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Abstract of doctoral thesis 

 

 

The goal of this work was to determine field output factors, Ω𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
, using EBT3 

radiochromic films and W1 plastic scintillator as reference detectors on two different linear 

accelerators. Secondly, we aimed to provide a large and consistent set of data for detector 

specific output correction factors, 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
, for small static fields for seven solid state 

detectors and seven small ionization chambers. In the case of ionization chambers, 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 

were determined in two orientations – parallel and perpendicular, to test the hypothesis, that 

𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 are lower and therefore advantageous for parallel orientation.  

Ω𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 were determined for 6 and 10 MV photon beams with and without flattening filter 

and for nine fields ranging from 0.5 x 0.5 cm2 to 10 x 10 cm2. Signal readings obtained with 

EBT3 radiochromic films and W1 plastic scintillator were fitted by an analytical function. 

𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 were determined empirically for 14 clinically used small detectors, under the same 

experimental conditions.  

It has been found that, for a given linear accelerator, Ω𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 need to be determined for every 

combination of photon beam energy, filtration, and field size as the differences between them 

can be statistically significant (p < 0.05). Further, it has been demonstrated, that the parallel 

orientation of ionization chamber is advantageous over the perpendicular, which is an important 

contribution to the present international dosimetry protocol for small fields IAEA TRS-483. 

Use of two reference detectors for the determination of field output factors for small static fields 

in MV photon beams is a novel approach and has been justified in our thesis.  

Large set of 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 data for seven solid-state detectors and seven ionization chambers in 

four MV beams determined on two linear accelerators by a single group of researchers can be 

considered a valuable supplement to the literature and the IAEA TRS-483 dataset. 

Recommendation on the orientation of ionization chambers is the last significant outcome of 

our work. 

 

Key words: W1 scintillator, EBT3 films, diodes, ionization chambers, small fields, field output 

factors  



 

Sažetak doktorske disertacije 

 

 

Uvod 

Novi međunarodni protokol za dozimetriju uskih snopova fotona visokih energija (dalje mala 

polja) IAEA TRS-483 je objavljen prije nešto više od godinu dana. Njime su dane preporuke 

vezano za referentnu i relativnu dozimetriju malih polja, koje se temelje na vrlo opsežnim 

istraživanjima velikog broja istraživačkih grupa koje se bave dozimetrijom malih polja. 

Nedostatak izvornih podataka koji su objavljeni u protokolu je određena nekonzistentnost, 

odnosno njihova raspršenost, što je posebice navedeno i u samom dozimetrijskom protokolu 

TRS-483. One se očituju u načinu određivanja specifične veličine polja (posebno veličine 

najmanjih polja), korištenoj radnoj udaljenosti, dubini u vodi na kojoj se mjeri ili računa,  te 

mjestu definiranja veličine polja (na površini fantoma ili na referentnoj dubini). Unatoč tome 

što je značajan broj istraživanja proveden korištenjem različitih vrsta detektora (diode, male i 

mikro ionizacijske komore, dijamantni detektori, plastični scintilacijski detektori, alanin i 

radiokromski filmovi) u objavljenim podacima često nedostaje odgovarajuća procjena 

nesigurnosti svakog od koraka u određivanju, kako faktora polja, tako i korekcijskih faktora. 

U svrhu nadopune i poboljšanja protokola za dozimetriju malih polja postavljene su hipoteze 

doktorskog rada: 

Hipoteza 1: Na temelju mjerenja pomoću referentnih detektora (plastični scintilacijski detektor 

i radiokromski film) i određivanja faktora polja moguće je eksperimentalno odrediti ukupne 

korekcijske faktore za diode i ionizacijske komore u uskim snopovima X-zraka visokih energija 

proizvedenih linearnim akceleratorima.  

Hipoteza 2: Korekcijski faktori polja za male i mikro ionizacijske komore su manji ukoliko su 

određeni u tzv. paralelnoj orijentaciji ionizacijskih komora. Tako određeni faktori predstavljaju 

poboljšanje u odnosu na one određene u okomitoj orijentaciji ionizacijskih komora koja je 

preporučena u dozimetrijskom protokolu TRS-483.   



 

Materijali i metode 

Eksperimentlani dio rada je proveden u Ljubljani i Talinu na dva različita linearna akceleratora 

elektrona, Elekta Versa HD i Varian TrueBeam. Mjerenja na oba linearna akceleratora 

provedena su u megavoltnim snopovima X-zraka od 6 MV i 10 MV, s filterom (WFF) i bez 

filtera (FFF) za homogenizaciju snopa.  

Mjerenja su provedena u izocentričnoj mjernoj postavi,  na udaljenosti od fokusa do površine 

fantoma SSD = 90 cm. Detektori su bili postavljani na dubinu od 10 cm. Istraživanje je 

provedeno za devet polja zračenja od 0.5 × 0.5 cm2 do 10 × 10 cm2, s tim da je polje 10 × 10 cm2 

odabrano kao referentno polje za izračun faktora polja i za svaki detektor specifičnih 

korekcijskih faktora. Istraživanjem je obuhvaćeno 16 detektora: plastični scintilacijski detektor 

Exradin W1 (W1 PSD), radiokromski film EBT3, šest dioda (IBA SFD dioda, IBA Razor dioda, 

PTW 60008 Diode P, PTW 60012 Diode E, PTW 60018 Diode SRS i SN EDGE dioda), jedan 

dijamantni detektor (PTW 60019 microDiamond) i sedam malih ionizacijskih komora (IBA 

CC04, IBA Razor, PTW 31016 3D PinPoint, PTW 31021 3D Semiflex, PTW 31022 3D 

PinPoint, PTW 31023 PinPoint i SI Exradin A16). Svi detektori su odabarani sukladno 

preporukama danim u dozimetrijskom protokolu TRS-483 i na temelju njihove široke uporabe 

za relativnu dozimetriju. Kao referentni detektori odabrani su scintilacijski detektor (W1 PSD) 

i radiokromski film EBT3. Razlog za to je što su po svojim fizikalnim karakteristikama gotovo 

ekvivalentni vodi te pokazuju zanemarivu energijsku ovisnost. Pomoću njih su određeni faktori 

polja Ω𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
.  

Uprosječeni odzivi 𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛 izmjereni filmom EBT3 i detektorom W1 PSD su korigirani za efekt 

volumnog usrednjenja 𝑘𝑣𝑜𝑙 i normirani na odziv 𝑀𝑄𝑟𝑒𝑓

𝑓𝑟𝑒𝑓
 izmjeren u referentnom polju. Na taj 

način su određeni diskretni faktori polja Ω𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 za mala polja koja se koriste klinički. 

Ω𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓 =
𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛

𝑀𝑄𝑟𝑒𝑓

𝑓𝑟𝑒𝑓
𝑘𝑣𝑜𝑙 

Vrijednosti Ω𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
, određene na temelju mjerenja pomoću referentnih detektora, su 

usklađene pomoću analitičke funkcije koju su predložili Sauer i Wilbert: 

Ω(𝑆𝑐𝑙𝑖𝑛) = 𝑃∞

𝑆𝑐𝑙𝑖𝑛
𝑛

𝑙𝑛 + 𝑆𝑐𝑙𝑖𝑛
𝑛 + 𝑆∞(1 − 𝑒−𝑏∙𝑆𝑐𝑙𝑖𝑛) 



 

Za sve detektore i sva polja zračenja 𝑆𝑐𝑙𝑖𝑛 obuhvaćena ovim istraživanjem izračunate su 

diskretne vrijednosti specifičnih korekcijskih faktora:  

𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓 (𝑆𝑐𝑙𝑖𝑛) =
Ω𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓

𝑀
𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛 𝑀
𝑄𝑟𝑒𝑓

𝑓𝑟𝑒𝑓⁄
 

gdje 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓 (𝑆𝑐𝑙𝑖𝑛) predstavlja ukupni korekcijski faktor za pojedini detektor u ovisnosti o 

veličini kliničkog polja 𝑆𝑐𝑙𝑖𝑛. 

 

Rezultati i rasprava 

Faktori polja i korekcijski faktori 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 za detektore obuhvaćene istraživanjem su prikazani 

kao analitičke funkcije te kao diskretne vrijednost. Utvrđeno je da su razlike u faktorima 

statistički značajne (p < 0.05). Zbog toga za svaki linearni akcelerator faktori malih polja trebaju 

biti eksperimentalno određeni za sve veličine polja i u svakoj od kombinacija snopa X-zraka sa 

i bez filtracije.  

U slučaju dioda i dijamantnog detektora utvrđeno je da se vrijednosti 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 za većinu 

najmanjih polja (< 1.5 cm) statistički značajno (p < 0.05) razlikuju od vrijednosti publiciranih 

u dozimetrijskom protokolu. Za PTW microDiamond detektor je utvrđena statistički značajna 

razlika (p < 0.05) za 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 za sve snopove manje od 1.5 × 1.5 cm2 proizvedene linearnim 

akceleratorom Elekta Versa HD. Na istom akceleratoru je utvrđena statistički značajna razlika 

između korekcijski faktora malih polja ovisno o tome je li snop filtriran ili nije. Kod istog 

detektora utvrđene su razlike u ovisnost 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 i do 6% za nominalno jednake snopove na 

dva korištena linearna akceleratora. Isti trend je uočen i kod dioda, što ukazuje da različiti 

sustavi za kolimaciju snopa mogu značajno utjecati na veličinu korekcijskih faktora najmanjih 

polja 𝑆𝑐𝑙𝑖𝑛 < 0.8 cm. 

U slučaju ionizacijskih komora, naši rezultati za korekcijske faktore polja 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 su 

uspoređeni s podacima za tri ionizacijske komore istog tipa objavljenim u dozimetrijskom 

protokolu TRS-483. Vrijednosti korekcijskih faktora za ionizacijske komore IBA CC04, PTW 

31016 PinPoint 3D i SI Exradin A16, dobivene u sklopu ovog istraživanja, potvrdile su 

vrijednosti  objavljene u dozimetrijskom protokolu TRS-483. Publicirane vrijednosti za 



 

𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 su dobivene samo za okomitu orijentaciju ionizacijskih komora pa usporedba s našim 

rezultatima za 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓   dobivenim za paralelnu orijentaciju za spomenute tri ionizacijske 

komore nije bila moguća. Korekcijski faktori za ostale četiri ionizacijske komore IBA Razor 

IC, PTW 31021 3D Semiflex, PTW 31022 PinPoint 3D and PTW 31023 PinPoint, prikazani u 

ovom istraživanju, se mogu smatrati vrijednom nadopunom dozimetrijskog protokola TRS-483. 

Nadalje, naši eksperimentalni podaci su potvrdili pretpostavku da su korekcijski faktori za 

ionizacijske komore manji ukoliko se mjerenje provodi tako da je glavna os ionizacijske 

komore postavljenja paralelno u odnosu na središnju os snopa (paralelna orijentacija), nego li 

kad je glavna os ionizacijske komore postavljena okomito na središnju os snopa (okomita 

orijentacija). Pošto su 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 uvijek manji kod paralelne orijentacije statistička značajnost 

razlika je ispitana koristeći Studentov t-test. Ovisno o orijentaciji ionizacijske komore, utvrđena 

je statistički značajna razlika (p < 0.05) kod korekcijskih faktora 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 za najmanja polje. 

Drugim riječima vrijednosti 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 za najuže snopove X-zraka dobivene u okomitoj 

orijentaciji su u pravilu statistički značajno veće od onih dobivenih u paralelnoj orijentaciji. 

Jedinu iznimku predstavlja ionizacijska komora IBA CC04 kod koje nije utvrđena statistički 

značajna razlika kod 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 u ovisnosti o orijentaciji ionizacijske komore niti u jednom od 

osam korištenih snopova X-zraka na dva linearna akceleratora. Razlog tome je što IBA CC04 

ionizacijska komora ima približno jednake dimenzije efektivnog volume u dva ispitivana 

smjera (promjer šupljine je 4.0 mm, a njezina dužina u smjeru centralne elektrode je 3.6 mm) 

što rezultira priližno jednakim volumnim usrednjavanjem odziva u dvije orijentacije, koje u 

najvećoj mjeri doprinosi vrijednosti 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
. Vrijedi napomenuti da je za ionizacijsku 

komoru PTW 31021 Semiflex 3D utvrđena statistički značajna razlika vezana za orijentaciju 

samo kod najmanjeg polja zračenja (0.5 × 0.5 cm2) u dva snopa X-zraka (10 MV WFF i FFF) 

linearnog akceleratora Elekta Versa HD dok to nije utvrđeno niti kod jednog od četiri snopa X-

zraka linearnog akceleratora Varian TrueBeam. Stoga možemo zaključiti da i kod te 

ionizacijske komore, zbog njene konstrukcije, možemo očekivati približno jednaku vrijednost 

odziva u obje orijentacije. 

Ukratko, vrijednosti korekcijskih faktora 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓  ionizacijskih komora obuhvaćenih ovim 

istraživanjem su bile manje u slučaju kada je ionizacijska komora bila postavljena na način da 

njena glavna os bude paralelna sa središnjom osi snopa X-zraka. Zbog toga preporučujemo da 



 

se za određivanje korekcijskih faktora malih polja 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 koristi paralelna orijentacija 

ionizacijskih komora, što je u suprotnosti s preporukom u dozimetrijskom protokolu TRS-483. 

 

Zaključak 

Primjena dva referentna detektora, EBT3 radiokromskog filma i W1 plastičnog scintilacijskog 

detektora, kao i primjena analitičke funkcije predstavljaju novi i potpuno opravdan pristup 

određivanju faktora polja uskih snopova X-zraka visokih energija, čime je potvrđena prva 

hipoteza. Nadalje, određen je značajan skup korekcijskih faktora 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 za šest dioda, jedan 

dijamantni detektor te sedam ionizacijskih komora u po četiri snopa X-zraka različitih veličina 

polja zračenja na dva linearna akceleratora. To je napravljeno slijedeći stroge eksperimentalne 

zahtjeve pa se može smatrati vrijednom nadopunom recentnog dozimetrijskog protokola za 

dozimetriju malih polja TRS-483. 

Nadalje, rezultati provedenog istraživanja vezani za određivanje korekcijskih faktora 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 

ionizacijskih komora, unatoč tome što su u suprotnosti s preporukama danim u dozimetrijskom 

protokolu TRS-483, potvrđuju našu drugu hipotezu. Dakle, korekcijski faktori 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 su 

manji ukoliko se mjerenje ionizacijskom komorom provodi u paralelnoj orijentaciji. Zbog toga 

se mjerenje ionizacijskim komorama malog volumena u paralelnoj orijentaciji preporuča kao 

metoda izbora za određivanje korekcijskih faktora 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
. To također predstavlja važnu 

nadopunu dozimetrijskog protokola TRS-483 u kojem je preporučena isključivo okomita 

orijentacija ionizacijske komore za određivanje faktora polja. 

 

Ključne riječi: dozimetrija malih polja, W1 scintilator, EBT3 film, diode, ionizacijske 

komore, faktori polja 
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1 INTRODUCTION 

1.1 Background and thesis rationale 

Radiotherapy is one of the three main modalities for cancer treatment, the other two being 

surgery and systemic therapy with drugs, e.g., chemotherapy and hormonal drug therapy. The 

objective of radiotherapy is to deliver a lethal dose of ionizing radiation to tumor tissue while 

at the same time minimizing the dose to the surrounding normal tissues and organs at risk. To 

realize this objective, we need to precisely deliver required dose to the predefined target volume 

(tumor), which is one of the most important clinical tasks for medical physicists. To achieve 

this, we need to measure radiation, and we need to fully understand dosimetry methodology 

and its limitations.  Many dosimetry protocols have been developed in the past for reference 

dosimetry in external radiotherapy and brachytherapy, including detail guidelines for 

dosimetric measurements, and remain a backbone for successful and predictive outcome of 

radiotherapy treatment.    

The reference dosimetry of megavoltage (MV) photon beams used in conventional external 

radiotherapy using linear accelerators is currently based on various international dosimetry 

protocols, such as, TRS-398 Code of Practice (CoP)1 published by the International Atomic 

Energy Agency (IAEA) and TG-51 protocol2 with its Addendum3 published by the American 

Association of Physicists in Medicine (AAPM). These protocols provide a guidance on clinical 

reference dosimetry using ionization chambers that have been calibrated in terms of absorbed 

dose to water in a reference beam of quality Q0 (usually 60Co) and reference field size  

10 × 10 cm2. Having a calibration coefficient of the ionization chamber one can determine the 

absorbed dose to water 𝐷𝑤,𝑄 in the beam quality Q under reference conditions following 

guidelines from those dosimetry protocols. Beam calibrations are done under conditions that 

are very close to the real situation of a conventional radiotherapy treatment, for example, 3D 

conformal radiotherapy, with respect to the field sizes as well as the calibration depth. In 

general, we can say that in conventional radiotherapy absorbed dose is determined for broad 

beams comparable to the size of clinically used radiation fields and at depth where  

charged-particle equilibrium exists.  

In the last two decades, the availability and wide utilization of modern technologies has 

facilitated the use of radiotherapy techniques such as intensity modulated radiation therapy 
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(IMRT), volumetric modulated arc therapy (VMAT), stereotactic radiosurgery (SRS) and 

stereotactic body radiation therapy (SBRT) for the treatment of cancer patients using external 

beam radiation therapy. These techniques use many non-standard photon fields for the planning 

and delivery of the prescribed dose. Non-standard fields can be small and used for the treatment 

of small tumors e.g. in the case of SRS, or can be composed from many small fields for 

treatments of irregularly shaped larger lesions or tumors in the vicinity of organs at risk. Several 

dedicated treatment units such as and GammaKnife® (Elekta Instrument AB, Stockholm, 

Sweden), Tomotherapy® (Accuray, Sunnyvale, CA, USA) and CyberKnife® (Accuray, 

Sunnyvale, CA, USA), use small or composite fields for the delivery of complex radiotherapy 

treatments, although conventional linear accelerators (linacs) have very similar capabilities. In 

this respect, it should be noted that the IAEA TRS-398 or AAPM TG-51 and TG-51 Addendum 

protocols provided guidance for reference and relative dosimetry in conventional (broad) fields 

and do not provide guidance for dosimetry in small fields. Misunderstanding of this basic 

concept and its limitations, as well as the absence of a suitable dosimetry protocol for small 

fields resulted in the occurrence of dosimetric errors in clinical practice and several accidents 

and erroneous patient treatments involving the incorrect use of small fields were reported in the 

literature.4,5 For example, use of too large ionization chamber resulted in incorrectly determined 

(too low) output factors for small fields and subsequently wrong calculation of number of 

monitor units, resulting in fatal outcomes. Already two decades ago, Das et al.6 found difference 

up to 12% in output factors measured at different institutions for stereotactic photon fields 

having a size bellow 2.0 cm.  All that has contributed to the publication of several documents 

on dosimetry of small MV photon beams: IPEM Report Number 103 published by the Institute 

of Physics and Engineering in Medicine,7 formalism for small field dosimetry published by 

Alfonso et al.8 and ICRU Report 91 published by the International Commission on Radiation 

Units and Measurements.9 However, until the recent joint publication of the International CoP 

TRS-483 for reference and relative dosimetry of small static fields in external beam 

radiotherapy published by the IAEA and the AAPM,10,11 no national or international guidance 

for performing reference and relative dosimetry in small fields was available to the practicing 

medical physicists.  

New international dosimetry protocol for small fields TRS-483 provides several 

recommendations regarding the reference and relative dosimetry of small static fields for high 

energy photon beams up to 10 MV based on published data from research studies conducted 

until 2015.12 However, we need to read and use the TRS-483 protocol with awareness of 
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difficulties with which were authors of this protocol confronted and were explicitly pointed out: 

“Unfortunately, the published data are rather scattered for certain field sizes, especially for 

the smallest fields, and lack homogeneity with regard to the SSD or SDD used, the depth of 

measurement or calculation, the definition of field size at the surface or at a reference depth, 

etc.”10 Although a considerable amount of research was done on small megavoltage photon 

beams using various types of detectors: diodes, small (sometimes denoted as mini) and micro 

ionization chambers, diamond detectors, plastic scintillators, alanine and radiochromic films, 

to mention only few, most of the published data also lack a proper estimation of the uncertainty 

in the various steps involved.10 Those research efforts were not limited only to the necessary 

physical characterization of various detectors but were predominantly focused on the 

determination of field output factors and associated detector specific output correction factors, 

which are also central issues in the present thesis, since they are the most important dosimetric 

quantities in small field dosimetry. If output factors for small photon fields are not correctly 

determined and introduced in the treatment planning systems (TPS), serious complications can 

occur during radiotherapy treatments with unfavorable and even fatal outcome for patients. 

