 +R8

24R4
12

4I1 + 28R8
=

1

28
,

• HOSVD3 + Variant A. We use this variant when I < R2 so we have to choose I

and R accordingly. If I2 = 2I1 and R2 = 2R1, then

e =
R3

1I
2
1 +R5

1I1 +R6
1

R3
2I

2
2 +R5

2I2 +R6
2

=
R3

1I
2
1 +R5

1I1 +R6
1

23R3
12

2I21 + 25R5
12I1 + 26R6

1

≈ 1

26
,

• HOSVD3 + Variant B. We use this variant when I ≥ R2 so we have to choose I

and R accordingly. If I2 = 2I1 and R2 = 2R1, then

e =
R5

1I1 +R6
1

R5
2I2 +R6

2

=
R5

1I1 +R6

25R5
12I1 + 26R6

=
1

26
,
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• HOSVD4. Choosing I2 = 23I1 and R2 = 2R1, we have

e =
R3

1I1 +R6
1

R3
2I2 +R6

2

=
R3

1I1 +R6

23R3
12

3I1 + 26R6
=

1

26
,

The results are presented in Table 6.2 and we can see that the theoretical complexities

match the actual complexities of the algorithms.

Table 6.2: Comparison of ratios t(I1, R1)/t(I2, R2) and expected ratios e for algorithms

HOSVD1, HOSVD2, HOSVD3 and HOSVD4.

I1 I2 R1 R2 t(I1, R1)/t(I2, R2) e

HOSVD1 200 400 20 20 0.11615999 0.125

HOSVD2 50 800 10 20 0.00225188 0.00390625

HOSVD3 + Var. A 200 400 20 40 0.06338479 0.015625

HOSVD3 + Var. B 400 800 10 20 0.06642512 0.015625

HOSVD4 100 800 20 40 0.02764474 0.015625
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Appendix A

Julia package

We have created a package for tensors and tensors in Tucker format in programming
language Julia [5], following the nomenclature of Matlab’s Tensor Toolbox [3]. A notable
difference to the Tensor Toolbox is that we do not construct a separate object tensor for
dealing with full tensors but instead directly use built-in multidimensional arrays. Our
package is available at https://github.com/lanaperisa/TensorToolbox.jl and has a
standard Julia package structure:

TensorToolbox.jl/

src/

TensorToolbox.jl

tensor.jl

ttensor.jl

helper.jl

test/

create test data.jl

thesisTests.jl

runtests.jl

test data func.jld

The module TensorToolbox is contained in TensorToolbox.jl, functionality for full

tensors is in tensor.jl, and functionality for tensors in the Tucker format is in ttensor.

jl. Functions regarding matrices, such as the ones presented in Section 2.2, are set in

helper.jl file. The object (or composite type) for tensors in Tucker format is called

ttensor and consists of the fields cten (core tensor) and fmat (factor matrices), as well

as isorth (flag for orthonormality of factor matrices).

type ttensor{T<:Number}

cten::Array{T}

fmat::Array{Matrix,1}

isorth::Bool

end
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All figures from this thesis can be recreated using functions from test/thesisTests.jl

file, following instructions in the file.

In the following we present and explain the functionality of the package.

A.1 Tensors and basic tensor operations

As already mentioned, we do not construct a new object for tensors, but define them as

multidimensional arrays, for example

X=rand(5,4,3)

Y=rand(5,4,3)

So all basic operations, such as addition, vectorization, element-wise multiplication,

size, equality etc. are already built-in Julia. Frobenius norm of a tensor is also already

implemented as function vecnorm. We have created additional functions, such as inner

product and Kronecker product of tensors with N ≥ 3.

innerprod(X,Y)

tkron(X,Y) #tensor Kronecker product

The n-rank and the multilinear rank of a tensor is calculated by functions nrank and

mrank, which also accept tolerance.

n=2;nrank(X,n) #2−rank of X

mrank(X) #multilinear rank of X

n=1;nrank(X,1,1e−8) #1−rank of X, disarding singular values lower than

1e−8

mrank(X,1e−8) #multilinear rank of X, disarding singular values lower

than 1e−8

The mode-n matricization of a tensor can also be inverted.

