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MATEMATIČKI ODSJEK

Hrvoje Planinić
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Preface

This thesis is centered around applications of the beautiful theory of point processes to
problems concerning asymptotic behavior of extremes of a certain class of weakly dependent
stationary time series and random fields. As usual in this context, the key role is played
by the (compound) Poisson point process. The reason for this can be traced back to the
so–called weak law of rare events, a basic principle in probability which states that, in a
large family of independent events with each event having a small probability of occurring
(i.e. being rare or extreme), the number of events which do occur is approximately Poisson
distributed.

The reader is assumed to be familiar with basic facts of the theory of point processes,
in particular with parts relevant to extreme value theory. If this is not the case, standard
references are the books by Resnick [Res87, Res07]. I owe to them most of my knowledge
and intuition on this subject. Other valuable references include Kallenberg [Kal17] (in
which general random measures are considered) and Last and Penrose [LP17], or the more
classical ones like Kingman [Kin93] and Karr [Kar91]. One should also mention Daley and
Vere–Jones [DVJ03].

The thesis is divided into four chapters. Chapter 1 deals with the general theory of
Poisson approximation for point processes. The point process framework is then used in
Chapter 2 to describe the asymptotic behavior of extremes of a class of weakly dependent
stationary time series and random fields which admit a so–called tail process. As it turns
out, stationary series/fields satisfying the latter condition deserve to be called regularly
varying. Finally, the tools developed in Chapter 2 are applied to study partial sums and
record times of dependent time series, see Chapter 3, and to revisit the classical problem of
local sequence alignment, see Chapter 4. Each chapter starts with an introduction which
contains a brief motivation as well as description of its main results. Also, some of the
proofs are often postponed to the end of the corresponding chapter or section.

Most of the results presented in this thesis can be found in the papers [BPS18, PS18,
BP18a, BP18b] written jointly with Bojan Basrak and/or Philippe Soulier.
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Chapter 1

On (compound) Poisson
approximation for point processes

1.1 Introduction

One of the basic principles of probability theory is the so–called weak law of rare events.
It states that for independent Bernoulli random variables Xn,i, i = 1, . . . , n , satisfying
supi=1,...,n P(Xn,i = 1) → 0 (i.e. events {Xn,i = 1} are rare) and ∑n

i=1 P(Xn,i = 1) → λ,
the number of occurrences ∑n

i=1 1{Xn,i=1} is asymptotically Poisson distributed with mean
λ. Moreover, such a Poisson approximation holds even in the cases when there is some
(but not too much) dependence between Xn,i’s, see e.g. the important paper by Arratia et
al. [AGG89] and examples therein.

For general (independent) random elements Xn,i, results on convergence in distribution
of point processes ∑n

i=1 δXn,i to a so–called Poisson process can be seen as functional
extensions of the weak law of rare events. Results of this kind go back to Grigelionis [Gri63]
and a very general version of this result, which allows Xn,i’s to take values in a general
Polish space, can be found in Kallenberg [Kal17]. The goal of this chapter is to extend this
functional Poisson approximation to the case when Xn,i’s are dependent. Our motivation
for studying point processes on a general, possibly infinite-dimensional, space (and also
the reason for the "compound" in the title), actually comes from the problem of obtaining
a compound Poisson or Poisson cluster limit for point processes based on a large class of
stationary random fields, see Chapter 2.

For standard results from the theory of point processes (and more generally random
measures) we will refer to Kallenberg [Kal17] and Resnick [Res87]. Note, even though the
latter reference considers only point processes on a locally compact state space, most of
the results transfer directly to general Polish case.

The rest of the chapter is organized as follows. In first two sections we discuss the
notion of vague convergence of measures and the corresponding notion of convergence in
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Chapter 1. On (compound) Poisson approximation for point processes

distribution of random measures (and hence point processes). In particular, in Section 1.2
we propose an alternative view on the notion of vague convergence based on the abstract
theory of boundedness developed by Hu [Hu66]. We think that such a view is intuitive and
helps in clarifying the link between several different notions of convergence of measures
used in the literature. In Section 1.3 we show that families of Lipschitz continuous functions
determine convergence in distribution of random measures.

In Section 1.4, we present a general Poissonian approximation theorem for point pro-
cesses on Polish spaces based on points which satisfy a suitable asymptotic (in)dependence
condition. Also, we give sufficient conditions in the spirit of [AGG89] under which such
dependence assumption is satisfied. These results are similiar to those obtained by Schuh-
macher [Sch05]. However, while [Sch05] uses the Stein’s method, our approach is based on
exploiting the multiplicative strucuture of Laplace functionals of point processes. Ideas
similar to ours can be found already in Banys [Ban80].

This chapter is based on the papers [BP18a] and [BP18b].

1.2 Vague convergence of locally finite measures

Let X be a Polish space, i.e. separable topological space which is metrizable by a
complete metric. Denote by B(X) the corresponding Borel σ–field and choose a subfamily
Bb(X) ⊆ B(X) of sets, called bounded (Borel) sets of X. When there is no fear of confusion,
we will simply write B and Bb.

A Borel measure µ on X is said to be locally (or boundedly) finite if µ(B) < ∞ for
all B ∈ Bb. Denote byM(X) =M(X,Bb) the space of all such measures. For measures
µ, µ1, µ2, . . . ∈M(X), we say that µn converge vaguely to µ and denote this by µn v−→ µ,
if as n→∞,

µn(f) =
∫
fdµn →

∫
fdµ = µ(f) , (1.1)

for all bounded and continuous real–valued functions f on X with support being a bounded
set. Denote by CBb(X) the family of all such functions and by CB+

b (X) the subset of all
nonnegative functions in CBb(X).

Kallenberg [Kal17, Section 4] develops the theory of vague convergence under the
assumption that Bb is the family all metrically bounded Borel sets w.r.t. a metric generating
the topology of X. This notion of convergence was also studied under the name of w#-
convergence in Daley and Vere–Jones [DVJ03, Section A2.6].

In the what follows we propose an alternative, and arguably more intuitive, approach
to the notion of vague convergence which also clarifies the connection between several well
known notions of convergence found in the literature. It is based on the abstract theory of
boundedness due to Hu [Hu66] which allows one to characterize all metrizable families of
bounded sets.
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1.2. Vague convergence of locally finite measures

1.2.1 The abstract concept of bounded sets

Following [Hu66, Section V.5], we say that a family of sets Bb ⊆ B(X) is a (Borel)
boundedness in X if (i) A ⊆ B ∈ Bb for A ∈ B implies A ∈ Bb; (ii) A,B ∈ Bb implies
A ∪ B ∈ Bb. A subfamily Cb of Bb is called a basis of Bb if every B ∈ Bb is contained in
some C ∈ Cb. Finally, boundedness Bb is said to be proper if it is adapted to the topology
of X in the sense that for each B ∈ Bb there exists an open set U ∈ Bb such that B ⊆ U ,
where B denotes the closure of B in X.

To be consistent with the existing terminology of [Kal17, p. 19], we say that a bound-
edness properly localizes X if it is proper and has a countable basis which covers X. If
d metrizes X then the family of all sets in B with finite d–diameter is an example of a
boundedness which properly localizes X. By [Hu66, Corollary 5.12], this turns out to be
the only example.

Theorem 1.2.1 ([Hu66, Corollary 5.12]). Boundedness Bb properly localizes X if and
only if there exists a metric on X which generates the topology of X and under which the
metrically bounded Borel subsets of X coincide with Bb.

Remark 1.2.2. Note that [Hu66, Corollary 5.12] concerns boundednesses which also contain
non–Borel subsets of X. We restrict to Borel subsets since we work with Borel measures
and it is easily seen that in this setting the conclusion of [Hu66, Corollary 5.12] still holds.

Observe, if Bb properly localizes X then one can find a basis (Km)m∈N of Bb which
consists of open sets and satisfies

Km ⊆ Km+1 , for all m ∈ N . (1.2)

Indeed, fix a metric which generates Bb and take (Km) to be open balls around some
fixed point and with radius strictly increasing to infinity; see also [Hu66, Lemma 5.9]
for a direct argument which does not rely on Theorem 1.2.1. Conversely, if (Km) is
a sequence of open sets covering X and such that (1.2) holds, then the boundedness
Bb = {B ∈ B : ∃m ∈ N such that B ⊆ Km} properly localizes X. We refer to (Km) as a
proper localizing sequence.

Observe, by simply choosing a different family of bounded sets in X one alters the space
of locally finite measuresM(X) as well as the corresponding notion of vague convergence
defined in (1.1). We mention a couple of important examples.

Example 1.2.3 (Weak convergence). By taking Bb to be the family of all Borel subsets
of X, we end up with the usual notion of weak convergence of finite measures on X. Such a
family Bb properly localizes X since taking Km = X for all m ∈ N yields a proper localizing
sequence.

Observe, it is easy to find a metric which metrizes X and generates Bb in this case.
Simply choose any bounded metric which generates the topology of X.

3



Chapter 1. On (compound) Poisson approximation for point processes

Example 1.2.4 (Vague convergence of Radon measures). When the space X is ad-
ditionaly locally compact, by choosing Bb as the family of all relatively compact Borel
subsets of X we obtain the well known notion of vague convergence of Radon measures
on X as described in Kallenberg [Kal83] or Resnick [Res87]. Recall, a set is relatively
compact if its closure is compact. Note that in this case, since X is locally compact, second
countable and Hausdorff, one can find a sequence (Km)m∈N of relatively compact open
subsets of X which cover X and satisfy (1.2). In particular, these Km’s form a basis for Bb
and hence Bb properly localizes X.

Example 1.2.5 (Hult-Lindskog convergence). Let (X′, d′) be a complete and separable
metric space. In the theory of regularly varying random variables and processes, the sets
of interest, i.e. bounded sets, are usually those which are actually bounded away from
some fixed closed set C ⊆ X′.

More precisely, assume that X is of the form X = X′ \ C equipped with the subspace
topology and set Bb to be the class of all Borel sets B ⊆ X such that for some ε > 0,
d′(x,C) > ε for all x ∈ B, where d′(x,C) = inf{d′(x, z) : z ∈ C}. In this way, we obtain
the notion of the so–called MO-convergence (where O = X) as discussed in Lindskog et
al. [LRR14] and originally introduced by Hult and Lindskog [HL06]. Observe, such Bb
properly localizes X since one can take Km = {x ∈ X : d′(x,C) > 1/m}, m ∈ N, as a
proper localizing sequence.

Remark 1.2.6. As observed by [Kal17, p. 125], under the notation of the previous example,
one metric d which is topologically equivalent to d′ and generates Bb is given by

d(x, y) = (d′(x, y) ∧ 1) ∨ |1/d′(x,C)− 1/d′(y,C)| , x, y ∈ X .

In fact, this construction illustrates the basic idea in the proof of Theorem 1.2.1, see [Hu66,
Theorem 5.11].

Remark 1.2.7. By the proof of [Hu66, Theorem 5.11], if X is completely metrizable and Bb
properly localizes X, one can assume that the metric which generates Bb is also complete.

In the rest of the chapter we will always assume that the space X is properly localized
by the given family of bounded sets Bb. In this case, Theorem 1.2.1 guarantees existence
of at least one metric which generates Bb and this enables us to directly translate the
results of [Kal17] to results concerning vague convergence of locally finite measures on an
arbitrary properly localized space. In particular, by the so–called Portmanteau theorem
(see [Kal17, Lemma 4.1]), µn v−→ µ inM(X) is equivalent to convergence

µn(B)→ µ(B) (1.3)

for all B ∈ Bb with µ(∂B) = 0, where ∂B denotes the boundary of the set B.

4



1.2. Vague convergence of locally finite measures

1.2.2 Vague convergence of point measures

Denote by δx the Dirac measure concentrated at x ∈ X. A (locally finite) point
measure on X is a measure µ ∈ M(X) which is of the form µ = ∑K

i=1 δxi for some
K ∈ {0, 1, . . . } ∪ {∞} and (not necessarily distinct) points x1, x2, . . . , xK in X. Note that
by definition at most finitely many xi’s fall into every bounded set B ∈ Bb. Denote by
Mp(X) the space of all point measures on X. Equivalently, one can define point measures
as integer–valued measures inM(X), see e.g. [Res87, Exercise 3.4.2].

The following result, which is a simple consequence of (1.3), characterizes vague
convergence in the case of point measures; for the proof see [Res87, Proposition 3.13].
cf. also [EMD16, Lemma 2.1]. It is fundamental when applying continuous mapping
arguments to results on convergence in distribution of point processes (i.e. random point
measures), see e.g. the proof of [Res07, Theorem 7.1].

Proposition 1.2.8. Let µ, µ1, µ2, . . . ∈Mp(X) be point measures. Then µn v−→ µ implies
that for every B ∈ Bb such that µ(∂B) = 0 there exist k, n0 ∈ N and points x(n)

i , xi,
n ≥ n0, i = 1, . . . , k, in B such that for all n ≥ n0,

µn|B =
k∑
i=1

δ
x

(n)
i

and µ|B =
k∑
i=1

δxi ,

and for all i = 1, . . . , k,

x
(n)
i → xi in X ,

where µn|B and µ|B denote restriction of measures µn and µ, respectively, to the set B.
Conversely, to show that µn v−→ µ, it is sufficient to check convergence of points in sets B
from any base Cb of Bb.

1.2.3 A comment on metrizability of the vague topology

In order to consider convergence in distribution inM(X) andMp(X) related to the
notion of vague convergence, one needs to impose a suitable topology on M(X). One
such topology on M(X) is the smallest topology under which the maps µ 7→ µ(f) are
continuous for all f ∈ CB+

b (X). Equivalently, this is the topology obtained by taking sets
of the form

{ν ∈M(X) : |µ(fi)− ν(fi)| < ε for all i = 1, . . . , k} (1.4)

for ε > 0, k ∈ N and f1, . . . , fk ∈ CB+
b (X), to be the neighborhood base of µ ∈M(X). We

call this topology the vague topology. Notice that, by definition, measures µn converge to
a measure µ with respect to the vague topology if and only if µn v−→ µ.

It is shown in [Kal17, Theorem 4.2] that there exists a metric ρ onM(X) with the

5



Chapter 1. On (compound) Poisson approximation for point processes

property that µn v−→ µ inM(X) if and only if ρ(µn, µ)→ 0. Moreover, the metric space
(M(X), ρ) is complete and separable.

It is now tempting to immediately conclude that the topology generated by the metric
ρ coincides with the vague topology and consequently that the vague topology is Polish.
However, one can not deduce this without knowing a priori that the vague topology, i.e.
the topology generated by the sets (1.4), is sequential, i.e. completely determined by its
converging sequences, see [Fra65] (cf. also [Dud64]). For example, any first countable and
hence any metrizable space is sequential. Since we have not been able to find such an
argument in [Kal17] or anywhere else in the literature, we provide one here but omit some
technical details.

Proposition 1.2.9. The spaceM(X) equipped with the vague topology is metrizable and
hence Polish.

Sketch of the proof. Consider the space M̂(X) of all finite Borel measures on X, i.e. Borel
measures µ on X such that µ(X) <∞. Equip M̂(X) with the smallest topology under which
the maps µ 7→ µ(f) are continuous for all nonnegative and bounded continuous functions
f on X. This topology is usually called the weak topology. Also, let M̂1(X) ⊆ M̂(X) be
the subset of all probability measures equipped with the relative topology.

By [Bil68, Appendix III, Theorem 5], there exists a metric ρ̂1 on M̂1(X) which generates
the weak topology and we can assume that ρ̂1 is bounded by 1. It is then possible, but
painful, to show that the function ρ on M̂(X)× M̂(X) given by

ρ̂(µ, ν) = |µ(X)− ν(X)|+ (µ(X) ∧ ν(X)) · ρ̂1(µ( · )/µ(X), ν( · )/ν(X))

is a proper metric which generates the weak topology on M̂(X).
Further, take a proper localizing sequence (Km)m∈N. In particular (1.2) holds, and

since X is a metric space, for every m ∈ N one can find a continuous function gm on X
such that 1Km

≤ gm ≤ 1Km+1 . Clearly, (gm) ⊆ CB+
b (X).

For everym ∈ N define a mapping Tm :M(X)→ M̂(X) such that Tm(µ) is the (unique)
measure satisfying Tm(µ)(f) = µ(f · gm) for all nonnegative and bounded functions f
on X. By the definitions of vague and weak topologies on the spacesM(X) and M̂(X),
respectively, vague topology onM(X) coincides with the smallest topology under which
the maps Tm, m ∈ N, are continuous. Moreover, if µ 6= ν for µ, ν ∈M(X) then necessarily
Tm(µ) 6= Tm(ν) for somem ∈ N. The last to two facts imply that the map µ 7→ (Tm(µ))m∈N
is a homeomorphism betweenM(X) equipped with the vague topology and a subset of
the space M̂(X)N equipped with the product weak topology, see e.g. [Wil04, Theorem
8.12]. Since the latter space is metrizable, it follows that the vague topology onM(X) is
metrizable and in particular sequential, hence Polish.
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1.3. Convergence in distribution of random measures and point processes

1.3 Convergence in distribution of random measures
and point processes

A random measure on X is a random element inM(X) w.r.t. the smallest σ–algebra
under which the maps µ 7→ µ(B) are measurable for all B ∈ Bb. By [Kal17, Lemma 4.7],
this σ–algebra equals the Borel σ–algebra onM(X) arising from the vague topology. By
a point process on X we mean a random measure which is almost surely a point measure,
i.e. element of the space Mp(X). Convergence in distribution in M(X) and Mp(X) is
considered w.r.t. the vague topology and is denoted by " d−→".

Even though our interest is only in convergence in distribution of point processes, in
this section we treat general random measures since the proofs (and therefore the results)
require no extra effort.

For random measures N,N1, N2, . . . on X, it is fundamental that Nn
d−→ N inM(X)

if and only if Nn(f) d−→ N(f) in R for all f ∈ CB+
b (X) which is further equivalent to

convergence of Laplace functionals E[e−Nn(f)]→ E[e−N(f)] for all f ∈ CB+
b (X), see [Kal17,

Theorem 4.11]. We show that in latter two convergences it is sufficient to consider only
functions which are Lipschitz continuous with respect to any suitable metric.

1.3.1 Lipschitz functions determine convergence in distribution

For any metric d on X denote by LB+
b (X, d) the family of all bounded nonnegative

functions f on X which have bounded support and are Lipschitz continuous with respect
to d, i.e. for some constant C > 0

|f(x)− f(y)| ≤ Cd(x, y) , for all x, y ∈ X .

Further, for a set B ⊆ X and ε > 0 denote

Bε = Bε(d) = {x ∈ X : d(x,B) ≤ ε} .

Proposition 1.3.1. Assume that d is a metric on X which generates the corresponding
topology and such that for any B ∈ Bb there exists an ε > 0 such that Bε ∈ Bb. Then
Nn

d−→ N inM(X) if and only if E[e−Nn(f)]→ E[e−N(f)] for every f ∈ LB+
b (X, d).

Remark 1.3.2. Every metric on X which generates the topology and the family of bounded
sets (as in Theorem 1.2.1) satisfies the assumptions of the previous proposition.

Example 1.3.3. Consider the case from Example 1.2.5. Recall, (X′, d′) is assumed to be
a complete and separable metric space and C ⊆ X′ a closed subset of X′. The space
X = X′ \ C is equipped with the subspace topology (i.e. generated by d′) and with B ⊆ X
being bounded if and only if B is contained in {x ∈ X : d′(x,C) > 1/m} for some m ∈ N.
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In this case, the metric d′ generates the topology but the corresponding class of metrically
bounded sets does not coincide with Bb. Still, d′ obviously satisfies the assumptions of the
previous proposition.

Proof of Proposition 1.3.1. We only need to prove sufficiency. Take arbitrary k ∈ N,
λ1, . . . , λk ≥ 0 and B1, . . . , Bk ∈ Bb such that P(N(∂B) = 0) = 1 for all i = 1, . . . , k. By
[Kal17, Theorem 4.11], the result will follow if we show that

lim
n→∞

E[e−
∑k

i=1 λiNn(Bi)] = E[e−
∑k

i=1 λiN(Bi)] . (1.5)

For all m ∈ N, i = 1, . . . k and x ∈ X set

f+
m,i(x) = 1− (md(x,Bi) ∧ 1) , f−m,i(x) = md(x, (B◦i )c) ∧ 1 , (1.6)

B◦ denotes the interior of B. Using the elementary fact that for a closed set C ⊆ X
and x ∈ X, x ∈ C if and only if d(x,C) = 0, it is straightforward to show that for all
i = 1, . . . , k as m→∞,

f+
m,i ↘ 1Bi

and f−m,i ↗ 1B◦i
. (1.7)

Functions f−m,i obviously have bounded support for all i and m, and since f+
m,i ≤

1{x∈X : d(x,Bi)≤1/m}, by assumption on the metric d, f+
m,i has bounded support for m large

enough. Assume without loss of generality that this is true for all m ∈ N. Further, it is
not difficult to show that for all i,m and all x, y ∈ X

|f+
m,i(x)− f+

m,i(y)| ∨ |f−m,i(x)− f−m,i(y)| ≤ md(x, y) .

Hence, f+
m,i and f−m,i are elements of LB+

b (X, d).
By the monotone and the dominated convergence theorem,

lim
m→∞

E[e−
∑k

i=1 λiN(f−m,i)] = E[e−
∑k

i=1 λiN(B◦i )] = E[e−
∑k

i=1 λiN(Bi)] ,

where the last equality follows since we assumed N(∂Bi) = 0 a.s. for all i. Since∑k
i=1 λif

−
m,i

is again in LB+
b (X, d), convergence in (1.5) will follow if we prove that

lim
m→∞

lim sup
n→∞

∣∣∣∣E[e−
∑k

i=1 λiNn(Bi)]− E[e−
∑k

i=1 λiNn(f−m,i)]
∣∣∣∣ = 0 . (1.8)

Since for all i and m, f−m,i ≤ 1Bi ≤ f+
m,i,

0 ≤ E[e−
∑k

i=1 λiNn(f−m,i)]− E[e−
∑k

i=1 λiNn(Bi)] ≤ E[e−
∑k

i=1 λiNn(f−m,i)]− E[e−
∑k

i=1 λiNn(f+
m,i)] .

Notice that for for fixed i and all m ∈ N, the support of f+
m,i is contained in the support of

8



1.4. Poisson approximation for point processes on Polish spaces

f+
1,i, which we assumed is a bounded set. Since N a.s. puts finite measure on such sets, ap-

plying the dominated convergence theorem twice yields that limm→∞ E[e−
∑k

i=1 λiN(f+
m,i)] =

E[e−
∑k

i=1 λiN(Bi)]. Therefore,

lim
m→∞

lim sup
n→∞

∣∣∣∣E[e−
∑k

i=1 λiNn(Bi)]− E[e−
∑k

i=1 λiNn(f−m,i)]
∣∣∣∣

≤ lim
m→∞

E[e−
∑k

i=1 λiN(f−m,i)]− E[e−
∑k

i=1 λiN(f+
m,i)]

= E[e−
∑k

i=1 λiN(B◦i )]− E[e−
∑k

i=1 λiN(Bi)] = 0 ,

where the last equality holds since N(∂Bi) = 0 a.s. Hence, (1.8) holds and this finishes
the proof.

1.4 Poisson approximation for point processes on Pol-
ish spaces

Let (In)n∈N be a sequence of finite index sets but such that limn→∞ |In| =∞, where
|In| denotes the number of elements in In. For each n ∈ N, let (Xn,i : i ∈ In) be a family
of random elements in a topological space X′. Assume that there exists a Polish subset X
of X′ with a family of bounded Borel sets Bb = Bb(X) such that, as n→∞,

sup
i∈In

P(Xn,i ∈ B)→ 0 , B ∈ Bb . (1.9)

The central theme of this section is convergence in distribution inMp(X) (w.r.t. the vague
topology) of point processes

Nn =
∑
i∈In

δXn,i , n ∈ N , (1.10)

restricted to the space X (in words, Nn does not count Xn,i’s which fall outside X). As
usual, the key role is played by the Poisson point process. Recall, a point process N on X
is a Poisson (point) process with intensity λ for some λ ∈ M(X) if (i) N(B) is Poisson
distributed with mean λ(B) for each B ∈ Bb; (ii) N(B1), . . . , N(Bk) are independent for
all B1, . . . , Bk ∈ Bb disjoint. The distribution of such Poisson process will be denoted by
PPP(λ).

1.4.1 General Poisson approximation

Observe, if for each n ∈ N, (Xn,i : i ∈ In) were independent, (1.9) would imply that
measures δXn,i on X, n ∈ N, i ∈ In form a null–array (see [Kal17, p. 129]) and by the
so–called Grigelionis theorem (see [Kal17, Corollary 4.25]), for λ ∈ M(X), convergence
Nn

d−→ N
d= PPP(λ) holds inMp(X) if and only if E[Nn( · )] = ∑

i∈In P(Xn,i ∈ ·) v−→ λ

9
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inM(X).
For general (i.e. dependent) Xn,i’s, one can still obtain the same Poisson limit if

the asymptotic distributional behavior of Nn’s is indistinguishable from its independent
version. More precisely, let for each n ∈ N, (X∗n,i : i ∈ In) be independent random elements
such that for all i ∈ In, X∗n,i is distributed as Xn,i, and denote by N∗n = ∑

i∈In δX∗n,i the
corresponding point process on X.

Let F be a class of measurable and nonnegative functions on X with bounded support.
We say that the family (Xn,i : n ∈ N, i ∈ In) is asymptotically F–independent (AI(F)) if
∣∣∣E [e−Nn(f)

]
− E

[
e−N

∗
n(f)

]∣∣∣ =
∣∣∣E [e−∑i∈In

f(Xn,i)
]
−
∏
i∈In

E
[
e−f(Xn,i)

] ∣∣∣→ 0, as n→∞,

for all f ∈ F , where we set f(x) = 0 for all x ∈ X′ \ X. To obtain meaningful results we
will require that functions from F determine convergence in distribution inMp(X). More
precisely, we say that a family F ⊆ CB+

b (X) is (point process) convergence determining if,
for point processes N,N1, N2, . . . on X, convergence E[e−Nn(f)]→ E[e−N(f)] for all f ∈ F
implies that Nn

d−→ N inMp(X). For example, one can take the subfamily F ⊆ CB+
b (X)

of functions which are Lipschitz continuous as in Proposition 1.3.1. The following result is
now immediate.

Theorem 1.4.1. Assume that (1.9) holds and that there exists a measure λ ∈M(X) such
that, as n→∞, ∑

i∈In
P(Xn,i ∈ ·) v−→ λ . (1.11)

Then for any convergence determining family F , Nn
d−→ N

d= PPP(λ) inMp(X) if and
only if (Xn,i : n ∈ N, i ∈ In) is AI(F).

Remark 1.4.2. One can allow F to contain functions f which are not necessarily continuous
but are such that N(disc(f)) = 0 almost surely, where disc(f) denotes the set of all
discontinuity points of f . In particular, F can consist of nonnegative simple functions
with bounded support, see [Kal17, Theorem 4.11].

Remark 1.4.3. Assume that (1.9) holds and that Xn,i’s are AI(F) for some convergence
determining family F . In this case, if Nn converge in distribution to some limit, N say,
then N is necessarily a Poisson process. Indeed, since also N∗n

d−→ N , by [Kal17, Theorem
4.22] N is infinitely divisible and moreover, by construction of N∗n, its so–called Lévy
measure (see [Kal17, p. 89]) is concentrated on the set {δx : x ∈ X} which implies that N
is Poisson.

Observe that condition AI(F) is, in general, much weaker than simply requiring that
Xn,i, i ∈ In asymptotically behave as if they were independent. The key fact here is that
all functions in F have bounded support so for every fixed f ∈ F , Nn(f) is affected only

10



1.4. Poisson approximation for point processes on Polish spaces

by the behavior of Xn,i’s which fall into a fixed bounded set. Sufficient conditions for
AI(F) to hold are given in Proposition 1.4.5 below.

Before that, we state a stationary version of the previous result, cf. [Res87, Proposition
3.21]. For d ∈ N consider the space [0, 1]d × X with respect to the product topology and
with B′ ∈ B([0, 1]d × X) being bounded if {x ∈ X : (t, x) ∈ B′} is bounded in X.

Corollary 1.4.4. Assume that In = {1, 2, . . . , kn}d ⊆ Zd for some d ∈ N with kn → ∞
and that (Xn,i : i ∈ In) are identically distributed for every n ∈ N. If there exists a measure
ν ∈M(X) such that, as n→∞,

kdnP(Xn,1 ∈ ·) v−→ ν , (1.12)

then for any convergence determining family F ′ on [0, 1]d × X,

N ′n =
∑
i∈In

δ(i/kn,Xn,i)
d−→ N ′

d= PPP(Leb× ν)

inMp([0, 1]d×X) if and only if ((i/kn, Xn,i) : n ∈ N, i ∈ In) is AI(F ′), where Leb denotes
the Lebesgue measure on [0, 1]d.

Proof. We simply apply Theorem 1.4.1 to random elements X ′n,i := (i/kn, Xn,i), n ∈ N, i ∈
In. Take an arbitrary B′ ∈ Bb([0, 1]d × X) and define B = {x ∈ X : (t, x) ∈ B′}. Since
B ∈ Bb(X), (1.12) and [Kal17, Lemma 4.1(iv)] imply that

lim sup
n→∞

∑
i∈In

P(X ′n,i ∈ B′) = lim sup
n→∞

kdnP(Xn,1 ∈ B) ≤ ν(B) < +∞ .

Hence, (1.9) holds since kn →∞.
Further, note that for arbitrary a = (a1, . . . , ad) and b = (b1, . . . , bd) in [0, 1]d such that

aj ≤ bj for all j = 1, . . . , d and a set B ∈ Bb such that ν(∂B) = 0, (1.12) implies that as
n→∞,

∑
i∈In

P(X ′n,i ∈ (a, b]×B) = 1
kdn

d∏
j=1
bkn(bj − aj)c · kdnP(Xn,1 ∈ B)→

d∏
j=1

(bj − aj) · ν(B)

By [Kal17, Lemma 4.1], this implies that ∑i∈In P(X ′n,i ∈ ·)
v−→ Leb× ν inM([0, 1]d ×X),

i.e. (1.11) holds with λ = Leb× ν.

1.4.2 Sufficient condition for asymptotic F–independence

For each i ∈ In, choose a subset of the index set Bn(i) ⊆ In containing i, and call it
the neighborhood of dependence of i . Intuitively, it will be useful to choose Bn(i) as small
as possible but such that Xn,i is (nearly) independent of all Xn,j for j /∈ Bn(i).