To derive field output factors for small fields from the data published in the literature, 

TRS-483 considered three types of datasets. One of these datasets includes the reference 

detectors which are perturbation free except for volume averaging (the other two being 

detectors with known output correction factors and detectors with Monte Carlo calculated 

output correction factors). Main characteristics of these detectors are their near water 

equivalency, with radiological properties close to the corresponding values for water, which 

also have weak or negligible energy dependence in the MV radiotherapy photon beams. 

Examples are some passive detectors such as alanine and radiochromic films. The only 

commercially available active dosimeter with properties close to that of water and weak energy 

dependence is plastic scintillator detector. In our study, plastic scintillator and radiochromic 

film were utilized as reference detectors for the determination of field output factors. 

Response of detectors in small fields and the determination of detector specific output 

correction factors has been extensively investigated for a range of detectors by several research 

groups, using one of the following three techniques: (i) empirical approach, where uncorrected 

signal ratios were determined and compared to the field output factors determined with 

reference detectors,13–38  numerical approach, where output correction factors or chamber 

properties were determined with Monte Carlo (MC) simulations,39–46 and (iii) semi-empirical 

approach which combines both, measurements and numerical/analytical calculations, and 
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where output correction factors were most commonly determined through the comparison of 

measured uncorrected detector’s signal ratios with MC calculated field output factors.47,48,49,50 

There are advantages and disadvantages of each of these approaches.51 However, since the 

numerical MC calculations have to be verified and validated with measurements, in this study 

an empirical (experimental) approach for the determination of field output factors using two 

reference detectors was used. Also detector specific output correction factors for a large number 

of different types of detectors were determined using an experimental approach following the 

guidelines from TRS-483.  

Experimental determination of field output factors in small fields is challenging because 

detectors that can be used to accurately determine field output factors, without requiring 

corrections for non-water equivalency of their sensitive measuring volume and volume 

averaging due to their finite size, are presently not commercially available. Furthermore, for 

very small fields with dimensions below about 2.0 × 2.0 cm2, small positional uncertainties can 

lead to significant uncertainties in the measurement results. This means that there are no ideal 

detectors for measurements of field output factors in small fields. Although a large amount of 

experimental and numerical data for field output factors and output correction factors for 

different detectors are available in the literature, there is considerable scatter of such data for 

the smallest field sizes; additionally, lack of homogeneity in the measurement set-up (SSD or 

SDD), the definition of field size and different procedures for positioning the detector in the 

central beam axis makes the interpretation of such data very challenging.10 

1.2 Thesis hypotheses and objectives 

Based on present theoretical knowledge on small field dosimetry, a formalism published in the 

TRS-483 Code of Practice, a lack of published data for field output factors and detector specific 

output correction factors for many detectors presently used in clinical dosimetry, especially for 

smallest fields below 1.0 × 1.0 cm2 and 10 MV photon energy, among other issues, lead us to 

the two central hypothesis and subsequent objectives of our thesis. 

HYPOTHESIS 1: Total detector specific output correction factors can be determined 

experimentally for solid state detectors and ionization chambers suitable for relative dosimetry 

in small fields, considering radiochromic films and plastic scintillator as reference detectors for 

the determination of field output factors in small megavoltage beams from linear accelerators. 

The hypothesis was tested through the following two objectives: 
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Objective 1: to develop a novel empirical method for the determination of field output 

factors on two different linear accelerators for 6 and 10 MV photon beams with and without 

flattening filters using radiochromic films and plastic scintillators as reference detectors 

and to provide specific datasets for field output factors for nine square fields ranging from 

0.5 × 0.5 to 10 × 10 cm2 for all investigated beam energies. Since these two detectors are 

referred to as perturbation free, except for volume averaging,10 later was studied in 

particular, aiming to develop an analytical approach for the calculation of corresponding 

volume averaging correction factors.  

Objective 2: to provide a large set of data for detector specific output correction factors, 

based on the obtained field output factors from Objective 1, for seven solid state detectors 

and seven ionization chambers with small sensitive volumes, suitable for small field 

dosimetry. The purpose was to provide detector specific output correction factors in the 

form of an analytical function as well as in the form of discrete values based on the 

experimental data, using consistent measurement conditions and methodology and 

following the recommendations given in the TRS-483 and ICRU Report 91.9 Such 

compilation of mostly unpublished data is considered as a valuable supplement to the 

literature and served to validate the data sets given in TRS-483. 

HYPOTHESIS 2: Detector specific output correction factors for small and micro ionization 

chambers are smaller and therefore advantageous if they are determined for parallel orientation 

of the ionization chamber with respect to the beam axis compared to the perpendicular 

orientation as advised in the TRS-483 CoP.  

This hypothesis was tested in one specific objective: 

Objective 3: to obtain detector specific output correction factors for seven small and micro 

ionization chambers utilizing parallel orientation with respect to the beam axis, where an 

ionization chamber is positioned with its main axis parallel to the central axis of the beam. 

This approach does not follow the specific advice given in the TRS-483 where 

perpendicular orientation is recommended. We aimed to present comprehensive set of 

results along with statistical analysis and provide alternative and justified recommendation 

for the orientation of ionization chambers for the determination of output correction 

factors, and hopefully resolve the ambiguities and dilemmas on this particular challenging 

issues in small field dosimetry.  
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Throughout the study, the same experimental set-up was used for all measurements for all 

detectors, following the recommendations given in TRS-483. Field output correction factors 

and detector specific output correction factors, presented in analytical form in this study, may 

serve as a reference dataset for comparison with other studies, and for small fields not used 

explicitly in our measurements, considering similar or comparable experimental set-up and 

conditions. 

1.3 Thesis outline 

Chapter 1 provides a background of the thesis and presents some challenges in small field 

dosimetry of megavoltage photon beams, followed by the hypotheses and objectives of the 

thesis. Chapter 2 describes basic physics of small beams, while chapter 3 presents a TRS-483 

formalism for relative and absolute dosimetry in small fields, which was applied in the thesis. 

A brief description of basic properties for five different types of detectors used in the study is 

given in chapter 4. Chapters 5, 6 and 7 cover original contribution of our work and encompass 

a description of the theoretical and experimental methodology and equipment used, a 

comprehensive report on the obtained results with subsequent analysis and comparison with the 

datasets from TRS-483. Final Chapter 8 presents a summary of our findings and provides 

recommendations on measurements of small field output factors and on the orientation of the 

ionization chambers in the megavoltage photon beams, among others. 

 The thesis is mainly based on the published paper Casar B, Gershkevitsh E, Mendez I, 

Jurković S, Huq MS. A novel method for the determination of field output factors and output 

correction factors for small static fields for six diodes and a microdiamond detector in 

megavoltage photon beams. Med Phys. 2018; https://doi.org/10.1002/mp.13318,52 published 

presentation at conferences and unpublished work with small and micro ionization chambers. 

  

https://doi.org/10.1002/mp.13318
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2 BASIC PHYSICS OF SMALL FIELDS 

There are three main physical conditions, which determine if a megavoltage (MV) photon beam 

can be considered as small:  

i. a loss or lack of lateral charged-particle equilibrium (LCPE);  

ii. partial occlusion of the primary radiation source by the machine collimating devices; 

iii. the size of the detector is comparable to the field dimensions 

First two conditions are beam related conditions, while the last one is detector related. If at least 

one of previous three conditions is fulfilled, an external megavoltage photon beam can be 

designated as small. 

2.1 Beam related small field conditions 

2.1.1 Loss of lateral charged particle equilibrium 

In broad megavoltage photon beams charged particle equilibrium (CPE) exists in both 

directions, in longitudinal and in lateral. LCPE occurs since the number of charged particles 

exiting the sensitive volume (cavity) of the detector - “out-scattering” -  is equal to the number 

of charged particles entering the sensitive volume (cavity) of the detector – “in-scattering”. 

Hence, “out-scattering” from the region of interest is compensated by the “in-scattering” 

toward the region of interest, which is illustrated in Figure 2.1 - A. However, if the photon beam 

is too small in its lateral dimension, out-scatter from the beam is not compensated by the in-

scatter as shown in Figure 2.1 - B., leading to the violation of CPE.  

Loss (or lack) of LCPE occurs when the half width or radius of the beam is equal to or 

smaller than the lateral range of the secondary electrons in the medium. Since the water collision 

kerma 𝐾𝑐𝑜𝑙,𝑤 is equal to the absorbed dose to water 𝐷𝑤 as long as CPE exists, ratio 𝐷𝑤/𝐾𝑐𝑜𝑙,𝑤 

can be used as a measure of the degree of CPE. Relationship between 𝐷𝑤/𝐾𝑐𝑜𝑙,𝑤 and different 

nominal beam energies is presented in Figure 2.2. The minimum half width (radius) of the beam 

at which 𝐾𝑐𝑜𝑙,𝑤 = 𝐷𝑤 still holds is defined as the lateral charge particle equilibrium range 

𝑟𝐿𝐶𝑃𝐸[𝑐𝑚] and is given in the TRS-483 by 

𝑟𝐿𝐶𝑃𝐸[𝑐𝑚] = 8.369 · 𝑇𝑃𝑅20,10(10) − 4.382 (2.1) 
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𝑇𝑃𝑅20,10(10) is tissue-phantom ratio in water at depths of 20 and 10 g/cm2, for a field size of 

10 × 10 cm2 and source-to-chamber distane of 100 cm used as the beam quality index. 

 

Figure 2.1. Drawing A: situation in large field where lateral charge particle equilibrium exists; 

drawing B: situation in small field, where loss (lack) of lateral charge particle equilibrium sets 

in. Lengths of arrows illustrate lateral range of charged particles 𝑟𝐿𝐶𝑃𝐸. 

 

 

Figure 2.2. Ratios of dose-to-water to water-electronic kerma 𝐷𝑤/𝐾𝑒𝑙,𝑤 for various nominal 

beam energies and beam radii..10 Arrows show the point where 𝐷𝑤/𝐾𝑒𝑙,𝑤 becomes lower than 

unity for particular energy and indicate the lateral charged particle equilibrium 𝑟𝐿𝐶𝑃𝐸 for that 

energy. Figure from P Andreo et al. Fundamentals of ionizing radiation dosimetry (2017). 
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It can be seen from Eq. (2.1) and Figure 2.2 that the loss of LCPE is more pronounced for 

beams having higher energies, meaning that the loss of LCPE occurs at larger field sizes for 

higher energies (in that case the electron ranges increase). An example: for 6 and 10 MV beams, 

which were used in our study, 𝑇𝑃𝑅20,10(10) values are 0.67 and 0.76 respectively, thus the 

corresponding values for 𝑟𝐿𝐶𝑃𝐸 are approximately 1.2 cm and 2.0 cm. We can conclude that in 

6 MV beam small field, loss of LCPE exists for fields with diameter (width/length in the case 

of square fields) smaller than 2.4 cm, while in 10 MV beam the limiting field size (diameter) is 

around 4 cm. 6 and 10 MV beams were also used throughout the experimental part of the study.  

2.1.2 Partial source occlusion 

Partial source occlusion is related to the finite size of the primary photon source, denoted also 

as focal spot, which is created by a narrow electron beam coming from the flight tube of linear 

accelerator and impinging the target. In the target itself, photons are produced by the 

bremsstrahlung interactions. Since the effective size of the photon source is finite, it may 

become partially obscured by the field collimating system, viewed from the point of 

measurement in the phantom as shown in Figure 2.3. However, partial occlusion of the primary 

photon source becomes important only when the field size is comparable to the size of the focal 

spot, which is below 5 mm for modern clinical linear accelerators. Thus, partial source 

occlusion steps in at field sizes smaller than those where the loss of LCPE starts. 

 

Figure 2.3. Illustration of the partial source occlusion. Left figure A presents the situation in a 

large photon beam where the source is not obscured by collimators. Figure B on the right shows 

the case of a small photon beam where the source occlusion exists and results in overlapping 

penumbrae. Adapted from Aspradakis et al.7   
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Partial source occlusion leads to the overlapping of penumbra resulting in lower beam 

output (Figure 2.4) In addition, apparent field widening occurs, meaning that there is a 

mismatch between nominal field size as defined by the collimator settings and true radiation 

field size defined at the full width half maximum (FWHM) of the lateral beam profile. True 

radiation field size can be significantly larger than the nominal field size, particularly for square 

small fields with dimensions below 1.0 × 1.0 cm2. Both issues can have serious negative impact 

on radiotherapy treatments if the data required for the treatment planning systems (TPS) are not 

adequately obtained or have been incorrectly imported in the TPS. Moreover, since the 

definition of field size has not been unique in the past and was not explicitly reported in some 

of the research studies conducted in the last decade, published data are to some degree scattered 

with respect to the definition of the field size. 

 

Figure 2.4. Effect of overlapping penumbrae on the true radiation field size (red color) in terms 

of FWHM and comparison with nominal field size marked with blue color. There is no effect 

neither on the field size nor on the field output for broad beams (left figure a); as the field 

becomes smaller, output becomes lower, however still without any significant difference 

between nominal and true radiation fields (middle figure b); significant decrease in beam output 

as well as pronounced difference between true and nominal fields is present in very small fields 

(right figure c). Figure from Das et al.53 

 

2.2 Detector related small field conditions 

There are two main issues related to the characteristics of the detector which cause incorrect 

response of the detector in small fields: volume averaging effect and the density of the detector’s 

sensitive volume along with physical properties of extra-cameral components.  



11 

2.2.1 Volume averaging 

When exposed to radiation, a detector produces a signal which is proportional to the average 

absorbed dose across its sensitive volume. If the size of the detector is comparable to the 

dimension of the high dose region of small field, the measured signal will be always lower than 

the true dose in the center of the field as if it would be measured with an ideal infinitesimally 

small point detector, which does not exist; the situation is illustrated in Figure 2.5. 

 

Figure 2.5. Schematic presentation of the volume averaging effect when an ionization chamber 

is placed in a small beam with comparable dimensions. Ionization chamber will not produce a 

signal proportional to the maximal dose in the center of the field. Instead, measured signal will 

be reduced with respect to the true dose due to the volume averaging effect over the portion of 

the beam that coincides with the sensitive volume of the chamber. Figure adapted from 

Wuerfel.54 

 

The size of the detector leads, in general, to an under-response in small beams below  

2.0 × 2.0 cm2 due to volume averaging effect, since the size of presently available detectors is 

comparable the size of such small radiation field. Volume averaging effect can be considered 

as purely geometrical concept and thus dependent only on the shape and the size of the 

detector’s sensitive volume and the size of small field. Volume averaging consideration will be 

thoroughly discussed later in the chapter Materials and methods. 

2.2.2 Detector perturbation effects 

In addition to the volume averaging, there are important issues related to the perturbation effects 

caused by the detector material and its overall constructional characteristics. Response of the 

detector depends strongly on the density of the detector’s sensitive volume as well as on the 
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physical properties of the extra-cameral components such as wall, electrodes, stems, etc.  Upon 

the detector’s mass and electronic density, it can under or over respond caused by the difference 

in mass (or electronic) density with respect to water. In the case of high-Z materials, for 

instance, extra-cameral components can increase the response of the detector, since the number 

of electrons reaching the cavity (sensitive volume) is relatively higher than it would be in the 

case if those components would have physical properties same as water. It is especially 

important for solid-state detectors (silicon diodes and diamonds) which have higher mass 

density than water. On one hand, higher density of those detectors yields to higher signal to 

noise ratio, which is an advantage over small ionization chambers having air filled cavities. 

However, due to higher density of active volume and other components of solid-state detectors, 

an over response in small fields is usually observed, which requires corrections.  

To summarize, volume averaging and perturbation effects can significantly influence the 

detector’s response in small fields. Although the corrections of measured signal may add up to 

unity in some specific cases, for example, if the under response of the detector due to the volume 

averaging is equal to the over response due to higher detector’s density Also, they strongly 

depend on the type of the detector used for measurements.  

Therefore, volume averaging and perturbation effects are critical in the small field 

dosimetry and require corrections which can be considerably large as well as uncertain. 

Although the corrections of measured signal may add up to unity in some specific cases, for 

example, if the under response of the detector due to the volume averaging is equal to the over 

response due to higher detector’s density, we need to understand basic physics of small fields 

and execute measurements with great care.  

To minimize or eliminate correction factors related to the volume of the detector and its 

material we would need to use a detector having very small sensitive volume with density equal 

or close to that of water. Unfortunately, there is no such detector presently available on the 

market. 

Another approach to by-pass the introduction of unacceptably large correction factors is to 

avoid small field conditions described. In that case, the size of the square field defined by 

FWHM has to fulfil the condition 

𝐹𝑊𝐻𝑀 ≥ 2 ∙ 𝑟𝐿𝐶𝑃𝐸 + 𝑑 (2.2) 

where 𝑟𝐿𝐶𝑃𝐸 is lateral charge particle equilibrium range as defined earlier, whilst 𝑑 is the largest 

dimension of the detector’s (ionization chamber) outer boundary as schematically shown in  
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Figure 2.6. Note, that in general, largest dimensions in longitudinal and radial directions are not 

necessarily equal. Since 𝑟𝐿𝐶𝑃𝐸 is rather large already for 6 MV beams - around 1.2 cm as shown 

earlier – small field condition from Eq. (2.2) is fulfilled only for field sizes larger than around 

2.5 × 2.5 cm2 even for the smallest ionization chambers presently available. Because there is a 

necessity to determine output factors for field sizes well below those that satisfy relation in  

Eq. (2.2), we are unavoidably confronted with small field dosimetry problems connected to the 

loss of LCPE and to the determination of accurate correction factors of measured signals using 

different detector types, which was one of the pivotal aims of our study.   

 

 

Figure 2.6. Schematic drawing (beam’s eye view) of small field condition with respect to the 

lateral charged particle equilibrium (LCPE) and dimensions of the ionization chamber in this 

specific example. Small field conditions exist when the radiation field defined by full width 

half maximum (FWHM) extends at least a distance 𝑟𝐿𝐶𝑃𝐸 beyond the outer boundaries of the 

ionization chamber. Note, that in the above case longitudinal dimension dL of the ionization 

chamber is larger than the radial dimension dR, hence we need to consider dR for the calculation 

of 𝑟𝐿𝐶𝑃𝐸. 
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3 IAEA TRS-483 CoP FORMALISM FOR REFERENCE 

AND RELATIVE DOSIMETRY 

The IAEA TRS-483 CoP provides guidelines for reference and relative dosimetry in small static 

fields used in radiotherapy. In addition to the recommendation on the characteristics of detectors 

suitable for reference and relative dosimetry, as well as on required measurement conditions, 

TRS-483 presents a dosimetry formalism based on the work of Alfonso et al.,8 some aspects 

are presented in the following sections in particular the guidance for the determination of field 

output factors and detector specific output correction factors in small fields which were two key 

elements in our work. 

3.1 Reference dosimetry of small fields 

The formalism for reference dosimetry in the TRS-483 is the same to that recommended by 

Alfonso et al.8 with some minor modifications. Several important definitions for field sizes 

were introduced in the new formalism: 

𝑓𝑟𝑒𝑓 – conventional reference field 10 cm × 10 cm used for calibrations at the standard 

laboratory and for clinical reference dosimetry for radiotherapy machines where such field 

can be established in reference conditions i.e.,  SAD = 100 cm and 10 cm depth 

𝑓𝑚𝑠𝑟 – machine specific reference field for radiotherapy treatment units where 

conventional reference field 10 cm × 10 cm cannot be established e.g., GammaKnife®, 

Tomotherapy®, and CyberKnife®. The msr field is usually the largest achievable field as 

close as possible to the size of the conventional reference field 

𝑓𝑐𝑙𝑖𝑛 – clinical small radiation field at which we need to determine the absorbed dose to 

water  

The formalism is based on the use of an ionization chamber and allows three different 

approaches depending on the type of calibration coefficient provided by the standard laboratory 

for the ionization chamber and beam quality for which a calibration coefficient is available. 
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3.1.1 Chamber calibrated specifically for the fmsr  

If the user has a calibration coefficient of an ionization chamber measured for the 𝑓𝑚𝑠𝑟, the 

absorbed dose to water at the reference depth 𝑧𝑟𝑒𝑓 in water in the absence of the ionization 

chamber is given by: 

𝐷𝑤,𝑄𝑚𝑠𝑟

𝑓𝑚𝑠𝑟 = 𝑀𝑄𝑚𝑠𝑟

𝑓𝑚𝑠𝑟 ∙ 𝑁𝐷,𝑤,𝑄𝑚𝑠𝑟

𝑓𝑚𝑠𝑟 (3.1) 

where 𝑀𝑄𝑚𝑠𝑟

𝑓𝑚𝑠𝑟  is the reading of the ionization chamber in the user’s beam under the reference 

conditions corrected for environmental and other influencing quantities, while 𝑁𝐷,𝑤,𝑄𝑚𝑠𝑟

𝑓𝑚𝑠𝑟  is the 

calibration coefficient in terms of absorbed dose to water obtained at the machine specific 

reference beam quality 𝑄𝑚𝑠𝑟 and machine specific reference field size 𝑓𝑚𝑠𝑟. This is the preferred 

approach, however, only few standard laboratories provide calibrations of ionization chambers 

in the user’s reference field 𝑓𝑚𝑠𝑟 and beam quality 𝑄𝑚𝑠𝑟.  