n=1

Xn=tenmat(X,n) #mode−n matricization

X=matten(Xn,n,[5,4,3]) #transforming a matrix into a tensor of size 5

x4x3 by mode n

The n-mode multiplications are implemented in functions ttm (tensor-times-matrix)

and ttv (tensor-times-vector). We can use them to multiply a tensor by a matrix or
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a vector, or a set of matrices or vectors, specifying the modes of multiplication. For

example,

A=rand(6,5)

X1=ttm(X,A,1) #1−mode multiplication

B=rand(2,4)

X2=ttm(X,[A,B],[1,2]) #1−mode and 2−mode multiplications

X2=ttm(X,[A,B],−3) #same as above

C=rand(7,3)

X3=ttm(X,[A,B,C]) #same as ttm(X,[A,B,C],[1,2,3])

D=rand(5,2)

X4=ttm(X,D,1,'t') #1−mode multiplication with matrix transpose

and

a=rand(5)

X1=ttv(X,a,1) #1−mode multiplication

b=rand(4)

X2=ttv(X,[a,b],[1,2]) #1−mode and 2−mode multiplications

X2=ttv(X,[a,b],−3) #same as above

c=rand(3)

X3=ttv(X,[a,b,c]) #same as ttv(X,[a,b,c],[1,2,3])

The procedure presented in Section 3.5.1 is implemented in function mkrontv, which

excepts both vectors and matrices for multiplication with matricized Kronecker product.

In case when multiplying with matrix, the multiplication is performed column by column.

v=rand(4ˆ2*3ˆ2)

mkrontv(X,Y,v,1) #mode−1 matricization od Kronecker product of X and Y

times vector v

V=rand(4ˆ2*3ˆ2,10)

mkrontv(X,Y,V,1) #mode−1 matricization od Kronecker product of X and Y

times matrix V

Function hosvd implements Algorithms 6, 7 and 8. It creates (approximate) Tucker

representation of a given tensor. Algorithm 8, with ε = 10−8 in combination with LA-

PACK function gesvd! [1] for calculation of left singular vectors of matricizations of ten-

sors is the default one. We can also use Lanczos or randomized algorithm from Section 2.3

and combine it with truncated HOSVD with predefined multilinear rank (Algorithm 7).
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One more option is to, for a given εrel, discard singular values lower then σ1 · εrel, where

σ1 is the largest singular value. Values ε and εrel can also be vectors, in which case n-th

component is applied for mode-n matricization. The behavior of Algorithm 6 can be

achieved by setting multilinear rank to be equal to size of a tensor.

T1=hosvd(X) #same as hosvd(T,method="lapack",eps abs=1e−8)

T2=hosvd(X,eps abs=1e−5) #discard singular values lower than 1e−5

T2=hosvd(X,eps abs=[1e−5,1e−2,1e−8]) #discard singular values lower than

1e−5 for mode−1 matricization, lower than 1e−2 for mode−2

matricization and lower than 1e−8 for mode−3 matricization

T3=hosvd(X,eps rel=1e−3) #discard singular values lower than maximal

singular value times 1e−3

T4=hosvd(X,method="lanczos")

T5=hosvd(X,method="randsvd")

T6=hosvd(X,reqrank=[2,2,2]) #appproximate Tucker representation with

multilinear rank (2,2,2)

T7=hosvd(X,reqrank=[5,4,3]) #exact Tucker representation

Overview of all functions in tensor.jl is in the following table. Functions denoted

by ? are not part of Matlab’s Tensors Toolbox.

Table A.1: Overview of all functions for tensors.

Functions for tensors - tensor.jl

hosvd? Higher-order singular value decomposition (HOSVD).

innerprod Inner product of two tensors.

krontm? Kronecker product of two tensors times matrix (n-mode multiplication).

matten? Matrix tensorization - fold matrix into a tensor.

mkrontv? Multiplication of matricized Kronecker product of two tensors by a vector

or a matrix.

mrank? Multilinear rank of a tensor.

mttkrp Matricized tensor times Khatri-Rao product.

nrank? n-rank of a tensor.

sthosvd? Sequentially truncated HOSVD.

tenmat Tensor matricization - unfold tensor into matrix.

tkron? Kronecker product of two tensors.

ttm Tensor times matrix (n-mode multiplication).
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ttt Outer product of two tensors.

ttv Tensor times vector (n-mode multiplication).