11
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Select an arbitrary ordering of the elements in In. Without loss of generality, we will
assume that In = {1, 2, . . . ,mn} where mn → ∞ as n → ∞. For all i ∈ In partition
{i+1, . . . ,mn} into B̃n(i) := {j ∈ Bn(i) : j > i} and B̃c

n(i) := {j /∈ Bn(i) : j > i}. Further,
fix an arbitrary countable base (Km)m∈N ⊆ Bb of Bb, i.e. for every B ∈ Bb, B ⊆ Km for
some m ∈ N.

For a given neighborhood structure (Bn(i) : n ∈ N, i ∈ In) and for all m,n ∈ N define

bmn,1 =
∑
i∈In

∑
j∈B̃n(i)

P(Xn,i ∈ Km) · P(Xn,j ∈ Km) ,

bmn,2 =
∑
i∈In

∑
j∈B̃n(i)

P(Xn,i ∈ Km, Xn,j ∈ Km) .

Furthermore, for all n ∈ N and an arbitrary nonnegative measurable function f on X
define

bn,3(f) =
∑
i∈In

∣∣∣E[e−f(Xn,i)
∏

j∈B̃cn(i)

e−f(Xn,j)
]
− E

[
e−f(Xn,i)

]
· E
[ ∏
j∈B̃cn(i)

e−f(Xn,j)
]∣∣∣ .

Proposition 1.4.5. Let f be a nonnegative measurable function on X with bounded
support. If m ∈ N is such that the support of f is contained in Km, then for all n ∈ N,

∣∣∣E [e−∑i∈In
f(Xn,i)

]
−
∏
i∈In

E
[
e−f(Xn,i)

] ∣∣∣ ≤ bmn,1 + bmn,2 + bn,3(f) .

In particular, if there exists a neighborhood structure (Bn(i) : n ∈ N, i ∈ In) such that for
all m ∈ N and every f ∈ F

lim
n→∞

bmn,1 = lim
n→∞

bmn,2 = lim
n→∞

bn,3(f) = 0 ,

then the family (Xn,i : n ∈ N, i ∈ In) is AI(F).

Proof. The proof is an adaptation of argument in Nakhapetyan [Nak88, Lemma 3], though
the main idea goes back to [Ban80, Theorem 4]. Since e−f is positive and bounded by 1 it
follows that

∣∣∣E [e−∑i∈In
f(Xn,i)

]
−
∏
i∈In

E
[
e−f(Xn,i)

] ∣∣∣
≤

mn−1∑
i=1

∣∣∣E[e−f(Xn,i)
mn∏

j=i+1
e−f(Xn,j)

]
− E

[
e−f(Xn,i)

]
· E
[ mn∏
j=i+1

e−f(Xn,j)
]∣∣∣ =:

mn−1∑
i=1

εi .

Fix now an arbitrary i ∈ {1, . . . ,mn − 1}. After writing

mn∏
j=i+1

e−f(Xn,j) =
∏

j∈B̃n(i)

e−f(Xn,j)
∏

j∈B̃cn(i)

e−f(Xn,j) ,

12
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one can easily check that

εi ≤
∣∣∣∣E[e−f(Xn,i) ·

( ∏
j∈B̃n(i)

e−f(Xn,j) − 1
) ∏
j∈B̃cn(i)

e−f(Xn,j)
]

− E
[
e−f(Xn,i)

]
· E
[( ∏

j∈B̃n(i)

e−f(Xn,j) − 1
) ∏
j∈B̃cn(i)

e−f(Xn,j)
]∣∣∣∣

+
∣∣∣E[e−f(Xn,i)

∏
j∈B̃cn(i)

e−f(Xn,j)
]
− E

[
e−f(Xn,i)

]
· E
[ ∏
j∈B̃cn(i)

e−f(Xn,j)
]∣∣∣ .

Note that the first summand on the right hand side of the previous inequality equals
∣∣∣E[(e−f(Xn,i) − 1

)
·
( ∏
j∈B̃n(i)

e−f(Xn,j) − 1
) ∏
j∈B̃cn(i)

e−f(Xn,j)
]

− E
[(
e−f(Xn,i) − 1

)]
· E
[( ∏

j∈B̃n(i)

e−f(Xn,j) − 1
) ∏
j∈B̃cn(i)

e−f(Xn,j)
]∣∣∣ ,

and since e−
∑

k
f(xk) − 1 6= 0 implies that f(xk) > 0, and hence xk ∈ Km, for at least one

k, we obtain that

εi ≤ P
(
Xn,i ∈ Km,

⋃
j∈B̃n(i)

{Xn,j ∈ Km}
)

+ P
(
Xn,i ∈ Km

)
· P
( ⋃
j∈B̃n(i)

{Xn,j ∈ Km}
)

+
∣∣∣E[e−f(Xn,i)

∏
j∈B̃cn(i)

e−f(Xn,j)
]
− E

[
e−f(Xn,i)

]
· E
[ ∏
j∈B̃cn(i)

e−f(Xn,j)
]∣∣∣ .

Hence,

∣∣∣E [e−∑i∈In
f(Xn,i)

]
−
∏
i∈In

E
[
e−f(Xn,i)

] ∣∣∣ ≤ mn−1∑
i=1

εi ≤ bmn,1 + bmn,2 + bn,3(f) .

Remark 1.4.6. Recall, (X∗n,i : i ∈ In) are independent random elements such that for all
i ∈ In, X∗n,i is distributed as Xn,i. Further, let (X∗n,i : i ∈ In) and (Xn,i : i ∈ In) be defined
on the same probability space and independent. We can then bound bn,3(f) by

bn,3(f) ≤
∑
i∈In

E
∣∣∣E[e−f(Xn,i) − e−f(X∗n,i) | σ(Xn,j : j ∈ B̃c

n(j))
]∣∣∣

=
∑
i∈In

E
∣∣∣E[e−f(Xn,i) | σ(Xn,j : j ∈ B̃c

n(i))
]
− E

[
e−f(Xn,i)

]∣∣∣ .
Since for any f ∈ CB+

b (X) the function 1− e−f is also an element CB+
b (X) and further

bounded by 1, it follows that

∑
i∈In

E
∣∣∣E[f(Xn,i) | σ(Xn,j : j ∈ B̃c

n(i))
]
− E

[
f(Xn,i)

]∣∣∣→ 0
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for all f ∈ CB+
b (X) which are bounded by 1 implies that bn,3(f)→ 0 for all f ∈ CB+

b (X).

Remark 1.4.7. The concept of neighborhoods implicitly appears already in Banys [Ban80,
Theorem 4]. There, essentially the same sufficient conditions for convergence of Nn to
a Poisson point process are given but with, in our notation, neighborhoods of the form
B̃n(i) = {i+ 1, . . . , i+ rn} and B̃c

n(i) = {i+ rn + 1, . . . ,mn} for all i ∈ In where (rn)n∈N
is a sequence of nonnegative integers. The proof is similar to ours and even though it is
stated only for the case when X is locally compact, it transfers directly to the case of a
general Polish space.

Remark 1.4.8. Similar results were also obtained by Schuhmacher [Sch05, Theorem 2.1],
but with a completely different approach, using Stein’s method. As a consequence,
Schuhmacher even provides bounds on the convergence in the so–called Barbour-Brown
distance d2. However, this result does not directly imply our results, see [Sch05, Remark
2.4(b)] for the comparison to the result of Banys [Ban80] which is also relevant to our case.

Example 1.4.9. For Bernoulli random variables Xn,i such that limn→∞ supi∈In P(Xn,i =
1) = 0 and limn→∞

∑
i∈In P(Xn,i = 1) = λ ∈ (0,∞), one can set X′ = {0, 1} and X = {1}

with {1} being the only non–empty bounded set in X. Using Theorem 1.4.1 together
with Proposition 1.4.5 and Remark 1.4.6, we recover the result of Arratia et al. [AGG89,
Theorem 1] on convergence in distribution of ∑i∈In 1{Xn,i=1} to a Poisson random variable
with intensity λ, but without the bound on the distance in total variation.
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Chapter 2

Regularly varying time series and
random fields

2.1 Introduction

Over the years, a lot of progress has been made in the study of stationary time series
under suitable regular variation and (weak) dependence assumptions. Intuitively, these
assumptions imply that, over large time windows, observations exceeding a suitably chosen
large threshold form a Poisson number of uniformly spaced i.i.d. clusters; after scaling,
these clusters are distributed as a product of (i) a Pareto random variable representing
the magnitude of the largest value in the cluster, and (ii) an independent random vector
describing the serial dependence structure within the cluster; see also Janssen [Jan18,
Introduction].

A way to make this formal is through the language of point processes. Let (Xi)i∈Z be
such a time series and an the (1− 1/n)–quantile of the distribution of |X0|. Building on
the results of Mori [Mor77], Davis and Resnick [DR85], Davis and Hsing [DH95], Basrak
and Segers [BS09], Basrak et al. [BKS12] and others, Basrak and Tafro [BT16] showed
that

Nn =
n∑
i=1

δ(i/n,Xi/an)
d−→ N =

∑
i∈N

∑
j∈Z

δ(Ti,PiQij) , as n→∞ , (2.1)

where, in particular,

(i) ∑i∈N δ(Ti,Pi) is a Poisson process on [0, 1]× (0,∞) which is homogeneous in time and
with Pareto–like intensity in space;

(ii) (Qi
j)j∈Z, i ∈ N, are i.i.d. sequences of random variables (normalized clusters) inde-

pendent of ∑i∈N δ(Ti,Pi).

Thus, N is a Poisson cluster process. Note that this convergence takes place in the space
of locally finite point measures on [0, 1]× (R \ {0}) with sets of interest, i.e. bounded sets,
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being those which are bounded away from [0, 1] × {0}. In words, convergence in (2.1)
controls only the asymptotic behavior of Xi’s which exceed anε in absolute value for fixed
ε > 0.

Once this so–called complete convergence result (or a variant of it including only the
time or space component) is established, various (functional) limit theorems concerning
(Xi) follow by applications of the continuous mapping theorem, see e.g. the references
given above and also the books by Resnick [Res87, Res07] where the i.i.d. case is treated
exhaustively and very intuitively.

Observe, however, that due to scaling of time to [0, 1] in (2.1), the information about
the serial dependence of Xi’s belonging to the same cluster is lost in the limit since they
all collapse to the same time instance. More precisely, the limiting point process from
(2.1) does not contain information on the order of Qi

j’s for fixed i. This information is
important if e.g. one is interested in studying record times of (Xi).

The first goal of this chapter is to present a new type of point process convergence
which will preserve the information about this order. In Chapter 3 this result is used to
study sums and record times of stationary regularly varying time series.

The main idea is to break the dependent sample (X1, . . . , Xn) into smaller blocks
whose size still tends to ∞, and to consider them as points of a point process on the
(infinite–dimensional) space of real-valued double–sided sequences vanishing to zero in
all directions. Besides preserving the order, the enlargement of the state space also
transforms the problem of obtaining a Poisson cluster limit into obtaining a suitable
Poisson approximation.

As in (2.1), the key role in our considerations is played by the so–called tail process
introduced by [BS09]. A stationary R–valued time series (Xi)i∈Z has a tail process (Yi)i∈Z
if for all s ≤ t ∈ Z,

(u−1Xs, . . . , u
−1Xt)

∣∣∣ |X0| > u
d−→ (Ys, . . . , Yt) in Rt−s+1 , as u→∞ . (2.2)

Here and in what follows, A(u) | B(u) d−→ C as u→∞ for a family of random elements
A(u), C and events B(u), u > 0, means that the law of A(u) conditionally on B(u)
converges weakly as u→∞ to the law of C.

The second goal of this chapter is to extend the notion of the tail process and the
corresponding point process convergence theory to R–valued random fields indexed over
the d–dimensional integer lattice. Using this framework, in Chapter 4 we revisit the
classical problem of local alignment of (biological) sequences.

In what follows we consider only general random fields, i.e. we do not treat the time
series case separately (except in some of the examples). In fact, extending the theory to
higher dimensions yields some new insight on the existing results for time series, see in
particular the concept of anchoring in Section 2.3.3.
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2.1. Introduction

Remark 2.1.1. Note, here we treat only the case of R–valued time series and random fields.
One can obtain multivariate analogues of all results by simply replacing the absolute value
with an arbitrary norm. One reason for restricting to the univariate case is because all
of our examples and applications are univariate. Secondly, in applications concerning
multivariate data, instead of conditioning on the norm of the whole vector being large, it
is often more natural to condition e.g. on the value of only one component being extreme.

The rest of the chapter is organized as follows. In Section 2.2 we extend the notion of
the tail process to general stationary random fields and discuss some of its main properties.
As in the time series case, it is not surprising that the existence of a tail process is equivalent
to all finite–dimensional distributions of the field being multivariate regularly varying
(hence the name regularly varying fields), see Theorem 2.2.1 (i). However, a nontrivial
extension was to obtain sufficient conditions for existence of the tail process for general
random fields, see Theorem 2.2.1 (iii).

In Section 2.3 we present a new type of point process convergence result for stationary
regularly varying time series and random fields which preserves the order (or rather the
shape) within the cluster in the limit, see Theorem 2.3.14. The main novelty is the
order preserving infinite–dimensional space l̃0 introduced in 2.3.1 which serves as a state
space for point processes of blocks. The proof of Theorem 2.3.14 is then based on the
Poisson approximation theory of Section 1.4. The key technical result, also of independent
interest, is Proposition 2.3.10 which provides a way to check intensity measure convergence
(1.12) of Corollary 1.4.4. It relies on the familiar anti–clustering1 condition, see (2.18).
Furthermore, the asymptotic F ′–independence condition applied to blocks, which is the
remaining assumption of Corollary 1.4.4, provides a mixing condition which is also typical
in this extremal context. Finally, we wish to emphasize the idea of anchoring described in
Section 2.3.3 which has the intention of clarifying the link between the tail process and
the components of the limiting Poisson (cluster) process of Theorem 2.3.14.

We finish the chapter by discussing techniques for verifying conditions of Theorem 2.3.14,
or rather obtaining the desired point process convergence result. In particular, all of
the assumptions are satisfied by m–dependent random fields, and in Section 2.4.1, the
conclusion of Theorem 2.3.14 is extendend to fields which are, in a suitable sense, ap-
proximable by m–dependent ones (cf. [RS98]). Infinite order linear processes (or moving
averages) constitute the most prominent examples of such fields. Further, we recall in
Section 2.4.2 that, for stationary Markov chains, checking geometric ergodicity offers
a practical way to verify the asymptotic independence condition. Also, note that the
neighborhood approach described in Section 1.4.2 provides yet another way for checking
the asymptotic independence condition, particularly useful for general random fields. This
is illustrated in Chapter 4 in the study of the local alignment problem, see in particular

1Note that, even though catchy, this is not a good name for this condition since it does not eliminate
the possibility of clustering.
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Chapter 2. Regularly varying time series and random fields

Corollary 4.3.4.
This chapter is based on the papers [BPS18] and [BP18b].

2.2 The tail field

Consider a (strictly) stationary R–valued random field X = (Xi : i ∈ Zd) with d ∈ N.
For every finite and non–empty subset of indices I ⊆ Zd, denote by XI the R|I|–valued
random vector (Xi : i ∈ I), i.e. XI ’s represent finite–dimensional distributions of X.

We say that a random field Y = (Yi : i ∈ Zd) is the tail field (or tail process) of X, if
for all finite and non–empty I ⊆ Zd,

u−1XI

∣∣∣ |X0| > u
d−→ Y I , as u→∞ , (2.3)

where 0 = (0, . . . , 0) ∈ Zd. Note that we implicitly assume that P(|X0| > u) > 0 for all
u > 0. Observe, taking I = {0} in (2.3) yields that limu→∞ P(|X0| > uy)/P(|X0| > u) =
P(|Y0| > y) for all except at most countably many y ∈ [1,∞). By standard arguments (see
[BGT87, Theorem 1.4.1] and the discussion before it), this implies that u 7→ P(|X0| > u)
is a regularly varying function with index −α for some α > 0, i.e.

lim
u→∞

P(|X0| > uy)
P(|X0| > u) = y−α , y > 0 . (2.4)

In particular, P(|Y0| > y) = y−α for all y ≥ 1, i.e. |Y0| is Pareto distributed with index α.

2.2.1 Existence of the tail field

A family of indices I ⊆ Zd is said to be encompassing if for every finite and non–empty
I ⊆ Zd there exists at least one i∗ ∈ I such that I − i∗ ⊆ I. Note that necessarily 0 ∈ I.

If d = 1, the set of nonnegative (or nonpositive) integers is an example of such family.
More generally, assume that � is an arbitrary total order on Zd which is translation–
invariant in the sense that for all i, j and k in Zd, i � j implies i + k � j + k. Then the
set Zd� = {i ∈ Zd : i � 0} is clearly encompassing. Indeed, simply set i∗ ∈ I to be the
(unique) minimal element of the finite set I with respect to �. We refer to such orders as
group orders on Zd.

In particular, the lexicographic order on Zd, denoted by �l, is a group order. Recall,
for indices i = (i1, . . . , id), j = (j1, . . . , jd) ∈ Zd, i ≺l j if ik < jk for the first k where ik
and jk differ, and i �l j if i ≺l j or i = j.

The following result extends [BS09, Theorem 2.1] which treats the case d = 1; the
proof is postponed to Section 2.5.
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2.2. The tail field

Theorem 2.2.1. For a stationary random field X = (Xi : i ∈ Zd) and α > 0, the
following three statements are equivalent:

(i) All finite–dimensional distributions of X are multivariate regularly varying with
index α;

(ii) The field X has a tail field Y = (Yi : i ∈ Zd) with P(|Y0| ≥ y) = y−α for y ≥ 1.

(iii) There exists an encompassing I ⊆ Zd and a family of random variables (Yi : i ∈ I)
with P(|Y0| ≥ y) = y−α for y ≥ 1, such that for all finite and non–empty I ⊆ I,

u−1XI

∣∣∣ |X0| > u
d−→ (Yi)i∈I , as u→∞ . (2.5)

Recall that for finite I ⊆ Zd, XI is multivariate regularly varying with index α > 0
if for some norm ‖ · ‖ on R|I| there exists a random vector on R|I|, say Θ(I), such that
‖Θ(I)‖ = 1 and

(u−1‖XI‖, ‖XI‖−1XI)
∣∣∣ ‖XI‖ > u

d−→ (Y,Θ(I)) , as u→∞ ,

where Y is independent of Θ(I) and satisfies P(Y > y) = y−α for y ≥ 1.
The equivalence between (i) and (ii) (cf. (2.8) below) explains why fields admitting a

tail process will simply be called regularly varying. We refer to the corresponding α as the
(tail) index of the field.

Remark 2.2.2. While writing the thesis, we learned of a parallel study by Wu and Samorod-
nitsky [WS18] who also consider regularly varying fields with emphasis on various notions
of extremal index in this context. They show by an example that for d ≥ 2 existence of the
limit of u−1XI

∣∣∣ |X0| > u for all finite I ⊆ I when I is an orthant in Zd, is not sufficient
for regular variation of X and hence existence of the tail field. This made us reconsider
an earlier (incorrect) version of Theorem 2.2.1 which eventually led to a proper extension
of [BS09, Theorem 2.1(ii)].

2.2.2 The spectral tail field

Consider now the space RZd equipped with the product topology and corresponding
Borel σ–algebra. One can then rephrase (2.3) simply as

u−1X
∣∣∣ |X0| > u

d−→ Y in RZd , (2.6)

see e.g. [Bil68, p. 19]. The spectral tail field Θ = (Θi : i ∈ Zd) of X is defined by
Θi = Yi/|Y0| , i ∈ Zd. In particular, |Θ0| = 1.
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Chapter 2. Regularly varying time series and random fields

Proposition 2.2.3. The spectral field Θ is independent of |Y0| and satisfies

|X0|−1X
∣∣∣ |X0| > u

d−→ Θ in RZd . (2.7)

Proof. The continuous mapping theorem (see e.g. [Bil68, Corollary 1, p. 31]) applied to
(2.6) implies that

(u−1|X0|, |X0|−1X)
∣∣∣ |X0| > u

d−→ (|Y0|,Θ) in [1,∞)× RZd . (2.8)

In particular, (2.7) holds and moreover, using (2.4) yields that

P(|Y0| > y,Θ ∈ B) = lim
u→∞

P(|X0| > uy,X/|X0| ∈ B | |X0| > u)

= lim
u→∞

P(|X0| > uy)
P(|X0| > u) · P(X/|X0| ∈ B | |X0| > uy)

= y−αP(Θ ∈ B) = P(|Y0| > y)P(Θ ∈ B) , (2.9)

for all y > 0 and all measurable B ⊆ RZd such that P(Θ ∈ ∂B) = 0. Denote by S the
family of all such B’s. Note that S is closed under finite intersections and that every open
set in RZd can be represented as a countable union of elements in S (fix a metric and use
open balls). In particular, S generates the Borel σ–algebra on RZd . Thus, (2.9) implies
that Θ and |Y0| are independent.

Even though the tail field is typically not stationary, regular variation and stationarity
of the underlying random field X yield specific distributional properties of Θ (and hence
of Y ) summarized by the so–called time–change formula: for every integrable (in the sense
that one of the expectations below exists) or nonnegative measurable function h : RZd → R
and all j ∈ Zd,

E [h ((Θi)i∈Zd)1{Θ−j 6= 0}] = E [h ((Θi+j/|Θj|)i∈Zd) |Θj|α1{Θj 6= 0}] . (2.10)

In the case of time series, (2.10) appears in [BS09] and the proof is easily extended to
the case of random fields, see [WS18, Theorem 3.2]. Alternatively, one can arrive at (2.10)
following the approach of [PS18] who use the so–called tail measure of X introduced in
[SO12], see also [DHS17].
Remark 2.2.4. Let X be a stationary random field and α > 0. If limu→∞ P(|X0| >
uy)/P(|X0| > u)→ y−α for all y > 0 and for some encompassing I ⊆ Zd there exist random
variables (Θi : i ∈ I) such that for all finite and non–empty I ⊆ I, |X0|−1XI

∣∣∣ |X0| >
u

d−→ (Θi)i∈I , then X is regularly varying with index α; combine the proof of [BS09,
Corollary 3.2] and Theorem 2.2.1.

If I 6= Zd, the distribution of the whole spectral process Θ is then determined by (2.10)
and the tail field of X is given by Y = YΘ where Y is independent of Θ and satisfies
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2.3. Point process convergence

P(Y ≥ y) = y−α for y ≥ 1.

2.3 Point process convergence

Denote by≤ the component–wise order on Zd, thus for i = (i1, . . . , id), j = (j1, . . . , jd) ∈
Zd, i ≤ j if ik ≤ jk for all k = 1, . . . , d. Take a sequence of positive integers (rn) such
that limn→∞ rn = limn→∞ n/rn = ∞ and let kn = bn/rnc. For each n ∈ N, decompose
{1, . . . , n}d into blocks Jn,i, i ∈ In := {1, . . . , kn}d, of size rdn by

Jn,i = (j ∈ Zd : (i− 1) · rn + 1 ≤ j ≤ i · rn) . (2.11)

The goal of this section is to study convergence in the distribution of point processes based
on (increasing) blocks

Xn,i := XJn,i , i ∈ In , (2.12)

see (2.15) below. We start by introducing a suitable space for the Xn,i’s.

2.3.1 A space for blocks – l̃0

Let l0 be the space of all R-valued arrays on Zd converging to zero in all directions, i.e.
l0 = {(xi)i∈Zd : lim|i|→∞ |xi| = 0}, where |i| = maxk=1,...,d |ik| for i = (i1, . . . , id) ∈ Zd. On
l0 consider the uniform norm

‖x‖∞ = sup
i∈Zd
|xi| , x = (xi)i∈Zd ,

which makes l0 into a separable Banach space. Indeed, l0 is the closure of all rational–
valued arrays on Zd with at most finitely many non–zero terms in the Banach space of all
bounded R–valued arrays on Zd.

Define the family of shift operators Bk, k ∈ Zd, on RZd by Bk(xi)i = (xi+k)i and
introduce an equivalence relation ∼ on l0 by letting x ∼ y for x,y ∈ l0 if y = Bkx for
some k ∈ Zd. In the sequel, we consider the quotient space l̃0 = l0/ ∼ of shift–equivalent
arrays. Observe, for x̃ ∈ l̃0 and an arbitrary x̃ ∈ x̃, x̃ = {Bkx : k ∈ Zd}. Further, define
a function d̃ : l̃0 × l̃0 −→ [0,∞) by

d̃(x̃, ỹ) = inf{‖x− y‖∞ : x ∈ x̃,y ∈ ỹ} , x̃, ỹ ∈ l̃0 . (2.13)

Since ‖Bkx− Bk′y‖∞ = ‖Bk−k′x− y‖∞ for all x,y ∈ l0 and k,k′ ∈ Zd, it follows that
for all x̃, ỹ ∈ l̃0 and arbitrary y ∈ ỹ,

d̃(x̃, ỹ) = inf
x∈x̃
‖x− y‖∞ . (2.14)
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Chapter 2. Regularly varying time series and random fields

This fact leads to the following technical result the proof of which is postponed to
Section 2.5.

Lemma 2.3.1. The function d̃ is a metric on l̃0 and moreover, (l̃0, d̃) is a separable and
complete metric space.

Observe that for x̃, x̃1, x̃2, · · · ∈ l̃0, d̃(x̃n, x̃)→ 0 as n→∞ if and only if for some, and
then for every, x ∈ x̃ there exists xn ∈ x̃n, n ∈ N, such that ‖xn − x‖∞ → 0. Further,
for any finite I ⊆ Zd one can naturally consider finite arrays x ∈ RI as elements of l̃0 by
simply adding infinitely many zeros around x and then mapping this element of l0 into its
equivalence class.

In what follows, on l0 and l̃0 consider their respective Borel σ–algebras B(l0) and B(l̃0).
Note that B(l0) coincides with trace σ–algebra of l0 in RZd considered with respect to
its cylindrical σ-algebra. Further, call a set B ⊆ l0 shift–invariant if x ∈ B implies that
Bkx ∈ B for all k ∈ Zd. Also, a function h on l0 is shift–invariant if h(Bkx) = h(x) for
all x ∈ l0,k ∈ Zd.

Since topologies of l0 and l̃0 are Polish and the corresponding quotient map π : l0 → l̃0

is continuous, [Ber88, Corollary A.2.5] implies that for every B̃ ⊆ l̃0, B̃ ∈ B(l̃0) if and
only if π−1(B̃) ∈ B(l0). In other words, B(l̃0) coincides with the family of sets π(B), for
B ∈ B(l0) which are shift–invariant. Moreover, a function h̃ on l̃0 is measurable if and
only if h̃ = h ◦ π for some shift–invariant measurable function h on l0.

2.3.2 Point process of blocks

Consider now the space l̃0,0 := l̃0\{0} with bounded sets being those which are bounded
away from 0 w.r.t. d̃, see Example 1.2.5. Define point processes of blocks

N ′n =
∑
i∈In

δ(i/kn,Xn,i/an) , n ∈ N , (2.15)

inMp([0, 1]d × l̃0,0), where the sequence (an) is chosen such that

lim
n→∞

ndP(|X0| > an) = 1 . (2.16)

To obtain convergence of N ′n one can apply Corollary 1.4.4. For each n ∈ N, denote
Jrn := {1, . . . , rn}d = Jn,1 and let Xrn := XJrn = Xn,1 represent the common distribution
of blocks Xn,i, i ∈ In. Under this notation, condition (1.12) reduces to existence of a
measure ν inM(l̃0,0) such that

kdnP(a−1
n Xrn ∈ ·)

v−→ ν . (2.17)
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2.3. Point process convergence

Assumption 2.3.2. There exists a sequence of positive integers (rn)n such that limn→∞ rn =
limn→∞ n/rn =∞ and for every u > 0,

lim
m→∞

lim sup
n→∞

P
(

max
m<|i|≤rn

|Xi| > anu
∣∣∣∣ |X0| > anu

)
= 0 . (2.18)

As we show in Proposition 2.3.10 below, for a sequence (rn) satisfying (2.18), conver-
gence in (2.17) holds with the limiting measure ν of the form

ν( · ) = ϑ
∫ ∞

0
P(yQ ∈ ·)αy−α−1dy ,

for some ϑ ∈ (0, 1] and Q being a random element in l̃0 satisfying ‖Q‖∞ = 1 almost surely.
In the following we first describe ϑ and Q in terms of the tail field of X.

2.3.3 Anchoring the tail process – ϑ and Q

Let Y = (Yi)i∈Zd be the tail field of X = (Xi)i∈Zd . It follows easily (cf. [BS09,
Proposition 4.2]) that Assumption 2.3.2 implies that P(lim|i|→∞ |Yi| = 0) = 1, i.e. that
P(Y ∈ l0) = 1. Recall that |Y0| > 1 so in particular ‖Y ‖∞ > 1.

We say that a measurable function A : {x ∈ l0 : ‖x‖∞ > 1} → Zd is an anchoring
function if

(i) A((xi)i∈Zd) = j for some j ∈ Zd implies that |xj| > 1;

(ii) For each j ∈ Zd, A((xi−j)i) = A((xi)i) + j.

In words, A picks one of finitely many xi’s which are larger than one in absolute value
in a way which is insensitive to translations. Observe, for an arbitrary group order on Zd,
the following are examples of anchoring functions.

– first exceedance: Afe((xi)i) = min{j ∈ Zd : |xj| > 1},

– last exceedance: Ale((xi)i) = max{j ∈ Zd : |xj| > 1},

– first maximum: Afm((xi)i) = min{j ∈ Zd : |xj| = ‖(xi)i‖}.

We will exploit the following property of the tail field which is implied solely by
stationarity of X.

Lemma 2.3.3. For every bounded measurable function h : RZd → R and all j ∈ Zd,

E [h ((Yi)i∈Zd)1{|Yj| > 1}] = E [h ((Yi−j)i∈Zd)1{|Y−j| > 1}] . (2.19)
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Chapter 2. Regularly varying time series and random fields

Proof. Assume in addition that h is continuous with respect to the product topology on
RZd . Then, since P(Yj = 1) = P(|Y0| · |Θj| = 1) = 0 for all j ∈ Zd, the definition of the
tail process and stationarity of (Xi) imply

E [h ((Yi)i)1{|Yj| > 1}] = lim
u→∞

E
[
h
(
(u−1Xi)i

)
1{|Xj| > u} | |X0| > u

]
= lim

u→∞

E [h ((u−1Xi)i)1{|Xj| > u, |X0| > u}]
P(|X0| > u)

= lim
u→∞

E [h ((u−1Xi−j)i)1{|X0| > u, |X−j| > u}]
P(|X0| > u)

= E [h ((Yi−j)i)1{|Y−j| > 1}] .

Since finite Borel measures on a metric space are determined by integrals of continuous
and bounded functions, this yields (2.19).

Remark 2.3.4. Using the already mentioned tail measure of X, one can give a one–line
proof of the previous result, see [PS18, Lemma 2.2].