3.1.2 Chamber calibrated for a conventional reference field, with generic 

beam quality correction factor available 

Usually, the standard laboratories measure calibration coefficient of an ionization chamber in a 

reference beam quality (in most cases 60Co) and a conventional reference field 10 cm × 10 cm. 

In that case, the absorbed dose to water in the absence of the ionization chamber is given by: 

𝐷𝑤,𝑄𝑚𝑠𝑟

𝑓𝑚𝑠𝑟 = 𝑀𝑄𝑚𝑠𝑟

𝑓𝑚𝑠𝑟 ∙ 𝑁𝐷,𝑤,𝑄0

𝑓𝑟𝑒𝑓 ∙ 𝑘𝑄𝑚𝑠𝑟,𝑄0

𝑓𝑚𝑠𝑟,𝑓𝑟𝑒𝑓 (3.2) 

where 𝑀𝑄𝑚𝑠𝑟

𝑓𝑚𝑠𝑟  is the reading of the ionization chamber in the user’s beam under the reference 

conditions corrected for environmental and other influencing quantities, while 𝑘𝑄𝑚𝑠𝑟,𝑄0

𝑓𝑚𝑠𝑟,𝑓𝑟𝑒𝑓
 is the 

beam quality correction factor to correct for the difference between the response of ionization 

chamber in a conventional reference calibration field 𝑓𝑟𝑒𝑓 and beam quality 𝑄0 used in the 

standard laboratory and the response in the machine specific reference field 𝑓𝑚𝑠𝑟 and user’s 

beam quality 𝑄𝑚𝑠𝑟. 

3.1.3 Chamber calibrated for a conventional reference field, without generic 

beam quality correction factor available 

In this case, a third approach has to be followed and the absorbed dose to water for the 𝑓𝑚𝑠𝑟 and 

𝑄𝑚𝑠𝑟 is given by 
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𝐷𝑤,𝑄𝑚𝑠𝑟

𝑓𝑚𝑠𝑟 = 𝑀𝑄𝑚𝑠𝑟

𝑓𝑚𝑠𝑟 ∙ 𝑁𝐷,𝑤,𝑄0

𝑓𝑟𝑒𝑓 ∙ 𝑘𝑄,𝑄0

𝑓𝑟𝑒𝑓 ∙ 𝑘𝑄𝑚𝑠𝑟,𝑄

𝑓𝑚𝑠𝑟,𝑓𝑟𝑒𝑓 (3.3) 

Most of the radiotherapy treatment units that cannot realize 10 cm × 10 cm reference field can 

realize the 𝑓𝑚𝑠𝑟 substantially above the limits which define conditions for small fields as defined 

in Eq. (2.2). Therefore,  𝑘𝑄𝑚𝑠𝑟,𝑄

𝑓𝑚𝑠𝑟,𝑓𝑟𝑒𝑓
 correction factors are close to unity with the exception of 

GammaKnife® machine which can presently generate only beams up to 18 mm in diameter. 

3.1.4 Conventional linear accelerators 

In our study, we have investigated properties of small fields on conventional linear accelerators 

which can form reference field 10 cm × 10 cm. In this case, the machine specific reference field 

is equal to the conventional reference field, 𝑓𝑚𝑠𝑟 = 𝑓𝑟𝑒𝑓. Substituting all indices msr with 

indices ref, Eq. (3.2) reduces to the formalism from TRS-398,  

𝐷𝑤,𝑄𝑟𝑒𝑓

𝑓𝑟𝑒𝑓 = 𝑀𝑄𝑟𝑒𝑓

𝑓𝑟𝑒𝑓 ∙ 𝑁𝐷,𝑤,𝑄0

𝑓𝑟𝑒𝑓 ∙ 𝑘𝑄𝑟𝑒𝑓,𝑄0

𝑓𝑟𝑒𝑓,𝑓𝑟𝑒𝑓 (3.4) 

Further omission of the redundant indices 𝑓𝑟𝑒𝑓 and 𝑟𝑒𝑓, yields to 

𝐷𝑤,𝑄 = 𝑀𝑄 ∙ 𝑁𝐷,𝑤,𝑄0
∙ 𝑘𝑄,𝑄0

(3.5) 

which is the same equation for the determination of absorbed dose to water under the reference 

conditions as it is used in the TRS-398 dosimetry protocol.1  

3.2 Relative dosimetry of small fields  

IAEA TRS-483 provides general recommendations regarding the detectors suitable for relative 

dosimetry of small fields emphasizing that there is no ideal detector for measurements in small 

fields. Also, recommendations on suitable phantoms and set-up are provided in details. 

Particular attention is given to the orientation of various point detectors with respect to the 

central beam axis. For example, for measurements of lateral beam profiles, a general rule is that 

detector is oriented with its smallest dimension of active volume perpendicular to the scanning 

direction, which is not always possible. For ionization chambers, it is advised to orient chamber 

with its stem parallel to the central beam axis to minimize stem effect. Recommendations on 

possible orientations of an ionization chamber and a solid-state detector with respect to the 

central beam axis are given in Table 3.1 for measurements of lateral beam profiles and the 

determination of field output factors. Figures 3.1 - A and B provide a graphical illustration of 
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suitable orientation for ionization chambers and solid-state detectors (diodes and diamond 

detector). 

  

 

Figure 3.1. Recommended detector orientations for measurements of lateral beam profiles: Left 

drawing A for ionization chambers and right drawing B for solid-state detectors (diodes and 

diamond detector). Figure adapted from TRS-483.10 

 

Table 3.1 Advised detector orientation, with respect to the central beam axis in small photon 

fields. Table adapted from TRS-483.10 

Detector type 
Detector’s 

geometrical reference 

Lateral beam 

profiles 
Field output factors 

Cylindrical micro 

ionization chamber 
Axis 

Parallel or 

Perpendicular 
Perpendicular 

Silicon shielded 

diode 
Axis Parallel Parallel 

Silicon unshielded 

diode 
Axis Parallel Parallel 

Diamond detector Axis Parallel Parallel 

Radiochromic film Axis Perpendicular Perpendicular 
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3.3 Field output factors and detector specific output correction 

factors 

In the relative dosimetry of large fields, the quotient of the absorbed dose in a clinical field 𝑓𝑐𝑙𝑖𝑛 

and the absorbed dose in a reference field 𝑓𝑟𝑒𝑓 is termed as total scatter factor (Sc,p) or relative 

dose factor (RDF), or sometimes simply as output factor (OF). It is usually approximated by 

the ratio of detector readings 𝑀𝑄(𝑓𝑐𝑙𝑖𝑛) and 𝑀𝑄(𝑓𝑟𝑒𝑓) in clinical and reference field respectively 

as 

𝑂𝐹(𝑓𝑐𝑙𝑖𝑛) =
𝐷𝑤,𝑄(𝑓𝑐𝑙𝑖𝑛)

𝐷𝑤,𝑄(𝑓𝑟𝑒𝑓)
≈

𝑀𝑄(𝑓𝑐𝑙𝑖𝑛)

𝑀𝑄(𝑓𝑟𝑒𝑓)
(3.6) 

The approximation is based on the fact that stopping power ratios and perturbation factors are 

practical constant with field size, for large fields, at a given photon beam energy. 

In the case of small fields, this does not hold true anymore, since the perturbation factors 

and volume averaging effects depends considerably on the field size, on the detector type, size, 

and its material and on the type of accelerator which was discussed in the previous chapter. 

Using the notation from TRS-483, it is necessary to apply the exact definition of output factor 

as a dose ratio in two fields, 𝑓𝑐𝑙𝑖𝑛 and 𝑓𝑚𝑠𝑟 

Ω𝑄𝑐𝑙𝑖𝑛,𝑄𝑚𝑠𝑟

𝑓𝑐𝑙𝑖𝑛,𝑓𝑚𝑠𝑟 =
𝐷𝑤,𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛

𝐷𝑤,𝑄𝑚𝑠𝑟

𝑓𝑚𝑠𝑟
(3.7) 

The symbol Ω𝑄𝑐𝑙𝑖𝑛,𝑄𝑚𝑠𝑟

𝑓𝑐𝑙𝑖𝑛,𝑓𝑚𝑠𝑟  called field output factor is introduced at this point, to emphasize that it 

is not identical to the conventional OF (or RDF or Sc,p). As the Ω𝑄𝑐𝑙𝑖𝑛,𝑄𝑚𝑠𝑟

𝑓𝑐𝑙𝑖𝑛,𝑓𝑚𝑠𝑟  is not equal to the 

dose ratio between detector readings 𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛 and 𝑀𝑄𝑚𝑠𝑟

𝑓𝑚𝑠𝑟  in clinical and machine specific 

reference fields, the ratio of readings is multiplied by a proportionality factor called output 

correction factor 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑚𝑠𝑟

𝑓𝑐𝑙𝑖𝑛,𝑓𝑚𝑠𝑟
, or more appropriately, detector specific output correction factor, 

leading to the final expression for field output factors in small fields as defined in the TRS-483  

Ω𝑄𝑐𝑙𝑖𝑛,𝑄𝑚𝑠𝑟

𝑓𝑐𝑙𝑖𝑛,𝑓𝑚𝑠𝑟 =
𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛

𝑀𝑄𝑚𝑠𝑟

𝑓𝑚𝑠𝑟
∙ 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑚𝑠𝑟

𝑓𝑐𝑙𝑖𝑛,𝑓𝑚𝑠𝑟 (3.8) 

Combining Eqs. (3.6) and (3.7) we can write down the general equation for detector specific 

output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑚𝑠𝑟

𝑓𝑐𝑙𝑖𝑛,𝑓𝑚𝑠𝑟
 as  
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𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑚𝑠𝑟

𝑓𝑐𝑙𝑖𝑛,𝑓𝑚𝑠𝑟 =
𝐷𝑤,𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛 𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛⁄

𝐷𝑤,𝑄𝑚𝑠𝑟

𝑓𝑚𝑠𝑟 𝑀𝑄𝑚𝑠𝑟

𝑓𝑚𝑠𝑟⁄
(3.9) 

In principle, 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑚𝑠𝑟

𝑓𝑐𝑙𝑖𝑛,𝑓𝑚𝑠𝑟
 depends on many factors such as the perturbation of particle fluence 

and volume averaging effects, in particular, on the field size, detector type, and the design, size, 

and non-water equivalency of most of the detectors.  

Similar as we did in section 3.1, we can modify Eqs. (3.8) and (3.9) in the case of 

conventional linear accelerators, which can realize reference field 10 cm × 10 cm, by 

substituting msr indices with ref, yielding to simplified expressions for field output factor 

Ω𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓 =
𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛

𝑀𝑄𝑟𝑒𝑓

𝑓𝑟𝑒𝑓
∙ 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓 (3.10) 

and detector specific output correction factor 

𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓 =
𝐷𝑤,𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛 𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛⁄

𝐷𝑤,𝑄𝑟𝑒𝑓

𝑓𝑟𝑒𝑓 𝑀𝑄𝑟𝑒𝑓

𝑓𝑟𝑒𝑓⁄
(3.11) 

for this specific case. Since we have conducted our experimental part of the study on 

conventional linear accelerators, the last two equations are most relevant for our study.  

 

 

Figure 3.2. Measured uncorrected dose in 6 (a) and 10 MV (b) beams for different detectors 

normalized to 10 cm × 10 cm reference field, fitted by an analytical function. SES denotes 

side of equivalent square field. Figure from Sauer and Wilbert.13  

The fact is, that field output factors decrease rapidly with decreasing field size, most 

notably for field sizes below 2.0 cm × 2.0 cm, which is shown in Figure 3.2. from one of the 
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early experimental studies by Sauer and Wilbert.13 They have experimentally determined output 

factors for several detectors in 6 and 10 MV beams and fitted the data by an analytical function. 

Although the study was conducted before new small field dosimetry formalism has been 

published by Alfonso et el., there are already some similarities to the TRS-483 formalism in the 

approach by Sauer and Wilbert. 

Lastly mentioned study was of particular importance for our work since we have applied 

the analytical function proposed by Sauer and Wilbert for the determination of field output 

factors based on the measurements performed with two reference detectors, the approach which 

will be presented in detail in the fifth chapter Methods and materials.  

While there are several known factors that influence the field output factors and detector 

specific output correction factors discussed earlier in chapter 2,  it is also of interest to know 

whether Ω𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 and  𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  depend also on the way the field is collimated on the linear 

accelerator (e.g., using multileaf collimator - MLC or jaws) and whether 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 significantly 

depend on the orientation of the ionization chamber in small photon fields.  These issues were 

also investigated in the experimental part of our study and are addressed and discussed in the 

continuation of the thesis. 
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4 DETECTORS FOR RELATIVE SMALL FIELD 

DOSIMETRY 

Several detector types have been used in the past for relative small beam dosimetry, including 

cylindrical ionization chambers, silicon diodes, diamond detectors, plastic or organic 

scintillators, radiographic and radiochromic films, metal oxide semiconductor field-effect 

transistor detectors (MOSFET), thermoluminescent dosimeters (TLD), alanine, to mention 

some of them. Detector choice for small field dosimetry can be made considering three main 

rules:10  

(i) The detector has a small active volume to minimize volume averaging effect. In 

the ideal case, the detector should sample the fluence at a point 

(ii) The detector is water equivalent, i.e., it is constructed of materials which minimize 

perturbation effects 

(iii) The detector has a linear response which is energy independent or with clearly 

known energy dependence 

 Presently there is no commercially available ideal detector, which would fulfill all key 

conditions outlined above. In the following sections, the most important characteristics of five 

different detector types will be shortly presented, since those detectors were used in our study 

for the determination of field output factors Ω𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 and detector specific output correction 

factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 in small beams as defined in the previous chapter.  

4.1 Cylindrical ionization chambers 

While in general there are two different types of air-filled ionization chambers, parallel-plate 

and cylindrical (thimble), we limit our description to the last type only since cylindrical 

ionization chambers have been proven as most suitable for clinical reference dosimetry.  

 Cylindrical ionization chambers are the most frequently used type of detector in 

radiotherapy. They have been a backbone of clinical dosimetry for decades and all present 

reference dosimetry protocols,1,2,3 based on the determination of absorbed dose to water, rely 

on the measurements using ionization chambers.  
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 An ionization chamber is composed by an air-filled cavity surrounded by a conductive 

outer wall having a central collecting electrode in the middle of the cavity on the chamber’s 

axis as schematically shown in Figure 4.1. The wall usually consists of graphite and 

polymethylmethacrylate (PMMA), while the central electrode is commonly made of aluminum 

although some chambers have a graphite or steel electrode. To minimize leakage current, outer 

electrode (wall) and central electrode are separated by an insulator. Most widely used 

cylindrical ionization chambers is that of Farmer type having 0.6 cm3 active volume. While 

Farmer-type ionization chamber is not suitable for relative dosimetry of small fields due to its 

large volume, it is still a gold standard in conventional radiotherapy dosimetry, in particular for 

absolute calibration of megavoltage beams from linear accelerators in terms of dose to water. 

 

 

Figure 4.1. Schematic drawing of a cylindrical Farmer-type ionization chamber showing its 

basic components and materials. Figure from E.B.Podgorsak, Radiation Oncology Physics: A 

handbook for teachers and students (2005). 

 

 Principles of operation are following: when a suitable polarizing voltage is applied to the 

chamber which is exposed to radiation, air in the chamber’s cavity becomes ionized. Positive 

ions are attracted to the negative electrode (cathode) and the negative electrons to the positive 

electrode (anode) causing a flow of electrical current which is measured by an electrometer and 

is proportional to the released charge. Operating voltage range typically from 100 to 800 V 

depends on the type of the ionization chamber, most frequently from 300 to 400 V. If the applied 

voltage is to low, some of the electrons and ions may recombine before they reach electrodes. 

In that case, a collection of ions and electrons is incomplete, and we need to correct the 

electrometer’s reading by the recombination correction factor. A formalism from the IAEA  

TRS-398 CoP can be applied for the determination of absorbed dose to water after correcting 

measured charge for environmental and other influencing quantities.  
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Instead of Farmer-type chambers, several small vented air ionization chambers and 

microchambers of a volume of 0.01 – 0.3 cm2 have been designed specifically for dosimetry 

measurements in small fields. Smaller ionization chambers exhibit smaller volume averaging 

effect. However, signal to noise ratio might be a limiting factor for clinical use of a chamber 

having very small active volume. Even if some ionization chambers have extremely small active 

volume, for example below 0.01 cm3, we cannot consider them as a point detector; there is 

always a small field under which a volume averaging would be unacceptable large, leading to 

a high under response at very small fields. 

While small and micro ionization chambers might have a slightly different design compared 

to the Farmer-type chambers, their basic components and operational characteristics are similar.  

4.2 Silicon diodes 

Silicon diodes are widely used radiation detectors for clinical dosimetry. The diodes are 

produced in two types as p-type and n-type diode depending on the lightly doped base silicon 

substrate. Since n-type diode is more affected by the radiation damage, only p-type diode is 

suitable for clinical dosimetry. Figure 4.2 shows a schematic drawing of a p-type diode as well 

as the related x-ray image. 

 

 

Figure 4.2. Schematic drawing (left) and x-ray image (right) of an IBA SFD unshielded silicon 

diode. Dimensions shown in the figure are in mm. Figure from McKerracher and Thwaites.55  

 

 One of the main advantages of diode detector over ionization chamber is its higher 

sensitivity, i.e., better signal to noise ratio. Considering the energy needed to produce an ion 

pair in silicon and in the air (3.6 eV for silicon versus 34 eV for air), and the difference in their 
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densities (2.3 g/cm3 for silicon versus 1.23·10-3 g/cm3 for air), silicon diode will produce close 

to 18000 higher signal than an air-filled ionization chambers of the same volume. That brings 

us to the second significant advantage of diodes – they can be made very small. Indeed, 

commercially available diodes have very small active volumes which are at least two or three 

orders of magnitude smaller than the corresponding volumes (air cavities) in micro and mini 

ionization chambers (see Tables 5.1 and 5.2 in chapter Methods and materials), which makes 

them pertinent for relative small field dosimetry. 

 However, an important disadvantage of diodes is their energy dependence; they over-

respond to low energy scattered photons due to high mass energy absorption coefficient ratio 

(𝜇𝑒𝑛 𝜌⁄ )𝑆𝑖,𝑤 of silicon (𝑍𝑆𝑖 = 14) relative to that of water (𝑍𝑒𝑓𝑓,𝑤 = 7.42), as shown in Figure 

4.3. The absorption coefficient ratio (𝜇𝑒𝑛 𝜌⁄ )𝑆𝑖,𝑤 increases significantly at low photon energies 

exhibiting a peak around 20 keV. 

  

 

Figure 4.3. Ratios of mass energy absorption coefficients 𝜇𝑒𝑛 𝜌⁄  and electron stopping powers 

𝑆𝑒𝑙 𝜌⁄  for silicon and air relative to water.  

 

 Over-response of diodes is their important characteristic in large fields, while in small 

fields, where the amount of low energy photons is reduced, over-response becomes less 

significant. To absorb some of the low energy photons, several silicon diodes are energy 

compensated, i.e., their sensitive volume is shielded with high-density material. However, such 

shielded diodes have an unwanted effect in small fields, where the scattered radiation is 
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reduced, and the amount of low energy photons becomes very low. Namely, the presence of 

high-density material increases the fluence of secondary electrons in the silicon, resulting in 

over-response of diodes in small fields. Therefore, for measurements in small fields, unshielded 

diodes without metallic shielding are recommended.10   

4.3 Synthetic micro diamond detector 

Synthetic micro diamond is one of the newest detectors suitable for small field dosimetry. 

Presently, the only commercially available synthetic diamond detector is PTW 60019 

microDiamond (PTW, Freiburg, Germany) shown in Figure 4.4. Its properties are similar to 

those of silicon diodes such as high sensitivity (7000 times higher response compared to the air 

filled ionization chamber of the same size) and small size of the active volume. However, micro 

diamond detector has one important advantage over silicon diodes: since the mass absorption 

coefficient ratio of diamond to water (𝜇𝑒𝑛 𝜌⁄ )𝐶,𝑤 is nearly constant over a wide range of photon 

energies, micro diamond detector is nearly energy independent and does not suffer from over-

response to low energy photons as silicon diodes. 