A.2 Tensors in Tucker format

Apart from calling HOSVD on a given tensor as in the previous section, tensors in Tucker

format can be defined by their core tensor and factor matrices

A=MatrixCell(3) #alias for array of matices of length 3

A[1]=rand(10,5)

A[2]=rand(9,4)

A[3]=rand(8,3)

F=rand(5,4,3)

T=ttensor(F,A) #creates tensor in Tucker format with core tensor F and

factor matrices from A

Since very often we need to create ttensor whose core tensor and factor matrices con-

tain random numbers, we have created function randttensor to simplify the procedure.

It creates ttensor whose coefficients contain random numbers from the standard normal

distribution.

T1=randttensor([10,9,8],[5,4,3]) #creates ttensor of size 10x9x8 with

core tensor of size 5x4x3

T2=randttensor(5,2,3) #same as randttensor([5,5,5],[2,2,2])

T3=randttensor(5,2,4) #same as randttensor([5,5,5,5],[2,2,2,2])

Now we can get core tensor and factor matrices of a tensor and check the orthonor-

mality of factor matrices by

T.cten

T.fmat

T.isorth

If we want factor matrices to be orthonormal, we can reorthogonalize them as in (3.12)

and create new ttensor with function reorth, or rewrite the existing tensor with function

reorth!.

if T.isorth == false

reorth!(T)
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end

Basic functions for ttensor type include size, number of modes (dimensions), size of

the core tensor and multiplication with a scalar.

size(T)

ndims(T) #number of modes of T

coresize(T) #same as size(T.cten)

a=3; mtimes(a,T) #same as a*T, with scalar a

The n-rank of a ttensor is calculated as rank of its nth factor matrix, and multilinear

rank accordingly.

n=2; nrank(T,n)

mrank(T) #multilinear rank

Norm and inner product can be directly computed using Proposition 3.1.3, while

Hadamard product without recompression is given by expression (4.2).

T1=randttensor([5,4,3],[2,2,2])

T2=randttensor([5,4,3],[3,3,3])

vecnorm(T1)

innerprod(T1,T2)

T1.*T2 #same as had(T1,T2)

Furthermore, on two ttensors we can perform addition (3.13) and subtraction, which

is just addition with ttensors multiplied by −1.

T1+T2

T1−T2 #same as T1+(−1)*T2

The n-mode multiplication of a ttensor by a matrix or a vector is implemented

by (3.1.3.(3)) and can be used just as the n-mode multiplication with a tensor from the

previous section.

A=rand(12,10)

ttm(T,A,1) #1−mode multiplication

v=rand(10)

ttv(T,v,1) #1−mode multiplication

The process of creating a full tensor out of its Tucker representation, explained in
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Section 3.5.2, is done by function full, and matricization of a ttensor is done by first

creating full tensor and then using tenmat function on a tensor.

full(T)

n=2; tenmat(T,n) #mode−n matricization

We can recompress ttensor by performing HOSVD on its core tensor and then us-

ing (3.1.3.(3)), which is implemented in hosvd function, which can be used in combination

with Lanczos and randomized algorithm, with specified tolerance or defined multilinear

rank, the same way as with full tensors from previous section.

hosvd(T)

hosvd(T,method="randsvd")

hosvd(T,reqrank=[2,2,2])

The ttensor.jl file also contains operations from Chapters 4 and 5 needed for re-

compression of Hadamard products of ttensors. Matrix-vector multiplication Z(n)Z
T
(n)v

from Section 5.1 is done by function mhadtv and can also be used for matrix-matrix mul-

tiplication, in which case it performs it column by column. Variant B of Step 3 of the

multiplication is the default one. The function can also perform multiplications Z(n)v and

ZT
(n)v.