Lemma 2.3.5. Assume that P(Y ∈ l0) = 1. Then for every anchoring function A

P(A(Y ) = 0) > 0 .

Proof. Assume that P(A(Y ) = 0) = 0. Applying (2.19) yields

1 =
∑

j∈Zd
P(A(Y ) = j) =

∑
j∈Zd

P(A(Y ) = j, |Yj| > 1)

=
∑

j∈Zd
P(A((Yi−j)i) = j, |Y−j| > 1) =

∑
j∈Zd

P(A(Y ) = 0, |Y−j| > 1) = 0 .

Hence, P(A(Y ) = 0) > 0.

Whenever P(A(Y ) = 0) > 0, one can consider the anchored tail process ZA = (ZA
i :

i ∈ Zd) which has the same distribution as Y = (Yi)i but conditionally on A(Y ) = 0.
Also, define QA = (QA

i : i ∈ Zd) by QA
i = ZA

i /‖ZA‖∞.

Lemma 2.3.6. Assume that P(Y ∈ l0) = 1 and let A,A′ be two anchoring functions.
Then

P(A(Y ) = 0) = P(A′(Y ) = 0) ,

and for every measurable and bounded function h : l0 → R which is shift–invariant,

E[h(ZA)] = E[h(ZA′)] .
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2.3. Point process convergence

Proof. Using (2.19) and shift–invariance of h we obtain

E[h(Y )1{A(Y ) = 0}] =
∑

j∈Zd
E[h(Y )1{A(Y ) = 0, A′(Y ) = j, |Yj| > 1}]

=
∑

j∈Zd
E[h(Y )1{A(Y ) = −j, A′(Y ) = 0}]

= E[h(Y )1{A′(Y ) = 0}] .

Taking h ≡ 1 yields the first statement, and then the second one follows immediately.

If P(Y ∈ l0) = 1, denote by ϑ the common value of P(A(Y ) = 0), i.e. for an arbitrary
anchoring function A set

ϑ = P(A(Y ) = 0) . (2.20)

In particular, for any group order � on Zd, using the first/last exceedance as anchor yields,

ϑ = P(sup
j≺0
|Yj| ≤ 1) = P(sup

j�0
|Yj| ≤ 1) . (2.21)

Also,
ϑ = P(Afm(Y ) = 0) = P(Afm(Θ) = 0) . (2.22)

Observe here that the function Afm remains well defined on the whole set l0 without 0.
As it turns out, under suitable dependence conditions, ϑ represents the extremal index of
the field (|Xj|)j , see Remark 2.3.16 below (cf. also Remark 2.3.12).

Furthermore, the second part of the previous result implies that the distribution of ZA

(and hence of QA), when viewed as an element in l̃0, does not depend on the anchoring
function A; see the end of Section 2.3.1. Therefore, we can denote by Z and Q random
elements in l̃0 so that

Z
d= ZA and Q

d= QA , (2.23)

for an arbitrary anchoring function A. Note, conditionally on Afm(Y ) = 0 (or equivalently
on Afm(Θ) = 0), ‖Y ‖∞ is equal to |Y0| and therefore Y /‖Y ‖∞ = Θ. Consequently,

– P(‖Z‖∞ ≥ y) = y−α for all y ≥ 1,

– ‖Z‖∞ and Q are independent.

Moreover,

Q
d= Θ

∣∣∣ Afm(Θ) = 0 in l̃0 . (2.24)
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Chapter 2. Regularly varying time series and random fields

As discussed in Remark 2.3.12 below, under Assumption 2.3.2, Z (i.e ZA for any A)
describes the asymptotic distribution of a cluster of extremes of X, i.e. (normalized) block
Xrn conditioned on having at least one extreme observation.

Before proving the intensity convergence (2.17) we discuss couple of examples.

2.3.4 Examples

Below we present two classes of regularly varying models which frequently arise in
applications. As discussed in Remark 2.3.9, these classes represent two essentially different
mechanisms which induce the regularly varying structure.

Note that the second example concerns only the time series case. A random field
version of the corresponding model arises in the local sequence alignment problem studied
in Chapter 4 below.

Example 2.3.7 (Moving averages). Let (ξi : i ∈ Zd) be i.i.d. random variables with
regularly varying distribution with index α > 0, i.e.

lim
u→∞

P(|ξ0| > uy)
P(|ξ0| > u) = y−α , y > 0 ,

and for some p ∈ [0, 1],

lim
u→∞

P(ξ0 > 0 | |ξ0| > u) = p , lim
u→∞

P(ξ0 < 0 | |ξ0| > u) = 1− p .

Consider the infinite order moving average process X = (Xi : i ∈ Zd) defined by

Xi =
∑

j∈Zd
cjξi−j , (2.25)

where (cj : j ∈ Zd) is a field of real numbers satisfying

0 <
∑

j∈Zd
|cj|δ <∞ , (2.26)

for some δ > 0 such that δ < α and δ ≤ 1 . It is easily shown (see e.g. [Res87, Section 4.5])
that this condition ensures that the series above is absolutely convergent. Note also that∑

j∈Zd |cj|α <∞. Furthermore, it can be proved as in [Res87, Lemma 4.24] that

lim
u→∞

P(|X0| > u)
P(|ξ0| > u) =

∑
j∈Zd
|cj|α . (2.27)

Moreover, extending the arguments of Meinguet and Segers [MS10, Example 9.2], one can
show that the stationary field X is jointly regularly varying with index α and spectral tail
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field given by

(Θi)i∈Zd
d= (Kci+J/|cJ |)i∈Zd (2.28)

where K is a {−1, 1}–valued random variable with P(K = 1) = p, and J an Zd–valued
random variable, independent of K, such that P(J = j) = |cj|α/

∑
i∈Zd |ci|α for all j ∈ Zd.

In particular, P(Θ ∈ l0) = P(Y ∈ l0) = 1. Choosing Afm as the anchoring function
(see (2.22) and (2.24)) yields that

ϑ = maxj∈Zd |cj|α∑
j∈Zd |cj|α

, Q
d=
(

Kcj

maxi∈Zd |ci|

)
j∈Zd

in l̃0 . (2.29)

Example 2.3.8 (Solutions to stochastic recurrence equations). Assume that a (non-
negative) time series (Xi)i∈Z is the stationary solution to the stochastic recurrence equation

Xi = AiXi−1 +Bi , i ∈ Z , (2.30)

where ((Ai, Bi))i∈Z are i.i.d. [0,∞)2–random vectors such that for some α > 0 conditions
of [BDM16, Theorem 2.4.4] hold, in particular E[Aα0 ] = 1, E[logA0] < 0 and E[Bα

0 ] <∞.
Such a solution exists and moreover the marginal distribution of (Xi) is regularly varying
with index α. By [Seg07, Theorem 2.3], the forward spectral tail process (Θi : i ≥ 0) exists
(hence, (Xi) is jointly regularly varying) with distribution given by Θ0 = 1 and

Θi =
i∏

k=1
Ak , i ≥ 1 . (2.31)

With the aid of the time–change formula (2.10) one can verify that the backward spectral
tail process (Θi : i ≤ 0) also has a multiplicative structure

Θ−i =
i∏

k=1

1
A∗k

, i ≥ 1 , (2.32)

where (A∗k)k∈N are i.i.d. (positive) random variables independent of (Ak)k∈N and such that
P(A∗1 ∈ · ) = E[1{A1∈ · }A

α
1 ]; see [Seg07, Theorem 5.2 and equations (4.3)–(4.5)] for details

and also the proof of Proposition 4.2.1 below. The tilted random variable A∗1 satisfies
E[logA∗1] > 0 (see the comments related to Theorem 2.4.4 in [BDM16, p. 48], cf. also the
discussion after Proposition 4.2.1) and since E[logA1] < 0, the strong law of large numbers
implies that P(lim|i|→∞ log Θi = −∞) = 1, i.e. P(Θ ∈ l0) = P(Y ∈ l0) = 1. By (2.21),

ϑ = P(sup
i≥1

Yi ≤ 1) = P(sup
i≥1

i∏
k=1

Ak ≤ 1/Y0) . (2.33)
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Further, using (2.24) yields that

Q
d=
(
Θi, i ∈ Z

∣∣∣ sup
i≥1

i∏
k=1

(A∗k)−1 < 1, sup
i≥1

i∏
k=1

Ak ≤ 1
)
. (2.34)

Remark 2.3.9. To compare these two classes of examples it is instructive to consider the
special case of the process from (2.25) with d = 1, cj = 0, j < 0, and cj = cj, j ≥ 0, for
some constant c ∈ (0, 1). Assume also that the innovations (ξi) are nonnegative. By (2.28),
the spectral tail process (Θi)i∈Z of the resulting time series (Xi)i∈Z is given by

Θi =

c
i, i ≥ −J ,

0, i < −J ,

where J is a geometric random variable with parameter ϑ = 1 − cα, i.e. P(J = j) =
(1 − cα)cαj for j ≥ 0. On the other hand, observe that (Xi)i∈Z satisfies the stochastic
recurrence equation (2.30) with Ai = c and Bi = ξi (note that in this case E[Aβ0 ] < 1 for
all β > 0), i.e.

Xi = cXi−1 + ξi , i ∈ Z , (2.35)

hence (Xi) is a causal autoregressive process of order one. Moreover, the spectral tail
process of (Xi) also has a similar multiplicative structure, in fact, the forward spectral tail
process of (Xi) has the same form as the one in (2.31). However, unlike in Example 2.3.8,
here always exists a first i ∈ Z for which Θi > 0. Informally speaking, this reflects the fact
that a cluster of exceedances over a large threshold of the process in (2.35) occurs due to
the effect of one single large Bi = ξi, while for processes from Example 2.3.8, exceedances
occur as a result of multiplying a large (in fact, asymptotically infinite) number of (tilted)
Ak’s.

2.3.5 Intensity convergence

Recall that, for each n ∈ N, Jrn = {1, . . . , rn}d and Xrn = XJrn .

Proposition 2.3.10. If (rn)n∈N is a sequence of positive integers satisfying rn → ∞,
rn/n→ 0, and such that (2.18) holds, then as n→∞,

kdnP(a−1
n Xrn ∈ ·)

v−→ ν( · ) = ϑ
∫ ∞

0
P(yQ ∈ ·)αy−α−1dy inM(l̃0,0) . (2.36)

Remark 2.3.11. Note that ν is a proper element of M(l̃0,0). Indeed, since ‖Q‖∞ = 1,
ν({x ∈ l̃0,0 : ‖x‖∞ > ε}) = ϑε−α <∞ for all ε > 0.
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Remark 2.3.12. Observe, since ν({x : ‖x‖∞ = u}) = 0 for all u > 0, (2.36) implies that

kdnP(Mrn > anu)→ ϑu−α , u > 0 , (2.37)

as n→∞, where Mrn = ‖Xrn‖∞. Moreover, for every u > 0,

P((anu)−1Xrn ∈ · |Mrn > anu) = kdnP((anu)−1Xrn ∈ · , Mrn > anu)
kdnP(Mrn > anu)

w−→ uα

ϑ
ϑ
∫ ∞
u

P(u−1yQ ∈ · )αy−α−1dy

=
∫ ∞

1
P(yQ ∈ · )αy−α−1dy = P(Z ∈ · ) ,

where w−→ denotes weak convergence of finite measures. Hence, for any anchoring function
A and all u > 0,

(anu)−1Xrn |Mrn > anu
d−→ Z

d= ZA in l̃0 , (2.38)

i.e. ZA represents the asymptotic distribution of a cluster of extremes of X. Also, we
identify QA by

M−1
rn Xrn |Mrn > anu

d−→ Q
d= QA in l̃0 . (2.39)

In fact, it can be shown that (2.37) and (2.38) for some ϑ > 0 and Z imply (2.36) for
Q := Z/‖Z‖∞, this is actually the approach of [BPS18, Theorem 2.2, Lemma 3.3].

Remark 2.3.13 (Convergence determining family inM(l̃0,0)). To prove Proposition 2.3.10
we will use the following family of functions on l̃0. For an element x ∈ l̃0 and any δ > 0
denote by xδ ∈ l̃0 the equivalence class of the sequence (xi1{|xi| > δ})i, where (xi)i ∈ l0 is
an arbitrary representative of x. Let F0 be the family of all functions f ∈ CB+

b (l̃0,0) such
that for some δ > 0, f(x) = f(xδ) for all x ∈ l̃0, where we set f(0) = 0, i.e. f depends
only on coordinates greater than δ in absolute value.

Since functions from F0 approximate well functions in LB+
b (l̃0,0, d̃), an application of

Proposition 1.3.1 yields that for random measures N,N1, N2, . . . on l̃0,0, Nn(f) d−→ N(f)
for all f ∈ F0 implies that Nn

d−→ N inM(l̃0,0), see Lemma 2.5.2 below. In particular,
for deterministic measures µ, µ1, µ2, · · · ∈ M(l̃0,0), µn(f) → µ(f) for all f ∈ F0 implies
that µn v−→ µ inM(l̃0,0).

Proof of Proposition 2.3.10. By the Remark 2.3.13, it suffices to show that

lim
n→∞

kdnE[f(a−1
n Xrn)] = ν(f)

for all f ∈ F0. Observe, since kdn = bn/rncd ∼ (rdnP(|X0| > an))−1 as n → ∞, it is
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equivalent to prove that

lim
n→∞

E[f(a−1
n Xrn)]

rdnP(|X0| > an) = ν(f) .

First, fix an arbitrary group order � on Zd (think of � being the lexicographic order
and d = 2). Take now an arbitrary f ∈ F0 and choose ε > 0 small enough such that
f(x) = f(xε) for all x ∈ l̃0. In particular, ‖x‖∞ ≤ ε implies that f(x) = 0, hence,

E[f(a−1
n Xrn)] = E[f(a−1

n Xrn)1{Mrn > anε}] ,

and decomposing on the first j ∈ Jrn (w.r.t. �) for which |Xj| > anε we get

E[f(a−1
n Xrn)] =

∑
j∈Jrn

E[f(a−1
n Xrn)1{ max

j′∈Jrn , j′≺j
|Xj′| ≤ anε, |Xj| > anε}] . (2.40)

Fix now an m ∈ N and take n big enough so that rn ≥ 2m + 1. Intuitively, for every
j ∈ Jrn such that {j ′ ∈ Zd : |j ′ − j| ≤ m} ⊆ Jrn , by Assumption 2.3.2, when |Xj| > anε

we can assume that

max{|Xj′| : j ′ ∈ Jrn , |j − j ′| > m} ≤ anε ,

and in this case, by the properties of f ,

f(a−1
n Xrn) = f(a−1

n X{j′∈Zd:|j′−j|≤m}) .

More precisely, for all such j’s, using stationarity, boundedness of f (assume w.l.o.g. that
0 ≤ f ≤ 1) and the fact that {j ′ ∈ Jrn : |j − j ′| > m} ⊆ {j ′ ∈ Zd : m < |j − j ′| ≤ rn},

∣∣∣E[f(a−1
n Xrn)1{ max

j′∈Jrn , j′≺j
|Xj′ | ≤ anε, |Xj| > anε}]

− E[f(a−1
n X{|j′|≤m})1{ max

|j′|≤m, j′≺0
|Xj′ | ≤ anε, |X0| > anε}]

∣∣∣
≤ P

(
max

m<|j′|≤rn
|Xj′| > anε, |X0| > anε

)
.

For remaining j ∈ Jrn , simply bound the term on the left hand side above by P(|X0| > anε).
Now, going back to (2.40) we can conclude that

∆n,m :=
∣∣∣E[f(a−1

n Xrn)]/{rdnP(|X0| > an)}

− E[f(a−1
n X{|j′|≤m})1{ max

|j′|≤m, j′≺0
|Xj′| ≤ anε, |X0| > anε}]/P(|X0| > an)

∣∣∣
≤ P(|X0| > anε)

P(|X0| > an)

{
rdn − (rn − 2m)d

rdn
+ P

(
max

m<|j′|≤rn
|Xj′| > anε

∣∣∣∣ |X0| > anε

)}
.
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Observe, by regular variation P(|X0| > anε) ∼ ε−αP(|X0| > an) as n → ∞, so together
with rn →∞ and Assumption 2.3.2 we get that

lim
m→∞

lim sup
n→∞

∆n,m = 0 . (2.41)

Next, since f , when viewed as a function on Rd(2m+1), is bounded and continuous, and
since P(max|j′|≤m, j′≺0 |Yj′| = |Y0|max|j′|≤m, j′≺0 |Θj′| = 1) = 0, by definition of the tail
process Y and the continuous mapping theorem,

lim
n→∞

E[f(a−1
n X{|j′|≤m})1{ max

|j′|≤m, j′≺0
|Xj′ | ≤ anε}

∣∣∣ |X0| > anε]

= E[f(εY {|j′|≤m})1{ max
|j′|≤m, j′≺0

|Yj′| ≤ 1}] .

Now since P(lim|j′|→∞ |Yj′ | = 0) = 1, (2.41) and application of the bounded convergence
theorem yield

lim
n→∞

E[f(a−1
n Xrn)]

rdnP(|X0| > an) = lim
m→∞

ε−αE[f(εY {|j′|≤m})1{ max
|j′|≤m, j′≺0

|Yj′ | ≤ 1}]

= ε−αE[f(εY )1{max
j′≺0
|Yj′ | ≤ 1}]

= ε−αϑE[f(εZAfe)] = ε−αϑE[f(εZ)] ,

where the last equality follows since f is a function on l̃0,0. Since ‖Z‖∞ is Pareto distributed
and independent of Q = Z/‖Z‖∞,

ε−αϑE[f(εZ)] = ε−αϑ
∫ ∞

1
E[f(εyQ)]αy−α−1dy = ϑ

∫ ∞
ε

E[f(yQ)]αy−α−1dy .

Now since ‖Q‖∞ = 1 and since f(x) = 0 whenever ‖x‖∞ ≤ ε, we finally obtain that

lim
n→∞

E[f(a−1
n Xrn)]

rdnP(|X0| > an) = ϑ
∫ ∞

0
E[f(yQ)]αy−α−1dy = ν(f) .

2.3.6 Convergence to a (compound) Poisson process

In view of Proposition 2.3.10, our main point process convergence result given below is
now a simple application of Corollary 1.4.4. For that purpose, we introduce a convergence
determining family inMp([0, 1]d × l̃0,0) related the family F0 from Remark 2.3.13.

Let F ′0 be the family of all functions f ∈ CB+
b ([0, 1]d × l̃0,0) such that for some δ > 0,

f(t,x) = f(t,xδ) for all t ∈ [0, 1]d and x ∈ l̃0, where we set f(t,0) = 0 (the mapping
x 7→ xδ was defined in Remark 2.3.13). As a consequence of Lemma 2.5.2 below, F ′0 is
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point process convergence determining, see Remark 2.5.4.

Theorem 2.3.14. Let X be a stationary regularly varying random field with tail index
α > 0 and (rn)n∈N a sequence of positive integers satisfying rn →∞, rn/n→ 0. If (2.18)
holds and the family ((i/kn,Xn,i/an) : n ∈ N, i ∈ In) is AI(F ′0), then

N ′n =
∑
i∈In

δ(i/kn,Xn,i/an)
d−→ N ′ =

∑
i∈N

δ(T i,PiQi) (2.42)

inMp([0, 1]d × l̃0,0), where N ′ d= PPP(Leb× ν) and

(i) ∑i∈N δ(T i,Pi) is a Poisson point process on [0, 1]d × (0,∞) with intensity measure
Leb× d(−ϑy−α);

(ii) Qi = (Qi
j)j∈Zd , i ∈ N is a sequence of i.i.d. elements in l̃0, independent of

∑
i∈N δ(T i,Pi)

and with common distribution equal to the distribution of Q.

Proof. An application of Corollary 1.4.4 together with Proposition 2.3.10 yields convergence
in distribution of N ′n to a Poisson process with intensity measure Leb× ν. Hence, it only
remains to show that the point process in N ′ in (2.42) is indeed Poisson with intensity
measure Leb× ν.

Define the subset S of l̃0 by S = {x ∈ l̃0 : ‖x‖∞ = 1}. By [Res87, Proposition
3.8], point process ∑i∈N δ(T i,Pi,Qi) is a Poisson point process on [0, 1]d × (0,∞)× S with
intensity measure Leb × d(−ϑy−α) × PQ, where PQ is the distribution of Q. Note that
[Res87, Proposition 3.8] applies to point processes on locally compact spaces, but its
proof is easily extended to a more general state space. Further, define the mapping
T : [0, 1]d× (0,∞)×S→ [0, 1]d× l̃0,0 by T (t, p, q) = (t, pq). Now an application of [Res87,
Proposition 3.8] yields that the transformed point process N ′n = ∑

i∈N δ(T i,PiQi) is again
Poisson with intensity measure (Leb× d(−ϑy−α)× PQ) ◦ T−1 = Leb× ν.

Corollary 2.3.15. Under notation of Theorem 2.3.14, if there exists a sequence rn →
∞, rn/n→ 0 for which (2.42) holds, then, with Jn = {1, . . . , n}d,

∑
j∈Jn

δ(j/n,Xj/an)
d−→
∑
i∈N

∑
j∈Zd

δ(T i,PiQij) (2.43)

in Mp([0, 1]d × (R \ {0})) with bounded sets being those which are bounded away from
[0, 1]d × {0}.

The proof of the previous result is in Section 2.5; it first applies continuous mapping
theorem to convergence (2.42) and then uses the fact that (assume for simplicity that d = 1)
time instances j/n and i/kn for i ∈ In = {1, . . . , kn}, j ∈ Jn,i = {(i − 1)rn + 1, . . . , irn},
differ by at most 2rn/n which tends to zero as n → ∞. Note, for d = 1, the previous
result corresponds to [BT16, Theorem 3.1].
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Remark 2.3.16 (Extremal index). As already noticed by [BS09, Remark 4.7], when
convergence in (2.43) holds, the quantity ϑ is the extremal index of the field (|Xj|)j∈Zd

since ndP(|X0| > anu)→ u−α and

P(max
j∈Jn
|Xj| ≤ anu)→ P

∑
i∈N

1{Pi>u} = 0
 = e−ϑu

−α
,

as n→∞, for all u > 0.

In the rest of the chapter we focus on techniques for verifying assumptions of Theorem
2.3.14 or obtaining the convergence (2.42).

First note that these assumptions hold in the case of m–dependent stationary fields,
see Lemma 2.4.1. Moreover, one can extend convergence in (2.42) to fields which can be
approximated by m–dependent fields, such as infinite order moving average processes from
Example 2.3.7. This is the content of Section 2.4.1.

In the time series case, the concept of strong mixing offers a way to check the AI(F ′0)
condition. Corresponding conditions are satisfied for a wide family of geometrically ergodic
Markov chains which (under mild additional conditions) include solutions of stochastic
recurrence equations from Example 2.3.8. This is discussed in Section 2.4.2.

On the other hand, for proper random fields, i.e. when d > 1, the approach of
Section 1.4.2 using the concept of neighborhoods can be used to check the asymptotic
F ′0–independence condition. This is illustrated on the local sequence alignment problem
studied in Chapter 4, see in particular Corollary 4.3.4.

2.4 Checking assumptions of Theorem 2.3.14

2.4.1 Fields admitting m–dependent approximation

A random field X = (Xi : i ∈ Zd) is said to be m–dependent for some m ∈ N if for
all finite I, J ⊆ Zd such that inf{|i− j| : i ∈ I, j ∈ J} > m, σ-algebras σ(Xi : i ∈ I) and
σ(Xj : j ∈ J) are independent. Observe, if (an)n is chosen such that ndP(|X0| > an)→ 1,
m–dependence implies that condition 2.18 is satisfied for any (rn)n such that rn →∞ and
rn/n → 0. Moreover, using the properties of the family F ′0, it is easy to show that the
asymptotic F ′0–independence assumption of Theorem 2.3.14 is also satisfied; cf. the proof
of [Bas00, Lemma 2.3.9], see also Section 4.3 below.

Lemma 2.4.1. If a stationary regularly varying random field X is m–dependent for some
m ∈ N, then X satisfies assumptions of Theorem 2.3.14 for any (rn)n such that rn →∞
and rn/n→ 0.

Let X = (Xi : i ∈ Zd) now be a general stationary random field (not necessarily
regularly varying). Assume that there exists a sequence of stationary regularly varying
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m–dependent fields X(m) = (X(m)
i : i ∈ Zd), m ∈ N, and a sequence of real numbers

(bn)n∈N such that for all m ∈ N

ndP(|X(m)
0 | > bn)→ d(m) > 0 , as n→∞ . (2.44)

Observe that we keep the same normalizing sequence (bn) for all fields. In particular, the
tail index of X(m) is the same for all m. Denote it by α > 0. Further, for each X(m) denote
by ϑ(m) the quantity defined in (2.20) and by Q(m) the random element in l̃0 defined in
(2.23).

Assumption 2.4.2. (i) There exists σ > 0 and a random element Q in l̃0 such that,
as m→∞, ϑ(m)d(m) → σ and Q(m) d−→ Q in l̃0.

(ii) For any u > 0

lim
m→∞

lim sup
n→∞

P( max
1≤i≤1·n

|X(m)
i −Xi| > bnu) = 0 .

Note that, since ‖Q(m)‖ = 1 for all m ∈ N, the same holds for Q. Further, let (rn) be
any sequence of positive integers satisfying rn →∞ and kn := bn/rnc → ∞. Recall the
blocks Xn,i, i ∈ In = {1, . . . , kn}d defined in (2.12).

Theorem 2.4.3. Assume that (bn)n∈N is a sequence of real numbers satisfying (2.44) and
that Assumption 2.4.2 holds for some σ > 0 and random element Q in l̃0. Then

∑
i∈In

δ(i/kn,Xn,i/bn)
d−→
∑
i∈N

δ(T i,PiQi) (2.45)

inMp([0, 1]d × l̃0,0), where ∑∞i=1 δ(Ti,Pi) is a Poisson point process on [0, 1]d × (0,∞) with
intensity measure σLeb×d(−y−α), independent of the i.i.d. sequence (Qi)i∈N with common
distribution equal to the distribution of Q.

Remark 2.4.4. The fields X(m) can in general be nm–dependent for a sequence nm →∞
as m→∞.
Example 2.4.5 (Moving averages). Consider again the regularly varying field X =
(Xi)i∈Zd from Example 2.3.7 defined by Xi = ∑

j∈Zd cjξi−j for a field of real numbers (cj)
and field of i.i.d. random variables (ξj) which are regularly varying with index α > 0.

Instead of checking assumptions of Theorem 2.3.14 for the field X, we show that
Theorem 2.4.3 can be elegantly applied. For each m ∈ N and i ∈ Zd define

X
(m)
i =

∑
|j|≤m

cjξi−j .

By assumption, the field X(m) = (X(m)
i : i ∈ Zd) is in general (2m+ 1)–dependent. Take

a sequence of real numbers (bn) such that limn→∞ n
dP(|ξ0| > bn) = 1. It now follows from
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(2.27) that (2.44) is satisfied with d(m) = ∑
|j|≤m |cj|α. Further, for each m ∈ N, special

case of (2.29) for cj = 0, |j| > m yields

ϑ(m) = max|j|≤m |cj|α∑
|j|≤m |cj|α

, Q(m) d=
(
Kcj1{|j| ≤ m}

max|i|≤m |ci|

)
j∈Zd

in l̃0 .

Observe, since lim|j|→∞ |cj| = 0, Assumption 2.4.2 (i) is satisfied for σ = maxj∈Zd |cj|α

and Q from (2.29). Finally, (2.27) implies that Assumption 2.4.2 (ii) holds; see [DR85,
Lemma 2.3].

Thus, all of the conditions of Theorem 2.4.3 are met and hence convergence in (2.45)
holds. Moreover, the limiting point process can be represented as ∑∞i=1 δ(T i,PiKi(cj)j)

where ∑∞i=1 δ(T i,Pi) is a Poisson point process on [0, 1]d × (0,∞) with intensity measure
Leb× d(−y−α) and (Ki) is an i.i.d. sequence of random variables distributed as K and
independent of ∑∞i=1 δ(T i,Pi).

Note, for an = bn(∑j∈Zd |cj|α)1/α, (2.27) implies that ndP(|X0| > an) → 1, so by
applying continuous mapping theorem to (2.45) one obtains that the conclusion of Theo-
rem 2.3.14 holds for the regularly varying field (Xi), i.e. that the convergence (2.42) holds
for any rn →∞, rn/n→ 0, with the corresponding ϑ and Q from (2.29).

Proof of Theorem 2.4.3. For every X(m) denote by X
(m)
n,i the corresponding blocks from

(2.12) and define point processes N (m)
n on [0, 1]d × l̃0,0 by

N (m)
n =

∑
i∈In

δ(i/kn,X(m)
n,i

/bn) , n ∈ N .

Note, for each m ∈ N, by (2.44) and regular variation of |X(m)
0 |, the sequence a(m)

n :=
bn(d(m)) 1

α , n ∈ N, satisfies (2.16), i.e. limn→∞ n
dP(|X(m)

0 | > a(m)
n ) = 1. Since X(m) is

m–dependent, by Lemma 2.4.1 we can apply Theorem 2.3.14 which, together with an an
application of the continuous mapping theorem, implies that for each m ∈ N,

N (m)
n

d−→ N (m) d= PPP(Leb× ν(m)) , as n→∞ ,

inMp([0, 1]d × l̃0,0), where

ν(m)( · ) = ϑ(m)d(m)
∫ ∞

0
P(yQ(m) ∈ ·)αy−α−1dy .

Further, by Assumption 2.4.2 (i) and the dominated convergence theorem, as m→∞,

ν(m)(f)→ σ
∫ ∞

0
E[f(yQ)]αy−α−1dy ,
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for all f ∈ CB+
b (l̃0,0), i.e.

ν(m) v−→ ν(∞)( · ) = σ
∫ ∞

0
P(yQ ∈ ·)αy−α−1dy ,

inM(l̃0,0). This implies that (see e.g. [Res07, Problem 5.3])

PPP(Leb× ν(m)) d= N (m) d−→ N (∞) d= PPP(Leb× ν(∞)) .

Set N ′′n = ∑
i∈In δ(i/kn,Xn,i/bn) for all n ∈ N. Since the distribution of N (∞) coincides with

the distribution of the limit in (2.45), to prove convergence in (2.45) it suffices to show
that

lim
m→∞

lim sup
n→∞

P(|N (m)
n (f)−N ′′n(f)| > η) = 0 , (2.46)

for all η > 0 and every f in some family of functions on [0, 1]d × l̃0,0 which is point
process convergence determining. Indeed, by [Bil68, Theorem 4.2], this implies that
N ′′n(f) d−→ N (∞)(f) in R for all such f , and hence N ′′n

d−→ N (∞) inMp([0, 1]d × l̃0,0).