 

 

Figure 4.4. Photo of a PTW 60019 microDiamond detector (A) and digital x-ray image of micro 

diamond and one of the smallest silicon diode presently on the market, IBA SFD (B). Figure B 

is adapted from Larraga-Gutierrez et al.56 

 

 The micro diamond detector consists of a single crystal layer of 1 μm thickness and  

2.2 mm in diameter, yielding a sensitive volume of around 0.004 mm3, which is the smallest 
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active volume among presently available detectors used in small field dosimetry. It is embedded 

in RW3 solid water (PTW, Freiburg, Germany) housing, filled with epoxy raisins. In principle, 

the detector operates as a Schottky diode with a zero external bias voltage, similar as in the case 

of silicon diodes. 

 Despite small dimensions of sensitive layer, volume averaging effect can play an important 

role in a very small fields below 1.0 × 1.0 cm2, since the diameter of sensitive volume becomes 

comparable to the field dimensions, which may require non-negligible correction of measured 

signals. 

 Excellent physical characteristics of micro diamond detector have attracted several 

research groups to investigate its behavior in small megavoltage beams.35,44,48,56–58,59,60 While 

there is a large number of publications on this subject, there is no definite consensus on the 

behavior and response of micro diamond detector in a very small fields below 1.0 × 1.0 cm2. 

Presently it is still an interesting topic and a matter of debate.44,24 Micro diamond detector and 

its response in small fields is discussed in detail also in the present thesis. 

4.4 Radiochromic film 

Radiochromic film is a two-dimensional radiation detector. Presently, the most widely used 

type of radiochromic film is Gafchromic EBT3 film, schematically shown in Figure 4.5. It 

consists of an active layer with nominal thickness of 28 μm sandwiched between two matte 

polyester sheets with a thickness of 125 μm each. Such film structure makes the film symmetric, 

with the same response regardless of the utilized orientation. The composition of EBT3 film is 

shown in Table 4.1 by elemental composition. 

 

 

Figure 4.5. Schematic drawing of Gafchromic EBT3 film components. 
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Table 4.1 Elemental composition and effective atomic number Zeff of Gafchromic EBT3 film 

Composition of EBT3 Gafchromic film [%] 

H Li C O Al Zeff* 

38.4 0.1 43.7 17.7 0.2 6.71 

 

Radiochromic films have three important strengths which make them suitable for dose 

measurements in radiation fields with steep dose gradients, and in particular for dosimetry in 

small fields of megavoltage photon beams where we have lack (loss) of lateral charged particle 

equilibrium: 

i. They have very weak energy dependence in clinical megavoltage photon beams.61,62 

ii. Their composition is near water (tissue) equivalent.63  

iii. They have very high spatial resolution, resolving details of at least 25 μm or even 

smaller  

Also, radiochromic film does not require physical, chemical or thermal post-irradiation 

processing which is an advantage compared to the conventional radiographic films. It develops 

by itself, due to polymerization of the active layer of the film. As a result of polymerization 

induced by radiation, the film changes color and can be analyzed using the software after being 

scanned by a flatbed scanner. However, since the color changes due to polymerization is a slow 

process, it takes time to complete development – typically 24 hours. 

Radiochromic films are less sensitive than radiographic films. However their wide dynamic 

range from 0.2 to 10 Gy (for EBT3 type), makes them suitable for many applications in clinical 

dosimetry. They are almost insensitive to visible light and can be immersed in water. Since they 

exhibit some sensitivity to UV light and temperature, they need to be appropriately stored in 

boxes in a room with stable and controlled temperature, although no temperature corrections 

are needed. 

Unlike many other radiotherapy dosimeters, radiochromic film has non-linear dose-

response which should be corrected for. Therefore a calibration procedure is required before 

measurements. For the calibration purpose, a set of films is irradiated with known doses to 

obtain a calibration or sensitometric curve for the subsequent determination of doses for 

particular clinical dosimetry measurements. 
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4.5 Plastic scintillator 

Plastic scintillators are relatively new detectors used in clinical radiotherapy, although 

scintillation dosimetry has been known for a long time. First commercially available plastic 

scintillator is Exradin W1 plastic scintillating detector (W1 PSD) manufactured by Standard 

Imaging (Standard Imaging, Middleton, WI, USA).  

The W1 PSD is made of scintillating polystyrene fiber enclosed by an acrylic scintillator 

housing as shown in Figure 4.6. The physical density of plastic scintillating fiber is 1.05 g/cm3, 

with a sensitive volume of 1 mm in diameter and 3 mm in length. When exposed to radiation, 

atoms in the scintillating fiber excite. The scintillation light produced in the active volume of 

the detector is guided through a 3 m long optical fiber to a photodetector (photodiode). 

 

 

Figure 4.6. Schematic drawing (left) and a photo (right) of a plastic scintillator detector Exradin 

W1.  

 

Photodetector splits up the light (photons in the visible part of the spectrum) into two 

components: green which is mainly scintillating light, and blue, mainly produced by Čerenkov 

radiation. Optical output is converted into electrical signal which can be measured with suitable 

electrometer as collected charge in two separate channels. For the elimination of unwanted 

Čerenkov part of the signal, two channel electrometer is commonly used. Such configuration 

allows automatic correction for the Čerenkov part of the signal. Alternative approach is to use 

two electrometers, each for one of the output channels; in that case, contribution of Čerenkov 

radiation has to be calculated manually, providing that preliminary calibration has been 

performed.64 
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5 MATERIALS AND METHODS  

5.1 Experimental set-up 

Dosimetry measurements were performed at two hospitals on two different state of the art linear 

accelerators, Elekta Versa HDTM (Elekta AB, Stockholm, Sweden) and Varian TrueBeamTM 

(Varian Medical Systems, Palo Alto, CA), using high-energy photon beams of 6 and 10 MV. 

Beams with flattening filters (WFF) as well as flattening filter free (FFF) beams, denoted 

hereafter as 6 MV WFF, 6 MV FFF, 10 MV WFF, and 10 MV FFF, were used for all 

measurements. The measurement geometry consisted of an isocentric set-up with a source-to-

surface (SSD) distance of 90 cm, a depth of 10 cm and gantry at 0°. For each point measurement, 

100 MU were delivered, for nine square fields with nominal side lengths of 0.5, 0.8, 1.0, 1.5, 

2.0, 3.0, 4.0, 5.0 and 10.0 cm. The 10 × 10 cm2 field size was used as the reference field size 

for the calculation of field output factors and detector specific output correction factors. At least 

three measurements were taken for each specific set-up unless otherwise specified. For all point 

measurements in water, a reference class PTW Unidoswebline (PTW, Freiburg, Germany) 

electrometer was used throughout the study. 

In this study, the dose response of 16 types of detectors was investigated. These consisted 

of a plastic scintillator Exradin W1 (Standard Imaging, Middleton, WI, USA), radiochromic 

film EBT3 (Ashland Inc., Wayne, NJ, USA), seven solid-state detectors, i.e., six diodes and a 

synthetic micro diamond detector, and seven ionization chambers, i.e., detectors which are 

commercially available, in regular clinical use and recommended in the TRS-483 CoP as 

suitable for small field dosimetry. For the solid-state detectors and ionization chambers, the 

same detectors with the same serial numbers were used for measurements on both linacs; EBT3 

films from two different lots were used for measurements in the two linacs. The Exradin W1 

plastic scintillator detector (W1 PSD) and the EBT3 film detectors were considered as the 

reference detectors and were used for the determination of an analytical function for field output 

factors. Based on this analytical function, detector specific output correction factors for the 

seven solid-state detectors and seven ionization chambers were obtained in the form of an 

analytical function and as discrete values. 

A 3D water phantom (Blue Phantom 2, IBA Dosimetry, Schwarzenbruck, Germany) was 

used for the measurements in the first center on an Elekta Versa HD linac for all detectors 
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except for the EBT3 films, for which RW3 Solid Water phantom (PTW Freiburg, Freiburg, 

Germany) in the form of 30 × 30 cm2 slabs were used. Radiation fields were shaped with MLC 

in cross-line (x) direction and with jaws in the in-line (y) direction. 

For all detectors, except for EBT3 films, an MP3-M water phantom (PTW, Freiburg, 

Germany) was used for measurements in the second center equipped with a Varian TrueBeam 

linac. For EBT3 films, 30 × 30 cm2 slabs of Virtual Water (Standard Imaging, Middleton, WI, 

USA) were used. To match the nominal field sizes on Varian TrueBeam with those on the 

Elekta Versa HD, radiation fields on Varian TrueBeam were collimated using the linac jaws in 

both axes, x and y. 

5.2 Radiochromic films EBT3 

Weak energy dependence,61,62 near water-equivalence,63 and high spatial resolution are the most 

important properties of radiochromic films, that justify their use as a reference detector for 

relative dosimetry in small fields in MV photon beams. However, since uncertainties in data 

obtained using films can become significant from mishandling of films, careful handling of 

films is crucial to obtain meaningful and accurate results. A strict protocol for film dosimetry 

was therefore followed throughout this study, from film cutting to final scanning considering 

various corrections related to radiochromic film dosimetry.65,66 

5.2.1 Film preparation and irradiation 

Gafchromic EBT3 films from lot 04071601 were used for measurements on Elekta Versa HD 

linac and from lot 06291702 on Varian TrueBeam linac. From each lot, two films were 

employed for calibration. Each calibration film was cut into seven strips with dimensions  

20.32 × 3.5 cm2. One strip was left unexposed; the other six were irradiated with a 6 MV WFF 

beam. Calibration strips cut from both films were irradiated with 50, 100, 150, 200, 250, 300, 

350, 400, 450, 500 (two pieces) and 600 MU on Elekta Versa HD, and with 60, 120, 180, 240, 

300, 360, 420, 480, 540, 600 (two pieces) and 720 MU on Varian TrueBeam. Field sizes of  

25 × 25 cm2 were used to expose them with homogenous doses. 

Field output factors were measured with three pieces of films for each combination of field 

size and photon beam. In total, 108 pieces of films (i.e., four photon beams times nine fields 

times three measurements) were irradiated on each linac. To reduce film uncertainties,67 central 

doses were kept to about 2 Gy or higher than that for all fields. On Elekta Versa HD, films were 



31 

irradiated with 500 MU for field output factor measurements, while on Varian TrueBeam linac 

they were irradiated with 600 MU. The difference in MU reflects the fact that Elekta linac was 

calibrated isocentrically (1 cGy/MU at source-to-surface distance SSD = 90 cm, and depth 10 

cm), while Varian linac was calibrated at the depth of maximum ionization (1 cGy/MU at SSD 

= 100 cm, depth dmax). Latter also explains the selection of MU for calibration films. Five 

unexposed films were also scanned to apply lateral corrections. The orientation of all films (i.e., 

calibration strips, films employed for field output factor measurements and unexposed films) 

were marked to ensure consistency in scanning. 

5.2.2 Scanning 

To reduce uncertainties, all films were scanned prior to and following irradiation. An Epson 

Expression 10000XL (Seiko Epson Corporation, Nagano, Japan) flatbed scanner was used for 

measurements made on the Elekta linac, while an Epson Expression 11000XL was used for 

measurements made on the Varian linac. Scanners were warmed up for at least 30 minutes 

before readings. A frame, cut out from a transparency sheet was employed to place films in a 

reproducible and centered position on the scanner. Whenever there was a gap between the frame 

and the film pieces along the axis parallel to the lamp, it was closed with idle film pieces to 

minimize the cross-talk effect.68 Before acquisitions and after long pauses, five empty scans 

were taken to stabilize the lamp. Each reading was repeated five times, and the first scan was 

discarded. Scans were made in reflection mode and portrait orientation. Images were acquired 

with Epson Scan v3.49a software in 48-bit RGB mode (16 bit per channel) with processing 

tools turned off, and saved as TIFF files. Resulting images were obtained as the average of 

repeated scans. To correct for inter-scan variations, every film was scanned together with an 

unexposed calibration strip. Calibration films and field output factor film pieces were scanned 

with 50 dpi and 150 dpi resolution, respectively. Lateral corrections were derived from the 

unexposed films and the calibration strips. 

5.2.3 Dose calculation and field dimensions 

Doses were computed using the Multigaussian model69 for radiochromic film dosimetry 

implemented in Radiochromic.com v3.0,70 after applying lateral and inter-scan corrections. 

Data analysis was carried out with the R statistical computing environment.71 

For each film, field dimensions along x and y directions were determined from 

measurements of the full width at half maximum (FWHM), and central doses as the mean of 
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the dose values in a circular region of interest (ROI) drawn in the central part of the irradiated 

field with a diameter of 0.5 mm. The center of the irradiated field was defined as the center of 

the dose profiles in both directions. Since central doses and field dimensions were calculated 

from measurements made on three different film pieces for each field, the final results were 

taken as the average of these three measurements. 

5.3 Equivalent square small field size Sclin  

Nominal field sizes were converted to the equivalent square small field sizes 𝑆𝑐𝑙𝑖𝑛 for each field 

following the approach originally suggested by Cranmer-Sargison et al.,72 used by other 

authors37 and adopted by TRS-483 according to  

𝑆𝑐𝑙𝑖𝑛 = √𝐴 ∙ 𝐵 (5.1) 

where 𝐴 corresponds to the radiation field width (FWHM) in the in-line direction y and 𝐵 

(FWHM) for the cross-line direction x perpendicular to the former. 𝑆𝑐𝑙𝑖𝑛 has the same meaning 

as 𝐹𝑆𝑒𝑓𝑓 in the original work by Cranmer-Sargison et al. Radiation field widths 𝐴 and 𝐵 were 

determined from EBT3 film measurements as described earlier, and have been applied for all 

detectors used in the study. In the present study, 𝐴 and 𝐵 correspond to the field widths defined 

by the FWHM at the measurement depth of 10 cm. 

Applicability of the expression for equivalent square small field size 𝑆𝑐𝑙𝑖𝑛 is conditional,10 

meaning that 𝐴 and 𝐵 have to fall within the limits as follows  

0.7 <
𝐴

𝐵
< 1.4 (5.2) 

Since in general, measured field sizes defined by FWHM could be rectangular even if they are 

nominally square as it was the case in our study, especially for smallest fields. Fulfillment of 

this condition was checked for all investigated field sizes.  

5.4. Exradin W1 plastic scintillator 

W1 PSD has radiological properties similar to EBT3 films with densities close to the values of 

water and belongs to the group of reference detectors, which are perturbation free except for 

volume averaging.10 Near water equivalency and small dimensions makes W1 PSD suitable for 

relative dosimetry in small fields and thus was used as the second reference detector for the 

present study in combination with EBT3 films.25,64,73,74,75 
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The scintillator signal is contaminated with Čerenkov radiation, produced in the active 

volume of the scintillator and in the optical fiber, which needs to be corrected for. The most 

practical and widely used method for correcting the Čerenkov signal is spectral discrimination 

technique which is considered as an accurate and adequate method for removing Čerenkov 

signal/light.76,77 This method was also adopted in the present study. 

In the present study, W1 PSD axis was always oriented parallel to the beam axis. The 

Čerenkov calibration procedure recommended by the manufacturer, Standard Imaging, for 

small-field measurements, based on the method described by Morin et al.78 and adopted by 

others, 25,35,79,80 was followed in the present study. 

Čerenkov light ratio (CLR) coefficient, needed for correction of the scintillator signal, was 

calculated as 

𝐶𝐿𝑅 =
𝑀𝑚𝑎𝑥,10

𝐶ℎ1 − 𝑀𝑚𝑖𝑛,10
𝐶ℎ1

𝑀𝑚𝑎𝑥,10
𝐶ℎ2 − 𝑀𝑚𝑖𝑛,10

𝐶ℎ2
(5.3) 

where superscripts Ch1 and Ch2 stand for measured charge M with first and second channel 

respectively. With PTW Unidoswebline electrometer we measured scintillation signal (green 

light) in Ch1, while for Ch2 we used standard PTW Unidos electrometer for measurement of 

charge mainly produced by Čerenkov radiation (blue light). Subscripts 𝑚𝑎𝑥 and 𝑚𝑖𝑛 

correspond to maximum ( ̴ 30 cm) and minimum (  ̴10 cm) fiber length which is in the radiation 

field, and subscripts 10 stand for the nominal radiation field 10 × 10 cm2 applied during the 

Čerenkov calibration procedure. The Čerenkov-corrected signal (collected charge) 𝑀𝑓𝑐𝑙𝑖𝑛
 for a 

particular small clinical field 𝑓𝑐𝑙𝑖𝑛 was then obtained from two readings in both channels as 

𝑀𝑓𝑐𝑙𝑖𝑛
= 𝑀𝑓𝑐𝑙𝑖𝑛

𝐶ℎ1 − 𝐶𝐿𝑅 · 𝑀𝑓𝑐𝑙𝑖𝑛

𝐶ℎ2 (5.4) 

CLR coefficient was determined for all four photon beams on both linacs, Elekta Versa HD and 

Varian TrueBeam. For each photon beam, the energy-specific values of CLR were obtained 

from three sets of measurements, and the average value was used as the final value for particular 

CLR. Note, that 𝑀𝑓𝑐𝑙𝑖𝑛
 in Eq. (5.4) has the same meaning as 𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛 in Eq. (3.10). 

5.5 Solid-state detectors 

Six diodes and a micro diamond detector were selected among variety of solid-state detectors 

for the determination of their specific output correction factors: IBA SFD diode and IBA Razor 
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diode (IBA Dosimetry, Schwarzenbruck, Germany), PTW 60008 Diode P, PTW 60012 Diode 

E, PTW 60018 Diode SRS, PTW 60019 microDiamond (PTW, Freiburg, Germany) and SN 

EDGE detector (Sun Nuclear, Melbourne, FL, USA). The selection was based on their physical 

dimensions, characteristics, and availability for clinical use. Figure 5.1 shows all solid-state 

detectors used in the present study while Table 5.1 lists their basic physical properties and 

dimensions. 

 

 

 

Figure 5.1. The photo on top of the figure and x-ray image at the bottom of seven solid-state 

detectors, six diodes and micro diamond detector used in the present study. From left to right: 

PTW 60019 mD, SN EDGE Detector, IBA Razor diode, IBA SFD diode, PTW 60008 Diode 

P, PTW 60012 Diode E and PTW 60018 Diode SRS. 
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It is worth mentioning that PTW 60008 P and PTW 60012 E diodes were superseded by 

newer models, PTW 60016 P and PTW 60017 E diodes respectively. However, the physical 

construction of the newer models is basically identical to their predecessors.16 The equivalency 

between the PTW 60008 P and 60016 P diodes and 60012 E and 60017 E diodes has also been 

demonstrated in the MC study by Francescon et al,81 where the output correction factors were 

found to be the same. 

 

Table 5.1. Summary of basic characteristics and properties of the seven solid-state detectors 

included in the study. 

Detector type 
Active volume 

dimensions [mm] 

Sensitive 

material 

Material 

density 

[g/cm3] 

Zeff 
Reference 

depth [mm] 

IBA SFD 

diode 

Disc, Ø 0.6 

thickness 0.06 
Silicone 2.33 14 0.8 

IBA Razor 

diode 

Disc, Ø 0.6 

thickness 0.02 
Silicone 2.33 14 0.8 

PTW 60008 

Diode P 

Disc, Ø 1.2 

thickness 0.03 
Silicone 2.33 14 2.0 

PTW 60012 

Diode E 

Disc, Ø 1.2 

thickness 0.03 
Silicone 2.33 14 1.3 

PTW 60018 

Diode SRS 

Disc, Ø 1.2 

thickness 0.25 
Silicone 2.33 14 1.3 

SN EDGE 

detector 

Square 0.8 x 0.8 

thickness 0.03 
Silicone 2.33 14 0.3 

PTW 60019 

mD 

Disc, Ø 2.2 

thickness 0.001 

Synthetic 

diamond 
3.53 6 1.0 

 

Before measurements, which were performed with the PTW Unidoswebline electrometer for 

all solid-state detectors, each detector was positioned with its effective point of measurement 

(physical depth) at the reference depth of 10 cm, and with its stem parallel to the beam axis. 

The only exception was the SN EDGE detector, which was positioned with its stem 

orthogonally to the beam axis, due to its different design (see Figure 5.1). 

Lateral alignment of detectors along the central beam axis was made in three consecutive 

steps for each detector separately after the initial CAX alignment has been performed:  

a) initial set up using room lasers;  
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b) repositioning (centering) of the detector after acquiring lateral beam profiles along   

cross-line and in-line directions; 

c) finally, each detector was moved in manual mode in 0.2 mm (0.1 mm if necessary) 

steps along both x and y directions and irradiated with 100 MU to find the position 

where the collected charge was maximal.  

The position where the collected charge reached the highest value was assumed as the 

central beam axis, i.e., the center of the field, and the final position for each detector. The above 

procedure for lateral alignment of detectors was done separately for each photon beam. Similar 

alignment procedure is also recommended in the ICRU Report 91.9  

For each radiation field, three consecutive measurements of 100 MU each were taken. 

𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛  in Eq. (3.8) represents the average value of the three measured values. To limit the 

influence of environmental conditions,  𝑀𝑄𝑟𝑒𝑓

𝑓𝑟𝑒𝑓
 for 10 x 10 cm2 reference field was always 

measured prior to the smallest clinical field and at the end of each measurement session for the 

selected beam energy.  For reference field, the average value of six measurements was 

considered as the final value for 𝑀𝑄𝑟𝑒𝑓

𝑓𝑟𝑒𝑓
. 

5.6 Ionization chambers 

Seven mini and micro ionization chambers were selected for the determination of their specific 

output correction factors: IBA CC04 and IBA Razor (IBA Dosimetry, Schwarzenbruck, 

Germany), PTW 31016 3D PinPoint, PTW 31021 3D Semiflex, PTW 31022 3D PinPoint, PTW 

31023 PinPoint (PTW, Freiburg, Germany) and SI Exradin A16 (Standard Imaging, Middleton, 

WI, USA). The selection was based on their physical dimensions, characteristics, and suitability 

for clinical use, following the recommendations from the TRS-483. Two ionization chambers, 

IBA Razor and SI Exradin A16, included in the study, are classified as micro ionization 

chambers having the active volume V ≤ 0.01 cm3, while the rest of the chambers belonging to 

the group of small, sometimes denoted as mini ionization chambers with active volumes  

0.01 cm3 < V < 0.3 cm3. Table 5.2 lists their basic physical properties and dimensions. 

It is worth noting that PTW 31022 3D PinPoint and PTW 31023 PinPoint chambers 

superseded previous models PTW 31016 3D PinPoint and PTW 31014/31015 PinPoint, 

respectively. Newer models are mostly the same as their predecessors without notable 

constructional or geometrical differences. However, there is a difference in the nominal 
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chamber voltage as specified by the manufacturer: for PTW 31023 PinPoint chamber the 

nominal voltage is 200 V, while for older models PTW 31014/31015 PinPoint the nominal 

voltage is 400 V. Throughout the study manufacture’s specification regarding the nominal 

voltage were followed without exception. 

Similarly, IBA Razor ionization chamber superseded previous model IBA CC01. 

However, in this case, there are constructional differences. Unlike the old model having a steel 

electrode, a newer model has been designed with a graphite one. The rest of the characteristics, 

i.e., cavity dimensions, wall material, and wall thickness, remained unmodified.  

 

Table 5.2. Summary of basic properties of seven ionization chamber used in this study. 

Detector type 

Cavity 

volume 

[cm3] 

Cavity 

length/radius 

[mm] 

Wall 

material 

Wall 

thickness 

[g/cm2] 

Central 

electrode 

IBA CC04 0.04 3.6/2.0 C552 0.070 C-552 

IBA Razor 0.01 3.6/1.0 C552 0.088 Graphite 

PTW 31016 

PinPoint 3D 
0.016 2.9/1.45 

PMMA + 

Graphite 
0.085 Aluminium 

PTW 31021 

Semiflex 3D 
0.07 4.8/2.4 

PMMA + 

Graphite 
0.084 Aluminium 

PTW 31022 

PinPoint 3D 
0.016 2.9/1.45 

PMMA + 

Graphite 
0.084 Aluminium 

PTW 31023 

PinPoint 
0.015 5.0/1.0 

PMMA + 

Graphite 
0.085 Aluminium 

SI Exradin 

A16 
0.007 2.4/1.2 C552 0.088 Steela 

a Silver plated and cooper clad steel wire 

 

For the determination of field output factors in small photon fields, the recommended 

orientation for ionization chamber, with respect to the central beam axis, is perpendicular i.e. 

chamber’s axis (stem) is perpendicular to the central beam axis.10 TRS-483 CoP does not 

recommend parallel orientation since at the time of publishing, there were only limited data 

available for the orientation with the chamber stem parallel to the central axis of the beam. Such 

an approach was additionally explained in the recent publication by the authors of the TRS-483 
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CoP in their response to the “Comments on the TRS-483 protocol on small field dosimetry” and 

can be considered as appropriate.12,82 

However, some air-filled ionization chambers show noticeable stem effect, which can be 

minimized if the chamber is oriented with its stem parallel to the beam axis. Further, many  

air-filled ionization chambers are designed in a way that they have relatively large cavity 

lengths in the direction of the chamber axis. Later can significantly increase volume averaging 

effect if a chamber is placed with its stem perpendicular to the beam axis. Both concerns, as 

well as lack of data for parallel orientation in the present literature, brought as to the conclusion 

to perform measurements in both orientations as shown in Figure 5.2., and present data which 

might be valuable supplement to the present data sets in the literature and can possibly lead to 

the alternative recommendation regarding the orientation of ionization chamber in small photon 

beams.  

The execution of measurements was in principle the same as in the case of solid-state 

detectors and is described in section 5.5, with one exception. For lateral alignment of the 

ionization chambers with central beam axis, lateral beam profiles along cross-line and in-line 

directions were acquired in the same orientation of the ionization chamber as it was used for 

point measurements subsequently. That means that for the perpendicular orientation of the 

chamber we had to perform beam profile measurements in the orientation which is not 

recommended in the TRS-483 CoP. On the contrary, for the parallel orientation of the ionization 

chamber we performed profile scans in the advised orientation, and from apparent reason, we 

kept the same orientation for point measurements, the orientation which is not recommended in 

the TRS-483 CoP. In brief, measurements with solid-state detectors were always performed in 

advised orientation (for profile scans and point measurements), while it was not the case with 

ionization chambers since it was not possible following our measurement protocol; an 

ambiguity, connected to our experimental approach, which we tried to resolve in our work. 
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Figure 5.2. Two experimental set-ups with respect to the orientation of ionization chambers; 

perpendicular, as advised in the TRS-483 CoP (left) and parallel, which is not recommended.  

 

Observed differences in 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 values between perpendicular and parallel orientation 

were thoroughly analyzed and are discussed later in the thesis for all seven ionization chambers. 

Based on our findings, recommendation regarding the orientation of ionization chambers in 

small photon beams was given. 

5.7 Volume averaging correction 

Since EBT3 films and W1 PSD detector are almost water equivalent and have weak energy 

dependence, it is assumed in the present study that they have no perturbation correction 

factors.10 However, their signals still need to be corrected for volume averaging effects for the 

determination of field output factors. It is evident for scintillator as it has a finite size. However, 

it might not be so evident for radiochromic films. Radiochromic film is considered as a detector 

with almost infinite resolution. Inherently it might be the case. However, there are two 

limitations which need to be considered in clinical dosimetry - scanning resolution, which the 

user decides upon and the selected size of the film detector. Both need to be defined, i.e., one 

needs to define a specific finite area (ROI) of the film which will be used as a detector area of 

the EBT3 film for data analysis as well as scanning resolution which will be used for subsequent 

evaluation. As mentioned earlier, in the present study, the ROI was chosen to have a diameter 
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of 0.5 mm, and the scanning resolution was chosen to have a value of 150 dpi for field output 

factor measurements. 

According to IAEA TRS-483 CoP, 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 for these two detectors can be simplified as 

follows 

𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓 = 𝑘𝑣𝑜𝑙 (5.5) 

where 𝑘𝑣𝑜𝑙 is the volume averaging correction factor due to the detector’s finite size and 

represents the only correction factor that was considered for the two reference detectors in the 

present study and has a purely geometrical concept. 

Combining Eqs. (3.10) and (5.5), average signal readings 𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛  of EBT3 films and W1 

PSD can be corrected for volume averaging 𝑘𝑣𝑜𝑙 to determine discrete field output factors for 

small clinical fields as 

Ω𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓 =
𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛

𝑀𝑄𝑟𝑒𝑓

𝑓𝑟𝑒𝑓
𝑘𝑣𝑜𝑙 (5.6) 

Doses measured from EBT3 films were employed to calculate 𝑘𝑣𝑜𝑙 factors. For each small field 

𝑆𝑐𝑙𝑖𝑛 and beam energy 𝐸, film doses in a region of interest with dimensions 3 mm x 3 mm (i.e., 

from -1.5 mm to +1.5 mm in cross-plane direction x and in-plane direction y) centered on the 

beam axes were fitted to a bivariate Gaussian function 

𝑓(𝑥, 𝑦, 𝑆𝑐𝑙𝑖𝑛, 𝐸) = 𝑎 ∙ 𝑒
−

1
2

((
𝑥
𝑏

)
2

+(
𝑦
𝑐

)
2

)
(5.7) 

using fit parameters, a, b and c. The volume averaging correction factors 𝑘𝑣𝑜𝑙 were calculated 

as  

𝑘𝑣𝑜𝑙 = (𝑎 ∙ 𝜋𝑟2) (𝑎 ∙ ∬ 𝑓(𝑥, 𝑦, 𝑆𝑐𝑙𝑖𝑛, 𝐸) 𝑑𝑥 𝑑𝑦
𝐴

)

−1

(5.8) 

This approach is similar to the previously published studies by Morin et al.78 and 

Papaconstadopoulos et al.25,48 r in Eq. (5.8) is the radius of the detector’s sensitive volume in a 

plane orthogonal to the beam axis. The detector’s radius r was replaced with the size of the 

equivalent square field side length 𝑑 (note that this “equivalent square field size length d” is 

defined here for performing the integration of Eq. (5.8); this is different from the “equivalent 

square small field size 𝑆𝑐𝑙𝑖𝑛” defined in Eq. (5.1)), applying the expression 𝜋𝑟2 = 𝑑2 yields the 

result 
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𝑘𝑣𝑜𝑙 =
𝑑2

2𝜋𝑏𝑐 ∙ 𝑒𝑟𝑓 (
𝑑

2⁄

√2 ∙ 𝑏
) 𝑒𝑟𝑓 (

𝑑
2⁄

√2 ∙ 𝑐
)

(5.9)
 

Therefore, given the field size 𝑆𝑐𝑙𝑖𝑛 and beam energy 𝐸, the parameters d, b and c are necessary 

to calculate the 𝑘𝑣𝑜𝑙 factor of a specific detector; note that parameter a cancels out already in 

the Eq. (5.8) The first parameter d was obtained from the detector specifications, with the 

exception of EBT3 films, where the diameter of the detector (i.e. central ROI for the EBT3 

films) was chosen as 0.5 mm. For W1 PSD we used the value r = 0.5 mm following vendor 

specifications. The other two parameters were derived from film dose fit. 𝑘𝑣𝑜𝑙 were calculated 

for all solid-state detectors including the EBT3 and W1 PSD using the expression given in  

Eq. (5.9). 

To check whether 150 dpi scanning resolution was adequate and sufficient for the 

determination of 𝑘𝑣𝑜𝑙, several sets of films were scanned for the smallest field sizes using the 

1200 dpi resolution and the values of 𝑘𝑣𝑜𝑙 thus obtained were compared with those obtained 

using the 150 dpi scanning resolution. No detectable differences in 𝑘𝑣𝑜𝑙 were observed between 

both approaches; therefore 150 dpi scanning resolution was used for film scanning throughout 

the present study. 

5.8. Field output factors 

For the determination of field output factors, EBT3 films and W1 PSD were used equivalently, 

without any preference. 

Signals 𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛(𝐸𝐵𝑇3) measured with EBT3 films were corrected for volume averaging as 

𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛(𝐸𝐵𝑇3)𝑐𝑜𝑟𝑟 = 𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛(𝐸𝐵𝑇3) ∙ 𝑘𝑣𝑜𝑙
𝑓𝑐𝑙𝑖𝑛(𝐸𝐵𝑇3) (5.10) 

where 𝑘𝑣𝑜𝑙
𝑓𝑐𝑙𝑖𝑛  denotes volume averaging correction factor for specific clinical field 𝑓𝑐𝑙𝑖𝑛 (in the 

present study 𝑓𝑐𝑙𝑖𝑛 ≡ 𝑆𝑐𝑙𝑖𝑛). In addition to volume averaging correction, signals for the W1 PSD 

detector, 𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛(𝑊1 𝑃𝑆𝐷), were further normalized as 

𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛(𝑊1 𝑃𝑆𝐷)𝑁,𝑐𝑜𝑟𝑟 =
𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛(𝑊1 𝑃𝑆𝐷) ∙ 𝑘𝑣𝑜𝑙
𝑓𝑐𝑙𝑖𝑛(𝑊1 𝑃𝑆𝐷)

𝜖̅
(5.11) 
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Where 𝜖 ̅is the average value of ratios of measured signals between W1 PSD and EBT3 films 

for each particular photon beam of the specific linac, calculated as 

𝜖̅ =
1

9
∑

𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛(𝑊1 𝑃𝑆𝐷) ∙ 𝑘𝑣𝑜𝑙
𝑓𝑐𝑙𝑖𝑛(𝑊1 𝑃𝑆𝐷)

𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛(𝐸𝐵𝑇3) ∙ 𝑘𝑣𝑜𝑙
𝑓𝑐𝑙𝑖𝑛(𝐸𝐵𝑇3)

𝑓𝑐𝑙𝑖𝑛

(5.12) 

where summation goes over all nine clinical small fields selected in this study. 

𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛(𝐸𝐵𝑇3)𝑐𝑜𝑟𝑟 values obtained from Eq. (5.10) determined by EBT3 films and 

𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛(𝑊1 𝑃𝑆𝐷)𝑁,𝑐𝑜𝑟𝑟 values from Eq. (5.11) determined by W1 PSD, were fitted together by 

the analytical function proposed by Sauer and Wilbert,13 

Ω(𝑆𝑐𝑙𝑖𝑛) = 𝑃∞

𝑆𝑐𝑙𝑖𝑛
𝑛

𝑙𝑛 + 𝑆𝑐𝑙𝑖𝑛
𝑛 + 𝑆∞(1 − 𝑒−𝑏∙𝑆𝑐𝑙𝑖𝑛) (5.13) 

which was normalized to Ω(𝑆𝑐𝑙𝑖𝑛 = 10 𝑐𝑚) = 1. 𝑃∞, 𝑆∞, 𝑙, 𝑛 and 𝑏 are the fitting parameters, 

adjusted according to a routine, which optimizes the maximum likelihood estimation (MLE). 

For brevity and to avoid potential ambiguity, subscripts and superscripts were omitted from 

Ω(𝑆𝑐𝑙𝑖𝑛), which is in the form of an analytical function, unlike the Ω𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 which is used for 

discrete values of field output factors. Furthermore, 𝑆𝑐𝑙𝑖𝑛 was kept in the same form as in  

Eq. (5.1) to emphasize that it stands for the equivalent square small field sizes rather than the 

nominal field sizes; it has the same meaning as symbol s, used by Sauer and Wilbert in their 

original work. The use of analytical function, instead of the discrete values for field output 

factors, reduces uncertainties in W1 PSD and EBT3 film measurements. In addition, the 

functional form of field output factors Ω(𝑆𝑐𝑙𝑖𝑛) allows one to calculate discrete values for field 

output factors for any  equivalent square small field size within the range of small field sizes 

used in this study. 

5.9. Output correction factors 

For every solid-state detector and seven ionization chambers discrete values of detector specific 

output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓 (𝑆𝑐𝑙𝑖𝑛) were calculated for each measured equivalent square 

small field size 𝑆𝑐𝑙𝑖𝑛 as 

𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓 (𝑆𝑐𝑙𝑖𝑛) =
Ω𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓

𝑀𝑄𝑐𝑙𝑖𝑛

𝑓𝑐𝑙𝑖𝑛 𝑀𝑄𝑟𝑒𝑓

𝑓𝑟𝑒𝑓⁄
(5.14) 
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Discrete values of field output factors Ω𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 were obtained from the analytical function 

Ω(𝑆𝑐𝑙𝑖𝑛) in Eq. (5.13). 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓 (𝑆𝑐𝑙𝑖𝑛) values were fitted by the analytical function published 

in TRS-483 10 

𝑘(𝑆𝑐𝑙𝑖𝑛) =
1 + 𝑑 ∙ 𝑒−

10−𝑎
𝑏

1 + 𝑑 ∙ 𝑒−
𝑆𝑐𝑙𝑖𝑛−𝑎

𝑏

+ 𝑐 ∙ (𝑆𝑐𝑙𝑖𝑛 − 10) (5.15) 

with fitting coefficients, a, b, c and d. Instead of symbol 𝑆, which is used in TRS-483 CoP, in 

the analytical function in Eq. (5.15), symbol 𝑆𝑐𝑙𝑖𝑛 was used instead to emphasize that in the 

present study equivalent square field sizes were used without exception. As in the case for field 

output factors, subscripts and superscripts are omitted in the notations for output correction 

factors in Eq. (5.15) to indicate that in this case, output correction factors have functional form.  

Also, the discrete values of 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓 (𝑆𝑐𝑙𝑖𝑛) were calculated and reported for all detectors, 

photon beams and small fields, applying Eq. (5.14). 
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6 RESULTS 

6.1 Equivalent square small field size Sclin  

For each nominal field size, corresponding equivalent square field sizes 𝑆𝑐𝑙𝑖𝑛 (clinical field) 

were calculated based on EBT3 film measurements and applying Eq. (5.1). Data for nominal 

and equivalent square small field sizes are presented in Table 6.1. Throughout this thesis field 

sizes will be indicated with nominal values, however, they will represent, without exception, 

the corresponding 𝑆𝑐𝑙𝑖𝑛 values. For brevity, square field sizes will be denoted as nominal square 

field side lengths, e.g., instead of 0.5 × 0.5 cm2, notation 0.5 cm will be used henceforth. 

Table 6.1 Nominal field sizes and corresponding equivalent square small field sizes 𝑆𝑐𝑙𝑖𝑛 on 

Elekta Versa HD and Varian TrueBeam linacs measured with EBT3 radiochromic films and 

applying Eq. (5.1). 

Nominal 

square field 

side length 

[cm] 

𝑆𝑐𝑙𝑖𝑛[𝑐𝑚] - Elekta Versa HD  𝑆𝑐𝑙𝑖𝑛[𝑐𝑚] - Varian TrueBeam 

6 MV 

WFF 

6 MV 

FFF 

10 MV 

WFF 

10 MV 

FFF 
 

6 MV 

WFF 

6 MV 

FFF 

10 MV 

WFF 

10 MV 

FFF 

0.5 0.60 0.59 0.62 0.58  0.56 0.54 0.57 0.55 

0.8 0.87 0.85 0.87 0.86  0.81 0.82 0.84 0.81 

1.0 1.03 1.03 1.06 1.04  1.01 0.99 1.03 1.02 

1.5 1.51 1.52 1.55 1.52  1.50 1.49 1.52 1.51 

2.0 2.04 2.03 2.05 2.04  2.00 1.99 2.01 1.99 

3.0 3.06 3.04 3.08 3.02  3.03 3.00 3.00 2.98 

4.0 4.04 4.03 4.06 4.01  4.03 3.99 4.02 3.98 

5.0 5.04 5.01 5.05 4.99  5.02 5.00 5.01 4.96 

10.0 10.04 9.94 10.05 9.90  10.03 9.96 10.02 9.87 

 

While equivalent square small field sizes 𝑆𝑐𝑙𝑖𝑛 are nearly identical to the nominal field sizes 

for field sizes ≥ 1 cm, they differ rather significantly for the two smallest fields, 0.5 and 0.8 cm, 

regardless of the photon beam or collimation (linac) being used. 

The uncertainty of field size dimensions was determined from EBT3 films and was found 

to be < 0.1 mm. The same level of uncertainty of field set-up reproducibility was determined 

with repeated measurements of lateral beam profiles with several diodes at FWHM for smallest 

field sizes. 
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6.2 Field output factors 

Figure 6.1 shows graphs for field output factors determined from measurements made on Elekta 

Versa HD linac with EBT3 films and W1 PSD detector. The red circles and blue triangles 

represent field output factors for the EBT3 film and W1 PSD detectors respectively. Measured 

signals were corrected for volume averaging using Eqs. (5.8) and (5.9) when 𝑘𝑣𝑜𝑙 exceeded 

0.1%. For the Elekta linac, these values are given in Table 6.4 for all photon beams. The 

uncertainties for each data point correspond to 1 SD. The solid lines in Figure 6.1 represent fits 

to both sets of data using the analytical function given in Eq. (5.13). Relative uncertainties  

(1 SD) of the fits were largest for the smallest field size of 0.5 cm and were found to be 1.0%, 

1.3%, 1.2% and 1.4% for photon beams 6 MV WFF, 6 MV FFF, 10 MV WFF and 10 MV FFF 

respectively. In addition to the curves in Fig. 6.1, discrete values of field output factors 

Ω𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 were calculated using Eq. (15) and are given in Table 6.2 for all selected small fields 

and energies for the Elekta Versa HD linac. 