v=rand(5)

n=1; mhadtv(T1,T2,v,n) #multiplication of Gramian of matricized Hadamard

product of tensors T1 and T2 by vector v

V=rand(5,10)

mhadtv(T1,T2,V,n,variant='A') #multiplication of Gramian of matricized

Hadamard product of tensors T1 and T2 by matrix V using Varinat A in

Step 3

mhadtv(T1,T2,v,n,'t') #multiplication of transposed matricized Hadamard

product of tensors T1 and T2 by vector v

w=rand(4*3)

mhadtv(T1,T2,w,n,'n') #multiplication of matricized Hadamard product of

tensors T1 and T2 by vector w

The calculation of the core tensor of Hadamard products from Section 5.3 is done by

function hadcten.

C=MatrixCell(3) #alias for array of matices of length 3
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C[1]=rand(5,2)

C[2]=rand(4,2)

C[3]=rand(3,2)

F=hadcten(T1,T2,C)

Algorithms HOSVD1, HOSVD2, HOSVD3 and HOSVD4 from Section 4.2 are im-

plemented in functions hosvd1, hosvd2, hosvd3 and hosvd4. The default behavior is

discarding singular values smaller than ε = 10−8, but we can also, for a given εrel, discard

singular values lower then σ1 · εrel, where σ1 is the largest singular value, or predefine the

multilinear rank and use different methods for calculation of the singular vectors. We

present usage of hosvd1, for other algorithms it is analogous.

Z1=hosvd1(T1,T2)

Z2=hosvd1(T1,T2,reqrank=[2,2,2])

Z3=hosvd1(T1,T2,method="lanczos",reqrank=[5,4,3])

Z4=hosvd1(T1,T2,method="lapack",eps rel=1e−3)

Overview of all functions in ttensor.jl is in the following table. Functions denoted

by ? are not part of Matlab’s Tensors Toolbox and the function permutedims is called

permute in Matlab.

Table A.2: Overview of all functions for tensors in Tucker format.

Functions for tensors in Tucker format - ttensor.jl

ttensor Construct Tucker tensor for specified core tensor and factor matrices.

randttensor Construct random Tucker tensor.

coresize? Size of the core of ttensor.

full Construct full tensor (array) from ttensor.

had (.*)? Hadamard product of two ttensor.

hadcten? Construct core tensor for Hadamard product of two ttensor with specified

factor matrices.

hosvd? HOSVD for ttensor.

hosvd1? HOSVD1 - computes Tucker representation of Hadamard product of two

ttensor.

hosvd2? HOSVD2 - computes Tucker representation of Hadamard product of two

ttensor.
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hosvd3? HOSVD3 - computes Tucker representation of Hadamard product of two

ttensor.

hosvd4? HOSVD4 - computes Tucker representation of Hadamard product of two

ttensor.

innerprod Inner product of two ttensor.

isequal (==) True if each component of two ttensor is numerically identical.

lanczos? Lanczos algorithm adapted for getting factor matrices in algorithm hosvd3.

mhadtv? Matricized Hadamard product of two ttensor multiplied by a vector or a

matrix.

minus (-)? Subtraction of two ttensor.

mrank? Multilinear rank of a ttensor.

msvdvals? Singular values of matricized ttensor.

mtimes (*) Scalar multiplication for a ttensor.

mttkrp Matricized ttensor times Khatri-Rao product.

ndims Number of modes for ttensor.

nrank? n-rank of a ttensor.

nvecs Compute the leading mode-n vectors for ttensor.

permutedims Permute dimensions of ttensor.

plus (+)? Addition of two ttensor.

randrange? Range approximation using randomized algorithm adapted for Hadamard

product of two ttensor.

randsvd? Randomized SVD algorithm adapted for getting factor matrices in algorithm

hosvd3.

reorth? Reorthogonalization of ttensor. Creates new ttensor.

reorth!? Reorthogonalization of ttensor. Overwrites existing ttensor.

size Size of a ttensor.

tenmat? Unfold tensor into matrix - matricization.

ttm Tensor times matrix for ttensor (n-mode multiplication).

ttv Tensor times vector for ttensor (n-mode multiplication).

uminus (-) Unary minus for ttensor.

vecnorm Norm of a ttensor.
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