Recall the metric d̃ on l̃0 defined in (2.13). Adapting the lines of the proof of [DR85,
Theorem 2.4, equation (2.11)], we show that Assumption 2.4.2 (ii) implies (2.46) for every
f ∈ LB+

b ([0, 1]d× l̃0,0, d′) where d′ is a metric on [0, 1]d× l̃0,0 defined by d′((t,x), (s,y)) =
|t− s| ∨ d(x,y) for all t, s ∈ [0, 1]d, x,y ∈ l̃0,0, with | · | denoting the sup–norm on [0, 1]d.
Since, by Proposition 1.3.1, the family LB+

b ([0, 1]d × l̃0,0, d′) is point process convergence
determining, this will prove the result.

Fix an f ∈ LB+
b ([0, 1]d × l̃0,0, d′) and let ε > 0 be such that ‖x‖∞ ≤ ε implies that

f(t,x) = 0 for all t ∈ [0, 1]d. Assume without loss of generality that |f(t,x)− f(s,y)| ≤
|t− s| ∨ d̃(x,y) for all (t,x), (s,y) ∈ [0, 1]d × l̃0,0. In particular,

|f(i/kn,X(m)
n,i /bn)− f(i/kn,Xn,i/bn)| ≤

d̃(X(m)
n,i ,Xn,i)
bn

, (2.47)

for all n,m ∈ N and i ∈ In.

For all r > 0 set B(r) = {x ∈ l̃0,0 : ‖x‖∞ ≤ r} and for an arbitrary 0 < u < ε/2
define the events A(m)

n = {max1≤i≤n·1 |X(m)
i − Xi| ≤ bnu}, n,m ∈ N. Note that A(m)

n ⊆
{maxi∈In d̃(X(m)

n,i ,Xn,i) ≤ bnu}. Hence, on the event A(m)
n , if X

(m)
n,i /bn ∈ B(ε/2) for some

i ∈ In then f(i/kn,X(m)
n,i /bn) = f(i/kn,Xn,i/bn) = 0. Together with Assumption 2.4.2 (ii)

and (2.47) this yields that

lim
m→∞

lim sup
n→∞

P(|N (m)
n (f)−N ′′n(f)| > η) ≤ lim

m→∞
lim sup
n→∞

P({|N (m)
n (f)−N ′′n(f)| > η} ∩ A(m)

n )

≤ lim
m→∞

lim sup
n→∞

P(uN (m)
n ([0, 1]d ×B(ε/2)c) > η) .
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Since N (m)
n

d−→ N (m) as n → ∞ and N (m) d−→ N (∞) as m → ∞, and since all of
the limiting point processes a.s. put zero mass on the boundary of the bounded set
[0, 1]d ×B(ε/2)c,

lim
m→∞

lim sup
n→∞

P(N (m)
n ([0, 1]d ×B(ε/2)c) > u−1η) = P(N (∞)([0, 1]d ×B(ε/2)c) > u−1η)

Finally, since N (∞) is a.s. finite on the set [0, 1]d × B(ε/2)c, letting u → 0 yields (2.46)
and since f ∈ LB+

b ([0, 1]d × l̃0,0, d′) was arbitrary this finishes the proof.

2.4.2 Strongly mixing time series

Let X = (Xi)i∈Z be a stationary regularly varying time series. Define the strong mixing
coefficients

αl = sup{|P(A ∩B)− P(A)P(B)| : A ∈ σ(Xi : i ≤ 0), A ∈ σ(Xi : i ≥ l)} , l ∈ N .

As usual, let (an)n be such that nP(|X0| > an)→ 1.

Lemma 2.4.6. Let (rn)n be a sequence of positive integers satisfying rn → ∞, kn =
bn/rnc → ∞ as n→∞. If there exists a sequence (ln)n of positive integers such that

ln/rn → 0 , knαln → 0 ,

then the family ((i/kn,Xn,i/an) : n ∈ N, i ∈ In) is AI(F ′0).

Using the properties of the family F ′0, the proof of the previous result is essentially the
same as the proof of [Bas00, Lemma 2.3.9] and therefore omitted.

Even though intuitively clear, computing the mixing coefficients is in general a difficult
task. Fortunately, if X is a stationary Markov chain, conditions of the previous lemma
can be verified by showing that X is geometrically ergodic, see [Bas00, Section 2.2.2] for
more details and a sufficient condition for geometric ergodicity. In this case, assumptions
of Lemma 2.4.6 are satisfied for rn = bnεc for every ε ∈ (0, 1), see [Bas00, Remark 2.3.10].

Example 2.4.7 (Solutions to stochastic recurrence equations). As in Example 2.3.8,
let (Xi)i∈Z be the solution to the stochastic recurrence equation

Xi = AiXi−1 +Bi , i ∈ Z ,

where ((Ai, Bi))i∈Z are i.i.d. [0,∞)2–random vectors such that for some α > 0 conditions
of [BDM16, Theorem 2.4.4] hold, in particular E[Aα] = 1, E[logA] < 0 and E[Bα] <∞.

By [Bas00, Lemma 3.2.7 and Proposition 3.2.9], if either A0 or B0 has a density, the
Markov chain (Xi) is geometrically ergodic, hence, for rn = bnεc for any ε ∈ (0, 1), the
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corresponding blocks Xn,i satisfy the asymptotic F ′0–independence condition. Moreover,
by [Bas00, Lemma 4.1.4], for all ε > 0 small enough, the condition (2.18) is also satisfied.
Hence, for such (rn)’s all assumptions of Theorem 2.3.14 are satisfied.

Remark 2.4.8. One can define the strong mixing coefficients for general stationary random
fields (Xi)i∈Zd , i.e. when d > 1 (see e.g. [Ros85, p. 73] and also [Bra93]), so that an
analogue of Lemma 2.4.6 holds. However, investigation of practical techniques for checking
its assumptions, such as geometric ergodicity in the case of time series, and corresponding
class of examples is out of the scope of this thesis.

2.5 Postponed proofs

Proof of Theorem 2.2.1

We only prove (iii)⇒(i) since (i)⇒(ii) follows as in [BS09, Theorem 2.1] and (ii)⇒(iii)
is obvious. Also, since we essentially adapt the arguments of [BS09, Theorem 2.1], some
details are omitted.

Observe first that (2.5) with I = {0} implies that for all ε > 0,

lim
u→∞

P(|X0| > uε)
P(|X0| > u) = ε−α , (2.48)

and moreover that X0 is a regularly varying random variable with index α, see [BS09,
Theorem 2.1].

Take now an arbitrary finite I ⊆ Zd such that |I| ≥ 2 and consider the space R|I| \
{0} with bounded sets being those which are contained in sets Bε := {(xi)i∈I ∈ R|I| :
supi∈I |xi| > ε}, ε > 0. In view of (2.48), multivariate regular variation (with index α) of
XI is equivalent to the existence of a non–zero measure µI ∈M(R|I| \ {0}) such that

µIu( · ) := P(u−1XI ∈ ·)
P(|X0| > u)

v−→ µI , as n→∞ , (2.49)

see [SZM17, Definition 3.1, Proposition 3.1] (cf. [BS09, Equation (1.3)]).
Arguing exactly as in [BS09, Theorem 2.1] it follows that the vague limit of µIu, if it

exists, is necessarily non–zero, and furthermore, that lim supu→∞ µIu(Bε) ≤ |I|ε−α < ∞
for every ε > 0. Since sets {(xi)i∈I ∈ R|I| : supi∈I |xi| ∈ [ε,M ]} are compact for every
ε,M > 0, by [Kal17, Theorem 4.2] it follows that the set {µIu : u > 0} is relatively compact
in the vague topology ofM(R|I| \ {0}).

Since I is encompassing, we can take i∗ ∈ I such that I ′ := I − i∗ ⊆ I. By [BS09,
Lemma 2.2], to show that measures µIu vaguely converge as u→∞, it suffices to prove
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that limu→∞ µ
I
u(f) exists for all f ∈ F where F = F1 ∪ F2 ⊆ CB+

b (R|I| \ {0}) with

F1 = {f : for some ε > 0, f((xi)i∈I) = 0 if |xi∗| ≤ ε} ,

F2 = {f : f((xi)i∈I) does not depend on xi∗} .

Note that families F1 and F2 depend on I but we omit this in the notation.
Since I ′ ⊆ I, stationarity, (2.5) and (2.48) imply that for every f ∈ F1 and ε > 0 as in

the definition of F1,

µIu(f) = P(|X0| > uε)
P(|X0| > u) · E[f(u−1XI′) | |X0| > uε]→ ε−αE[f(ε(Yi)i∈I′)] , as u→∞ .

Further, every f ∈ F2 naturally induces a function f̃ in CB+
b (R|I|−1 \ {0}) and by

stationarity

µIu(f) = E[f̃(u−1XI\{i∗})]
P(|X0| > u) = µI\{i

∗}
u (f̃) .

Hence, limu→∞ µ
I
u(f) exists for all f ∈ F2 if XI\{i∗} is multivariate regularly varying.

Observe, we have shown that for an arbitrary finite I ⊆ Zd such that |I| ≥ 2, XI is
multivariate regularly varying if XI\{i∗} is, where i∗ ∈ I is such that I− i∗ ⊆ I. Therefore,
(i) now follows by regular variation of X0 and since I is encompassing.

Metric on the space l̃0

Let (X, d) be a metric space. Assume that ∼ is an equivalence relation on X and let X̃
be the induced quotient space. Define a function d̃ : X̃× X̃→ [0,∞) by:

d̃(x̃, ỹ) = inf{d(x, y) : x ∈ x̃, y ∈ ỹ} , x̃, ỹ ∈ X̃ .

Lemma 2.5.1. If for all x̃, ỹ ∈ X̃ and all y ∈ ỹ,

d̃(x̃, ỹ) = inf
x∈x̃

d(x, y) , (2.50)

then d̃ is a pseudo-metric on X̃. If moreover (X, d) is separable and/or complete, then so
is (X̃, d̃).

Proof. To prove that d̃ is a pseudo-metric, the only nontrivial step is to show that d̃
satisfies the triangle inequality, but this is implied by (2.50). Indeed, take any x̃, ỹ, z̃ ∈ X̃
and fix an arbitrary z ∈ z̃. Since (2.50), then for all y ∈ ỹ

d̃(x̃, ỹ) = inf
x∈x̃

d(x, y) ≤ inf
x∈x̃

(d(x, z) + d(z, y)) = d̃(x̃, z̃) + d(z, y) .
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Now taking the infimum over all y ∈ ỹ and using (2.50) again yields the triangle inequality.
Further, it follows easily that (X̃, d̃) is separable whenever (X, d) is. Assume now that

(X, d) is complete and let (x̃n)n∈N be an arbitrary Cauchy sequence in (X̃, d̃). Then we
can find a strictly increasing sequence of nonnegative integers (nk)k∈N such that

d̃(x̃m, x̃n) < 1
2k+1 ,

for all m,n ≥ nk and every k ≥ 1. We define a sequence (yk)k∈N in X inductively as
follows:

- Let y1 be an arbitrary element of x̃n1 .

- For k ≥ 1 let yk+1 be an element of x̃nk+1 such that d(yk, yk+1) < 1
2k+1 . Such an yk+1

exists by (2.50).

Then (yk) is a Cauchy sequence in (X, d). Indeed, for every k ≥ 1 and for all m ≥ n ≥ k,

d(ym, yn) ≤
m−1∑
l=n

d(yl, yl+1) <
∞∑
l=k

1
2l+1 = 1

2k .

Since (X, d) is complete, limk→∞ d(yk, x) = 0 for some x ∈ X. Let x̃ ∈ X̃ be the equivalence
class of x. Since, by definition of d̃, d̃(x̃nk , x̃) ≤ d(yk, x) for all k ≥ 1, the subsequence
(x̃nk)k converges to x̃ in (X̃, d̃). Finally, since (x̃n)n is a Cauchy sequence, it follows easily
that the whole sequence (x̃n) also converges to x̃, hence (X̃, d̃) is complete.

Proof of Lemma 2.3.1. In view of and (2.14) and Lemma 2.5.1 it only remains to show
that d̃ is a metric, rather than just a pseudo-metric.

Assume that d̃(x̃, ỹ) = 0 for some x̃, ỹ ∈ l̃0. Then, for arbitrary x ∈ x̃,y ∈ ỹ, there
exists a sequence (kn)n∈N ⊆ Zd such that ‖Bknx−y‖∞ → 0 as n→∞. It suffices to show
that the sequence |kn|n is bounded. Indeed, in that case there exists a k ∈ Zd such that
kn = k for infinitely many n ∈ N which implies that y = Bkx, and hence that x̃ = ỹ.

Suppose now that the sequence |kn|n is unbounded and that y 6= 0 (the case y = 0
is straightforward). Since lim|i|→∞ |yi| = 0, we can find i0 ∈ Zd and N ∈ N such that
|yi0| = ‖y‖∞ > 0 and |yi| < ‖y‖∞/4 for all |i| ≥ N . By shifting y (and kn’s), we can
assume that i0 = 0.

Take now an integer n0 > 0 such that ‖Bknx− y‖∞ < ‖y‖∞/4 for all n ≥ n0. Since
|kn|n is unbounded we can also find an integer n1 ≥ n0 such that |kn1 − kn0 | ≥ N . It now
follows that

3
4‖y‖∞ < |(Bkn1 x)0| = |xkn1

| = |(Bkn0 x)kn1−kn0
| < 1

2‖y‖∞ ,

which is a contradiction. Hence, the sequence |kn|n is bounded.
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Convergence determining families for random measures on l̃0,0

Recall the family F0 ⊆ CB+
b (l̃0,0) defined in Remark 2.3.13 and let N,N1, N2, . . . be

random measures on l̃0,0.

Lemma 2.5.2. If E[e−Nn(f)]→ E[e−N(f)] for all f ∈ F0, then Nn
d−→ N inM(l̃0,0).

Remark 2.5.3. Since f ∈ F0 implies that λf ∈ F0 for all λ ≥ 0, E[e−Nn(f)]→ E[e−N(f)] for
all f ∈ F0 is equivalent to Nn(f) d−→ N(f) in R for all f ∈ F0.

Remark 2.5.4. Essentially the same proof as the one given below shows that for random
measures N ′, N ′1, N ′2, . . . on [0, 1]d × l̃0,0, E[e−N ′n(f)] → E[e−N ′(f)] for all f ∈ F ′0, where
F ′0 ⊆ CB+

b ([0, 1]d× l̃0,0) is defined in the beginning of Section 2.3.6 implies that N ′n
d−→ N ′

inMp([0, 1]d × l̃0,0).

Proof. Recall that a Borel set B ⊆ l̃0,0 is bounded if for some ε > 0, d̃(0,x) = ‖x‖∞ > ε

for all x ∈ B. By Proposition 1.3.1 (see Example 1.3.3), to show that Nn
d−→ N it suffices

to prove that E[e−Nn(g)]→ E[e−N(g)] for all g ∈ LB+
b (l̃0,0, d̃).

For δ > 0 let φδ : [0,∞)→ [0, 1] be a (uniformly continuous) function defined by (i)
φδ(x) = 0 for x ≤ δ; (ii) φδ(x) = 1 for x ≥ 2δ; (iii) φδ(x) = x/δ− 1 for x ∈ [δ, 2δ]. Further,
for any x ∈ l̃0, by slight abuse of notation, denote by φδ(x) the equivalence class of the
sequence (xiφ

δ(|xi|))i, where (xi)i ∈ l0 is an arbitrary representative of x. Note, for every
x ∈ l̃0,0, d̃(x, φδ(x)) ≤ δ.

Take now an arbitrary g ∈ LB+
b (l̃0,0, d̃) and let ε > 0 be such that support of f is

contained in B := {x ∈ l̃0,0 : ‖x‖∞ ≥ ε} ∈ Bb(l̃0,0). Assume without loss of generality that
|g(x)− g(y)| ≤ d̃(x,y) for all x,y ∈ l̃0,0. For each δ > 0 define a function gδ on l̃0,0 by
gδ(x) = g(φδ(x)) with convention that g(0) = 0. By construction, gδ is an element of
F0 and moreover support of gδ is also contained in B for each δ > 0. Further, since g is
Lipschitz, for all δ > 0 and all x ∈ l̃0,0

|g(x)− gδ(x)| ≤ d̃(x, φδ(x))1B(x) ≤ δ1B(x) . (2.51)

Observe now that for all δ > 0, since gδ ∈ F0, convergence E[e−Nn(gδ)]→ E[e−N(gδ)] holds
and hence

lim sup
n→∞

∣∣∣E[e−Nn(g)]− E[e−N(g)]
∣∣∣ ≤ lim sup

n→∞

∣∣∣E[e−Nn(g)]− E[e−Nn(gδ)]
∣∣∣+ ∣∣∣E[e−N(gδ)]− E[e−N(g)]

∣∣∣ .
(2.52)

Using (2.51) and the simple bound |e−x − e−y| ≤ |x− y| ∧ 1, x, y ≥ 0, we obtain that for
any random measure M inM(l̃0,0)

∣∣∣E[e−M(g)]− E[e−M(gδ)]
∣∣∣ ≤ E[|M(g)−M(gδ)| ∧ 1] ≤ P(M(B) > C) + δC ,
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for all δ > 0 and C > 0. Using this bound for Nn and N , (2.52) yields that for all δ > 0
and C > 0

lim sup
n→∞

∣∣∣E[e−Nn(g)]− E[e−N(g)]
∣∣∣ ≤ lim sup

n→∞
P(Nn(B) > C) + P(N(B) > C) + 2δC . (2.53)

It remains to notice that, since one can find a function g0 ∈ LB+
b (l̃0,0, d̃) such that g0 ≥ 1B

(see (1.6)), there exist a function f0 ∈ F0 such that f0 ≥ 1B (with notation as above, simply
take f0 = 2g1/2

0 ). Since by assumption Nn(f0) d−→ N(f0) in R, the sequence (Nn(f))n, and
therefore the sequence (Nn(B))n, is tight. Thus, letting δ → 0 and then C →∞ in (2.53)
yields that

∣∣∣E[e−Nn(g)]− E[e−N(g)]
∣∣∣→ 0 as n→∞. Since g ∈ LB+

b (l̃0,0, d̃) was arbitrary,
this proves the claim.

Proof of Corollary 2.3.15

Let P :Mp([0, 1]d × l̃0,0)→Mp([0, 1]d × (R \ {0})) be the (projection) mapping given
by

P
(∑

i

δ(ti,(xij)j)

)
=
∑
i

∑
j

δ(ti,xij) .

Note that P is well–defined (i.e. for every µ ∈ Mp([0, 1]d × l̃0,0), P (µ) is a locally finite
point measure on [0, 1]d × (R \ {0}) and moreover, using Proposition 1.2.8 it easy to show
that P is continuous.

Recall, for each i ∈ In we denote Jn,i = (j ∈ Zd : (i − 1) · rn + 1 ≤ j ≤ i · rn) and
Xn,i = XJn,i . Therefore, (2.42) and an application of the continuous mapping theorem
(see e.g. [Bil68, Corollary 1, p. 31]) imply that

∑
i∈In

∑
j∈Jn,i

δ(i/kn,Xj/an) = P (N ′n) d−→ P (N ′) =
∑
i∈N

∑
j∈Zd

δ(T i,PiQij) (2.54)

inMp([0, 1]d × (R \ {0})).
Define a metric ρ on [0, 1]d × R by ρ((t, x), (s, y)) = |t − s| ∨ |x − y|, where for

t = (t1, . . . , td) ∈ Rd, |t| = maxi=1,...,d |ti|. By Proposition 1.3.1, the family LB+
b ([0, 1]d ×

(R \ {0}), ρ) is (point process) convergence determining and hence, in view of (2.54), it
suffices to show that

∣∣∣E[e−∑i∈In

∑
j∈Jn,i

f(i/kn,Xj/an)]− E
[
e−
∑

j∈Jn
f(j/n,Xj/an)

]∣∣∣→ 0 , (2.55)

for all f ∈ LB+
b ([0, 1]d × (R \ {0}), ρ). For that purpose, we use similar arguments as in

[Kri10, Proposition 1.34].
Assume for simplicity that d = 2. Let f ∈ LB+

b ([0, 1]2 × (R \ {0}), ρ) be arbitrary
and take an ε > 0 such that |x| ≤ ε implies that f(t, x) = 0. Recall, kn = bn/rnc and
In = {1, . . . , kn}2. Furthermore, blocks Jn,i ⊆ Jn = {1, . . . , n}2, i ∈ In, are disjoint
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and each has r2
n indices. Hence, the set of indices J ′n = ∪i∈InJn,i is contained in Jn and

furthermore, Jn has at most 2rnn indices which are not in J ′n. Therefore, by the properties
of the function f and stationarity of (Xj),

∣∣∣E[e−∑j∈J′n
f(j/n,Xj/an)]− E

[
e−
∑

j∈Jn
f(j/n,Xj/an)

]∣∣∣ ≤ 2rnnP(|X0| > anε)→ 0 (2.56)

since by (2.16) and regular variation of |X0|, P(|X0| > anε) ∼ ε−αn−2 and since rn/n→ 0.
Furthermore, using the simple inequality |e−x − e−y| ≤ |x− y| valid for all x, y ≥ 0 yields
that

∣∣∣E[e−∑i∈In

∑
j∈Jn,i

f(i/kn,Xj/an)]− E
[
e
−
∑

j∈J′n
f(j/n,Xj/an)]∣∣∣

≤
∑
i∈In

∑
j∈Jn,i

E
∣∣∣f(i/kn, Xj/an)− f(j/n,Xj/an)

∣∣∣ .
Since for some L > 0, |f(t, x) − f(s, y)| ≤ L(|t − s| ∨ |x − y|) for all t, s ∈ [0, 1]d and
x, y ∈ R \ {0}, and since |x| ≤ ε implies that f(t, x) = 0,

E
∣∣∣f(i/kn, Xj/an)− f(j/n,Xj/an)

∣∣∣ ≤ L|i/kn − j/n| · P(|X0| > anε) ,

for all i ∈ In and j ∈ Jn,i. Now since |irn − j| ≤ rn for all such i and j and since
kn = bn/rnc one can show that

|i/kn − j/n| ≤ 2rn
n
,

for all i ∈ In and j ∈ Jn,i. This implies that

∣∣∣E[e−∑i∈In

∑
j∈Jn,i

f(i/kn,Xj/an)]− E
[
e
−
∑

j∈J′n
f(j/n,Xj/an)]∣∣∣ ≤ k2

nr
2
nL

2rn
n

P(|X0| > anε) .

Note that knrn ∼ n, so again by (2.16) and since rn/n → 0, the right hand side above
tends to 0 as n→∞. In view of (2.56), this proves (2.55) and finishes the proof.
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Chapter 3

An invariance principle for sums and
record times of regularly varying
stationary time series

3.1 Introduction

In this chapter, we put to use the order preserving point process convergence theory
developed in Chapter 2. In particular, we study partial sums and record times of a
stationary regularly varying R–valued time series. The running assumption of the chapter
will be that the conclusion of Theorem 2.3.14, i.e. point process convergence (2.42), holds.
In particular, this includes infinite order moving average processes from Examples 2.3.7
and 2.4.5. In both problems, the information about the temporal ordering of extreme
observations within the same cluster will be essential. In fact, the study of record times in
a dependent sequence was the main motivation for development of results in Chapter 2.

The rest of the chapter is divided in two sections on record times and partial sums,
respectively, and in the beginning of each we briefly motivate the corresponding problem
and state our main results.

The results of this chapter are based on the paper [BPS18].

3.2 Record times

3.2.1 Introduction

In this section we study record times in a stationary regularly varying time series
(Xi)i∈N. For convenience we restrict our attention to the case when Xi’s are nonnegative
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and say that i ∈ N is a record time and Xi the corresponding record (value) if

Xi > max
j=1,...,i−1

Xj ,

with max ∅ = 0. It is well known that, if Xi’s are i.i.d. regularly varying,

Rn =
∞∑
j=1

δj/n1{Xj is a record}
d−→ R =

∑
i∈Z

δτi , (3.1)

as n → ∞ in Mp((0,∞)) (with bounded sets being those contained in [ε, ε−1], ε > 0),
where ∑i∈Z δτi is a Poisson process on (0,∞) with intensity measure µ(dx) = x−1dx, i.e.
µ((a, b]) = log(b/a) for 0 < a < b; see [Res87, Corollary 4.22]. In particular, if Tn is the
last record time among X1, . . . , Xn , (3.1) yields that, for x ∈ [0, 1],

P(Tn/n ≤ x) = P(Rn((x, 1]) = 0)→ P(R((x, 1]) = 0) = e−µ((x,1]) = x ,

i.e. the distribution of Tn/n is asymptotically uniform on [0, 1]. For further implications of
(3.1) see [Res87, pp. 219–220]. Note, the limiting process R is scale–invariant in the sense
that, for any c > 0, ∑i∈Z δcτi

d= ∑
i∈Z δτi , see [Arr98] for an interesting discussion on such

processes.
In this section, we extend convergence in (3.1) to stationary regularly varying time

series. Under appropriate assumptions, we show that the process of record times Rn

converges in distribution to a rather simple scale invariant compound Poisson process,
see Theorem 3.2.3 for details. Note, since record times remain unaltered after a strictly
increasing transformation, the main result below holds for stationary sequences with a
general marginal distribution as long as they can be monotonically transformed into a
regularly varying sequence.

3.2.2 Continuity of the record times functional

We start by introducing the notion of records for sequences in l̃0. For y ≥ 0 and
x = (xj)j∈Z ∈ l̃0 define

Rx(y) =
∞∑

j=−∞
1{xj>y∨supi<j xi} ,

where a ∨ b := max{a, b}, representing the number of records in the sequence x larger
than y. Observe, this number is finite for every x ∈ l̃0 and every y > 0 since at most finite
number of coordinates of x are larger than y. Note, x = (xj)j∈Z ∈ l̃0 means that x is an
element of l̃0 and (xj) is an arbitrary representative of x. Write also ‖x‖+

∞ = supj xj ∨ 0
for x = (xj)j∈Z ∈ l̃0.

Let γ = ∑∞
i=1 δti,xi ∈Mp([0,∞)× l̃0,0), where xi = (xij)j∈Z ∈ l̃0, i ∈ N. Bounded sets

in [0,∞)× l̃0,0 are those contained in sets [0, ε−1]× {x ∈ l̃0,0 : ‖x‖∞ > ε}, ε > 0. Define,
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for t > 0,

Mγ(t) = sup
ti≤t
‖xi‖+

∞ , Mγ(t−) = sup
ti<t
‖xi‖+

∞ ,

where we set sup ∅ = 0 for convenience. Next, let Rγ be the (counting) point process on
(0,∞) defined by

Rγ =
∞∑
i=1

δtiR
xi(Mγ(ti−)) ,

hence for arbitrary 0 < a < b,

Rγ(a, b] =
∑

a<ti≤b

∞∑
j=−∞

1{xij>Mγ(ti−)∨supk<j xik}
.

If all ti’s are mutually different (this will always hold in our case), we say that γ has
k ≥ 1 records at time t ∈ [0,∞) if t ∈ {ti} and Rxi(Mγ(ti−)) = k. Observe, whenever
γ satisfies Mγ(t) > 0 for all t > 0, Rγ(a, b] < ∞ for all 0 < a < b, i.e. Rγ is a locally
finite measure on (0,∞) with bounded sets being those contained in (ε, ε−1), ε > 0. Let
A ⊆ Mp([0,∞)× l̃0,0) denote the set of all such γ’s. Note that A is an open subset of
Mp([0,∞)× l̃0,0) with respect to the vague topology.

Lemma 3.2.1. The mapping γ 7→ Rγ from A to Mp((0,∞)) is continuous at every
γ = ∑∞

i=1 δti,xi ∈ A such that

(i) ti 6= tj for all i 6= j ∈ N;

(ii) xij 6= xi
′
j′ for all i, i′ ∈ N and all j 6= j′ ∈ Z such that xij, xi

′
j′ > 0.

Proof. Fix an arbitrary γ = ∑∞
i=1 δti,xi ∈ A satisfying the above assumptions, and assume

that (γn)n∈N is a sequence in A satisfying γn v−→ γ. We must prove that Rγn
v−→ Rγ in

Mp((0,∞)). By [Kal17, Lemma 4.1(iii)], it is sufficient to show that for all 0 < a < b ∈
{ti}c

Rγn(a, b]→ Rγ(a, b] ,

as n → ∞. Fix arbitrary 0 < a < b ∈ {ti}c. First, let ti0 ∈ [0, a) be such that
‖xi0‖+

∞ = Mγ(a) > 0. Further, there are finitely many time instances in (a, b], say
ti1 , . . . , tik , such that ‖xil‖+

∞ > Mγ(a) > 0 for all l = 1, . . . , k. In particular,

Rγ(a, b] =
∑

ti∈(a,b]
Rxi(Mγ(ti−)) =

k∑
l=1

Rxil (Mγ(til−)) . (3.2)

Observe, by (ii) above there does not exist ti ∈ [0, b], i 6= i0, with ‖xi‖+
∞ = Mγ(a), in

particular, for some ε > 0 small enough ti0 is the only time instance in [0, b] such that

47



Chapter 3. An invariance principle for sums and record times of regularly varying stationary time series

0 < Mγ(a) − ε ≤ ‖xi‖+
∞ ≤ Mγ(a). By Proposition 1.2.8, γn v−→ γ implies that for all

γn = ∑∞
i=1 δtni ,xn,i with n large enough, there exists

• exactly 1 time instance tni0 ∈ [0, a) such that ‖xn,i0‖+
∞ ≥Mγ(a)− ε;

• exactly k time instances tni1 , . . . , tnik ∈ (a, b] such that ‖xn,il‖+
∞ ≥ Mγ(a)− ε for all

l = 1, . . . , k.

Moreover, they satisfy xn,il → xil and tnil → til for l = 0, . . . k as n → ∞. In particular,
Mγn(a) = ‖xn,i0‖+

∞ → ‖xi0‖+
∞ = Mγ(a) as n→∞, and for all n large enough,

Rγn(a, b] =
∑

tni ∈(a,b]
Rxn,i(Mγn(tni−)) =

k∑
l=1

Rxn,il (Mγn(tnil−)) . (3.3)

Assume that, as n→∞, yn → y > 0 and xn → x = (xj)j∈Z ∈ l̃0 where all positive xj’s
are pairwise distinct and xj 6= y for all j ∈ Z. It is straightforward to check that then, for
all n large enough,

Rxn(yn) = Rx(y) .

Observe further that for the choice of til , tnil we made above, it holds that Mγn(tnil−)→
Mγ(til−) for all l = 1, . . . , k, since til ’s are mutually different. Together with assumption
(ii), (3.2) and (3.3) this yields that, for all n large enough,

Rγn(a, b] = Rγ(a, b] .

3.2.3 Limiting result

Assume that (Xi)i∈Z is a nonnegative and stationary regularly varying time series (for
general R–valued (Xi) consider (X+

i )). Let (rn)n be such that rn → ∞, rn/n → 0 as
n→∞, and for each n ∈ N define blocks

Xn,i = (X(i−1)rn+1, . . . , Xirn) , i ∈ N .