Table 6.2 Discrete values of field output factors for nine selected field sizes calculated from 

the analytical function in Eq. (5.13) for all investigated photon beams on Elekta VersaHD linac. 

Uncertainties (1 SD) are shown in brackets and represent absolute uncertainties in the last digit. 

Field 

sizea 

[cm] 

Elekta Versa HD 

6 MV WFF 6 MV FFF 10 MV WFF 10 MV FFF 

0.5 0.454 (5) 0.478 (6) 0.438 (5) 0.481 (7) 

0.8 0.620 (5) 0.640 (6) 0.584 (5) 0.626 (6) 

1.0 0.678 (5) 0.703 (6) 0.650 (5) 0.688 (6) 

1.5 0.763 (5) 0.786 (6) 0.750 (5) 0.780 (6) 

2.0 0.804 (5) 0.825 (6) 0.801 (6) 0.835 (6) 

3.0 0.849 (5) 0.870 (6) 0.858 (6) 0.890 (6) 

4.0 0.880 (5) 0.900 (7) 0.891 (6) 0.923 (7) 

5.0 0.907 (5) 0.924 (7) 0.918 (6) 0.945 (7) 

10.0 1.001 (0) 0.999 (0) 1.001 (0) 0.999 (0) 

a Field size is indicated as nominal square field side length. The relationship between the 

nominal field size and the corresponding equivalent square small field sizes 𝑆𝑐𝑙𝑖𝑛 is provided in 

Table 6.1 for all photon beams and field sizes. Note that because 𝑆𝑐𝑙𝑖𝑛 are not exactly equal to 

10.0 cm for reference field size (Table 6.1), corresponding field output factors slightly differ 

from value 1.000 for that field. 
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Figure 6.1. Field output factors vs. 𝑆𝑐𝑙𝑖𝑛 on Elekta Versa HD linac for four investigated photon 

beams. The red circles and blue triangles represent field measured field output factors along 

with their respective uncertainties (1 SD) determined using EBT3 film and W1 PSD detectors 

respectively. The solid lines represent fits to both sets of data using the analytic function given 

in Eq. (5.13). 

 

Field output factors determined from measurements made on the Varian TrueBeam linac 

with EBT3 films and W1 PSD detector are shown in Figure 6.2. The red circles and blue 

triangles represent field output factors for the EBT3 film and W1 PSD detectors respectively. 

Similar to the Elekta linac, measured signals were corrected for volume averaging using  

Eqs. (5.8) and (5.9) when 𝑘𝑣𝑜𝑙 exceeded 0.1%; for the Varian linac values of 𝑘𝑣𝑜𝑙 are given in 

Table 6.4 for all photon beams. The solid lines in Figure 6.2 represent fits to both sets of data 

using the analytical function given by Eq. (5.13). Largest relative uncertainties (1 SD) of the 

fits were again found for the smallest field size of 0.5 cm and were found to be 2.0%, 2.2%, 

2.5% and 1.6% for photon beams 6 MV WFF, 6 MV FFF, 10 MV WFF and 10 MV FFF 

respectively. Discrete values of field output factors for all selected small fields and energies for 

the Varian TrueBeam are given in Table 6.3. These values were calculated using the fitting 

function given by Eq. (5.13). 
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Table 6.3 Discrete values of field output factors for nine selected field sizes calculated from 

the analytical function in Eq. (5.13) for all investigated photon beams on Varian TrueBeam 

linac. Uncertainties (1 SD) are shown in brackets and represent absolute uncertainties in the last 

one or two digits. 

Field 

sizea 

[cm] 

Varian TrueBeam 

6 MV WFF 6 MV FFF 10 MV WFF 10 MV FFF 

0.5 0.482 (9) 0.513 (11) 0.412 (10) 0.468 (7) 

0.8 0.632 (8) 0.654 (10) 0.556 (8) 0.615 (7) 

1.0 0.694 (8) 0.701 (10) 0.625 (9) 0.687 (7) 

1.5 0.761 (9) 0.772 (11) 0.730 (9) 0.780 (8) 

2.0 0.793 (9) 0.806 (11) 0.785 (10) 0.828 (8) 

3.0 0.834 (9) 0.844 (11) 0.844 (10) 0.881 (8) 

4.0 0.866 (9) 0.871 (11) 0.880 (10) 0.914 (9) 

5.0 0.893 (9) 0.895 (10) 0.907 (10) 0.937 (9) 

10.0 1.001 (0) 0.999 (0) 1.000 (0) 0.999 (0) 

 

a Field size is indicated as nominal square field side length. The relationship between the 

nominal field size and the corresponding equivalent square small field sizes 𝑆𝑐𝑙𝑖𝑛 is provided in 

Table 6.1 for all photon beams and field sizes. Note that because 𝑆𝑐𝑙𝑖𝑛 are not exactly equal to  

10.0 cm for reference field size (Table 6.1), corresponding field output factors slightly differ 

from value 1.000 for that field. 

 

 

  



49 

 

 

 

Figure 6.2. Field output factors vs 𝑆𝑐𝑙𝑖𝑛on Varian TrueBeam linac for four investigated photon 

beams. The red circles and blue triangles represent field output factors along with their 

respective uncertainties (1 SD) determined using EBT3 film and W1 PSD detector respectively. 

The solid lines represent fits to both sets of data using the analytic function given in Eq. (5.13). 
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Table 6.4 Calculated volume averaging correction factors 𝑘𝑣𝑜𝑙 for EBT3 films and W1 PSD 

for the three smallest field sizes on Elekta VersaHD and Varian TrueBeam linacs; these values 

were taken into account for the determination of field output factors. 

Elekta Versa HD 

Field sizea 

[cm] 

EBT3 W1 PSD EBT3 W1 PSD 

6 MV WFF 6 MV FFF 

0.5 1.002 1.008 1.002 1.008 

0.8 1.000 1.002 1.000 1.002 

1.0 1.000 1.001 1.000 1.001 

 10 MV WFF 10 MV FFF 

0.5 1.002 1.007 1.002 1.007 

0.8 1.000 1.002 1.000 1.002 

1.0 1.000 1.001 1.000 1.001 

 

Varian TrueBeam 

Field sizea 

[cm] 

EBT3 W1 PSD EBT3 W1 PSD 

6 MV WFF 6 MV FFF 

0.5 1.002 1.009 1.002 1.009 

0.8 1.000 1.004 1.000 1.002 

1.0 1.000 1.001 1.000 1.000 

 10 MV WFF 10 MV FFF 

0.5 1.002 1.008 1.002 1.008 

0.8 1.001 1.004 1.000 1.003 

1.0 1.000 1.001 1.000 1.001 

 

a Field size is indicated as a nominal square small field side length. The relationship between 

the nominal field size and the corresponding equivalent square small field sizes 𝑆𝑐𝑙𝑖𝑛 is provided 

in Table 6.1 for all photon beams and field sizes. 

 

The five fitting coefficients of the analytical function from Eq. (5.13) are given Table 6.5 

for all investigated photon beams on both linacs. 



51 

Table 6.5 Values of fitting parameters for the analytical function given in Eq. (5.13). This 

function was used to fit the field output factor datasets obtained using the EBT3 films and W1 

PSD detectors on the two linacs for four photon beams. 

 

𝐸 
𝑃∞ 𝑛 𝑙 𝑆∞ 𝑏 

Elekta Versa HD 

6 MV WFF 0.751 2.701 0.542 0.384 0.105 

6 MV FFF 0.767 2.614 0.514 0.299 0.151 

10 MV WFF 0.774 2.183 0.578 0.313 0.130 

10 MV FFF 0.829 1.791 0.511 0.198 0.214 

 Varian TrueBeam 

6 MV WFF 0.741 2.646 0.461 0.508 0.072 

6 MV FFF 0.790 2.097 0.419 1.424 0.016 

10 MV WFF 0.816 1.844 0.588 0.478 0.050 

10 MV FFF 0.816 1.904 0.497 0.227 0.173 

 

 

To quantify the statistical significance of differences between field output factors given in 

Tables 6.2 and 6.3 for WFF and FFF beams for particular photon beam and linac, one-tailed 

Student’s t-test was performed. These results are shown in Table 6.6. 
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Table 6.6 Statistical significance (p-values) of differences of field output factors between WFF 

and FFF beams on Elekta Versa HD and Varian TrueBeam linacs for 6 and 10 MV beams. For 

the determination of p-values one-tailed Student’s t-test was performed. 

 

p-values  

Field 

sizea 

[cm] 

Elekta Versa HD  Varian TrueBeam 

6 MV 

WFF/FFF 

10 MV 

WFF/FFF  
 

6 MV 

WFF/FFF  

10 MV 

WFF/FFF  

0.5 0.023 0.010  0.049 0.012 

0.8 0.034 0.009  0.069 0.008 

1.0 0.023 0.010  0.263 0.009 

1.5 0.026 0.015  0.189 0.014 

2.0 0.034 0.014  0.166 0.022 

3.0 0.033 0.016  0.213 0.030 

4.0 0.039 0.019  0.333 0.035 

5.0 0.058 0.028  0.427 0.043 

10.0 0.006 0.015  0.001 0.038 

 

a Field size is indicated as nominal square field side length. The relationship between the 

nominal field size and the corresponding equivalent square small field sizes 𝑆𝑐𝑙𝑖𝑛 is provided in 

Table 6.1 for all photon beams and field sizes. 

 

6.3 Detector specific output correction factors 

6.3.1 Solid-state detectors 

Figures 6.3 and 6.4 shows in four separate graphs detector specific output correction factors 

𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓 (𝑆𝑐𝑙𝑖𝑛) as a function of equivalent square small field sizes 𝑆𝑐𝑙𝑖𝑛 for seven solid-state 

detectors and four photon beams; these were determined using Eq. (5.14) on Elekta Versa HD 

linac. The solid curves in these figures represent fits to the data points using the analytic 

function 𝑘(𝑆𝑐𝑙𝑖𝑛) given by Eq. (5.15). For brevity 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓 (𝑆𝑐𝑙𝑖𝑛) will be denoted as 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 

henceforth. The data points obtained from Eq. (5.14) were fitted down to the field size of  
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0.8 cm to ensure acceptable fit of the selected fitting function – values of output correction 

factors for field size 0.5 cm were omitted from the fit.  

For comparison and further analysis, individual discrete values for 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 , obtained 

for the Elekta Versa HD linac using Eq. (5.14), are provided in Table 6.7 for all photon beams 

and selected field sizes. It should be noted that the 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 correction factor thus determined 

represents the “total” correction factor for a particular detector and includes contributions for 

both volume averaging correction factor as well as perturbations correction factors. The 

𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 factors thus determined can then be compared directly with those reported in  

TRS-483 for the corresponding detectors. 

 

  

Figure 6.3. Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for seven solid-state detectors 

for 6 MV WFF and FFF on Elekta Versa HD linac. Output correction factors are presented as 

individual values/points and as analytical function applying Eqs. (5.14) and (5.15) respectively. 

Measured data represent “total” correction factors and include contributions from both, volume 

averaging effect as well as perturbation correction factors. 0.5 cm field was not considered for 

fitting. 
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Figure 6.4 Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for seven solid-state detectors 

for 10 MV WFF and FFF beams on Elekta Versa HD linac. Output correction factors are 

presented as individual values/points and as analytical function applying Eqs. (5.14) and (5.15) 

respectively. Measured data represent “total” correction factors and include contributions from 

both, volume averaging effect as well as perturbation correction factors. 0.5 cm field was not 

considered for fitting. 
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Table 6.7 Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 obtained on Elekta Versa HD linac for six diodes and a microDiamond detector 

and four investigated photon beams. These values were obtained by using Eq. (5.14). Values in brackets show absolute uncertainties (1 SD) in the 

last one or two digits. Measured data represent “total” correction factors and include contributions from both, volume averaging effect as well as 

perturbation correction factors. 

 

𝐸 
Field 

sizea (cm) 

IBA SFD 

diode 

IBA Razor 

diode 

PTW 60008 

Diode P 

PTW 60012 

Diode E 

PTW 60018 

Diode SRS 

SN EDGE 

Detector 

PTW 60019 

mD 

6 MV 

WFF 

0.5 1.002 (10) 0.966 (10) 0.890 (9) 0.945 (10) 0.906 (9) 0.930 (10) 0.922 (10) 

0.8 1.018 (8) 0.999 (8) 0.923 (7) 0.986 (7) 0.964 (7) 0.945 (7) 0.964 (8) 

1.0 1.018 (7) 0.999 (7) 0.937 (6) 0.992 (7) 0.973 (7) 0.953 (7) 0.968 (7) 

1.5 1.025 (6) 1.019 (7) 0.974 (6) 1.010 (6) 1.000 (6) 0.981 (6) 0.984 (7) 

2.0 1.028 (7) 1.024 (7) 0.991 (6) 1.019 (7) 1.010 (6) 0.996 (7) 0.991 (7) 

3.0 1.027 (6) 1.024 (6) 1.000 (6) 1.020 (6) 1.014 (6) 1.003 (6) 0.995 (6) 

4.0 1.023 (6) 1.020 (6) 0.999 (6) 1.016 (6) 1.011 (6) 1.000 (6) 0.995 (6) 

5.0 1.019 (6) 1.017 (6) 0.999 (6) 1.013 (6) 1.009 (6) 1.000 (6) 0.994 (6) 

10.0 1.001 (0) 1.001 (2) 1.001 (1) 1.001 (0) 1.001 (0) 1.001 (2) 1.001 (3) 

6 MV 

FFF 

0.5 0.962 (12) 0.970 (12) 0.916 (12) 0.955 (12) 0.927 (12) 0.930 (12) 0.925 (12) 

0.8 1.001 (9) 0.999 (9) 0.930 (9) 0.983 (9) 0.971 (9) 0.949 (9) 0.962 (9) 

1.0 1.011 (9) 1.006 (9) 0.948 (8) 0.994 (8) 0.985 (8) 0.961 (8) 0.966 (8) 

1.5 1.026 (8) 1.015 (8) 0.977 (7) 1.010 (8) 1.004 (8) 0.984 (8) 0.983 (8) 

2.0 1.025 (8) 1.016 (8) 0.987 (8) 1.015 (8) 1.007 (8) 0.990 (8) 0.985 (8) 

3.0 1.022 (7) 1.015 (7) 0.995 (7) 1.014 (7) 1.010 (7) 0.997 (7) 0.990 (7) 

4.0 1.020 (8) 1.013 (7) 0.999 (7) 1.013 (7) 1.010 (7) 0.999 (7) 0.992 (7) 

5.0 1.018 (8) 1.012 (8) 1.000 (8) 1.012 (8) 1.009 (8) 1.000 (8) 0.994 (8) 

10.0 0.999 (0) 0.999 (0) 0.999 (1) 0.999 (1) 0.999 (0) 0.999 (1) 0.999 (0) 
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Table 6.7 (continued) Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 obtained on Elekta Versa HD linac for six diodes and a microDiamond 

detector and four investigated photon beams. These values were obtained by using Eq. (5.14). Values in brackets show absolute uncertainties  

(1 SD) in the last one or two digits. Measured data represent “total” correction factors and include contributions from both, volume averaging effect 

as well as perturbation correction factors 

aField size is indicated as nominal square field side length. The relationship between the nominal size and the corresponding equivalent square small field sizes 

𝑆𝑐𝑙𝑖𝑛 is provided in Table 6.1 for all photon beams and field sizes. 

𝐸 
Field 

sizea (cm) 

IBA SFD 

diode 

IBA Razor 

diode 

PTW 60008 

Diode P 

PTW 60012 

Diode E 

PTW 60018 

Diode SRS 

SN EDGE 

Detector 

PTW 60019 

mD 

10 MV 

WFF 

0.5 0.969 (12) 0.971 (12) 0.906 (11) 0.972 (12) 0.950 (12) 0.969 (12) 0.906 (11) 

0.8 0.984 (8) 0.988 (8) 0.913 (8) 0.977 (8) 0.952 (8) 0.939 (8) 0.936 (8) 

1.0 0.992 (8) 1.002 (8) 0.929 (7) 0.987 (8) 0.968 (8) 0.946 (7) 0.955 (8) 

1.5 1.008 (7) 1.005 (7) 0.962 (7) 0.999 (7) 0.989 (7) 0.969 (7) 0.977 (7) 

2.0 1.011 (7) 1.007 (7) 0.977 (7) 1.003 (7) 0.996 (7) 0.980 (7) 0.984 (7) 

3.0 1.012 (7) 1.006 (7) 0.990 (6) 1.007 (6) 1.001 (7) 0.990 (7) 0.988 (7) 

4.0 1.011 (7) 1.006 (7) 0.995 (6) 1.007 (6) 1.003 (7) 0.994 (6) 0.992 (7) 

5.0 1.011 (7) 1.007 (7) 0.997 (7) 1.007 (7) 1.004 (7) 0.998 (7) 0.995 (7) 

10.0 1.001 (0) 1.001 (2) 1.001 (1) 1.001 (1) 1.001 (2) 1.001 (1) 1.001 (3) 

10 MV 

FFF 

0.5 0.929 (13) 0.957 (13) 0.908 (13) 0.957 (13) 0.931 (13) 0.937 (13) 0.905 (13) 

0.8 0.982 (10) 0.991 (10) 0.926 (9) 0.985 (10) 0.973 (10) 0.951 (9) 0.946 (9) 

1.0 0.993 (9) 0.998 (9) 0.945 (8) 0.997 (9) 0.986 (9) 0.961 (9) 0.963 (9) 

1.5 1.006 (8) 1.007 (8) 0.968 (7) 1.001 (8) 0.995 (8) 0.972 (7) 0.979 (7) 

2.0 1.012 (8) 1.011 (8) 0.983 (7) 1.006 (8) 1.001 (8) 0.982 (8) 0.984 (8) 

3.0 1.013 (7) 1.008 (7) 0.992 (7) 1.008 (7) 1.005 (7) 0.991 (7) 0.990 (7) 

4.0 1.014 (8) 1.010 (8) 1.000 (7) 1.011 (8) 1.008 (8) 0.998 (7) 0.994 (7) 

5.0 1.015 (8) 1.011 (8) 1.002 (8) 1.011 (8) 1.010 (8) 1.003 (8) 0.998 (8) 

10.0 0.999 (1) 0.999 (1) 0.999 (0) 0.999 (2) 0.999 (2) 0.999 (1) 0.999 (1) 
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Figures 6.5 and 6.6 shows detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 for seven 

solid-state detectors for four photon beams on Varian TrueBeam linac. Output correction 

factors are presented as individual values/points and as analytical function applying Eqs. (5.14) 

and (5.15) respectively. The data obtained from Eq. (5.14) were fitted down to the field size of 

0.8 cm to ensure acceptable fit of the selected fitting function – points for field size 0.5 cm were 

omitted from the fit.  

For comparison and further analysis, individual discrete values for 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 are provided 

in Table 6.8 for all photon beams and field sizes. 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 represent “total” output correction 

factors for a particular detector and include contributions from both volume averaging effect as 

well as perturbation correction factors. 

 

 

Figure 6.5. Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for seven solid-state detectors 

for 6 MV WFF and FFF beams on Varian TrueBeam linac. Output correction factors are 

presented as individual values/points and as analytical function applying Eqs. (5.14) and (5.15) 

respectively. Measured data represent “total” correction factors and include contributions from 

both, volume averaging effect as well as perturbation correction factors. 0.5 cm field was not 

considered for fitting. 
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Figure 6.6. Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for seven solid-state detectors 

for 10 MV WFF and FFF beams on Varian TrueBeam linac. Output correction factors are 

presented as individual values/points and as analytical function applying Eqs. (5.14) and (5.15) 

respectively. Measured data represent “total” correction factors and include contributions from 

both, volume averaging effect as well as perturbation correction factors. 0.5 cm field was not 

considered for fitting. 
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Table 6.8 Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 obtained on Varian TrueBeam linac for six diodes and a microDiamond detector 

and four investigated photon beams. These values were obtained by using Eq. (5.14). Values in brackets show absolute uncertainties (1 SD) in the 

last one or two digits. Measured data represent “total” correction factors and include contributions from both, volume averaging effect as well as 

perturbation correction factors. 