We assume that the conclusion of Theorem 2.3.14 holds. More precisely, that for (an)n
such that nP(X0 > an)→ 1,

N ′n =
∞∑
i=1

δ(i/kn,Xn,i/an)
d−→ N ′ =

∞∑
i=1

δ(Ti,PiQi) , (3.4)

inMp([0,∞)× l̃0,0), where ∑∞i=1 δ(Ti,Pi) is a Poisson process inMp([0,∞)× (0,∞)) with
intensity measure ϑLeb×d(−y−α), and Qi = (Qi

j)j∈Z, i ≥ 1, i.i.d. elements of l̃0, distributed
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as Q = (Qj)j∈Z and independent of ∑∞i=1 δ(Ti,Pi). Here we implicitly assume that the tail
process of (Xi) is in l0 a.s., so in particular, the corresponding ϑ and Q from Section 2.3.3
are well defined. Note, since Xi’s are assumed nonnegative, Qj’s are [0, 1]–valued with
at least one of them being equal to 1. This will be important in the proof of the main
theorem below.

Remark 3.2.2. Observe, here we consider the whole time axis [0,∞), while in Theorem 2.3.14
we restricted to the segment [0, 1]. Still, by minor modifications of assumptions, results of
Chapter 2 are easily extended to the time interval [0, T ] for arbitrary T ∈ N, and hence to
whole [0,∞). In particular, (3.4) holds for m–dependent time series, and also for infinite
order linear processes from Examples 2.3.7 and 2.4.5.

We will also need the point process Nn on [0,∞)× (0,∞) defined by

Nn =
∞∑
j=1

δ(j/n,Xj/an) .

By identifying x > 0 with a sequence with exactly one nonzero coordinate equal to x, in
the sequel we treat Nn as a process on the space [0,∞)× l̃0,0. Observe,

RNn =
∞∑
j=1

δj/n1{Xj is a record} , n ∈ N .

Recall, we say that random variable ζ is Pareto distributed with tail index α > 0 if
P(ζ ≥ y) = y−α for y ≥ 1.

Theorem 3.2.3. Let (Xi)i∈Z be a nonnegative stationary regularly varying sequence with
tail index α > 0. Assume that the convergence in (3.4) holds and moreover that

P(all nonzero Qj’s are mutually different) = 1 .

Then
RNn

d−→ RN ′n ,

as n→∞ inMp((0,∞)). Moreover, the limiting process is a compound Poisson process
with representation

RN ′
d=
∑
i∈Z

δτiκi ,

where

(i) ∑i∈Z δτi is a Poisson point process on (0,∞) with intensity measure x−1dx;

(ii) (κi)i∈Z is a sequence of i.i.d. random variables independent of ∑i∈Z δτi with the same
distribution as the integer–valued random variable RQ(1/ζ) where ζ is a Pareto
random variable with tail index α, independent of Q.
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Example 3.2.4. For an illustration of the previous theorem, consider the moving average
process of order 1

Xi = ξi + cξi−1 , i ∈ Z ,

for a sequence of i.i.d. nonnegative regularly varying random variables (ξi : i ∈ Z) with tail
index α > 0. Assume further that c > 1. By (2.29), the corresponding random element Q

in l̃0 equals the deterministic sequence (. . . , 0, 1/c, 1, 0, . . .). Intuitively speaking, in each
cluster of extremely large values, there are exactly two successive extreme values with the
second one c times larger that the first. Therefore, each such cluster can give rise to at
most 2 records, see Figure 3.1. By straightforward calculations, the random variables κi
from Theorem 3.2.3 have the following distribution

P(κi = 2) = P(1/ζ ≤ 1/c) = P(ζ ≥ c) = 1
cα

= 1− P(κi = 1) .

Figure 3.1: Simulation of 10000 observations of the process (Xi) from Example 3.2.4 with
c = 2 and α = 1.2. The dashed line represents the running maxima Mn = maxi=1,...,nXi

of the process and red dots correspond to record Xi’s.

Proof of Theorem 3.2.3. Step 1. We first show that N ′ almost surely satisfies all of the
assumptions of Lemma 3.2.1. Observe that P(N ′([0, ε] × l̃0,0) = ∞) = 1 for all ε > 0,
so in particular P(N ∈ A) = 1. Further, for each ε > 0, N ′ restricted to the set
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[0, ε−1]× {x ∈ l̃0,0 : ‖x‖∞ > ε}, in distribution equals

T∑
i=1

δ(ε−1Ui,εVi(Qij)j) ,

where (Ui)i are i.i.d. uniform on [0, 1], (Vi)i are i.i.d. Pareto with index α, T is Poisson
with intensity ϑε−1−α, and all of involved random elements are independent; see e.g. [LP17,
Proposition 3.8] or [Res87, pp. 132–134]. In particular, together with the additional
assumption on the Qj’s, this restricted N ′ satisfies all of the assumptions of Lemma 3.2.1
(simply use independence and the fact that Ui’s and Vi’s are continuous random variables).
Letting ε→ 0 shows that N ′ also satisfies all of these assumptions.

Hence, applying the continuous mapping theorem to (3.4) yields that

RN ′n
d−→ RN ′ . (3.5)

Step 2. Set Jn,i = {(i − 1)rn + 1, . . . , irn} for i ∈ N, so Xn,i = (Xj : j ∈ Jn,i). Observe,
for any nonnegative and measurable function f on (0,∞),

RN ′n(f) =
∞∑
i=1

f(i/kn) ·RXn,i/an(MN ′n( i
kn
−)) ,

where for each i ∈ N,

RXn,i/an(MN ′n( i
kn
−)) =

∑
j∈Jn,i

1{Xj is a record} .

Also,

RNn(f) =
∞∑
j=1

f(j/n)1{Xj is a record} =
∞∑
j=1

∑
j∈Jn,i

f(j/n)1{Xj is a record} .

Hence, each record time j/n of the process Nn appears at slightly altered time i/kn in the
process N ′n where i = bj/rnc + 1 (i.e. such that j ∈ Jn,i). However, asymptotically the
record times are very close since rn/n→ 0.

Indeed, take f ∈ LB+
b (0,∞) and let 0 < a < b be such that the support of f is contained

in (a, b]. Without loss of generality assume that f ≤ 1 and that |f(t)− f(s)| ≤ |t− s| for
all t, s ∈ (0,∞). By the simple inequality |e−x − e−y| ≤ |x− y| ∧ 1 valid for all x, y ≥ 0,

∣∣∣E[e−RN′n (f)]− E[e−RNn (f)]
∣∣∣ ≤ E|RN ′n(f)−RNn(f)| ∧ 1 . (3.6)
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Observe,

|RN ′n(f)−RNn(f)| ≤
∞∑
i=1

∑
j∈Jn,i

|f(i/kn)− f(j/n)|1{Xj is a record} . (3.7)

Recall that kn = bn/rnc, so for all i ∈ N, j ∈ Jn,i, j/n ≤ i/kn and simple computation
(cf. 3.35) yields that |i/kn− j/n| = (i/kn− irn/n) + (irn/n− j/n) ≤ (i/kn + 1)rn/n which
tends to zero as n→∞ uniformly over i ≤ knT for every fixed T > 0 since rn/n→ 0. In
particular, for n large enough, j/n ∈ (a, b] implies that the corresponding i = bj/rnc+ 1
satisfies i/kn ∈ (a, b + 1] (1 is arbitrary here). Since f(t) = 0 for all t /∈ (a, b], one can
therefore restrict the summation in (3.7) to i’s such that i/kn ∈ (a, b + 1] and by the
Lipschitz property of f ,

|RN ′n(f)−RNn(f)| ≤ (b+ 2)rn
n
RN ′n((a, b+ 1]) .

Since RN ′n((a, b+ 1]) d−→ RN ′((a, b+ 1]) (assume w.l.o.g. that P(RN ′n({a, b+ 1}) = 0) = 1),
this shows that |RN ′n(f)− RNn(f)| → 0 in probability, and by (3.6) this further implies
that

∣∣∣E[e−RN′n (f)]− E[e−RNn (f)]
∣∣∣→ 0 .

Since f ∈ LB+
b (0,∞) was arbitrary, together with (3.5) this yields the convergence

statement of the theorem.

Step 3. To prove the representation of the limit, we rely on the theory of [Res87, Chapter
4]. Observe first that N ′ = ∑∞

i=1 δ(Ti,PiQi) has records at exactly the same time instances as
the process M0 = ∑∞

i=1 δ(Ti,Pi), since by the assumptions of the theorem and by definition
of the sequences Qi = (Qi

j)j∈Z, all of their components are in [0, 1] with at least one of
them being exactly equal to 1. Let (Y (t) : t > 0) be a stochastic process defined by

Y (t) = sup
Ti≤t

Pi , t > 0 .

Because M0 is a Poisson point process on [0,∞)× (0,∞) with intensity measure Leb×
d(−ϑy−α), (Y (t))t is the so–called extremal process generated by the distribution function
F (y) = e−ϑy

−α , y ≥ 0. Observe, record times of M0 correspond to jump times of the
process (Y (t))t; write them as a double sided sequence τn, n ∈ Z, such that τn < τn+1 for
each n. According to [Res87, Proposition 4.9], since F is continuous, ∑n∈Z δτn is a Poisson
point process with intensity x−1dx on (0,∞).

Fix an arbitrary s > 0, and assume without loss of generality that τ1 represents the first
record time strictly greater than s, i.e. τ1 = inf{τi : τi > s}. Denote the Markov chain
of corresponding successive record values by Un, n ∈ Z (i.e. Un = Y (τn)); they clearly
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satisfy Un < Un+1 and U0 = Y (s). It now follows from [Res87, Proposition 4.7 (iv)] that
{Un/Un−1, n ≥ 1} is a sequence of i.i.d. random variables Pareto distributed with tail
index α.

Because the record times τn and record values Un for n ≥ 1 of the point process M0 match
the records of the point process N ′ = ∑∞

i=1 δ(Ti,PiQi) on the interval (s,∞), we just need to
count how many of them appear at any give time τn which are larger than the previous
record Un−1. If, say, τn = Ti, that number corresponds to the number of Qi

j’s which after
multiplication by the corresponding Un = Pi represent a record larger than Un−1. Hence,
that random number has the same distribution as

κ = RQ(U0/U1) .

Recall that s > 0 was arbitrary. Now since the point process ∑∞i=1 δ(Ti,Pi) and therefore the
sequence {Un/Un−1, n ≥ 1} is independent of the i.i.d. random elements (Qi) and since
U1/U0 has a Pareto distribution with tail index α, the claim follows.

3.3 Partial sums

3.3.1 Introduction

Donsker–type functional limit theorems represent one of the key developments in
probability theory. They express invariance principles for rescaled random walks of the
form

Sbntc = X1 + · · ·+Xbntc , t ∈ [0, 1] . (3.8)

Many extension of the original invariance principle exist, most notably allowing dependence
between the steps Xi, or showing, like Skorohod did, that non–Gaussian limits are possible
if the steps Xi have infinite variance. For a survey of invariance principles in the case of
dependent variables in the domain of attraction of the Gaussian law, we refer to [MPU06],
see also [Bra07] for a thorough survey of mixing conditions. In the case of a non–Gaussian
limit, the limit of the processes (Sbntc)t∈[0,1] is not a continuous process in general. Hence,
the limiting theorems of this type are placed in the space of càdlàg functions denoted by
D ≡ D([0, 1],R) under one of the Skorohod topologies. The topology denoted by J1 is
the most widely used (often implicitly) and suitable for i.i.d. steps (see [Res07, Section
7.2]), but over the years many theorems involving dependent steps have been shown using
other Skorohod topologies. Even in the case of a simple m–dependent linear process from
a regularly varying distribution, it is known that the limiting theorem cannot be shown in
the standard J1 topology, see Avram and Taqqu [AT92, Theorem 1]. Moreover, there are
examples of such processes for which none of the Skorohod topologies work, see [AT92,
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p. 488].
However, as we found out, for all those processes and many other stochastic models

relevant in applications, random walks do converge, but their limit exists in an entirely
different space. To describe elements of such a space we use the concept of decorated càdlàg
functions due to Whitt [Whi02], and denote the corresponding space by E ≡ E([0, 1],R).
For the benefit of the reader, in Section 3.3.2, we briefly introduce this space closely
following the exposition in Whitt [Whi02, Sections 15.4 and 15.5].

Our main result is a functional limit theorem in the space E for the partial sum
process Sbntc of a regularly varying stationary time series with tail index α ∈ (0, 2) (i.e.
with infinite variance), see Section 3.3.3 and in particular Theorem 3.3.5. As a related
goal we also study the running maximum of the random walk Sbntc for which, due to
monotonicity, the limiting theorem can still be expressed in the familiar space D under
the Skorohod’s M1 topology, see Section 3.3.4. In Section 3.3.5, as an another corollary
we obtain sufficient conditions under which the partial sums process converges in the
space D with respect to the M2 topology, in particular recovering results of [BK14] for
linear processes. Finally, proofs of certain technical auxiliary results are postponed to
Section 2.5.

3.3.2 The space of decorated càdlàg functions - E

The elements of E ≡ E([0, 1],R) have the form

(x, J, {I(t) : t ∈ J})

where

- x ∈ D([0, 1],R);

- J is a countable subset of [0, 1] with Disc(x) ⊆ J , where Disc(x) is the set of
discontinuities of the càdlàg function x;

- for each t ∈ J , I(t) is a closed bounded interval in R (called the decoration) such
that x(t), x(t−) ∈ I(t) for all t ∈ J .

Moreover, we assume that for each ε > 0, there are at most finitely many times t for which
the length of the interval I(t) is greater than ε. This ensures that the graphs of elements
in E, defined below, are compact subsets of R2 which allows one to impose a metric on E
by using the Hausdorff metric on the space of graphs of elements in E.

Note that every triple (x, J, {I(t) : t ∈ J}) can be equivalently represented by a
set-valued function

x′(t) :=

I(t) if t ∈ J ,

{x(t)} if t 6∈ J ,
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or by the graph of x′ defined by

Γx′ := {(t, z) ∈ [0, 1]× R : z ∈ x′(t)}.

In the sequel, we will usually denote the elements of E by x′.

Let m denote the Hausdorff metric on the space of compact subsets of Rd (regardless
of dimension) i.e. for compact subsets A,B,

m(A,B) = sup
x∈A
‖x−B‖∞ ∨ sup

y∈B
‖y − A‖∞ ,

where ‖x−B‖∞ = infy∈B ‖x− y‖∞ with ‖ · ‖∞ being the sup–norm on Rd. We then define
a metric on E, denoted by mE, by

mE(x′, y′) = m(Γx′ ,Γy′) . (3.9)

We call the topology induced by mE on E the M2 topology. This topology is separable,
but the metric space (E,mE) is not complete. Also, we define the uniform metric on E by

m∗(x′, y′) = sup
0≤t≤1

m(x′(t), y′(t)) , (3.10)

Obviously, m∗ is a stronger metric than mE, i.e. for any x′, y′ ∈ E,

mE(x′, y′) ≤ m∗(x′, y′). (3.11)

We will often use the following elementary fact: for a ≤ b and c ≤ d it holds that

m([a, b], [c, d]) ≤ |c− a| ∨ |d− b|. (3.12)

By a slight abuse of notation, we identify every x ∈ D with an element in E represented
by

(x,Disc(x), {[x(t−), x(t)] : t ∈ Disc(x)}) ,

where for any two real numbers a, b by [a, b] we denote the closed interval [min{a, b},max{a, b}].
Consequently, we identify the space D with the subset D′ of E given by

D′ = {x′ ∈ E : J = Disc(x) and for all t ∈ J, I(t) = [x(t−), x(t)]} . (3.13)

For an element x′ ∈ D′ we have
Γx′ = Γx,

where Γx is the completed graph of x. Since theM2 topology on D corresponds to the Haus-
dorff metric on the space of the completed graphs Γx, the map x→ (x,Disc(x), {[x(t−), x(t)] :
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t ∈ Disc(x)}) is a homeomorphism fromD endowed with theM2 topology ontoD′ endowed
with the M2 topology. This yields the following lemma.

Lemma 3.3.1. The space D endowed with the M2 topology is homeomorphic to the subset
D′ in E with the M2 topology.

Remark 3.3.2. Because two elements in E can have intervals at the same time point,
addition in E is in general not well behaved. However, problems disappear if one of the
summands is a continuous function. In such a case, the sum is naturally defined as follows:
consider an element x′ = (x, J, {I(t) : t ∈ J}) in E and a continuous function b on [0, 1],
we define the element x′ + b in E by

x′ + b = (x+ b, J, {I(t) + b(t) : t ∈ J}) .

We now state a useful characterization of convergence in (E,mE) in terms of the
local-maximum function defined for any x′ ∈ E by

Mt1,t2(x′) := sup{z : z ∈ x′(t), t1 ≤ t ≤ t2}, (3.14)

for 0 ≤ t1 < t2 ≤ 1.

Theorem 3.3.3 (Theorem 15.5.1 Whitt [Whi02]). For elements x′n, x′ ∈ E the following
are equivalent:

(i) x′n → x′ in (E,mE), i.e. mE(x′n, x′)→ 0.

(ii) For all t1 < t2 in a countable dense subset of [0, 1], including 0 and 1,

Mt1,t2(x′n)→Mt1,t2(x′) in R

and
Mt1,t2(−x′n)→Mt1,t2(−x′) in R.

3.3.3 Invariance principle in the space E

Let (Xi)i∈Z be a stationary R–valued time series which is regularly varying with index
α ∈ (0, 2) and let (an)n be a R–valued sequence satisfying

nP(|X0| > an)→ 1 , as n→∞ . (3.15)

As in the previous section, assume that for some (rn)n satisfying rn → ∞ and kn =
bn/rnc → ∞, and blocks Xn,i = (X(i−1)rn+1, . . . , Xirn), i = 1, . . . , kn, it holds that

N ′n =
n∑
i=1

δ(i/kn,Xn,i/an)
d−→ N ′ =

∞∑
i=1

δ(Ti,PiQi) , (3.16)
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in Mp([0, 1] × l̃0,0), where
∑∞
i=1 δ(Ti,Pi) is a Poisson process in Mp([0, 1] × (0,∞)) with

intensity measure ϑLeb×d(−y−α), and Qi = (Qi
j)j∈Z, i ≥ 1, i.i.d. elements of l̃0, distributed

as Q = (Qj)j∈Z and independent of ∑∞i=1 δ(Ti,Pi). The tail process of (Xi) is assumed to be
in l0 a.s., so in particular, the corresponding ϑ and Q from Section 2.3.3 are well defined.

For each n ∈ N, consider now the partial sum process (Sn(t)) in D([0, 1]) defined by

Sn(t) =
bntc∑
i=1

Xi

an
, t ∈ [0, 1] , (3.17)

and define also

Vn(t) =

Sn(t) if 0 < α < 1 ,

Sn(t)− bntcE
(
X1
an
1{|X1|/an≤1}

)
if 1 ≤ α < 2 .

(3.18)

As usual, when 1 ≤ α < 2, an additional condition is needed to deal with the small jumps.

Assumption 3.3.4. For all δ > 0,

lim
ε→0

lim sup
n→∞

P
(

max
1≤k≤n

∣∣∣∣∣
k∑
i=1
{Xi1{|Xi|≤anε} − E[Xi1||Xi|≤anε}]}

∣∣∣∣∣ > anδ

)
= 0 . (3.19)

Under above assumptions, it was essentially proved in [DH95] that the finite dimensional
distributions of Vn converge to those of an α–stable Lévy process; a basic reference for
Lévy processes is e.g. Sato [Sat99]. This result is strengthened in [BKS12] to convergence
in the M1 topology if QjQj′ ≥ 0 for all j 6= j′ ∈ Z, i.e. if all extremes within one cluster
have the same sign. In the next theorem, we remove the latter restriction and establish
convergence of the process Vn in the space E.

For that purpose, we will need to impose some moment conditions on the process
Q, cf. [DH95, Theorem 3.2]. As originally noted by [DH95, Theorem 2.6], convergence
(3.16) and Fatou’s lemma imply that ϑE[∑j∈Z |Qj|α] ≤ 1 (it was shown in [PS18, Equation
(3.14)] that in fact equality holds as soon as ϑ and Q are well–defined). This in particular
implies that for α ∈ (0, 1],

E

∑
j∈Z
|Qj|

α <∞ . (3.20)

For α > 1, this will have to be assumed. Furthermore, the case α = 1, as usual, requires
additional care. We will assume that

E

∑
j∈Z
|Qj| log

|Qj|−1∑
i∈Z
|Qi|

 <∞ , (3.21)

where we use the convention |Qj| log (|Qj|−1∑
i∈Z |Qi|) = 0 if |Qj| = 0. Fortunately, it
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Chapter 3. An invariance principle for sums and record times of regularly varying stationary time series

turns out that conditions (3.20) and (3.21) are not too restrictive, see Remark 3.3.7 below.
Finally, regular variation of X0 and the choice of (an) imply that

nP(X0/an ∈ ·) v−→ µ , (3.22)

as n→∞ inM(R \ {0}) with measure µ on R \ {0} given by

µ(dy) = pαy−α−1
1(0,∞)(y)dy + (1− p)α(−y)−α−1

1(−∞,0)(y)dy , (3.23)

for p = P(Θ0 = 1), where (Θi)i∈Z is the spectral tail process of (Xi).

Theorem 3.3.5. Let (Xi : i ∈ Z) be a stationary R-valued regularly varying time series
with tail index α ∈ (0, 2) and assume that the convergence in (3.16) holds. If α ≥ 1 let
Assumption 3.3.4 hold. For α > 1, assume that (3.20) holds, and for α = 1, assume that
(3.21) holds. Then

Vn
d−→ V ′ = (V, {Ti}i∈N, {I(Ti)}i∈N) ,

with respect to the M2 topology on E([0, 1],R), where

(i) V is an α−stable Lévy process on [0, 1] given by

V ( · ) =
∑
Ti≤·

∑
j∈Z

PiQ
i
j , 0 < α < 1 , (3.24a)

V ( · ) = lim
ε→0

∑
Ti≤·

∑
j∈Z

PiQ
i
j1{|PiQij |>ε} − (·)

∫
ε<|x|≤1

xµ(dx)
 , 1 ≤ α < 2 , (3.24b)

where the series in (3.24a) is almost surely absolutely summable and, along some
subsequence, (3.24b) holds almost surely uniformly on [0, 1] with µ given in (3.23).

(ii) For all i ∈ N,

I(Ti) = V (Ti−) + Pi

inf
k∈Z

∑
j≤k

Qi
j , sup

k∈Z

∑
j≤k

Qi
j

 .
Before proving the theorem, we make several remarks.

Remark 3.3.6. Note that for α < 1, convergence of the point process is the only assumption
of the theorem. Further, the previous result is applicable to any m–dependent time series
which is regularly varying with index α ∈ (0, 2). Indeed, in this case (Qj)j has at most
finite number of nonzero terms so (3.20) and (3.21) are automatic. Moreover, the vanishing
small values condition (3.19) holds in this case by [TK10a, Lemma 4.8].

Remark 3.3.7. By [PS18, Lemma 3.11], if α ∈ (1, 2), the condition (3.20) is equivalent to

E


 ∞∑
j=0
|Θj|

α−1
 <∞ (3.25)
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Furthermore, if α = 1, [PS18, Lemma 3.14] shows that the condition (3.21) is then
equivalent to

E

log
 ∞∑
j=0
|Θj|

 <∞ . (3.26)

These conditions are easier to check than conditions (3.20) and (3.21) since it is easier to
determine the distribution of the spectral tail process than the distribution of Q. In fact,
it suffices to determine only the distribution of the forward spectral tail process (Θj)j≥0

which is often easier than determining the distribution of the whole spectral tail process.
For example, it follows from the proof of [MW14, Theorem 3.2] that for functions of
Markov chains satisfying a suitable drift condition (see [MW14] for details and examples),
(3.25) and (3.26) hold.

Remark 3.3.8. The α–stable Lévy process V from Theorem 3.3.5 is the weak limit in the
sense of finite–dimensional distributions of the partial sum process Vn, characterized by

logE[eizV (1)] =

iaz + Γ(1− α) cos(πα/2)σα|z|α{1− iφsgn(z) tan(πα/2)} α 6= 1 ,

iaz − π
2σ|z|{1 + i 2

π
φsgn(z) log(|z|)} α = 1 ,

(3.27)

with, denoting x〈α〉 = x|x|α−1 = xα+ − xα−,

σα = ϑE[|
∑
j∈Z

Qj|α] , φ =
E[(∑j∈ZQj)〈α〉]
E[|∑j∈ZQj|α]

and

(i) a = 0 if α < 1;

(ii) a = (α− 1)−1αϑE
[∑

j∈ZQ
〈α〉
j

]
if α > 1;

(iii) if α = 1, then

a = ϑ

c0E

∑
j∈Z

Qj

− E

∑
j∈Z

Qj log
∣∣∣∣∣∣
∑
j∈Z

Qj

∣∣∣∣∣∣
− E

∑
j∈Z

Qj log
(
|Qj|−1

) ,

with c0 =
∫∞

0 (sin y − y1(0,1](y))y−2dy.

These parameters were computed in [DH95, Remark 3.2, Theorem 3.2] but with a compli-
cated expression for the location parameter a in the case α = 1 (see [DH95, Remark 3.3]).
The explicit expression given here, which holds under the assumption (3.21), is new; the
proof is given in Lemma 3.3.21. As often done in the literature, if the sequence is assumed
to be symmetric then assumption (3.21) is not needed and the location parameter is 0.
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Moreover, [PS18, Corollary 3.12, Equation (3.21) and Lemma 3.14] imply that the
scale, skewness and location parameters from Remark 3.3.8 can also be expressed in terms
of the forward spectral tail process as follows:

σα = E

∣∣∣∣∣∣
∞∑
j=0

Θj

∣∣∣∣∣∣
α

−

∣∣∣∣∣∣
∞∑
j=1

Θj

∣∣∣∣∣∣
α ,

φ = σ−αE


 ∞∑
j=0

Θj

〈α〉 −
 ∞∑
j=1

Θj

〈α〉
 ,

a = 0 if α < 1, a = (α− 1)−1αE[Θ0] if α > 1 and

a = c0E[Θ0]− E

 ∞∑
j=0

Θj log
∣∣∣∣∣∣
∞∑
j=0

Θj

∣∣∣∣∣∣
− ∞∑

j=1
Θj log

∣∣∣∣∣∣
∞∑
j=1

Θj

∣∣∣∣∣∣
 ,

if α = 1. It can be shown that these expressions coincide for α 6= 1 with those in the
literature, see e.g. [MW16, Theorem 4.3]. As already noted, the expression of the location
parameter for α = 1 under the assumption (3.21) (or (3.26)) is new.
Example 3.3.9. Consider again the infinite order moving average process (Xi) from Exam-
ples 2.3.7 and 2.4.5, in particular point process convergence (3.16) holds. Assuming that
innovations are regularly varying with tail index α ∈ (0, 2), [DR85] proved convergence of
the finite–dimensional distributions of the partial sum process Vn. When cj ≥ 0 for all
j ∈ Z (with an additional condition on cj’s when α ≥ 1 which is not needed, see [TK10b,
Corollary 1]), [AT92] proved functional convergence of Vn in the M1 topology (see [Whi02,
Section 12.3] for details on this topology). Under less restrictions on the coefficients (see
Example 3.3.17 below), [BK14] obtained convergence in the weaker M2 topology. We also
mention [BJL16] who, with no restrictions on the cj ’s (and even weaker conditions than in
(2.26) when α < 1), proved functional convergence with respect to the S topology (which
is weaker than the M1 topology and incomparable with the M2 topology, but makes the
supremum functional not continuous).

Our Theorem 3.3.5 directly applies to the case of a finite order moving average
process. To consider the case of an infinite order moving average process, assume that
α < 1; the case α ∈ [1, 2) should be treated using m–dependent approximations as in
Section 2.4.1. Applying Theorem 3.3.5, one obtains the convergence of the partial sum
process Vn d−→ V ′ = (V, {Ti}i∈N, {I(Ti)}i∈N) in E where

V (·) =
∑
j∈Z cj

maxj∈Z |cj|
∑
Ti≤·

PiKi ,

and

I(Ti) = V (Ti−) + PiKi

maxj∈Z |cj|

inf
k∈Z

∑
j≤k

cj , sup
k∈Z

∑
j≤k

cj

 .
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3.3. Partial sums

For an illustration, assume that the innovations (ξi) are nonnegative, and consider the
process

Xi = ξi + cξi−1 , i ∈ Z .

In the case c ≥ 0, the convergence of partial sum process in M1 topology follows from
[AT92]. On the other hand, for negative c’s convergence fails in any of Skorohod’s topology,
but partial sums do have a limit in the sense described by our theorem as can be also
guessed from Figure 3.2.
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Figure 3.2: A simulated sample path of the process Sn in the case of linear sequence
Xi = ξi − 0.7ξi−1 with index of regular variation α = 0.7 in blue. Observe that due to
downward “corrections” after each large jump, in the limit the paths of the process Sn
cannot converge to a càdlàg function.

Remark 3.3.10. We do not exclude the case ∑j∈ZQj = 0 with probability one, as happens
for instance in Example 3.3.9 with c = −1. In such a case, the càdlàg component V is
simply the null process.

Example 3.3.11. Consider a stationary GARCH(1, 1) process

Xi = σiZi, σ2
i = α0 + α1X

2
i−1 + β1σ

2
i−1, i ∈ Z ,

where α0, α1, β1 > 0, and (Zi : i ∈ Z) is a sequence of i.i.d. random variables with mean
zero and variance one. Under mild conditions, the process (Xi) is regularly varying and
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Chapter 3. An invariance principle for sums and record times of regularly varying stationary time series

for some (rn) satisfies all of the assumptions of Theorem 2.3.14, hence point process
convergence in (3.16) holds. These hold for instance in the case of standard normal
innovations Zi and sufficiently small parameters α1, β1, see [BKS12, Example 4.4] and
[MW14, Section 5.4]. Consider such a stationary GARCH(1, 1) process with tail index
α ∈ (0, 1). Since all the conditions of Theorem 3.3.5 are met, its partial sum process has a
limit in the space E (cf. Figure 3.3).
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Figure 3.3: A simulated sample path of the process Sn in the case of GARCH(1, 1)
process with parameters α0 = 0.01, α1 = 1.45 and β1 = 0.1, and tail index α between 0.5
and 1.