 

𝐸 
Field 

sizea (cm) 

IBA SFD 

diode 

IBA Razor 

diode 

PTW 60008 

Diode P 

PTW 60012 

Diode E 

PTW 60018 

Diode SRS 

SN EDGE 

Detector 

PTW 60019 

mD 

6 MV 

WFF 

0.5 1.004 (20) 0.987 (19) 0.920 (18) 0.993 (20) 0.949 (19) 0.957 (19) 0.983 (19) 

0.8 1.014 (13) 1.002 (13) 0.930 (12) 0.990 (13) 0.969 (13) 0.955 (13) 0.971 (13) 

1.0 1.032 (12) 1.020 (12) 0.957 (11) 1.008 (12) 0.991 (12) 0.974 (12) 0.986 (12) 

1.5 1.036 (12) 1.024 (11) 0.984 (11) 1.018 (11) 1.007 (11) 0.991 (11) 0.993 (11) 

2.0 1.036 (12) 1.024 (12) 0.993 (11) 1.020 (12) 1.012 (12) 0.998 (11) 0.996 (11) 

3.0 1.034 (11) 1.025 (11) 1.002 (11) 1.023 (11) 1.017 (11) 1.005 (11) 1.000 (11) 

4.0 1.029 (11) 1.020 (11) 1.000 (11) 1.017 (11) 1.013 (11) 1.004 (11) 0.999 (11) 

5.0 1.021 (11) 1.013 (11) 0.998 (10) 1.012 (11) 1.008 (10) 1.001 (10) 0.996 (10) 

10.0 1.001 (1) 1.001 (0) 1.001 (1) 1.001 (1) 1.001 (1) 1.001 (1) 1.001 (0) 

6 MV 

FFF 

0.5 1.010 (23) 0.992 (22) 0.936 (21) 1.000 (22) 0.966 (22) 0.969 (22) 0.983 (22) 

0.8 1.019 (16) 1.005 (15) 0.940 (14) 0.996 (15) 0.977 (15) 0.963 (15) 0.967 (15) 

1.0 1.024 (15) 1.007 (15) 0.952 (14) 1.000 (14) 0.986 (14) 0.967 (14) 0.968 (14) 

1.5 1.045 (15) 1.029 (14) 0.988 (14) 1.025 (14) 1.015 (14) 0.996 (14) 0.989 (14) 

2.0 1.047 (14) 1.031 (14) 1.000 (14) 1.030 (14) 1.021 (14) 1.006 (14) 0.994 (14) 

3.0 1.040 (13) 1.026 (13) 1.003 (13) 1.027 (13) 1.020 (13) 1.008 (13) 0.995 (13) 

4.0 1.029 (12) 1.017 (12) 0.998 (12) 1.018 (12) 1.013 (12) 1.002 (12) 0.991 (12) 

5.0 1.018 (11) 1.009 (11) 0.993 (11) 1.010 (11) 1.005 (11) 0.996 (11) 0.987 (11) 

10.0 0.999 (1) 0.999 (0) 0.999 (0) 0.999 (1) 0.999 (1) 0.999 (1) 0.999 (0) 
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Table 6.8 (continued) Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 obtained on Varian TrueBeam linac for six diodes and a microDiamond 

detector and four investigated photon beams. These values were obtained by using Eq. (5.14). Values in brackets show absolute uncertainties  

(1 SD) in the last one or two digits. Measured data represent “total” correction factors and include contributions from both, volume averaging effect 

as well as perturbation correction factors. 

aField size is indicated as nominal square field side length. The relationship between the nominal size and the corresponding equivalent square small field sizes 

𝑆𝑐𝑙𝑖𝑛 is provided in Table 6.1 for all photon beams and field sizes. 

𝐸 
Field 

sizea (cm) 

IBA SFD 

diode 

IBA Razor 

diode 

PTW 60008 

Diode P 

PTW 60012 

Diode E 

PTW 60018 

Diode SRS 

SN EDGE 

Detector 

PTW 60019 

mD 

10 MV 

WFF 

0.5 0.979 (25) 0.975 (25) 0.896 (23) 0.979 (25) 0.938 (24) 0.947 (24) 0.969 (24) 

0.8 0.980 (14) 0.978 (14) 0.896 (13) 0.970 (14) 0.943 (14) 0.930 (14) 0.956 (14) 

1.0 0.990 (14) 0.986 (14) 0.915 (13) 0.977 (13) 0.957 (13) 0.938 (13) 0.961 (13) 

1.5 1.007 (13) 1.002 (13) 0.954 (12) 0.997 (13) 0.982 (12) 0.964 (12) 0.978 (12) 

2.0 1.010 (13) 1.003 (13) 0.971 (12) 1.000 (13) 0.990 (13) 0.975 (12) 0.982 (12) 

3.0 1.012 (12) 1.007 (12) 0.987 (12) 1.005 (12) 0.999 (12) 0.989 (12) 0.988 (12) 

4.0 1.013 (12) 1.007 (12) 0.994 (12) 1.007 (12) 1.002 (12) 0.995 (12) 0.993 (12) 

5.0 1.010 (11) 1.005 (11) 0.995 (11) 1.005 (11) 1.002 (11) 0.996 (11) 0.994 (11) 

10.0 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (0) 1.000 (1) 1.000 (1) 1.000 (0) 

10 MV 

FFF 

0.5 0.982 (17) 0.977 (16) 0.919 (15) 0.984 (17) 0.953 (16) 0.955 (16) 0.977 (16) 

0.8 0.993 (12) 0.988 (12) 0.920 (11) 0.981 (12) 0.962 (12) 0.945 (12) 0.966 (12) 

1.0 1.011 (11) 1.005 (11) 0.944 (10) 0.997 (11) 0.982 (11) 0.962 (11) 0.980 (11) 

1.5 1.018 (10) 1.011 (10) 0.970 (9) 1.006 (10) 0.996 (9) 0.976 (9) 0.985 (9) 

2.0 1.016 (10) 1.008 (10) 0.979 (9) 1.005 (10) 0.999 (10) 0.982 (9) 0.986 (9) 

3.0 1.016 (9) 1.009 (9) 0.992 (9) 1.007 (9) 1.004 (9) 0.992 (9) 0.991 (9) 

4.0 1.017 (9) 1.010 (9) 0.998 (9) 1.010 (9) 1.008 (9) 0.999 (9) 0.996 (9) 

5.0 1.016 (9) 1.010 (9) 1.000 (9) 1.009 (9) 1.008 (9) 1.002 (9) 0.999 (9) 

10.0 0.999 (1) 0.999 (1) 0.999 (0) 0.999 (0) 0.999 (1) 0.999 (1) 0.999 (1) 
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6.3.2 Ionization chambers 

Figures 6.7 and 6.8 show detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 for seven 

ionization chambers included in the study, for four photon beams on Elekta Versa HD linac.  

 

 

 

Figure 6.7. Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for seven ionization chambers 

for 6 MV beams and two investigated orientations of ionization chambers on Elekta Versa HD 

linac. Output correction factors are presented as individual values/points and as analytical 

function applying Eqs. (5.14) and (5.15) respectively. Measured data represent “total” 

correction factors and include contributions from both, volume averaging effect as well as 

perturbation correction factors. 
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Figure 6.8. Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for seven ionization chambers 

for 10 MV beams and two investigated orientations of ionization chambers on Elekta Versa HD 

linac. Output correction factors are presented as individual values/points and as analytical 

function applying Eqs. (5.14) and (5.15) respectively. Measured data represent “total” 

correction factors and include contributions from both, volume averaging effect as well as 

perturbation correction factors.  

 

Data are presented separately in eight graphs for two investigated orientations – with chamber’s 

axis perpendicular to the central beam axis and with chamber’s axis parallel to the central beam 

axis as described in chapter 5. For comparison and further analysis, corresponding individual 

values for 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 are provided in Tables 6.9 and 6.10. 
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Table 6.9 Output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 obtained on Elekta Versa HD linac for seven ionization chambers and four investigated photon 

beams shown for perpendicular orientation relative to the beam axis. These values were obtained by using Eq. (5.14). Values in brackets show 

absolute uncertainties (1 SD) in the last one or two digits. Measured data represent “total” correction factors and include contributions from both, 

volume averaging effect as well as perturbation correction factors. 

 

𝐸 
Field 

sizea (cm) 
IBA CC04  

IBA Razor 

 IC  

PTW 31016 

3D PinPoint 

PTW 31021 

3D  Semiflex 

PTW 31022 

3D PinPoint 

PTW 31023  

PinPoint 

SI 

 Exradin A16 

6 MV 

WFF 

0.5 1.245 (19) 1.119 (17) 1.199 (18) 1.461 (25) 1.131 (18) 1.198 (20) 1.152 (17) 

0.8 1.104 (9) 1.036 (9) 1.099 (9) 1.157 (10) 1.047 (10) 1.074 (9) 1.073 (9) 

1.0 1.054 (7) 1.017 (7) 1.059 (7) 1.077 (8) 1.020 (7) 1.026 (7) 1.042 (7) 

1.5 1.011 (6) 1.001 (6) 1.020 (6) 1.020 (6) 1.005 (6) 1.007 (6) 1.015 (7) 

2.0 1.004 (6) 0.998 (7) 1.008 (6) 1.008 (6) 0.997 (6) 1.004 (6) 1.010 (7) 

3.0 1.002 (6) 1.001 (6) 1.003 (6) 1.001 (6) 0.996 (6) 0.999 (6) 1.007 (6) 

4.0 1.000 (6) 1.002 (6) 1.002 (6) 0.999 (6) 0.995 (6) 0.998 (6) 1.004 (6) 

5.0 1.000 (6) 1.004 (6) 1.004 (6) 1.000 (6) 0.996 (6) 0.998 (6) 1.003 (6) 

10.0 1.001 (0) 1.001 (1) 1.001 (0) 1.001 (0) 1.001 (0) 1.001 (1) 1.001 (2) 

6 MV 

FFF 

0.5 1.267 (22) 1.096 (18) 1.180 (20) 1.427 (26) 1.142 (22) 1.187 (21) 1.143 (19) 

0.8 1.092 (11) 1.025 (10) 1.070 (11) 1.124 (12) 1.055 (11) 1.075 (11) 1.048 (11) 

1.0 1.049 (9) 1.015 (9) 1.042 (9) 1.072 (9) 1.034 (9) 1.034 (9) 1.035 (9) 

1.5 1.010 (8) 1.003 (8) 1.017 (8) 1.018 (8) 1.007 (8) 1.010 (8) 1.016 (8) 

2.0 0.998 (8) 0.992 (8) 1.003 (8) 1.001 (8) 0.996 (8) 1.000 (8) 1.009 (8) 

3.0 0.994 (7) 0.995 (7) 0.996 (7) 0.994 (7) 0.991 (7) 0.991 (7) 1.006 (7) 

4.0 0.996 (7) 0.998 (7) 0.999 (7) 0.995 (7) 0.992 (7) 0.994 (7) 1.006 (7) 

5.0 0.997 (8) 0.999 (8) 0.999 (8) 0.996 (8) 0.995 (8) 0.995 (8) 1.006 (8) 

10.0 0.999 (0) 0.999 (0) 0.999 (0) 0.999 (0) 0.999 (0) 0.999 (0) 0.999 (0) 
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Table 6.9 (cont.) Output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 obtained on Elekta Versa HD linac for seven ionization chambers and four investigated 

photon beams shown for perpendicular orientation relative to the beam axis. These values were obtained by using Eq. (5.14). Values in brackets 

show absolute uncertainties (1 SD) in the last one or two digits. Measured data represent “total” correction factors and include contributions from 

both, volume averaging effect as well as perturbation correction factors. 

a Field size is indicated as nominal square field side length. The relationship between the nominal field size and the corresponding equivalent square small field 

sizes 𝑆𝑐𝑙𝑖𝑛 is provided in Table 6.1 for all photon beams and field sizes. 

𝐸 
Field 

sizea (cm) 
IBA CC04  

IBA Razor 

 IC  

PTW 31016 

3D PinPoint 

PTW 31021 

3D  Semiflex 

PTW 31022 

3D PinPoint 

PTW 31023  

PinPoint 

SI 

 Exradin A16 

10 MV 

WFF 

0.5 1.230 (19) 1.099 (17) 1.211 (19) 1.499 (26) 1.167 (21) 1.265 (21) 1.143 (18) 

0.8 1.085 (10) 1.017 (9) 1.070 (10) 1.135 (11) 1.057 (11) 1.061 (10) 1.042 (11) 

1.0 1.053 (9) 1.009 (8) 1.051 (9) 1.079 (9) 1.011 (9) 1.034 (8) 1.020 (8) 

1.5 1.012 (7) 0.996 (7) 1.020 (7) 1.024 (7) 1.005 (8) 1.011 (7) 1.008 (7) 

2.0 0.998 (7) 0.989 (7) 1.000 (7) 1.004 (7) 0.993 (7) 0.997 (7) 1.002 (7) 

3.0 0.994 (6) 0.992 (6) 0.993 (6) 0.994 (6) 0.988 (6) 0.989 (6) 0.999 (6) 

4.0 0.994 (6) 0.995 (6) 0.995 (6) 0.993 (6) 0.990 (6) 0.992 (6) 0.999 (6) 

5.0 0.996 (7) 0.998 (7) 0.997 (7) 0.995 (7) 0.993 (7) 0.995 (7) 1.000 (7) 

10.0 1.001 (1) 1.001 (0) 1.001 (0) 1.001 (1) 1.001 (1) 1.001 (0) 1.001 (1) 

10 MV 

FFF 

0.5 1.202 (20) 1.061 (17) 1.126 (18) 1.425 (24) 1.118 (18) 1.148 (19) 1.098 (17) 

0.8 1.065 (11) 1.011 (11) 1.063 (11) 1.109 (12) 1.051 (11) 1.053 (11) 1.038 (11) 

1.0 1.042 (10) 1.009 (9) 1.042 (10) 1.068 (10) 1.020 (10) 1.027 (11) 1.027 (9) 

1.5 1.009 (8) 0.997 (8) 1.016 (8) 1.020 (8) 1.002 (8) 1.009 (8) 1.011 (8) 

2.0 1.004 (8) 0.993 (8) 1.003 (8) 1.005 (8) 0.996 (8) 1.002 (8) 1.009 (8) 

3.0 0.995 (7) 0.993 (7) 0.994 (7) 0.996 (7) 0.989 (7) 0.990 (7) 1.002 (7) 

4.0 0.998 (7) 0.998 (7) 0.997 (7) 0.998 (7) 0.992 (7) 0.994 (7) 1.003 (7) 

5.0 1.001 (8) 1.001 (8) 0.999 (8) 1.000 (8) 0.997 (8) 0.997 (8) 1.005 (8) 

10.0 0.999 (1) 0.999 (0) 0.999 (0) 0.999 (1) 0.999 (1) 0.999 (0) 0.999 (0) 
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Table 6.10 Output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 obtained on Elekta Versa HD linac for seven ionization chambers and four investigated photon 

beams shown for parallel orientation relative to the beam axis. These values were obtained by using Eq. (5.14). Values in brackets show absolute 

uncertainties (1 SD) in the last one or two digits. Measured data represent “total” correction factors and include contributions from both, volume 

averaging effect as well as perturbation correction factors. 

 

𝐸 
Field 

sizea (cm) 
IBA CC04 

IBA Razor 

IC 

PTW 31016 

3D PinPoint 

PTW 31021 

3D  Semiflex 

PTW 31022 

3D PinPoint 

PTW 31023  

PinPoint 

SI 

Exradin A16 

6 MV 

WFF 

0.5 1.223 (19) 1.037 (15) 1.096 (16) 1.394 (23) 1.043 (15) 1.016 (14) 1.112 (16) 

0.8 1.090 (9) 1.012 (9) 1.047 (9) 1.145 (10) 1.029 (9) 1.012 (8) 1.049 (9) 

1.0 1.046 (7) 1.003 (7) 1.024 (7) 1.075 (8) 1.009 (7) 1.000 (8) 1.022 (7) 

1.5 1.009 (6) 1.001 (6) 1.007 (6) 1.021 (6) 1.002 (6) 1.001 (6) 1.009 (6) 

2.0 1.003 (6) 1.005 (7) 1.004 (6) 1.007 (6) 1.002 (6) 1.003 (6) 1.008 (7) 

3.0 1.002 (6) 1.005 (6) 1.003 (6) 1.000 (6) 1.000 (6) 1.001 (6) 1.007 (6) 

4.0 0.999 (6) 1.004 (6) 1.000 (6) 0.998 (6) 0.998 (6) 1.000 (6) 1.005 (6) 

5.0 1.000 (6) 1.005 (6) 1.000 (6) 0.999 (6) 0.998 (6) 0.999 (6) 1.004 (6) 

10.0 1.001 (0) 1.001 (2) 1.001 (0) 1.001 (1) 1.001 (0) 1.001 (0) 1.001 (2) 

6 MV 

FFF 

0.5 1.222 (21) 1.019 (16) 1.085 (18) 1.397 (25) 1.100 (18) 1.047 (17) 1.075 (18) 

0.8 1.073 (11) 1.005 (10) 1.054 (11) 1.117 (11) 1.033 (10) 1.008 (10) 1.026 (10) 

1.0 1.044 (9) 1.001 (9) 1.022 (9) 1.071 (9) 1.016 (9) 1.002 (9) 1.019 (9) 

1.5 1.009 (8) 0.998 (8) 1.005 (8) 1.017 (8) 1.002 (8) 1.000 (8) 1.012 (8) 

2.0 0.999 (8) 0.996 (8) 0.998 (8) 1.003 (8) 0.997 (8) 0.996 (8) 1.007 (8) 

3.0 0.994 (7) 0.995 (7) 0.996 (7) 0.995 (7) 0.994 (7) 0.994 (7) 1.006 (7) 

4.0 0.995 (7) 0.997 (7) 0.997 (7) 0.994 (7) 0.995 (7) 0.996 (7) 1.006 (7) 

5.0 0.996 (8) 0.998 (8) 0.998 (8) 0.996 (8) 0.996 (8) 0.995 (8) 1.007 (8) 

10.0 0.999 (0) 0.999 (0) 0.999 (0) 0.999 (1) 0.999 (0) 0.999 (0) 0.999 (1) 
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Table 6.10 (cont.) Output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 obtained on Elekta Versa HD linac for seven ionization chambers and four investigated 

photon beams, shown for parallel orientation relative to the beam axis. These values were obtained by using Eq. (5.14). Values in brackets show 

absolute uncertainties (1 SD) in the last one or two digits. Measured data represent “total” correction factors and include contributions from both, 

volume averaging effect as well as perturbation correction factors. 

a Field size is indicated as nominal square field side length. The relationship between the nominal field size and the corresponding equivalent square small field 

sizes 𝑆𝑐𝑙𝑖𝑛 is provided in Table 6.1 for all photon beams and field sizes. 

𝐸 
Field 

sizea (cm) 
IBA CC04 

IBA Razor 

IC 

PTW 31016 

3D PinPoint 

PTW 31021 

3D  Semiflex 

PTW 31022 

3D PinPoint 

PTW 31023  

PinPoint 

SI 

Exradin A16 

10 MV 

WFF 

0.5 1.207 (19) 1.010 (15) 1.104 (17) 1.386 (23) 1.063 (16) 1.012 (15) 1.082 (17) 

0.8 1.064 (10) 0.989 (9) 1.037 (9) 1.123 (10) 1.023 (10) 1.002 (11) 1.017 (9) 

1.0 1.039 (8) 0.991 (8) 1.015 (8) 1.076  (9) 1.008 (8) 0.999 (8) 1.012 (8) 

1.5 1.011 (7) 0.994 (7) 1.004 (7) 1.024  (7) 1.001 (7) 0.998 (7) 1.003 (7) 

2.0 1.000 (7) 0.995 (7) 0.997 (7) 1.005  (7) 0.995 (7) 0.993 (7) 0.996 (7) 

3.0 0.994 (6) 0.995 (6) 0.994 (6) 0.994  (6) 0.993 (6) 0.991 (6) 0.998 (6) 

4.0 0.994 (6) 0.996 (6) 0.994 (6) 0.993  (6) 0.993 (6) 0.993 (6) 0.998 (6) 

5.0 0.996 (7) 0.996 (7) 0.996 (7) 0.995  (7) 0.995 (7) 0.995 (7) 1.000 (7) 

10.0 1.001 (1) 1.001 (1) 1.001 (1) 1.001  (0) 1.001 (0) 1.001 (0) 1.001 (1) 

10 MV 

FFF 

0.5 1.171 (19) 0.981 (15) 1.072 (17) 1.331 (22) 1.043 (17) 1.016 (16) 1.056 (17) 

0.8 1.047 (11) 0.983 (10) 1.038 (11) 1.097 (12) 1.022 (11) 1.005 (11) 1.011 (11) 

1.0 1.022 (9) 0.992 (9) 1.023 (10) 1.064 (10) 0.997 (9) 0.995 (10) 1.011 (9) 

1.5 1.006 (8) 0.989 (8) 1.005 (8) 1.019 (8) 0.996 (8) 0.997 (8) 1.002 (8) 

2.0 1.002 (8) 0.993 (8) 1.003 (8) 1.007 (8) 0.997 (8) 0.996 (8) 1.002 (8) 

3.0 0.995 (7) 0.992 (7) 0.997 (7) 0.995 (7) 0.991 (7) 0.993 (7) 1.000 (7) 

4.0 0.998 (7) 0.995 (7) 1.001 (8) 0.997 (7) 0.994 (7) 0.995 (7) 1.004 (7) 

5.0 1.001 (8) 1.000 (8) 1.002 (8) 0.999 (8) 0.998 (8) 0.999 (8) 1.007 (8) 

10.0 0.999 (1) 0.999 (0) 0.999 (2) 0.999 (0) 0.999 (0) 0.999 (0) 0.999 (0) 
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Figures 6.9 and 6.10 show detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 for seven 

ionization chambers included in the study, for four photon beams on Varian TrueBeam linac. 