Remark 3.3.12. If (3.20) holds, the sumsWi = ∑
j∈Z |Qi

j| are almost surely finite and (Wi)i≥1

is a sequence of i.i.d. random variables with E[Wα
1 ] <∞. Furthermore, by independence of∑∞

i=1 δPi and (Wi), it follows easily (use [Res87, Propositions 3.7 and 3.8]) that ∑∞i=1 δPiWi

is also a Poisson process on (0,∞) with intensity measure ϑE[Wα
1 ]αy−α−1dy. In particular,

almost surely, for every δ > 0 there exist at most finitely many indices i such that PiWi > δ.
By the dominated convergence theorem, this moreover implies that, almost surely,

lim sup
ε→0

sup
i∈N

∑
j∈Z

Pi|Qi
j|1{Pi|Qij |≤ε} ≤ δ ,

for all δ > 0, hence
sup
i∈N

∑
j∈Z

Pi|Qi
j|1{Pi|Qij |≤ε} → 0 (3.28)

as ε→ 0. These facts will be used several times in the proof.
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Proof of Theorem 3.3.5. The proof is split into the case α < 1 which is simpler, and the
case α ∈ [1, 2) where centering and truncation introduce additional technical difficulties.

(a) Assume first that α ∈ (0, 1). We divide the proof into several steps.

Step 1. For every ε > 0, consider the functions sε, uε and vε defined on l̃0 by

sε(x) =
∑
j

xj1{|xj |>ε} , uε(x) = inf
k

∑
j≤k

xj1{|xj |>ε} , vε(x) = sup
k

∑
j≤k

xj1{|xj |>ε} ,

where x = (xj)j∈Z ∈ l̃0. Define the mapping T ε : Mp([0, 1] × l̃0,0) → E by setting, for
γ = ∑∞

i=1 δti,xi ,

T εγ =


∑
ti≤t

sε(xi)

t∈[0,1]

, {ti : ‖xi‖∞ > ε}, {I(ti) : ‖xi‖∞ > ε}

 ,
where

I(ti) =
∑
tj<ti

sε(xj) +
∑
tk=ti

uε(xk),
∑
tk=ti

vε(xk)
 .

Since γ belongsMp([0, 1]× l̃0,0), there is only a finite number of points (ti,xi) such that
‖xi‖∞ > ε and furthermore, every xi = (xij)j∈Z has at most finitely many xij’s such that
|xij| > ε. Therefore, the mapping T ε is well-defined, that is, T εγ is a proper element of E.

Next, we define subsets ofMp([0, 1]× l̃0,0)

Λ1 =
{ ∞∑
i=1

δti,xi : |xij| 6= ε, i ≥ 1, j ∈ Z
}
,

Λ2 = {
∞∑
i=1

δti,xi : 0 < ti < 1 and ti 6= tj for every i > j ≥ 1}.

We claim that T ε is continuous on the set Λ1 ∩ Λ2. Assume that γn v−→ γ = ∑∞
i=1 δti,xi ∈

Λ1∩Λ2. By Proposition 1.2.8, this implies that finitely many points of γn in every bounded
set B in [0, 1]× l̃0,0 such that γ(∂B) = 0 converge pointwise to finitely many points of γ in
B. In particular, this holds for B = {(t,x) : ‖x‖∞ > ε} and it follows that for all t1 < t2

in [0, 1] such that γ({t1, t2} × l̃0,0) = 0,

Mt1,t2(T ε(γn))→Mt1,t2(T ε(γ)) in R

and
Mt1,t2(−T ε(γn))→Mt1,t2(−T ε(γ)) in R,

with the local-maximum function Mt1,t2 defined as in (3.14). Since the set of all such times
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is dense in [0, 1] and includes 0 and 1, an application of Theorem 3.3.3 gives that

T ε(γn)→ T ε(γ)

in E endowed with the M2 topology.

Recall the point process N ′ = ∑∞
i=1 δ(Ti,PiQi) from (3.16). Since the mean measure of∑∞

i=1 δ(Ti,Pi) does not have atoms, it is clear that N ′ ∈ Λ1 ∩ Λ2 a.s. Continuous mapping
theorem applied to convergence (3.16) now yields that

S̃ ′n,ε := T ε(N ′n) d−→ T ε(N ′) =: S ′ε .

Step 2. Recall that Wi = ∑
j∈Z |Qi

j| and
∑∞
i=1 δPiWi

is a Poisson point process on (0,∞)
with intensity measure ϑE[Wα

i ]αy−α−1dy (see Remark 3.3.12). Since α < 1, by Campbell’s
theorem (see e.g. [Kin93, p. 28]) one can sum up the points {PiWi}, i.e.

∞∑
i=1

PiWi =
∞∑
i=1

∑
j∈Z

Pi|Qi
j| <∞ a.s. , (3.29)

In particular, the process

V (t) =
∑
Ti≤t

∑
j∈Z

PiQ
i
j , t ∈ [0, 1] ,

is almost surely well–defined for each t ∈ [0, 1]. Since∑∞i=1 δ(Ti,Pi,Qi) is also a Poisson process
(on the space [0, 1]×(0,∞)× l̃0,0) with intensity measure Leb×d(−ϑy−α)×P(Q ∈ ·), it can
be shown that V has stationary independent increments and is stochastically continuous
(cf. the argument for the case α ≥ 1 given in the proof of 3.3.21 and also [Res07, pp. 151–
153]). Moreover, by the dominated convergence theorem and (3.29), V is the almost sure
uniform limit on [0, 1] of the piecewise constant process t 7→ ∑

Ti≤t
∑
j∈Z PiQ

i
j1{Pi>ε} as

ε → 0. Hence, the sample paths of V are càdlàg almost surely. Finally, it was shown
in [DH95, Theorems 3.1 and 3.2, Remark 3.2] that V (1) is α–stable with characteristic
function as given in Remark 3.3.8. Hence, V is an α–stable Lévy process.

Define now the random element V ′ in E([0, 1],R) by

V ′ = (V, {Ti}i∈N, {I(Ti)}i∈N) , (3.30)

where

I(Ti) = V (Ti−) +
[
u(PiQi), v(PiQi)

]
,

u(x) = inf
k

∑
j≤k

xj , v(x) = sup
k

∑
j≤k

xj .
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Since for every δ > 0 there are at most finitely many points PiWi such that PiWi > δ and
diam(I(Ti)) = v(PiQi)− u(PiQi) ≤ PiWi, V

′ is indeed a proper element of E a.s.

We now show that, as ε → 0, the limits S ′ε from the previous step converge to V ′ in
(E,m) almost surely. Recall the uniform metric m∗ on E defined in (3.10). By (3.29) and
dominated convergence theorem

m∗(S ′ε, V ′) = sup
0≤t≤1

m(S ′ε(t), V ′(t)) ≤
∞∑
i=1

∑
j∈Z

Pi|Qi
j|1{Pi|Qij |≤ε} → 0 , (3.31)

almost surely as ε→ 0. Indeed, let Sε be the càdlàg part of S ′ε, i.e.

Sε(t) =
∑
Ti≤t

sε(PiQi) =
∑
Ti≤t

∑
j∈Z

PiQ
i
j1{Pi|Qij |>ε} , t ∈ [0, 1] .

If t /∈ {Ti} then

m(S ′ε(t), V ′(t)) = |Sε(t)− V (t)| ≤
∑
Ti≤t

∑
j∈Z

Pi|Qi
j|1{Pi|Qij |≤ε}.

Further, when t = Tk for some k ∈ Z, by using (3.12) we obtain

m(S ′ε(t), V ′(t)) ≤ |(Sε(Tk−) + vε(PkQk))− (V (Tk−) + v(PkQk))|
∨ |(Sε(Tk−) + uε(PkQk))− (V (Tk−) + u(PkQk))|.

(3.32)

The first term on the right-hand side of the equation above is bounded by∣∣∣∣∣∣
∑
Ti<Tk

∑
j∈Z

PiQ
i
j1{Pi|Qij |≤ε}

∣∣∣∣∣∣+
∣∣∣∣∣∣sup
l∈Z

∑
j≤l

PkQ
k
j1{Pk|Qkj |>ε}

− sup
l∈Z

∑
j≤l

PkQ
k
j

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
Ti<Tk

∑
j∈Z

PiQ
i
j1{Pi|Qij |≤ε}

∣∣∣∣∣∣+ sup
l∈Z

∣∣∣∣∣∣
∑
j≤l

PkQ
k
j1{Pk|Qkj |>ε}

−
∑
j≤l

PkQ
k
j

∣∣∣∣∣∣
≤

∑
Ti≤Tk

∑
j∈Z

Pi|Qi
j|1{Pi|Qij |≤ε}.

Since, by similar arguments, one can obtain the same bound for the second term on the
right-hand side of (3.32), (3.31) holds. It now follows from (3.11) that

S ′ε → V ′ , as ε→ 0 ,

almost surely in (E,m).

Step 3. Recall the blocks for Xn,i = (X(i−1)rn+1, . . . , Xirn), i = 1, . . . , kn . Define a random
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element in E by

S̃ ′n =


 ∑
i/kn≤t

s(Xn,i/an)

t∈[0,1]

, {i/kn}kni=1, {I(i/kn)}kni=1

 ,

where s((xj)j∈Z) = ∑
j∈Z xj and

I(i/kn) =
∑
j<i

s(Xn,j/an) + [u(Xn,i/an), v(Xn,i/an)] .

By [Bil68, Theorem 4.2] and the previous two steps, to show that

S̃ ′n
d−→ V ′

in (E,mE), it suffices to prove that, for all δ > 0,

lim
ε→0

lim sup
n→∞

P(mE(S̃ ′n,ε, S̃ ′n) > δ) = 0 . (3.33)

Note first that, by the same arguments as in the previous step, we have

m∗(S̃ ′n,ε, S̃ ′n) ≤
knrn∑
j=1

|Xj|
an

1{|Xj |≤anε} .

Hence, by (3.11) and Markov’s inequality,

P(mE(S̃ ′n,ε, S̃ ′n) > δ) ≤ knrn
δan

E
[
|X1|1{|X1|≤anε}

]

= knrn
nδ
·
E
[
|X1|1{|X1|≤anε}

]
anεP(|X1| > anε)

· εnP(|X1| > anε) .

Since |X1| is regularly varying with index α < 1, Karamata’s theorem (see [BDM16,
Appendix B.4]) and the choice of (an) now imply that

lim sup
n→∞

P(mE(S̃ ′n,ε, S̃ ′n) > δ) ≤ α

(1− α)δ ε
1−α → 0 ,

as ε→ 0 since 1− α > 0, i.e. (3.33) holds. Hence,

S̃ ′n
d−→ V ′

in (E,mE).

Step 4. Finally, by [Bil68, Theorem 4.1], to show that the original partial sum process
Sn from (3.17), and therefore Vn since α ∈ (0, 1), also converges in distribution to V ′ in
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(E,mE), it suffices to prove that

mE(Sn, S̃ ′n) P−→ 0 . (3.34)

Recall that kn = bn/rnc so irn
n
≤ i

kn
for all i = 0, 1, . . . , kn and moreover

i

kn
− irn

n
= i

kn

(
1− knrn

n

)
≤ 1− bn/rnc

n/rn
= 1−

(
1− {n/rn}

n/rn

)
≤ rn

n
. (3.35)

Let dn,i for i = 0, . . . , kn − 1 be the Hausdorff distance between restrictions of graphs ΓSn
and ΓS̃′n on time intervals ( irn

n
, (i+1)rn

n
] and ( i

kn
, i+1
kn

], respectively (see Figure 3.4).

tirn
n

i
kn

(i+1)rn
n

i+1
kn

Sn

(
irn
n

)

Sn

(
(i+1)rn

n

)

tirn
n

i
kn

(i+1)rn
n

i+1
kn

Sn

(
irn
n

)

Sn

(
(i+1)rn

n

)

Figure 3.4: Restrictions of graphs ΓSn and ΓS̃′n on time intervals ( irn
n
, (i+1)rn

n
] and ( i

kn
, i+1
kn

],
respectively.

First note that, by (3.35), the time distance between any two points on these graphs is at
most 2rn/n. Further, by construction, Sn and S̃ ′n have the same range of values on these
time intervals. More precisely,

⋃
t∈( irn

n
,

(i+1)rn
n

]

{z ∈ R : (t, z) ∈ ΓSn} =
⋃

t∈( i
kn
, i+1
kn

]

{z ∈ R : (t, z) ∈ ΓS̃′n} = S̃ ′n((i+ 1)/kn) .

Therefore, the distance between the graphs comes only from the time component, i.e.

dn,i ≤
2rn
n
→ 0 , as n→∞ ,

for all i = 0, 1, . . . , kn − 1.

Moreover, if we let dn,kn be the Hausdorff distance between the restriction of the graph
ΓSn on (knrn

n
, 1] and the interval (1, S̃ ′n(1)), it holds that

dn,kn ≤
rn
n
∨

n∑
j=knrn+1

|Xj|
an

P−→ 0,
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as n→∞. Hence, (3.34) holds since

mE(Sn, S̃ ′n) ≤
kn∨
i=0

dn,i,

and this finishes the proof in the case α ∈ (0, 1).

(b) Assume now that α ∈ [1, 2). As shown in Step 1. in the proof of (a), for every ε > 0
it holds that

S̃ ′n,ε
d−→ S ′ε (3.36)

in E, where S̃ ′n,ε = T ε(N ′n) and S ′ε = T ε(N ′). For every ε > 0 define a càdlàg process Sn,ε
by

Sn,ε(t) =
bntc∑
i=1

Xi

an
1{|Xi|/an>ε} , t ∈ [0, 1] .

Using the same arguments as in Step 4. in the proof of (a), it holds that, as n→∞,

mE(Sn,ε, S̃ ′n,ε)
P−→ 0 . (3.37)

By [Bil68, Theorem 4.1], (3.36) and (3.37) imply that for every ε > 0,

Sn,ε
d−→ S ′ε (3.38)

in (E,mE).

Since α ∈ [1, 2) we need to introduce centering. For ε > 0, define càdlàg process by setting,
for t ∈ [0, 1],

Vn,ε(t) = Sn,ε(t)− bntcE
(
X1

an
1{ε<|X1|/an≤1}

)
.

From (3.22) we have, for any t ∈ [0, 1], as n→∞,

bntcE
(
X1

an
1{ε<|X1|/an≤1}

)
→ t

∫
{x : ε<|x|≤1}

xµ(dx). (3.39)

Since the limit function above is continuous and the convergence is uniform on [0, 1], (3.38)
and Lemma 3.3.18 yield that for every ε > 0,

Vn,ε
d−→ V ′ε (3.40)

in E, where V ′ε is given by (see Remark 3.3.2)

V ′ε (t) = S ′ε(t)− t
∫
{x : ε<|x|≤1}

xµ(dx) .
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Let Vε be the càdlàg part of V ′ε , i.e.,

Vε(t) =
∑
Ti≤t

sε(PiQi)− t
∫
{x : ε<|x|≤1}

xµ(dx) . (3.41)

By Lemma 3.3.19, there exist an α-stable Lévy process V and a sequence εk → 0, as
k →∞, such that

‖Vεk − V ‖∞ := sup
t∈[0,1]

|Vεk(t)− V (t)| → 0 , (3.42)

as k →∞ almost surely. Next, as argued in Step 2. in the proof of (a),

V ′ = (V, {Ti}i∈N, {I(Ti)}i∈N) , (3.43)

where
I(Ti) = V (Ti−) +

[
u(PiQi), v(PiQi)

]
, (3.44)

is a proper element of E. Also, one can argue similarly to the proof of (3.31) to conclude
that

m∗(V ′, V ′εk) ≤ ‖V − Vεk‖∞ + sup
i∈N

∑
j∈Z

Pi|Qi
j|1{Pi|Qij |≤ε} .

Now it follows from (3.11), (3.28) and (3.42) that

V ′εk → V ′ (3.45)

in (E,mE) as k →∞ almost surely.

Finally, by (3.40), (3.45) and [Bil68, Theorem 4.2], to show that the original (centered)
partial sum process Vn from (3.18) satisfies

Vn
d−→ V ′ , (3.46)

in (E,mE), it suffices to prove that, for all δ > 0,

lim
ε→0

lim sup
n→∞

P(mE(Vn,ε, Vn) > δ) = 0 . (3.47)

But this follows from Assumption 3.3.4 and (3.11) since

m∗(Vn,ε, Vn) ≤ max
1≤k≤n

∣∣∣∣∣
k∑
i=1

(
Xi

an
1{|Xi|/an≤ε} − E

[
Xi

an
1{|Xi|/an≤ε}

])∣∣∣∣∣ .
Hence (3.46) holds and this finishes the proof.
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3.3.4 Supremum of the partial sum process

We next show that the supremum of the partial sum process converges in distribution
in D endowed with the M1 topology, where the limit is the “running supremum” of the
limit process V ′ from Theorem 3.3.5. See [Whi02, Section 12.3] for details on the M1

topology.
Let V be the α–stable Lévy process defined in (3.24) and define the process V + on

[0, 1] by

V +(t) =

V (t) , t /∈ {Tj}j∈N
V (t−) + supk∈Z

∑
j≤k PiQ

i
j , t = Ti for some i ∈ N.

Define V − analogously using infimum instead of supremum. Note that V + and V − need
not be right-continuous at the jump times Tj. However, their partial supremum or infimum
are càdlàg functions.

Theorem 3.3.13. Under the same conditions as in Theorem 3.3.5, it holds that(
sup
s≤t

Vn(s)
)
t∈[0,1]

d−→
(

sup
s≤t

V +(s)
)
t∈[0,1]

,

and (
inf
s≤t

Vn(s)
)
t∈[0,1]

d−→
(

inf
s≤t

V −(s)
)
t∈[0,1]

,

jointly in D([0, 1],R) endowed with the M1 topology.

Proof. We prove the result only for the supremum of the partial sum process since the
infimum case is completely analogous and joint convergence holds since we are applying
the continuous mapping argument to the same process.

Define the mapping sup : E([0, 1],R)→ D([0, 1],R) by

sup(x′)(t) = sup{z : z ∈ x′(s), 0 ≤ s ≤ t} .

Note that sup(x′) is non-decreasing and since for every δ > 0 there are at most finitely
many times t for which the diam(x′(t)) is greater than δ, by [Whi02, Theorem 15.4.1.] it
follows easily that this mapping is well-defined, i.e. that sup(x′) is indeed an element in
D. Also, by construction,

sup(V ′) =
(

sup
s≤t

V +(s)
)
t∈[0,1]

and
sup(Vn) =

(
sup
s≤t

Vn(s)
)
t∈[0,1]

.
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Define the subset of E by
Λ = {x′ ∈ E : x′(0) = {0}}

and assume that x′n → x′ in (E,mE), where x′n, x′ ∈ Λ. By Theorem 3.3.3 it follows that

sup(x′n)(t) = M0,t(x′n)→M0,t(x′) = sup(x′)(t)

for all t in a dense subset of (0,1], including 1. Also, the convergence trivially holds for
t = 0 since sup(x′n)(0) = sup(x′)(0) = 0 for all n ∈ N. Since sup(x′) is non-decreasing for
all x′ ∈ E, we can apply [Whi02, Corollary 12.5.1] and conclude that

sup(x′n)→ sup(x′)

in D endowed with M1 topology. Since Vn, V ′ ∈ Λ almost surely, by Theorem 3.3.5 and
continuous mapping argument it follows that(

sup
s≤t

Vn(s)
)
t∈[0,1]

d−→
(

sup
s≤t

V +(s)
)
t∈[0,1]

in D endowed with M1 topology.

Remark 3.3.14. Note that when ∑j∈ZQj = 0 a.s., the limit for the supremum of the partial
sum process in Theorem 3.3.13 is simply a so called Fréchet extremal process. For an
illustration of the general limiting behavior of running maxima in the case of a linear
processes, consider again the moving average of order 1 from Example 3.3.9. Figure 3.2
shows a path (dashed line) of the running maxima of the MA(1) process Xt = ξt − 0.7ξt−1.

3.3.5 M2 convergence of the partial sum process

We can now characterize the convergence of the partial sum process in the M2 topology
in D([0, 1]) by an appropriate condition on the tail process of the sequence (Xi : i ∈ Z).

Assumption 3.3.15. The sequence (Qj)j∈Z almost surely satisfies

−

∑
j∈Z

Qj


−

= inf
k∈Z

∑
j≤k

Qj ≤ sup
k∈Z

∑
j≤k

Qj =
∑
j∈Z

Qj


+

. (3.48)

Note that this assumption ensures that ∑j∈ZQj 6= 0 and that the limit process V ′

from Theorem 3.3.5 has sample paths in the subset D′ of E which was defined in (3.13).
By Lemma 3.3.1, Theorem 3.3.5 and the continuous mapping theorem, the next result
follows immediately.
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Theorem 3.3.16. If, in addition to conditions in Theorem 3.3.5, Assumption 3.3.15
holds, then

Vn
d−→ V

in D([0, 1],R) endowed with the M2 topology.

Since the supremum functional is continuous with respect to the M2 topology, this
result implies that the limit of the running supremum of the partial sum process is the
running supremum of the limiting α-stable Lévy process as in the case of i.i.d. random
variables.

Example 3.3.17. For the linear process Xt = ∑
j∈Z cjξt−j from Examples 2.3.7 and 2.4.5,

the condition (3.48) can be expressed as

−

∑
j∈Z

cj


−

= inf
k∈Z

∑
j≤k

cj ≤ sup
k∈Z

∑
j≤k

cj =
∑
j∈Z

cj


+

. (3.49)

This is exactly [BK14, Condition 3.2]. Note that (3.49) implies that
∣∣∣∣∣∣
∑
j∈Z

cj

∣∣∣∣∣∣ > 0 .

3.3.6 Postponed proofs

On continuity of addition in E

Lemma 3.3.18. Suppose that (xn : n ∈ N) is a sequence in D([0, 1],R) and x′ =
(x, S, {I(t) : t ∈ S}) an element in E such that xn → x′ in E. Suppose also that (bn : n ∈ N)
is a sequence in D([0, 1],R) which converges uniformly to a continuous function b on [0, 1].
Then xn − bn → x′ − b in (E,mE) where

x′ − b := (x− b, S, {I(t)− b(t) : t ∈ S}) .

Proof. Recall the definition of mE given in (3.9). By Whitt [Whi02, Theorem 15.5.1.] to
show that xn − bn → x′ − b in E, it suffices to prove that

sup
(t,z)∈Γxn−bn

‖(t, z)− Γx′−b‖∞ → 0. (3.50)

Take an arbitrary ε > 0. Note that b is uniformly continuous so by the conditions of the
lemma there exists 0 < δ ≤ ε and n0 ∈ N such that

(i) |t− s| < δ ⇒ |b(t)− b(s)| < ε,

(ii) mE(xn, x′) < δ, for all n ≥ n0 and
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(iii) |bn(t)− b(t)| < ε, for all t ∈ [0, 1].

Also, since b is continuous, it easily follows that |bn(t)− bn(t−)| ≤ 2ε for all n ≥ n0 and
t ∈ [0, 1].

Take n ≥ n0 and a point (t, z) ∈ Γxn−bn , i.e.

z ∈ [(xn(t−)− bn(t−)) ∧ (xn(t)− bn(t)), (xn(t−)− bn(t−)) ∨ (xn(t)− bn(t))].

Since |bn(t)−bn(t−)| ≤ 2ε there exists z′ ∈ [xn(t−)∧xn(t), xn(t−)∨xn(t)] (i.e. (t, z′) ∈ Γxn),
such that

|(z′ − bn(t))− z| ≤ 2ε.

Next, since mE(xn, x′) < δ, there exists a point (s, y) ∈ Γx′ such that

|s− t| ∨ |y − z′| < δ.

Note that (s, y − b(s)) ∈ Γx′−b and by previous arguments

|(y − b(s))− z| = |(y − b(s))− z + (z′ − bn(t))− (z′ − bn(t)) + b(t)− b(t)|
≤ |y − z′|+ |b(t)− b(s)|+ |bn(t)− b(t)|+ |(z′ − bn(t))− z|
≤ δ + ε+ ε+ 2ε
≤ 5ε.

Also, |s− t| < δ ≤ ε. Hence, for all n ≥ n0,

sup
(t,z)∈Γxn−bn

‖(t, z)− Γx′−b‖∞ ≤ 5ε.

and since ε was arbitrary, (3.50) holds.

A lemma for partial sum convergence in E

Lemma 3.3.19. Let α ∈ [1, 2) and let the assumptions of Theorem 3.3.5 hold. Then
there exists an α-stable Lévy process V on [0, 1] and a sequence εk ↗ 0 such that, as
ε → 0, the process Vεk from (3.41) converges uniformly a.s. to V , i.e. ‖Vεk − V ‖ :=
supt∈[0,1] |Vεk(t)− V (t)| → 0. The characteristic function of V (1) equals the one given in
Remark 3.3.8.

Remark 3.3.20. The proof below does not use the vanishing small values condition (3.19).
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Proof. Recall that for all ε > 0 and t ∈ [0, 1],

Vε(t) =
∑
Ti≤t

sε(PiQi)− t
∫
{x : ε<|x|≤1}

xµ(dx)

=
∑
Ti≤t

∑
j∈Z

PiQ
i
j1{Pi|Qij |>ε} − t

∫
{x : ε<|x|≤1}

xµ(dx) ,

where
µ(dx) = pαx−α−1

1(0,∞)(x)dx+ (1− p)α(−x)−α−1
1(−∞,0)(x)dx

for p = P(Θ0 = 1). We first show that the centering term can be expressed as an
expectation of a functional of the limiting point process N ′. More precisely, we show that
for all ε > 0,

∫
{x : ε<|x|≤1}

xµ(dx) = ϑ
∫ ∞

0
E

y∑
j∈Z

Qj1{ε<y|Qj |≤1}

αy−α−1dy . (3.51)

First, by [PS18, Equation (3.21)],

ϑE

∑
j∈Z

Qj|Qj|α−1

 = 2p− 1 . (3.52)

so by Fubini’s theorem, if α > 1

ϑ
∫ ∞

0
E

y∑
j∈Z

Qj1{ε<y|Qj |≤1}

αy−α−1dy = αϑE

∑
j∈Z

Qj

∫ |Qj |−1

ε|Qj |−1
y−αdy


= α

α− 1(ε−α+1 − 1)ϑE
∑
j∈Z

Qj|Qj|α−1


= α

α− 1(ε−α+1 − 1)(2p− 1) ,

and if α = 1 the same term equals log(ε−1)(2p− 1). Note that the use of Fubini’s theorem
is justified since the same calculation as above shows that the above integral converges
absolutely since E[∑j∈Z |Qj|α] <∞. The equality in (3.51) now follows by the definition
of the measure µ. Hence, for all t ∈ [0, 1],

Vε(t) =
∑
Ti≤t

sε(PiQi)− tϑ
∫ ∞

0
E

y∑
j∈Z

Qj1{ε<y|Qj |≤1}

αy−α−1dy .

Set W = ∑
j∈ZQj and for δ > 0 and ε ≥ 0 define

mε,δ = ϑ
∫ ∞

0
E

y∑
j∈Z

Qj1{ε<y|Qj |≤1, δ<yW}

αy−α−1dy .
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By assumptions (3.20) and (3.21)m0,δ is well defined for all δ > 0, and moreover dominated
convergence theorem yields that limε→0mε,δ = m0,δ for all δ > 0. Indeed, if α = 1, for all
δ > 0

ϑ
∫ ∞

0
E

y∑
j∈Z
|Qj|1{y|Qj |≤1, δ<yW}

αy−α−1dy ≤ ϑE

∑
j∈Z
|Qj|

∫ 1
|Qj |

δ∧1
W

y−1dy


= ϑE

∑
j∈Z
|Qj| log(|Qj|−1) +W logW + log((δ ∧ 1)−1)W

 ,

which is finite by assumption (3.21), and if α > 1 using a similar calculation together with
the assumption E[Wα] <∞ one obtains the same conclusion.

Recall from Remark 3.3.12 that Wi = ∑
j∈Z |Qi

j| , i ∈ N, is a sequence of i.i.d.
random variables so ∑∞i=1 δPiWi

is a Poisson point process on (0,∞) with intensity measure
ϑE[Wα

1 ]αy−α−1dy. Since E[Wα
1 ] < ∞, for every δ > 0 there a.s. exists at most finitely

many points PiWi such that PiWi > δ. Hence, for every δ > 0 and ε ≥ 0 the process

Vε,δ(t) =
∑
Ti≤t

sε(PiQi)1{δ<PiWi} − tmε,δ =
∑
Ti≤t

∑
j∈Z

PiQ
i
j1{ε<Pi|Qij |, δ<PiWi} − tmε,δ ,

for t ∈ [0, 1], is a well–defined random element of D[0, 1], and moreover, as ε → 0, Vε,δ
converges uniformly almost surely to

V0,δ(·) =
∑
Ti≤·

∑
j∈Z

PiQ
i
j1{PiWi>δ} − (·)ϑ

∫ ∞
0

E

y∑
j∈Z

Qj1{δ<yW}

αy−α−1dy .

Next, fix a positive sequence {δk} with δk ↘ 0 as k →∞. We prove that V0,δk converges
uniformly almost surely in D([0, 1]).

Note, ∑i≥1 δTi,Pi,Qi is a Poisson point process on [0, 1] × (0,∞) × l̃0,0 with intensity
measure ϑLeb × d(−y−α) × P(Q ∈ · ). In particular, the process V0,δ has independent
increments with respect to δ, that is for every δ < δ′, V0,δ − V0,δ′ is independent of V0,δ′ .
Moreover, by Campbell’s theorem (see e.g. [Kin93, p. 28]),

Var(V0,δ(1)− V0,δ′(1)) = ϑ
∫ ∞

0
y2E


∑
j∈Z

Qj

2

1{δ<yW≤δ′}

αy−α−1dy

≤ ϑE
[
W 2

∫ δ′/W

0
αy−α+1dy

]
= ϑα(δ′)2−α

(2− α) E[Wα] .

Therefore, limδ′→0 supδ<δ′ Var(V0,δ(1) − V0,δ′(1)) = 0 and now arguing exactly as in the
proof of [Res07, Proposition 5.7, Property 2] shows that (V0,δk)k is almost surely a Cauchy
sequence in D([0, 1]) with respect to the supremum metric ‖ · ‖∞. Since the space D([0, 1])
is complete under this metric, we obtain the existence of a process V = (V (t) : t ∈ [0, 1])
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with paths in D([0, 1]) almost surely and such that limk→∞ ‖V0,δk −V ‖∞ = 0 almost surely.

Lemma 3.3.21. The process V satisfies V (0) = 0 a.s. and has independent stationary
increments and is stochastically continuous, hence V is a Lévy process. Moreover, V is
α–stable with characteristic function of V (1) given in Remark 3.3.8.

The proof of the previous result is given right after the end of the present proof. There
only remains to prove that for all u > 0,

lim
δ→0

lim sup
ε→0

P(‖Vε − Vε,δ‖∞ > u) = 0 . (3.53)

Indeed, this would imply that ‖Vε − V ‖∞ → 0 in probability and hence that, along
some subsequence, Vε converges to V uniformly almost surely. Since for δ ≤ 1, yW =∑
j∈Z y|Qj| ≤ δ implies that y|Qj| ≤ δ ≤ 1 for all j ∈ Z, we have that

Vε(t)− Vε,δ(t) =
∑
Ti≤t

∑
j∈Z

PiQ
i
j1{ε<Pi|Qij |, PiWi≤δ}

− tϑ
∫ ∞

0
E

y∑
j∈Z

Qj1{ε<y|Qj |, yW≤δ}

αy−α−1dy .

The process Vε− Vε,δ is a càdlàg martingale, thus applying Doob–Meyer’s inequality yields

P (‖Vε − Vε,δ‖∞ > u) ≤ u−2 Var(Vε(1)− Vε,δ(1))

= u−2ϑ
∫ ∞

0
y2E


∑
j∈Z

Qj1{ε<y|Qj |, yW≤δ}

2
αy−α−1dy

≤ u−2ϑE
[
W 2

∫ δ/W

0
αy−α+1dy

]
= ϑαδ2−α

u2(2− α)E[Wα]

and hence (3.53) holds since α < 2.

Proof of Lemma 3.3.21. Recall, V (t) is the almost sure limit of V0,δk(t) as k →∞ for all
t ∈ [0, 1]. Observe further that for all 0 ≤ s < t ≤ 1,

V0,δk(t)− V0,δk(s) =
∑

s<Ti≤t

∑
j∈Z

PiQ
i
j1{δk<PiWi} − (t− s)m0,δ .

Note also that V0,δk(0) = 0 almost surely for all k ∈ N and hence V (0) = 0. Further, recall
that ∑i≥1 δTi,Pi,Qi is a Poisson point process on [0, 1]× (0,∞)× l̃0,0 with intensity measure
ϑLeb × d(−y−α) × P(Q ∈ · ). In particular, V has independent increments (see [Res07,
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pp. 151]), and by [Kin93, p. 28, Equation (3.17)] for all k ∈ N, 0 ≤ s < t ≤ 1, z ∈ R,

logE[eiz(V0,δk (t)−V0,δk (s))] = (t− s)ϑ
∫ ∞

0
E
[{
eizyS − 1

}
1{δ < yW}

]
αy−α−1dy − iz(t− s)m0,δ

= (t− s) logE[eizV0,δk (1)] = logE[eizV0,δk (t−s)] ,

where W = ∑
j∈Z |Qj| and S = ∑

j∈ZQj. Letting k → ∞ yields that for all z ∈ R,
E[eiz(V0(t)−V0(s))] = E[eizV0(1)]t−s = E[eizV0(t−s)] for all such s, t. This implies that V has
stationary increments and that it is stochastically continuous (see [Res07, pp. 153]).

It remains to show that V (1) has an α-stable distribution with the stated parameters.
We show this only for the case α = 1 since the case α > 1 is similar.

Recall, m0,δ = ϑ
∫∞

0 E
[
y
∑
j∈ZQj1{δ<yW}

]
y−2dy. Since yW ≤ 1 implies that y|Qj| ≤ 1

for all j ∈ Z, for all δ < 1 we have that

V0,δ(1) =
∑

i,j

PiQ
i
j1{δ < PiWi} − ϑ

∫ ∞
0

E

y∑
j∈Z

Qj1{δ<yW≤1}

 y−2dy


− ϑ

∫ ∞
0

E

y∑
j∈Z

Qj1{y|Qj| ≤ 1, 1 < yW}

 y−2dy .

By Fubini’s theorem, the last term above is equal to

ϑE

∑
j∈Z

Qj log(W )
+ ϑE

∑
j∈Z

Qj log(|Qj|−1)
 ,

(with the usual convention 0 log 0 = 0). Therefore, for all z ∈ R and δ < 1

logE
[
eizV0,δ(1)

]
= ϑ

∫ ∞
0

E
[{
eizyS − 1− izyS1{yW ≤ 1}

}
1{δ < yW}

]
y−2dy

− izϑE
∑
j∈Z

Qj log(|Qj|−1W )
 . (3.54)

Since for all δ < 1, using the fact that |eiz − 1− iz| ≤ |z|2/2 ≤ |z|2 for all z ∈ R (see for
example [Sat99, Lemma 8.6]) and E[W ] <∞,

E
[∫ ∞

0

∣∣∣eizyS − 1− izyS1{yW ≤ 1}
∣∣∣1{δ < yW}y−2dy

]
≤ E

[∫ ∞
1/W

∣∣∣eizyS − 1
∣∣∣ y−2dy

]
+ E

[∫ 1/W

δ/W

∣∣∣eizyS − 1− izyS
∣∣∣ y−2dy

]
≤ 2E[W ] + |z|2(1− δ)E[W ] ≤ (2 + |z|2)E[W ] <∞ ,

by the dominated convergence theorem, as δ → 0 the first term on the right side of (3.54)
tends to
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ϑ
∫ ∞

0
E
[{
eizyS − 1− izyS1{yW ≤ 1}

}]
y−2dy

= ϑE
[∫ ∞

0

{
e−izyS − 1− izyS1(0,1](y)

}
y−2dy

]
+ izϑE

[
S
∫ 1

1/W
y−1dy

]
.

Altogether, using the integral from [Sat99, Page 85] we get that

lim
δ→0

logE
[
eizV0,δ(1)

]
= −ϑπ2 |z|E[|S|]− iϑz log |z|E[S]− izϑE[S log |S|] + ic0ϑzE[S]

+ izϑE[S logW ]− izϑE[S logW ]− ϑE[
∑
j∈Z

Qj log(|Qj|−1)] ,

where
c0 =

∫ ∞
0

sin y − y1(0,1](y)
y2 dy .

Setting σ = ϑE[|S|], φ = E[S]
E[|S|] and

a = ϑ

c0E[S]− E[S log |S|]− E

∑
j∈Z

Qj log(|Qj|−1)
 ,

since the term izϑE[S logW ] cancels out, we obtain that

logE
[
eizV (1)

]
= lim

k→∞
logE

[
eizV0,δk (1)

]
= lim

δ→0
logE

[
eizV0,δ(1)

]
= −π2σ|z|

(
1 + i 2

π
φsgn(z) log |z|

)
+ iaz .
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Chapter 4

Sequence alignment problem

The local alignment problem was studied extensively in the probabilistic setting, see
for instance [AGG89, DKZ94b, Han06] and references therein. We first explain its key
ingredients and also state our main result in that context.

4.1 Introduction

Let (Ai)i∈N and (Bi)i∈N be two independent i.i.d. sequences taking values in a finite
alphabet E. Also, let A and B be independent random variables distributed as A1 and
B1, respectively. For a fixed score function s : E × E → R and for all i, j ∈ N and
m = 0, 1, . . . , i ∧ j (where i ∧ j := min{i, j}), let

Smi,j =
m−1∑
k=0

s(Ai−k, Bj−k)

be the score of aligning segments Ai−m+1, . . . , Ai and Bj−m+1, . . . , Bj. Further, for all
i, j ∈ N define

Si,j = max{Smi,j : 0 ≤ m ≤ i ∧ j} . (4.1)

From biological perspective it is essential to understand the extremal distributional
properties of the random matrix (Si,j : 1 ≤ i, j ≤ n) as n → ∞. The following simple
assumption is standard in this context, cf. Dembo et al. [DKZ94b].

Assumption 4.1.1. The distribution of s(A,B) is nonlattice, i.e. P(s(A,B) ∈ δZ) < 1
for all δ > 0, and satisfying

E[s(A,B)] < 0 and P(s(A,B) > 0) > 0 . (4.2)

The lattice case is excluded for simplicity in the sequel. It is known to be conceptually
similar, although technicaly more involved. Note further that, like [DKZ94b] and [Han06],
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we consider only gapless local alignments.
Denote by µA and µB the distributions of A and B, respectively, and assume for

simplicity that µA(e), µB(e) > 0 for each letter e in the alphabet E. By Assumption 4.1.1
there exists the unique strictly positive solution α∗ of the Lundberg equation

m(α∗) := E[eα∗s(A,B)] = 1 . (4.3)

Let µ∗ be the (exponentially tilted) probability measure on E × E given by

µ∗(a, b) = eα
∗s(a,b)µA(a)µB(b) , a, b ∈ E . (4.4)

For two probability measures µ and ν on a finite set F , denote by H(ν|µ) the relative
entropy of ν with respect to µ, i.e.

H(ν|µ) =
∑
x∈F

ν(x) log ν(x)
µ(x) .

Dembo et al. [DKZ94b] introduce one final condition on the tilted probability measure
µ∗. It essentially restricts extremal dependence within the field (Si,j) in a way which seems
biologically meaningful and exactly suits their, as well as our, asymptotic analysis of the
field.

Assumption 4.1.2 (Condition (E’) in [DKZ94b]). It holds that

H(µ∗|µA × µB) > 2 {H(µ∗A|µA) ∨H(µ∗B|µB)} , (4.5)

where µ∗A and µ∗B denote the marginals of µ∗.

Note that (4.5) holds automatically if µA = µB and if the score function s is symmetric
(i.e. s(a, b) = s(b, a)) and not of the form s(a, b) = s(a) + s(b), see [DKZ94a, Section 3].

Under Assumptions 4.1.1 and 4.1.2, Dembo et al. [DKZ94b] (see also Hansen [Han06])
showed that the distribution of the maximal local alignment score Mn = max1≤i,j≤n Si,j ,

asymptotically follows a Gumbel distribution. More precisely, as n → ∞, for a certain
constant K∗ > 0,

P
(
Mn −

2 log(n)
α∗

≤ x

)
→ e−K

∗e−α
∗x
, x ∈ R . (4.6)

Observe that the field (Si,j) consists of dependent random variables. For instance,
simple arguments can be given (cf. (4.9) below) showing that any extreme score, i.e. score
exceeding a given large threshold, will be followed by a run of extreme scores along the
diagonal. This phenomena is illustrated in Figure 4.1 for both real life and simulated
sequences. The approach of [DKZ94b] is based on showing that the number of such extreme
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clusters, as both sample size and the threshold tend to infinity, becomes asymptotically
Poisson distributed.

Figure 4.1: Heatmap of large local scores for alignments of two simulated sequences (left)
and two regions of human and fruit-fly genome (right). Each sequence is 1000 nucleotides
long.

In the sequel, we show that one can give much more detailed information about the
structure within extreme clusters. In particular, following the method below one can
deduce the asymptotic distribution of arbitrary functionals of upper order statistics of the
field (Si,j).

Observe that for each i, j ∈ N, Si,j can be seen as the maximum of a truncated random
walk (Smi,j)m=0,...,i∧j which by (4.2) has negative drift. It can be rigorously shown, see
Remark 4.3.3, that in all our asymptotic considerations this truncation and related edge
effects can be ignored. Therefore we assume throughout that sequences (Ai) and (Bi)
extend over all integers i ∈ Z. This makes scores Smi,j well defined for all i, j ∈ Z and
m ≥ 0, and consequently we update the original field of scores (Si,j) as follows

Si,j = sup{Smi,j : m ≥ 0} , i, j ∈ Z . (4.7)

By construction, the field (Si,j) is stationary. Moreover, by the classical Cramér-
Lundberg theory (see e.g. [Asm03, Part C, XIII.5]), Assumption 4.1.1 implies that the tail
of Si,j is asymptotically exponential, or more precisely

P(Si,j > u) ∼ Ce−α
∗u , as u→∞ , (4.8)

for some C > 0. Note that, in the language of extreme value theory, marginal distribution
of the field (Si,j), belongs to the maximum domain of attraction of the Gumbel distribution.
In this light, the limiting result (4.6) may not be very surprising, but its proof remains
quite involved due to the clustering of extremal scores of the field (Si,j). Observe, the field
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(Si,j) satisfies the following simple (Lindley) recursion along any diagonal, namely

Si,j = (Si−1,j−1 + εi,j)+ , (4.9)

where random variables εi,j = s(Ai, Bj) have negative mean.
Our main result in this context, strengthens (4.6) to convergence in distribution of

point processes based on the Si,j’s. The key observation is that, under Assumptions
4.1.1 and 4.1.2, the transformed field (eSi,j) is jointly regularly varying with index α∗, see
Proposition 4.2.1 below. Distribution of its spectral tail field (Θi,j)i,j∈Z can be described in
detail using two auxiliary independent i.i.d. sequences (εi)i≥1 and (ε∗i )i≥1 whose distributions
correspond to the distributions of s(A,B) under the product measure µA × µB and under
the tilted measure µ∗ from (4.4), respectively. Set Sε0 = 0 and

Sεm =
m∑
i=1

εi , for m ≥ 1 and Sεm = −
−m∑
i=1

ε∗i , for m ≤ −1 . (4.10)

Then Θi,j = 0 for all i 6= j and Θm,m = eS
ε
m , for m ∈ Z . Observe, (Sεm) is an asymmetric

double sided random walk.

Theorem 4.1.3. Under Assumptions 4.1.1 and 4.1.2, as n→∞,

n∑
i,j=1

δ( (i,j)
n

, Si,j−
2 log(n)
α∗

) d−→
∑
k∈N

∑
m∈Z

δ(T k,P̃k+Q̃km)

in the Mp([0, 1]2 × R), where the Poisson cluster process in the limit has the following
components

(i) ∑k∈N δ(T k,P̃k) is a Poisson point process on [0, 1]2 × R with intensity measure Leb×
d(−ϑCe−α∗u) where, for an exponential random variable Γ with parameter α∗ inde-
pendent of (Sεm),

ϑ = P(sup
m≥1

Sεm + Γ ≤ 0) ;

(ii) (Q̃k
m)m∈Z, k ∈ N are i.i.d. two-sided R-valued sequences, independent of ∑k∈N δ(T k,P̃k)

and with common distribution equal to the distribution of the random walk (Sεm)m
conditioned on staying negative for m < 0 and nonpositive for m > 0.

For the convergence in distribution above, bounded sets in [0, 1]2 × R are those which
are contained in sets [0, 1]2 × (x,∞), x ∈ R. Observe that application of the theorem
yields (4.6) at once with the following new expression for the key constant therein

K∗ = ϑC .
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The expression for the extremal index ϑ appears frequently in applications, see e.g. de
Haan et al. [dHRRdV89] where an algorithm for its numerical computation is suggested.
The constant C arising from (4.8) is also frequently encountered in the literature, for
various expressions of C we refer to [Asm03, Part C, XIII.5].

The distribution of random walks conditioned to stay negative (or positive) is discussed
in detail by Tanaka [Tan89] and Biggins [Big03]. Consequently, one can apply those results
to simulate and precisely describe the distribution of Q̃k

m’s. Putting all these ingredients
together, one can use Theorem 4.1.3 to give a probabilistic and geometric intepretation of
the plots in Figure 4.1. Note that this type of limiting behaviour was conjectured already
by Metzler et al. [MGW02] who suggested a marked Poissonian model of local alignments
with essentially same features.

The rest of the chapter is devoted to the proof of Theorem 4.1.3 using the theory of
regularly varying random fields described Chapter 2. For some of the key technical results
in our analysis we are indepted to Hansen [Han06] who even allows sequences (Ai) and
(Bi) to be Markov chains. In the i.i.d. setting, however, the corresponding proofs, which
rely on change of measure arguments, are much less involved. For an alternative approach
based on combinatorial arguments see Dembo et al. [DKZ94b].

This chapter is based on the paper [BP18b].

4.2 The tail field

Recall, (Ai)i∈Z and (Bi)i∈Z are independent i.i.d. sequences, Smi,j = ∑m−1
k=0 s(Ai−k, Bj−k)

for i, j ∈ Z and m ≥ 0, and Si,j = sup{Smi,j : m ≥ 0} for i, j ∈ Z. We assume throughout
that Assumptions 4.1.1 and 4.1.2 hold.

Consider a positive stationary field X = (Xi,j : i, j ∈ Z) defined by

Xi,j = eSi,j , i, j ∈ Z .

Observe that by (4.8), for α∗ > 0 satisfying E[eα∗s(A,B)] = 1,

P(Xi,j > u) ∼ Cu−α
∗
, as u→∞ , (4.11)

i.e. marginal distributions of X are regularly varying. More importantly, the transformed
field X has a tail field, i.e. it is jointly regularly varying. Observe, (4.9) implies that X

satisfies

Xm,m = max{Xm−1,m−1e
s(Am,Bm), 1} ,

for each m ∈ Z, where Xm−1,m−1 is independent of the i.i.d. sequence (es(Ak,Bk) : k ≥ m),
cf. Example 2.3.8.
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Proposition 4.2.1. The field X is regularly varying with tail index α∗ and with the
spectral tail field Θ = (Θi,j : i, j ∈ Z) satisfying

(i) Θi,j = 0 for i, j ∈ Z, i 6= j.

(ii) Θm,m = eS
ε
m for m ∈ Z, where Sε0 = 0 and

Sεm =
m∑
i=1

εi , for m ≥ 1 and Sεm = −
−m∑
i=1

ε∗i , for m ≤ −1 , (4.12)

for independent i.i.d. sequences (εi)i≥1 and (ε∗i )i≥1 whose distributions correspond to
the distributions of s(A,B) under the product measure µA × µB and under the tilted
measure µ∗ from (4.4), respectively.

The tail field Y = (Yi,j)i,j∈Z of X is therefore given by Yi,j = YΘi,j where Y satisfies
P(Y ≥ y) = y−α

∗ for y ≥ 1 and is independent from Θ. Observe, E[ε1] = E[s(A,B)] < 0
and since the moment generating function m(α) = E[eαs(A,B)] is strictly convex and
m(0) = m(α∗) = 1,

E[ε∗1] = E[s(A,B)eα∗s(A,B)] = dm
dα (α∗) > 0 .

This implies that P(lim|m|→∞ Sεm = −∞) = 1 so Θ and Y are elements of l0 almost surely.
In particular, by (2.21),

0 < ϑ = P( sup
(i,j)�l(0,0)

Yi,j ≤ 1) = P(Y max
m≥1

Θm,m ≤ 1) = P(log Y + max
m≥1

Sεm ≤ 0) , (4.13)

where, note, log Y is a standard exponential random variable with index α∗. Also, by
(2.24), the distribution of the random element Q = (Qi,j)i,j∈Z in l̃0 is determined by

Qi,j = 0 for i 6= j , (Qm,m)m∈Z d=
(
eS

ε
m ,m ∈ Z | sup

m≤−1
Sεm < 0, sup

m≥1
Sεm ≤ 0

)
. (4.14)

To prove Proposition 4.2.1 we need two auxiliary lemmas. The first one is a rough
estimate using Markov inequality, see Section 4.4 for the proof.

Lemma 4.2.2. There exist a constant c0 > 0 such that

lim
u→∞

e2α∗uP
(

max
m>c0u

Sm0,0 ≥ 0
)

= 0 .

Before we state the second lemma, observe first that, using E[eα∗s(A,B)] = 1, for all
u ≥ 0 and any integer m ≥ 0,

P(Sm0,0 ≥ u) = E[e−α∗Sm0,0eα∗Sm0,01
{
Sm0,0 ≥ u

}
] ≤ e−α

∗uP∗(Sm0,0 ≥ u) ≤ e−α
∗u ,
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where the tilted measure P∗ makes pairs (Ak, Bk) for k = −m+ 1, . . . , 0, independent and
distributed according to the measure µ∗. The following result is a special case of [Han06,
Lemma 5.11]. The proof relies on change of measure arguments and the Azuma–Hoeffding
inequality for martingales. The key fact is that, whenever µ∗ 6= µ∗A × µ∗B (which holds
under (4.5)),

EνA×νB [s(A,B)] < Eµ∗ [s(A,B)]

for all νA ∈ {µA, µ∗A} and νB ∈ {µB, µ∗B}, where Eµ denotes expectation assuming (A,B)
is distributed according to µ, see [DKZ94a, beginning of Section 3].

Lemma 4.2.3 ([Han06, Lemma 5.11]). There exists an 0 < ε0 < 1 such that for all u > 0,

sup
i,j∈Z, i 6=j
m,l≥0

P(Sm0,0 > u, Sli,j > u) ≤ 2e−(1+ε0)α∗u .

Since the proof given in [Han06, Lemma 5.11] is simpler in the i.i.d. setting, for
convenience, we present it in Section 4.4. We are now in position to prove Proposition 4.2.1.

Proof of Proposition 4.2.1. Let Θ be from the statement of the proposition. We first show
that, as u→∞,

X−1
0,0 XI

∣∣∣ X0,0 > u
d−→ ΘI , (4.15)

for all I ⊆ Z2 \ {(m,m) : m ≤ −1}. Since X0,0 is regularly varying with index α∗, this
will prove the regular variation property of X and show that the spectral tail field
Θ′ = (Θ′i,j)i,j∈Z of X satisfies

(Θ′i,j : (i, j) ∈ Z2 \ {(m,m) : m ≤ −1}) d= (Θi,j : (i, j) ∈ Z2 \ {(m,m) : m ≤ −1}) ,
(4.16)

see Remark 2.2.4.
Observe, by (4.9), for each m ≥ 1,

Xm,m = max{Xm−1,m−1e
s(Am,Bm), 1} .

Now since X0,0 is regularly varying and independent of the i.i.d. sequence (es(Ak,Bk))k≥1,
[Seg07, Theorem 2.3] implies that for all m ≥ 0, as u→∞,

X−1
0,0 (X0,0, X1,1, . . . , Xm,m)

∣∣∣ X0,0 > u
d−→
(
1, es(A1,B1), . . . ,

m∏
k=1

es(Ak,Bk)
)

d= (Θ0,0,Θ1,1, . . . ,Θm,m) .
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Since Θi,j = 0 for all i, j ∈ Z, i 6= j, (4.15) will follow if we show that for all such i, j,

P(Xi,j > X0,0η | X0,0 > u) ≤ P(Xi,j > uη | X0,0 > u)
= P(Si,j > log u+ log η | S0,0 > log u)→ 0 , as u→∞ ,

(4.17)

for all η ∈ (0, 1).
Fix now i, j ∈ Z such that i 6= j. Using (4.8) and Lemmas 4.2.2 and 4.2.3, for every

M ≥ 0,

lim sup
u→∞

P(Si,j > u−M | S0,0 > u) = lim sup
u→∞

C−1eα
∗uP(S0,0 > u, Si,j > u−M)

≤ lim sup
u→∞

C−1eα
∗uP

(
max

1≤m≤c0u
Sm0,0 > u−M, max

1≤l≤c0u
Sli,j > u−M

)
≤ lim sup

u→∞
2C−1e(1+ε)α∗Me−εα

∗u = 0 ,

hence (4.17) holds.
Finally, we extend (4.16) to equality in distribution on whole RZ2 . First, fix m ≥ 1

and note that by (2.10) and E[eα∗s(A,B)] = 1,

P(Θ′−m,−m > 0) = E[Θα∗

m,m] = 1 .

Further, for arbitrary bounded measurable function h : R2m+1 → R, using (2.10) and
(4.16),

E[h(Θ′−m,−m, . . . ,Θ′m,m)] = E[h(Θ−1
m,m(Θ0,0, . . . ,Θ2m,2m))Θα∗

m,m]

= E
[
h(e−

∑m

k=1 εk , e−
∑m

k=2 εk , . . . , eεm , 1, eεm+1 , . . . , e
∑2m

k=m+1 εk)
m∏
k=1

eα
∗εk
]
.

By definition of (Θk,k)k∈Z, this implies that

E[h(Θ′−m,−m, . . . ,Θ′m,m)] = E[h(Θ−m,−m, . . . ,Θm,m)] .

4.3 Checking assumptions of Theorem 2.3.14

In view of (4.11), define
an = (Cn2)1/α∗ , n ∈ N ,

so that limn→∞ n
2P(X0,0 > an) = 1. The proof of the following result is postponed to

Section 4.4.
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Proposition 4.3.1. The random field X satisfies Assumption 2.3.2 for every sequence of
positive integers (rn) such that limn→∞ rn =∞ and limn→∞ rn/n

ε = 0 for all ε > 0.

Take now sequences of positive integers (ln) and (rn) such that

lim
n→∞

log n/ln = lim
n→∞

ln/rn = lim
n→∞

rn/n
ε = 0

for all ε > 0 and set kn = bn/rnc. Recall blocks of indices Jn,i ⊆ {1, . . . , knrn}2 of
size r2

n from (2.11) and blocks Xn,i := XJn,i for i ∈ In := {1, . . . , kn}2. To show that
Xn,i’s satisfy the asymptotic independence condition of Theorem 2.3.14, we will apply
Proposition 1.4.5. However, to use it we first need to alter the original blocks.

First, cut off edges of Jn,i’s by ln, more precisely, define

J̃n,i := {(i, j) : (i− 1) · rn + 1 ≤ (i, j) ≤ i · rn − ln · 1}, i ∈ In .

Further, for all i, j ∈ Z and m ∈ N let εmi,j be the empirical measure on E2 of the sequence
(Ai−k, Bj−k), k = 0, . . . ,m− 1, i.e.

εmi,j =
m−1∑
k=0

δ(Ai−k,Bj−k) .

Notice, the score Smi,j = ∑m−1
k=0 s(Ai−k, Bj−k) is then equal to the integral of the score

function s w.r.t. εmi,j . Further, for η > 0 denote by Bη the set of all probability measures ν
on E2 such that ||ν − µ∗|| := ∑

a,b∈E |ν(a, b)− µ∗(a, b)| < η.
Let bn = log an, then for all η > 0 and i, j ∈ Z define the random variable S̃i,j = S̃i,j(n, η)

by
S̃i,j = max{Smi,j : 1 ≤ m ≤ c0bn, ε

m
i,j ∈ Bη} (4.18)

with c0 > 0 from Lemma 4.2.2 and max ∅ := 0, and define modified blocks X̃n,i = X̃n,i(η)
in l̃0 by

X̃n,i = (eS̃i,j : (i, j) ∈ J̃n,i) . (4.19)

It turns out that by restricting to the X̃n,i’s one does not lose any relevant information. To
understand the role of X̃n,i’s, observe that for any nonnegative and measurable function
f on [0, 1]2 × l̃0,0,

∣∣∣E [e−∑i∈In
f(i/kn,Xn,i/an)

]
−∏i∈InE

[
e−f(i/kn,Xn,i/an)

] ∣∣∣
≤
∣∣∣E [e−∑i∈In

f(i/kn,Xn,i/an)
]
− E

[
e−
∑

i∈In
f(i/kn,X̃n,i/an)

]∣∣∣
+
∣∣∣∏i∈InE

[
e−f(i/kn,Xn,i/an)

]
−∏i∈InE

[
e−f(i/kn,X̃n,i/an)

]∣∣∣
+
∣∣∣E[e−

∑
i∈In

f(i/kn,X̃n,i/an)]−∏i∈InE[e−f(i/kn,X̃n,i/an)]
∣∣∣ =: I1 + I2 + I3 . (4.20)

Recall now the convergence determining family F ′0 from Section 2.3.6. The proof of
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the following result is in Section 4.4.

Lemma 4.3.2. For every η > 0 and every f ∈ F ′0, I1 + I2 → 0 as n→∞.

Remark 4.3.3. In particular, since I1 → 0 for all f ∈ F ′0, point processes
∑

i∈In δ(i/kn,X̃n,i),
which are based on S̃i,j ’s, converge in distribution if and only if point processes∑i∈In δ(i/kn,Xn,i),
which are based on Si,j’s from (4.7), do, and in that case their limits coincide. Similarly,
one can show that the former (and therefore the latter) convergence is equivalent to
convergence of point processes of blocks based on nonstationary scores from (4.1). In
particular, point process convergence results given below hold even with Si,j’s from (4.7)
replaced with the ones from (4.1).

By (4.20) and Lemma 4.3.2, to show that (i/kn,Xn,i/an)’s are AI(F ′0), it is sufficient
to find at least one η > 0 such that I3 → 0 for all f ∈ F ′0, i.e. that (i/kn, X̃n,i/an)’s are
AI(F ′0). For that purpose, we apply the following variant of Proposition 1.4.5. Recall, for
x = (xj)j∈Z2 ∈ l̃0, ‖x‖∞ = maxj∈Z2 |xj|, in particular,

‖X̃n,i‖∞ = max
j∈J̃n,i

|Xj| , i ∈ In .

Corollary 4.3.4. Let for each n ∈ N, (X̃n,i : i ∈ In) be identically distributed random
elements in l̃0 and (an) a sequence such that for all ε > 0,

lim sup
n→∞

k2
nP(‖X̃n,1‖∞ > anε) <∞ . (4.21)

If there exists a neighborhood structure Bn(i) ⊆ In, n ∈ N, i ∈ In, such that, denoting
‖Bn‖ = maxi∈In |Bn(i)|,

(i) As n→∞, ‖Bn‖/k2
n → 0 and for all ε > 0,

k2
n‖Bn‖ max

i∈In
i 6=j∈Bn(i)

P(‖X̃n,i‖∞ > anε, ‖X̃n,j‖∞ > anε)→ 0 ; (4.22)

(ii) For n big enough, X̃n,i is independent of σ(X̃n,j : j /∈ Bn(i)) for each i ∈ In.

Then the family ((i/kn, X̃n,i/an) : n ∈ N, i ∈ In) is AI(F ′0).

Proof. First, observe that for any sequence εm ↘ 0 sets K ′m = [0, 1]2 × {x ∈ l̃0,0 : ‖x‖∞ >

εm}, m ∈ N, form a base for the family of bounded sets of [0, 1]2 × l̃0,0. Next, regardless of
ordering of In = {1, . . . , kn}2, |B̃n(i)| ≤ |Bn(i)| for all i ∈ In. Since X̃n,i’s are identically
distributed,

bmn,1 =
∑
i∈In

∑
j∈B̃n(i)

P((i/kn, X̃n,i/an) ∈ K ′m) · P((j/kn, X̃n,j/an) ∈ K ′m)

≤ k2
n‖Bn‖P(‖X̃n,1‖∞ > anεm)2 .
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In view of (4.21), lim supn→∞ bmn,1 ≤ (const.) lim supn→∞ ‖Bn‖/k2
n = 0 for all m ∈ N.

Similarly, (4.22) implies that limn→∞ b
m
n,2 = 0 for all m ∈ N, and by (ii), bn,3(f) = 0 for

every measurable function f ≥ 0 on [0, 1]d × l̃0,0 and n big enough. Applying Proposition
1.4.5 finishes the proof.

For every i = (i1, i2) ∈ In define its neighborhood Bn(i) by

Bn(i) = {j = (j1, j2) ∈ In : i1 = j1 or i2 = j2} .

Observe, |Bn(i)| = 2kn − 1 for all i ∈ In and hence limn→∞ ‖Bn‖/k2
n = 0. Further, by

(4.11) for all ε > 0,

lim sup
n→∞

k2
nP(‖X̃n,1‖∞ > anε) ≤ lim sup

n→∞
k2
nr

2
nP(eS̃0,0 > anε)

≤ lim sup
n→∞

k2
nr

2
nP(X0,0 > anε) = ε−α

∗
<∞ .

Next, recall that Smi,j = ∑m−1
k=0 s(Ai−k, Bj−k) so by (4.18), for every n ∈ N,

S̃i,j ∈ σ(Ai−bc0bnc+1, . . . , Ai, Bj−bc0bnc+1, . . . , Bj) .

By construction of J̃n,i’s and choice of (ln) such that, in particular, limn→∞ c0bn/ln =
limn→∞ ln/rn = 0, this implies that, for n large enough, X̃n,i and blocks (X̃n,j : j /∈ Bn(i))
are constructed from completely different sets of Ak’s and Bk’s, and therefore independent.

Further, when j ∈ Bn(i), j 6= i, arbitrary scores Smi,j and Sli′,j′ which build blocks X̃n,i

and X̃n,j, respectively (i.e. (i, j) ∈ J̃n,i, (i′, j′) ∈ J̃n,j and 1 ≤ m, l ≤ c0bn), for n large
enough, depend on completely different sets of variables from at least one of the sequences
(Ak) or (Bk). Thus, the following result, which is a special case of [Han06, Corollary 5.4],
applies. It follows from [Han06, Lemma 5.3] under condition (12) in [Han06], which, when
(Ai) and (Bi) are i.i.d. sequences, is equivalent to Assumption 4.1.2, see [Han06, Remark
3.8].

Lemma 4.3.5 ([Han06, Corollary 5.4]). There exist constants ε2, η > 0 such that for all
u > 0

P(Sm0,0 > u, Sli,j > u, εm0,0, ε
l
i,j ∈ Bη) ≤ e−(3/2+ε2)α∗u

uniformly over all i, j ∈ Z and m, l ∈ N such that min{i, j} < −m+1 or max{i−l, j−l} >
0.

For completeness, in Section 4.4 we present a (lengthy) proof of the previous result by
following the lines of [Han06, Lemma 5.3, Remark 3.8]. For a different (and, in this i.i.d.
setting, probably better) argument, cf. Dembo et al. [DKZ94b, pp. 2032–2033]. Note, the
fact that E is finite is here exploited.
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Take now η > 0 from the previous result and recall the corresponding X̃n,i’s. For n
big enough and every ε > 0 we get that

k2
n‖Bn‖ max

i∈In
i 6=j∈Bn(i)

P(‖X̃n,i‖∞ > anε, ‖X̃n,j‖∞ > anε)

≤ k2
n2knr4

n(c0bn)2e−(3/2+ε2)α∗(bn+log ε) ∼ (const.)n3rnb
2
nn
−3−2ε2 → 0 ,

as n→∞, by the choice of (rn) and since bn ∼ 2 log n/α∗.
Hence by Corollary 4.3.4, for this η, blocks X̃n,i, and therefore the original blocks Xn,i,

satisfy the asymptotic independence condition. We can now apply Theorem 2.3.14.

Theorem 4.3.6. Under Assumptions 4.1.1 and 4.1.2, for any sequence of positive integers
(rn) such that limn→∞ rn =∞ and limn→∞ rn/n

ε → 0 for all ε > 0,

∑
i∈In

δ(i/kn,Xn,i/(Cn2)1/α∗ )
d−→

∑
k∈N

δ(T k,Pk(Qki,j)i,j∈Z)

inMp([0, 1]2 × l̃0,0) where the limit is described in Theorem 2.3.14, with ϑ > 0 given by
(4.13) and distribution of Q in l̃0 determined by (4.14).

In particular, application of Corollary 2.3.15 yields that

n∑
i,j=1

δ((i,j)/n,Xi,j/(Cn2)1/α∗ )
d−→

∑
k∈N

∑
i,j∈Z

δ(T k,PkQki,j)
(4.23)

inMp([0, 1]2 × (0,∞)). Consider now spaceMp([0, 1]2 × R) with a set B ⊆ [0, 1]2 × R
being bounded if B ⊆ [0, 1]2 × (x,∞) for some x ∈ R. It is easy to see that

∑
k∈N

δ(tk,xk) 7→
∑
k∈N

δ(tk, log(xkC1/α∗ ))

is a well–defined mapping from Mp([0, 1]2 × (0,∞)) to Mp([0, 1]2 × R) which is also
continuous with respect to vague topologies on these spaces (see e.g. [Res87, Proposition
3.18]). Theorem 4.1.3 now follows easily from (4.23) via continuous mapping theorem and
standard Poisson process transformation (see e.g. [Res87, Proposition 3.7]).

4.4 Postponed proofs

Proof of Lemma 4.2.2

By Markov inequality, for any λ ≥ 0 and all u > 0

P
(

max
m>c0u

Sm0,0 ≥ 0
)
≤
∞∑
l=0

P
(
S
dc0ue+l
0,0 ≥ 0

)
≤
∞∑
l=0

E
[
eλS

dc0ue+l
0,0

]
=
∞∑
l=0

m(λ)dc0ue+l ,
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where m(λ) = E[eλs(A,B)] is the moment generating function of s(A,B). Fix any 0 < λ0 <

α∗. By strict convexity of m and m(α∗) = 1, 0 < m(λ0) < 1 and in particular

P
(

max
m≥c0u

Sm0,0 ≥ 0
)
≤ ec0u logm(λ0)

∞∑
l=0

m(λ0)l.

Since the series above is summable, taking c0 strictly larger than −2α∗/ logm(λ0) finishes
the proof.

Proof of Lemma 4.2.3

Fix an u > 0 and takem, l ≥ 0 arbitrary. Note, sinceE is finite, ‖s‖ := sup(a,b)∈E2 |s(a, b)| <
∞ , and in particular, there is nothing to prove if m or l is smaller than u/‖s‖. Assume
therefore that m ∧ l ≥ u/‖s‖.

Denote by δA and δB the number of variables of the sequence (Ak) and (Bk), respectively,
which appear both in Sm0,0 and Sli,j. Also, fix any 0 < γ < 1/2.

Case 1. Assume that δA∨δB ≤ γu/‖s‖. In this case Sm0,0 consist of at least (1−2γ)u/‖s‖
summands s(Ak, Bk) which are independent of Sli,j . Let S∗0,0 be the sum of those s(Ak, Bk)’s.
Therefore,

P(Sm0,0 > u, Sli,j > u) ≤ P(S∗0,0 ≥ (1− 2γ)u, Sli,j > u)
= P(S∗0,0 ≥ (1− 2γ)u)P(Sli,j > u) ≤ e−(2−2γ)α∗u . (4.24)

Case 2. Assume w.l.o.g. that δA > γu/‖s‖. Decompose Sm0,0 = S1 + S2 and Sli,j =
S̃2 + S3 where S2 and S̃2, respectively, is the sum of scores s(Ak, Bk) and s(Ak, Bk+(j−i)),
respectively, for δA number of k’s. In particular,

P(Sm0,0 > u, Sli,j > u) ≤ P(Sm0,0 > u, S̃2 ≥ S2) + P(Sli,j > u, S2 ≥ S̃2) . (4.25)

A change of measure yields

P(Sm0,0 > u, S̃2 ≥ S2) ≤ e−α
∗uP∗(S̃2 ≥ S2),

where, under P∗, pairs (Ak, Bk) from S2 are i.i.d. and distributed according to µ∗, and
pairs (Ak, Bk+(j−i)) from S̃2 are independent and distributed according to µ∗A × µ∗B or
µ∗A × µB. The key thing now is that, whenever µ∗ 6= µ∗A × µ∗B (which holds under (4.5)),

EνA×νB [s(A,B)]− Eµ∗ [s(A,B)] < 0 (4.26)

for all νA ∈ {µA, µ∗A} and νB ∈ {µB, µ∗B}, where Eµ denotes expectation assuming (A,B)
is distributed according to µ, see [DKZ94a, beginning of Section 3]. An application of
[Han06, Theorem 5.7] (with η = 6‖s‖) which is a consequence of the Azuma-Hoeffding
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inequality, together with δA > γu/‖s‖, yields that P∗(S̃2 ≥ S2) ≤ e−εα
∗u with ε = ε(γ) =

ζ2γ/(α∗72‖s‖3) where ζ < 0 is the maximum in (4.26). By analogous arguments, one
obtains the same bound for the second term in (4.25). Together with (4.24) and optimizing
over γ, this yields the result with ε0 = max0<γ<1/2 min{1− 2γ, ε(γ)}.

Proof of Proposition 4.3.1

Let (rn) be an arbitrary sequence of positive integers satisfying rn →∞ and rn/nε → 0
for all ε > 0. We have to show that for an arbitrary u > 0

lim
m→∞

lim sup
n→∞

P
(

max
m<|(i,j)|≤rn

Xi,j > anu
∣∣∣∣ X0,0 > anu

)
= 0 . (4.27)

We deal with the diagonal elements using arguments from [Bas00, Lemma 4.1.4]. First,
notice that by (4.9), for each k ≥ 1 we can decompose

Xk,k = max{emax0≤l≤k S
l
k,k , X0,0e

Skk,k} ,

with (Slk,k)0≤l≤k being independent of X0,0. Hence, using stationarity,

P
(

max
m<|k|≤rn

Xk,k > anu
∣∣∣∣ X0,0 > anu

)
≤ 2

rn∑
k=m+1

P(Xk,k > anu | X0,0 > anu)

≤ 2rnP(emax0≤l≤rn S
l
0,0 > anu) + 2

rn∑
k=m+1

P(X0,0e
Skk,k > anu | X0,0 > anu).

Since rn/n2 → 0, the choice of (an) and (4.11) imply that

2rnP(emax0≤l≤rn S
l
0,0 > anu) ≤ 2rnP(X0,0 > anu)→ 0 , as n→∞ .

For the second term, take an arbitrary 0 < λ0 < α∗ so in particular 0 < m(λ0) =
E[eλ0s(A,B)] < 1 by strict convexity of m. Apply Markov’s inequality and use independence
between X0,0 and Skk,k to obtain

rn∑
k=m+1

P(X0,0e
Skk,k > anu | X0,0 > anu) ≤

E[Xλ0
0,01{X0,0 > anu}]

(anu)λ0P(X0,0 > anu)

rn∑
k=m+1

m(λ0)k .

Variant of Karamata’s theorem (see [BDM16, Appendix B.4], also [BGT87, pp. 26–28])
now implies that

lim
m→∞

lim sup
n→∞

P
(

max
m<|k|≤rn

Xk,k > anu

∣∣∣∣ X0,0 > anu

)
≤ α∗

α∗ − λ0
lim
m→∞

∞∑
k=m+1

m(λ0)k = 0 .

It remains to deal with the non diagonal terms. More precisely, in order to obtain
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(4.27), we will show that, denoting bn = log an and M = log y,

lim sup
n→∞

P
(

max
|(i,j)|≤rn, i 6=j

Si,j > bn +M
∣∣∣∣ S0,0 > bn +M

)

= C−1eα
∗M lim sup

n→∞
eα
∗bnP

(
max

|(i,j)|≤rn, i 6=j
Si,j > bn +M, S0,0 > bn +M

)
= 0 .

Notice that eα∗bn = Cn2. First, since rn/n→ 0, stationarity and Lemma 4.2.2 give

lim sup
n→∞

eα
∗bnP

 max
|(i,j)|≤rn
k>c0bn

Ski,j ≥ 0

 ≤ lim sup
n→∞

eα
∗bn(2rn + 1)2P

(
max
k>c0bn

Sk0,0 ≥ 0
)

≤ lim sup
n→∞

(2rn + 1)2

Cn2 = 0 .

Now by Lemma 4.2.3 there exist an ε0 > 0 such that

lim sup
n→∞

eα
∗bnP

(
max

|(i,j)|≤rn, i 6=j
Si,j > bn +M, S0,0 > bn +M

)

= lim sup
n→∞

eα
∗bnP

 max
|(i,j)|≤rn, i 6=j

1≤l≤c0bn

Sli,j > bn +M, max
1≤k≤c0bn

Sk0,0 > bn +M


≤ lim sup

n→∞
eα
∗bn(2rn + 1)2(c0bn)22e−(1+ε′)α∗bn

= 2c2
0C
−(1+ε) lim sup

n→∞

(2rn + 1
nε0/2

)2 ( bn
nε0/2

)2

= 0 ,

where the last equality follows by the choice of (rn) and since bn ∼ 2
α∗

log n.

Proof of Lemma 4.3.2

First, we need the following simple result proved by a change of measure argument
and a large deviation bound for empirical measures, cf. the proof of [Han06, Lemma 5.14,
Equation (54)].

Lemma 4.4.1. For all η > 0 there exists an ε1 > 0 such that

lim
u→∞

e(1+ε1)α∗u sup
m≥1

P(Sm0,0 > u, εm0,0 /∈ Bη) = 0 .

Proof. Fix η > 0 and denote Am(u) = {Sm0,0 > u, εm0 /∈ Bη} for m ≥ 1 and u > 0. Note
that, since Sm0 = ∑m−1

k=0 s(A−k, B−k), P(Am(u)) = 0 whenever m ≤ u/‖s‖, so for fixed
u > 0 we only need to deal with P(Am(u)) for m > u/‖s‖.
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First, a change of measure yields

P(Am(u)) = E
[

exp(α∗Sm0,0)
exp(α∗Sm0,0)1Am(u)

]
≤ e−α

∗uP∗(εm0,0 /∈ Bη) ,

where P∗ makes (A−k, B−k), k = 0, . . . ,m−1, i.i.d. elements of E2 with common distribution
µ∗. By Sanov’s theorem (see [DZ10, Theorem 2.1.10])

lim sup
m→∞

1
m

logP∗(εm0,0 /∈ Bη) ≤ − inf
π/∈Bη

H(π | µ∗) .

Since, for a sequence of probability measures (πn) on E2, H(πn | µ∗) → 0 implies that
‖πn − µ∗‖ → 0, for we can find a constant c = c(η) > 0 such that infπ/∈Bη H(π | µ∗) > c.
Hence, for all m > u/‖s‖ with u large enough

P∗(εm0,0 /∈ Bη) ≤ e−mc ≤ e−uc/‖s‖ .

To finish the proof, it suffices to take ε1 := c
‖s‖α∗ > 0.

Proof of Lemma 4.3.2. Take an arbitrary f ∈ F ′0 ⊆ CB+
b ([0, 1]2 × l̃0,0) and let ε > 0 be

such that f(t, (xi,j)i,j) = f(t, (xi,j1{|xi,j |>ε})i,j) for all t ∈ [0, 1]2 and (xi,j)i,j∈Z ∈ l̃0,0 with
f(t,0) = 0.

By the elementary inequality |∏k
i=1 ai−

∏k
i=1 bi| ≤

∑k
i=1 |ai− bi| valid for all k ≥ 1 and

ai, bi ∈ [0, 1] (see e.g. [Dur10, Lemma 3.4.3]),

∣∣∣E [e−∑i∈In
f(i/kn,Xn,i/an)

]
− E

[
e−
∑

i∈In
f(i/kn,X̃n,i/an)

]∣∣∣
+
∣∣∣ ∏

i∈In
E
[
e−f(i/kn,Xn,i/an)

]
−
∏

i∈In
E
[
e−f(i/kn,X̃n,i/an)

]∣∣∣
≤ 2

∑
i∈In

E
∣∣∣e−f(i/kn,Xn,i/an) − e−f(i/kn,X̃n,i/an)

∣∣∣ . (4.28)

Further, denote by Jrn := {1, . . . , rn}2 = Jn,1 and J̃rn := {1, . . . , rn − ln}2 = J̃n,1. Using
stationarity we get that

∑
i∈In

E
∣∣∣e−f(i/kn,Xn,i/an) − e−f(i/kn,X̃n,i/an)

∣∣∣ ≤ k2
n(A1 + A2 + A3) , (4.29)

where

A1 = P(Xi,j > anε for some (i, j) ∈ Jrn \ J̃rn) ,
A2 = P( max

m>c0bn
eS

m
i,j > anε for some (i, j) ∈ J̃rn) ,

A3 = P(eSmi,j > anε and εmi,j /∈ Bη for some (i, j) ∈ J̃rn , 1 ≤ m ≤ c0bn) .
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Observe, |Jrn \ J̃rn| ≤ 2rnln and |J̃rn| ≤ r2
n, and recall that knrn ∼ n as n→∞, so using

stationarity and then (4.11), Lemma 4.2.2 and Lemma 4.4.1, respectively,

lim sup
n→∞

k2
nA1 ≤ lim sup

n→∞
2k2

nrnlnP(X0,0 > anε) = (const.) lim sup
n→∞

ln/rn = 0 ,

lim sup
n→∞

k2
nA2 ≤ lim sup

n→∞
k2
nr

2
nP( max

m>c0bn
Sm0,0 ≥ 0) ≤ lim sup

n→∞
n−2 = 0 ,

lim sup
n→∞

k2
nA3 ≤ lim sup

n→∞
k2
nr

2
nc0bn sup

m≥1
P(Sm0,0 > bn + log ε, εmi,j /∈ Bη)

≤ (const.) lim sup
n→∞

bn/n
2ε1 = 0 .

Therefore, the right hand side, and then also the left hand side, of (4.29) tends to 0 as
n→∞, and by (4.28) this proves the lemma.

Proof of Lemma 4.3.5

Recall, Sm0,0 = ∑m−1
k=0 s(A−k, B−k) and Sli,j = ∑l−1

k=0 s(Ai−k, Bj−k). Assume that i, j ∈ Z
and l,m ∈ N are such that j < −m+1 or j−l > 0 and setm′ = |[−m+1, 0]∩[i−l+1, i]| ≥ 0.

In words, scores Sm0,0 and Sli,j depend on completely different sets of B–variables and
exactly m′ same A–variables are used in both sums. The case when only B–variables are
shared is completely analogous and therefore omitted.

For all η, u > 0 denote by A(u, η) the event {Sm0,0 > u, Sli,j > u, εm0,0, ε
l
i,j ∈ Bη} and for

a function g : E2 → R , by a slight abuse of notation, denote

m(g) = E[eg(A0,B0)], m1(g) = E[eg(A0,B0)+g(A0,B1)] .

Also, for any measure µ on E2 and function g : E2 → R, denote µ(g) = ∑
a,b∈E g(a, b)µ(a, b).

Step 1. ([Han06, Lemma 5.3]) Take arbitrary g : E2 → R and ε > 0. Using a change
of measure argument, we show that there exist a constant η = η(g, ε) > 0 such that for all
u > 0

P(A(u, η)) ≤ exp
(
−u

(
2µ∗(g)− logm1(g)

µ∗(s) − ε
))

. (4.30)

First, observe that lεli,j(g) = ∑l
k=1 g(Ai−k, Bj−k), in particular lεli,j(s) = Sli,j. Further,

define a random variable Lg by

Lg =
exp(mεm0,0(g) + lεli,j(g))

E
[
exp(mεm0,0(g) + lεmi,j(g))

]
= exp

(
mεm0,0(g) + lεli,j(g)− (m+ l − 2m′) logm(g)−m′ logm1(g)

)
.

Independence of A0, B0 and B1, Fubini’s theorem and Jensen’s inequality, imply that
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m1(g) ≥ m(g)2 and this further implies that

Lg ≥ exp
(
mεm0,0(g) + lεli,j(g)− (m+ l) logm1(g)/2

)
. (4.31)

For every ε′ > 0 take an η′ > 0 such that π ∈ Bη′ implies that

|π(g)− µ∗(g)| ∨ |π(s)− µ∗(s)| ≤ ε′ .

Then, on A(u, η′)
mεm0,0(g) + lεli,j(g) ≥ (m+ l) · (µ∗(g)− ε′)

and further, m+ l > 2u/(µ∗(s) + ε′) (recall that µ∗(s) > 0 under (4.5)). Hence, by (4.31),
on A(u, η′)

Lg ≥ exp
(
u

2(α∗(g)− ε′)− logm1(g)
µ∗(s) + ε′

)
.

Since E[Lg] = 1 this gives the bound

P(A(u, η′)) = E
[
Lg
Lg
· 1A(u,η′)

]
≤ exp

(
−u2(µ∗(g)− ε′)− logm1(g)

µ∗(s) + ε′

)
. (4.32)

Note that if g and ε are such that 2µ∗(g)− logm1(g) ≤ εµ∗(s), (4.30) is trivial. Otherwise,
(4.30) follows from (4.32) by taking ε′ > 0 such that

2µ∗(g)− logm1(g)
µ∗(s) − ε = 2(µ∗(g)− ε′)− logm1(g)

µ∗(s) + ε′

and setting η = η′.

Step 2. ([Han06, Remark 3.8]) To finish the proof, it suffices to find a function g and
ε > 0 for which

µ∗(g)− logm1(g)
µ∗(s) − ε ≥

(3
2 + ε

)
α∗ (4.33)

We show that this is always possible under Assumption (4.1.2).

First, since finite measures on E2 can be considered as elements of the finite–dimensional
space RE2 , by Cramér’s theorem (see e.g. [DZ10, Theorem 2.2.30]), the sequence

1
n

n−1∑
i=0

[
δ(Ai,Bi) + δ(Ai,Bi+n)

]
, n ∈ N

of random elements in RE2 satisfies the large deviations principle with the rate function I1

satisfying

I1(2µ∗) = sup
g∈RE2

(2µ∗(g)− logE[eg(A0,B0)+g(A0,Bn)]) = sup
g∈RE2

(2µ∗(g)− logm1(g)) .
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On the other hand, by Sanov’s theorem (see [DZ10, Theorem 2.1.10]), the sequence

1
n

n−1∑
i=0

δ(Ai,Bi,Bi+n) , n ∈ N

of empirical measures on E3 satisfies the large deviations principle with the rate function
H( · | µA × µ2

B).

The contraction principle (see [DZ10, Theorem 4.2.1]) used with the continuous function
h(π)(a, b) = ∑

c[π(a, b, c) + π(a, c, b)] for a, b ∈ E2 and probability measures π on E3, and
uniqueness of the rate function (see [DZ10, Lemma 4.1.4]) imply that

I1(2µ∗) = inf{H(π | µA × µ2
B) : π1,2 + π1,3 = 2µ∗} ,

where the infimum is taken over all probability measures π on E3 with π1,2 and π1,3 being
measures on E2 given by π1,2(a, b) := ∑

c∈E π(a, b, c) and π1,3(a, b) := ∑
c∈E π(a, c, b) for

a, b ∈ E. We now show that the infimum above is obtained for the measure π∗ defined by

π∗(a, b, c) = µ∗(a, b) · µ∗(a, c)
µ∗A(a) > 0 , a, b, c ∈ E .

First, observe that π∗1,2 = π∗1,3 = µ∗. Next,

H(π∗ | µA × µ2
B) =

∑
a,b,c∈E

µ∗(a, b) · µ∗(a, c)
µ∗A(a) log

(
µA(a)eα∗(s(a,b)+s(a,c))

µ∗A(a)

)

= 2α∗µ∗(s)−H(µ∗A | µA) .

On the other hand, any probability measure π on E3 satisfying π1,2 +π1,3 = 2µ∗ necessarily
satisfies

π1(a) :=
∑
b,c∈E

π(a, b, c) = 1
2
∑
b∈E

π1,2(a, b) + 1
2
∑
c∈E

π1,3(a, c) =
∑
b∈E

µ∗(a, b) = µ∗A(a) ,

for all a ∈ E. Using this we get that for all such π,

H(π | µA × µ2
B) = H(π | π∗) + 2α∗µ∗(s)−H(µ∗A | µA) ≥ H(π∗ | µA × µ2

B) ,

and hence

sup
g∈RE2

(2µ∗(g)− logm1(g)) = I1(2µ∗) = 2α∗µ∗(s)−H(µ∗A | µA) .

By definition of µ∗ one can easily show that α∗µ∗(s) = H(µ∗ | µA × µB) , so we conclude
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that under (4.1.2),

sup
g∈RE2

(2µ∗(g)− logm1(g)) = 2H(µ∗ | µA × µB)−H(µ∗A | µA)

>
3
2H(µ∗ | µA × µB) = 3

2α
∗µ∗(s) .

Hence, for ε > 0 small enough there exists a function g on E2 such that

2µ∗(g)− logm1(g)
µ∗(s) − ε ≥

(3
2 + ε

)
α∗ ,

i.e. (4.33) holds.
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Summary

For a stationary, regularly varying and weakly dependent R–valued time series (Xi)i∈Z,
the language of point processes offers a nice probabilistic way to deduce the distribution
of various functionals of the sample X1, . . . , Xn as n → ∞. This includes functionals
whose behavior for large n essentially depends only on extreme Xi’s. The main idea is to
establish a so–called complete convergence result, that is convergence of point processes∑n
i=1 δ(i/n,Xi/an) for a suitable sequence (an) and then apply continuous mapping arguments.

In this context, the limiting point process is a Poisson cluster process which can be fully
described by the so–called tail process of (Xi).

However, in this type of point process convergence the information on the temporal order
of extreme Xi’s belonging to the same cluster is lost in the limit due to scaling of time. As
one of the main contributions of the thesis, we present a new type of complete convergence
result which preserves this kind of information. It applies to stationary regularly varying
time series satisfying standard extremal dependence assumptions. Our approach is based
on dividing the sample X1, . . . , Xn into smaller blocks and then considering these blocks,
instead of only individual Xi’s, as points of a point process on a certain infinite–dimensional
Polish space. Along the way, we revisit the notion of vague convergence of measures relying
on an abstract theory of bounded sets and discuss general Poisson approximation theory
for point processes on Polish spaces.

The order preserving convergence allows us to prove new limit results for record times
and partial sums of the underlying time series. In particular, we show that rescaled
record times, under an additional assumption, converge in distribution to a certain scale
invariant compound Poisson process. This extends the well known result in the i.i.d. case.
Furthermore, when the index of regular variation is in the interval (0, 2), we obtain a
new functional limit theorem for partial sums which applies to a variety of time series
for which standard convergence in the space of càdlàg functions cannot hold. The main
novelty is that the convergence is placed in the larger space of so–called decorated càdlàg
functions equipped with an extension of Skorohod’s M2 topology. Corollaries of this result
are discussed.

Finally, we use the language of stationary regularly varying random fields to revisit
the well known problem of local alignment of sequences. For that purpose, we extend
the notion of the tail process and the corresponding point process convergence theory to
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R–valued random fields indexed over d–dimensional integer lattice. In the course of this
extension we introduce the concept of anchoring which further clarifies the link between
the tail process and the asymptotic distribution of a cluster of extremes.

Keywords: Vague convergence; Point process; Poisson approximation; Regular variation;
Time series; Stationarity; Tail process; Complete convergence result; Functional limit
theorem; Record times; Random fields; Local sequence alignment.
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Za stacionaran vremenski niz (Xi)i∈Z s vrijednostima u R kaže se da je regularno
varirajući ako su mu sve konačno–dimenzionalne distribucije višedimenzionalno regularno
varirajuće. To svojstvo ekvivalentno je postojanju takozvanog repnog procesa pomoću kojeg
se na intuitivan način mogu opisati ekstremalna svojstva tog vremenskog niza. Za takav
niz, uz pretpostavku slabe zavisnosti, teorija točkovnih procesa nudi lijep vjerojatnosni
pristup za određivanje distribucije raznih funkcionala uzorka X1, . . . , Xn kada n → ∞.
Tu spadaju funkcionali čije ponašanje za velike n u principu ovisi samo o ekstremnim
vrijednostima niza (Xi). Glavna ideja je prvo pokazati konvergenciju točkovnih procesa∑n
i=1 δ(i/n,Xi/an) za prikladan niz (an) te na nju primijeniti takozvane tehnike neprekidnih

preslikavanja. Budući da iz te iste točkovne konvergencije možemo odrediti ponašanje puno
različitih funkcionala, takvu konvergenciju često zovemo potpuna točkovna konvergencija.
Nadalje, u ovom kontekstu granični točkovni proces je Poissonov proces s klasterima koji
je potpuno određen repnim procesom niza (Xi).

Ipak, u ovom obliku potpune točkovne konvergencije, zbog skaliranja vremena, u
limesu se gubi informacija o vremenskom poretku ekstremnih observacija koje su dio istog
klastera. Jedan od glavnih doprinosa ove teze je predstavljanje novog oblika potpune
točkovne konvergencije koji čuva ovaj poredak. On vrijedi za stacionarne regularno
varirajuće vremenske nizove uz standardne pretpostavke o ekstremalnoj zavisnosti. Naš
pristup baziran je na dijeljenju uzorka X1, . . . , Xn na manje blokove i tretiranjem tih
blokova, umjesto pojedinačnih observacija, kao točaka točkovnog procesa na određenom
beskonačno–dimenzionalnom poljskom prostoru. Usput, dajemo alternativan pristup
takozvanoj vague konvergenciji mjera koristeći apstraktnu teoriju ograničenih skupova i
diskutiramo generalne uvjete pod kojima određeni točkovni procesi na poljskim prostorima
konvergiraju po distribuciji prema Poissonovom procesu.

Potpuna točkovna konvergencija koja čuva poredak omogućava nam da pokažemo
nove granične rezultate za vremena rekorda i parcijalne sume vremenskog niza u pozadini.
Točnije, pokazujemo da reskalirana vremena rekorda, uz dodatnu pretpostavku na repni
proces niza, konvergiraju po distribuciji prema određenom složenom Poissonovom procesu
koji je invarijantan na skaliranje. Ovo poopćuje poznati rezultat u slučaju niza nezavisnih
i jednako distribuiranih slučajnih varijabli. Nadalje, kada je indeks regularne varijacije
u intervalu (0, 2), pokazujemo novi funkcionalni granični teorem za parcijalne sume
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koji je primjenjiv na velik broj vremenskih nizova za koje standardna konvergencija u
prostoru càdlàg funkcija ne može vrijediti. Glavna novina je da se konvergencija gleda
u većem prostoru takozvanih dekoriranih càdlàg funkcija uz topologiju koja je ekstenzija
Skorohodove M2 topologije. Također, diskutiramo i korolare ovog rezultata.

Na kraju, koristimo jezik stacionarnih regularno varirajućih slučajnih polja kako bi
dali novi uvid u klasični problem lokalnog poravnanja dvaju nizova znakova. U tu svrhu,
proširujemo pojam repnog procesa i teoriju potpune točkovne konvergencije na slučajna
polja sa skupom indeksa Zd. U sklopu te ekstenzije predstavljamo ideju usidrenja koja
dodatno razjašnjuje vezu između repnog procesa i granične distribucije klastera ekstremnih
observacija.

Ključne riječi: Vague konvergencija; Točkovni proces; Poissonova aproksimacija; Regu-
larna varijacija; Vremenski niz; Stacionarnost; Repni proces; Potpuna točkovna konvergen-
cija; Funkcionalni granični teorem; Vremena rekorda; Slučajna polje; Lokalno poravnanje
nizova.
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