 

 

 

Figure 6.9 Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for seven ionization chambers 

for 6 MV beams and two investigated orientations of ionization chambers on Varian TrueBeam 

linac. Output correction factors are presented as individual values/points and as analytical 

function applying Eqs. (5.14) and (5.15) respectively. Measured data represent “total” 

correction factors and include contributions from both, volume averaging effect as well as 

perturbation correction factors.
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Figure 6.10 Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for seven ionization 

chambers for 10 MV beams and two investigated orientations of ionization chambers on Varian 

TrueBeam linac. Output correction factors are presented as individual values/points and as 

analytical function applying Eqs. (5.14) and (5.15) respectively. Measured data represent 

“total” correction factors and include contributions from both, volume averaging effect as well 

as perturbation correction factors.  

 

Data are presented separately in eight graphs for two investigated orientations – with chamber’s 

axis perpendicular to the central beam axis and with chamber’s axis parallel to the central beam 

axis as described in chapter 5. For comparison and analysis, corresponding individual values 

for 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 are provided in Tables 6.11 and 6.12. 
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Table 6.11 Output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 obtained on Varian TrueBeam linac for seven ionization chambers and four investigated photon 

beams, shown for perpendicular orientation relative to the beam axis. These values were obtained by using Eq. (5.14). Values in brackets show 

absolute uncertainties (1 SD) in the last one or two digits. Measured data represent “total” correction factors and include contributions from both, 

volume averaging effect as well as perturbation correction factors. 

 

𝐸 
Field 

sizea (cm) 
IBA CC04 

IBA Razor 

IC 

PTW 31016 

3D PinPoint 

PTW 31021 

3D  Semiflex 

PTW 31022 

3D PinPoint 

PTW 31023  

PinPoint 

SI 

Exradin A16 

6 MV 

WFF 

0.5 1.335 (31) 1.135 (25) 1.228 (28) 1.472 (35) 1.148 (25) 1.226 (28) 1.151 (26) 

0.8 1.101 (15) 1.031 (14) 1.084 (15) 1.146 (16) 1.054 (14) 1.080 (15) 1.051 (14) 

1.0 1.054 (13) 1.020 (12) 1.057 (13) 1.076 (13) 1.035 (12) 1.047 (13) 1.040 (12) 

1.5 1.012 (11) 1.003 (11) 1.020 (11) 1.016 (11) 1.010 (11) 1.010 (11) 1.018 (11) 

2.0 1.000 (11) 0.995 (11) 1.003 (12) 1.002 (12) 0.999 (11) 1.000 (11) 1.011 (12) 

3.0 1.001 (11) 1.001 (11) 1.001 (11) 0.999 (11) 0.999 (11) 0.998 (11) 1.012 (11) 

4.0 1.000 (11) 1.002 (11) 1.001 (11) 0.998 (11) 1.000 (11) 0.997 (11) 1.010 (11) 

5.0 0.997 (10) 0.999 (10) 0.998 (10) 0.996 (10) 0.998 (10) 0.995 (10) 1.005 (10) 

10.0 1.001 (1) 1.001 (0) 1.001 (1) 1.001 (0) 1.001 (1) 1.001 (0) 1.001 (0) 

6 MV 

FFF 

0.5 1.323 (33) 1.130 (27) 1.222 (30) 1.469 (38) 1.140 (28) 1.224 (30) 1.157 (28) 

0.8 1.079 (17) 1.019 (16) 1.069 (17) 1.130 (18) 1.035 (16) 1.060 (17) 1.050 (16) 

1.0 1.024 (15) 0.997 (14) 1.029 (15) 1.047 (15) 1.007 (15) 1.019 (15) 1.025 (15) 

1.5 1.004 (14) 0.999 (14) 1.012 (14) 1.008 (14) 1.000 (14) 1.003 (14) 1.022 (14) 

2.0 0.999 (14) 0.996 (14) 1.003 (14) 1.000 (14) 0.996 (14) 1.000 (14) 1.019 (14) 

3.0 0.997 (13) 0.998 (13) 0.999 (13) 0.998 (13) 0.995 (13) 0.995 (13) 1.016 (13) 

4.0 0.993 (12) 0.995 (12) 0.995 (12) 0.991 (12) 0.991 (12) 0.991 (12) 1.009 (12) 

5.0 0.989 (11) 0.990 (11) 0.991 (11) 0.988 (11) 0.988 (11) 0.988 (11) 1.003 (11) 

10.0 0.999 (0) 0.999 (1) 0.999 (0) 0.999 (0) 0.999 (0) 0.999 (0) 0.999 (1) 



70 

Table 6.11 (cont.) Output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 obtained on Varian TrueBeam linac for seven ionization chambers and four investigated 

photon beams, shown for perpendicular orientation relative to the beam axis. These values were obtained by using Eq. (5.14). Values in brackets 

show absolute uncertainties (1 SD) in the last one or two digits. Measured data represent “total” correction factors and include contributions from 

both, volume averaging effect as well as perturbation correction factors. 

a Field size is indicated as nominal square field side length. The relationship between the nominal field size and the corresponding equivalent square small field 

sizes 𝑆𝑐𝑙𝑖𝑛 is provided in Table 6.1 for all photon beams and field sizes. 

𝐸 
Field 

sizea (cm) 
IBA CC04 

IBA Razor 

IC 

PTW 31016 

3D PinPoint 

PTW 31021 

3D  Semiflex 

PTW 31022 

3D PinPoint 

PTW 31023  

PinPoint 

SI 

Exradin A16 

10 MV 

WFF 

0.5 1.294 (36) 1.099 (17) 1.206 (33) 1.423 (40) 1.138 (31) 1.207 (33) 1.124 (30) 

0.8 1.091 (17) 1.017 (9) 1.079 (16) 1.137 (17) 1.051 (16) 1.072 (16) 1.033 (16) 

1.0 1.046 (15) 1.009 (8) 1.047 (15) 1.070 (15) 1.025 (14) 1.034 (14) 1.017 (14) 

1.5 1.010 (13) 0.996 (7) 1.018 (13) 1.016 (13) 1.001 (13) 1.004 (13) 1.006 (13) 

2.0 0.995 (13) 0.989 (7) 0.997 (13) 0.998 (13) 0.991 (13) 0.993 (13) 0.998 (13) 

3.0 0.991 (12) 0.992 (6) 0.991 (12) 0.991 (12) 0.986 (12) 0.987 (12) 0.996 (12) 

4.0 0.993 (12) 0.995 (6) 0.994 (12) 0.992 (12) 0.990 (12) 0.991 (12) 0.998 (12) 

5.0 0.994 (11) 0.998 (7) 0.994 (11) 0.993 (11) 0.991 (11) 0.992 (11) 0.998 (11) 

10.0 1.000 (0) 1.001 (0) 1.000 (0) 1.000 (0) 1.000 (0) 1.000 (0) 1.000 (0) 

10 MV 

FFF 

0.5 1.291 (25) 1.118 (30) 1.204 (23) 1.430 (28) 1.133 (21) 1.205 (23) 1.125 (21) 

0.8 1.085 (14) 1.016 (15) 1.077 (14) 1.128 (14) 1.044 (13) 1.060 (13) 1.037 (13) 

1.0 1.050 (12) 1.000 (14) 1.055 (12) 1.074 (12) 1.031 (12) 1.039 (12) 1.030 (12) 

1.5 1.012 (10) 0.993 (13) 1.020 (10) 1.017 (10) 1.006 (10) 1.008 (10) 1.012 (10) 

2.0 0.996 (10) 0.985 (12) 0.998 (10) 0.998 (10) 0.993 (10) 0.994 (10) 1.001 (10) 

3.0 0.992 (9) 0.989 (12) 0.992 (9) 0.992 (9) 0.990 (9) 0.988 (9) 1.000 (9) 

4.0 0.996 (9) 0.994 (12) 0.997 (9) 0.995 (9) 0.994 (9) 0.994 (9) 1.003 (9) 

5.0 0.998 (9) 0.995 (11) 0.999 (9) 0.998 (9) 0.997 (9) 0.995 (9) 1.005 (9) 

10.0 0.999 (0) 1.000 (1) 0.999 (0) 0.999 (0) 0.999 (0) 0.999 (0) 0.999 (1) 
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Table 6.12 Output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 obtained on Varian TrueBeam linac for seven ionization chambers and four investigated photon 

beams, shown for parallel orientation relative to the beam axis. These values were obtained by using Eq. (5.14). Values in brackets show absolute 

uncertainties (1 SD) in the last one or two digits. Measured data represent “total” correction factors and include contributions from both, volume 

averaging effect as well as perturbation correction factors. 

 

𝐸 
Field 

sizea (cm) 
IBA CC04 

IBA Razor 

IC 

PTW 31016 

3D PinPoint 

PTW 31021 

3D  Semiflex 

PTW 31022 

3D PinPoint 

PTW 31023  

PinPoint 

SI 

Exradin A16 

6 MV 

WFF 

0.5 1.283 (29) 1.030 (22) 1.131 (25) 1.430 (34) 1.090 (24) 1.038 (23) 1.081 (24) 

0.8 1.088 (15) 1.006 (14) 1.042 (14) 1.148 (16) 1.032 (14) 1.016 (14) 1.031 (14) 

1.0 1.052 (12) 1.012 (12) 1.031 (12) 1.079 (13) 1.024 (12) 1.016 (12) 1.031 (12) 

1.5 1.014 (11) 1.007 (11) 1.011 (11) 1.017 (11) 1.003 (11) 1.001 (11) 1.018 (11) 

2.0 1.004 (12) 1.004 (12) 1.003 (12) 1.003 (12) 0.999 (11) 0.998 (11) 1.012 (12) 

3.0 1.003 (11) 1.007 (11) 1.003 (11) 1.000 (11) 1.000 (11) 1.000 (11) 1.014 (11) 

4.0 1.001 (11) 1.005 (11) 1.001 (11) 0.999 (11) 0.998 (11) 0.998 (11) 1.010 (11) 

5.0 0.998 (10) 1.001 (10) 0.998 (10) 0.996 (10) 0.996 (10) 0.996 (10) 1.007 (10) 

10.0 1.001 (0) 1.001 (0) 1.001 (0) 1.001 (0) 1.001 (0) 1.001 (1) 1.001 (0) 

6 MV 

FFF 

0.5 1.270 (31) 1.027 (25) 1.130 (27) 1.418 (35) 1.088 (26) 1.037 (25) 1.089 (26) 

0.8 1.068 (17) 0.996 (16) 1.031 (16) 1.131 (18) 1.029 (16) 1.012 (16) 1.029 (16) 

1.0 1.022 (15) 0.989 (14) 1.008 (15) 1.048 (15) 1.003 (15) 0.996 (14) 1.017 (15) 

1.5 1.006 (14) 1.000 (14) 1.004 (14) 1.006 (14) 0.999 (14) 0.998 (14) 1.022 (14) 

2.0 1.002 (14) 1.003 (14) 1.002 (14) 1.000 (14) 1.000 (14) 1.001 (14) 1.022 (14) 

3.0 0.998 (13) 1.002 (13) 1.000 (13) 0.995 (13) 0.999 (13) 0.999 (13) 1.019 (13) 

4.0 0.993 (12) 0.996 (12) 0.995 (12) 0.991 (12) 0.994 (12) 0.994 (12) 1.011 (12) 

5.0 0.990 (11) 0.992 (11) 0.991 (11) 0.986 (11) 0.990 (11) 0.991 (11) 1.004 (11) 

10.0 0.999 (0) 0.999 (1) 0.999 (0) 0.999 (0) 0.999 (0) 0.999 (1) 0.999 (0) 
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Table 6.12 (cont.) Output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 obtained on Varian TrueBeam linac for seven ionization chambers and four investigated 

photon beams shown for parallel orientation relative to the beam axis. These values were obtained by using Eq. (5.14). Values in brackets show 

absolute uncertainties (1 SD) in the last one or two digits. Measured data represent “total” correction factors and include contributions from both, 

volume averaging effect as well as perturbation correction factors. 

a Field size is indicated as nominal square field side length. The relationship between the nominal field size and the corresponding equivalent square small field 

sizes 𝑆𝑐𝑙𝑖𝑛 is provided in Table 6.1 for all photon beams and field sizes. 

𝐸 
Field 

sizea (cm) 
IBA CC04 

IBA Razor 

IC 

PTW 31016 

3D PinPoint 

PTW 31021 

3D  Semiflex 

PTW 31022 

3D PinPoint 

PTW 31023  

PinPoint 

SI 

Exradin A16 

10 MV 

WFF 

0.5 1.244 (34) 1.012 (27) 1.101 (29) 1.378 (38) 1.068 (28) 1.026 (27) 1.052 (28) 

0.8 1.076 (16) 0.985 (15) 1.027 (16) 1.140 (17) 1.022 (15) 1.004 (15) 1.008 (15) 

1.0 1.038 (15) 0.985 (14) 1.012 (14) 1.073 (15) 1.008 (14) 0.996 (14) 1.003 (14) 

1.5 1.010 (13) 0.994 (13) 1.003 (13) 1.018 (13) 0.996 (13) 0.990 (13) 1.001 (13) 

2.0 0.998 (13) 0.992 (13) 0.995 (13) 1.002 (13) 0.992 (13) 0.989 (13) 0.999 (13) 

3.0 0.993 (12) 0.994 (12) 0.993 (12) 0.993 (12) 0.991 (12) 0.990 (12) 0.999 (12) 

4.0 0.994 (12) 0.996 (12) 0.994 (12) 0.993 (12) 0.993 (12) 0.992 (12) 1.000 (12) 

5.0 0.994 (11) 0.996 (11) 0.994 (11) 0.993 (11) 0.993 (11) 0.993 (11) 1.000 (11) 

10.0 1.000 (0) 1.000 (1) 1.000 (0) 1.000 (0) 1.000 (0) 1.000 (0) 1.000 (0) 

10 MV 

FFF 

0.5 1.240 (24) 1.013 (19) 1.107 (21) 1.378 (28) 1.069 (20) 1.019 (19) 1.057 (20) 

0.8 1.069 (14) 0.990 (12) 1.029 (13) 1.127 (14) 1.022 (13) 1.000 (13) 1.015 (13) 

1.0 1.043 (12) 0.999 (11) 1.024 (11) 1.075 (12) 1.019 (11) 1.005 (11) 1.019 (11) 

1.5 1.011 (10) 0.998 (10) 1.007 (10) 1.018 (10) 1.000 (10) 0.995 (9) 1.010 (10) 

2.0 0.998 (10) 0.993 (10) 0.996 (10) 1.001 (10) 0.994 (10) 0.991 (10) 1.004 (10) 

3.0 0.994 (9) 0.995 (9) 0.994 (9) 0.993 (9) 0.992 (9) 0.991 (9) 1.002 (9) 

4.0 0.997 (9) 0.998 (9) 0.997 (9) 0.996 (9) 0.996 (9) 0.996 (9) 1.006 (9) 

5.0 0.998 (9) 1.000 (9) 0.999 (9) 0.997 (9) 0.998 (9) 0.996 (9) 1.007 (9) 

10.0 0.999 (0) 0.999 (0) 0.999 (1) 0.999 (1) 0.999 (1) 0.999 (0) 0.999 (0) 
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7 DISCUSSION 

7.1 Field output factors 

In the present study field output factors for small fields were determined with two reference 

detectors, radiochromic EBT3 films, and Exradin W1 plastic scintillator, which are considered 

as perturbation free except for volume averaging. The study was conducted on two different 

linacs, Elekta Versa HD and Varian TrueBeam, for four photon beams: 6 MV WFF, 6 MV FFF, 

10 MV WFF, and 10 MV FFF. On Elekta Versa HD linac, small static fields were shaped with 

MLC and jaws, while on Varian TrueBeam only jaws were used for field shaping.  Measured 

data were corrected for volume averaging effect obtained from film measurements, and fitted 

by the analytical function proposed by Sauer and Wilbert. Volume averaging correction factors 

𝑘𝑣𝑜𝑙 are found to be almost negligible for EBT3 films (maximum values around 0.2% for the 

smallest field size) while for W1 PSD they reach almost 1% for the smallest nominal field size 

of 0.5 cm (see Table 6.4). The data for W1 PSD indicate that volume averaging has to be 

considered in the determination of field output factors for this detector and other detectors of 

similar size. The present novel approach for calculating 𝑘𝑣𝑜𝑙 from 2D dose matrices obtained 

with EBT3 films and fitted to bivariate Gaussian function is a viable option for correcting 

measured signals for volume averaging effect, not only for two selected reference detectors, but  

for any small detector with known dimensions of its sensitive volume. 

The analytical function from Eq. (5.13) yielded excellent fits to the measured data: 

uncertainties of the fit ranged from 1.0 to1.4% (1 SD) for the smallest field size of 0.5 cm when 

measurements were performed on the Elekta Versa HD linac for the photon beams investigated. 

Results of measurements on Varian TrueBeam exhibited higher uncertainties than on Elekta 

Versa HD, ranging from 1.6 to 2.5% (1 SD) for the smallest field size of 0.5 cm. Higher 

uncertainties are possibly due to the higher inhomogeneity of the EBT3 films in the lot that was 

used on the Varian TrueBeam linac.  

As expected, a rapid decrease of field output factors was observed for field sizes below 2.0 

cm, regardless of the photon beam or linac used. This decrease is primarily due to the loss of 

lateral charged-particle equilibrium and partial occlusion of the primary radiation source by 

different collimating devices used in the study, which is thoroughly described in the 

literature.10,51,53,83  
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It can be seen from Tables 6.2 and 6.3 that the field output factors for FFF beams of given 

beam energy are always larger than the field output factors for the corresponding (same energy 

and linac) WFF beams for all investigated fields. The results of one-tailed Student’s t-test given 

in Table 6.6 show that for 6 and 10 MV beams on Elekta Versa HD and 10 MV beams on 

Varian TrueBeam, statistically significant differences (p < 0.05) are observed for field output 

factors between the FFF and the corresponding WFF beams for all investigated fields. The only 

exception is 5.0 cm field for 6 MV beams on Elekta Versa HD where no statistical significance 

was observed. For 6 MV beams on Varian TrueBeam, similar differences of the same level 

were found only for the smallest field of 0.5 cm. The present results suggest that in general, for 

a given linac, small field output factors have to be determined individually for every 

combination of beam energy and filtration (WFF or FFF) and field size as the differences (see 

Table 6.6) from each other are/can be statistically significant. Thus, the data presented in this 

study can potentially be used as a reference data set for field output factors for the two linacs 

investigated. 

While the present novel method for the determination of field output factors was proven 

as appropriate, it requires significant expertise and high experimental skills in handling W1 

PSD detectors and EBT3 films; moreover, it is very time-consuming and demanding. 

7.2. Detector specific output correction factors for solid-state 

detectors 

Figures 6.3 to 6.6 show plots of the output correction factors vs. equivalent square small field 

size 𝑆𝑐𝑙𝑖𝑛 for all six diodes and the microDiamond detector. An analysis of the graphs for 

𝑘(𝑆𝑐𝑙𝑖𝑛) displayed in those four figures show that the curves for all diodes follow a general 

pattern for all investigated photon beams. As can be seen, for a given value of 𝑆𝑐𝑙𝑖𝑛, the curves 

for the output correction factors are at the top of the graphs for the IBA SFD diode, followed 

by IBA Razor diode, PTW 60012 Diode E, PTW 60018 Diode SRS, SN EDGE detector and 

PTW 60008 Diode P. PTW 60019 microDiamond detector exhibits somewhat different 

behavior although its curves are very similar to the curves of the PTW 60018 Diode SRS, SN 

EDGE detector and PTW 60008 Diode P. 

In the following two sections, results for investigated solid-state detectors are analyzed, 

and comparison with the data from IAEA TRS-483 CoP is presented. However, a separate 

section is devoted to the discussion on the results obtained with the PTW microDiamond 

detector, which was extensively studied by several research groups. 
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At this point, we underline that the upcoming analysis and comparisons were strictly done 

for equivalent square field size 𝑆𝑐𝑙𝑖𝑛 as defined in the chapter 5 of the thesis. 

7.2.1. Comparison with data given in TRS-483 

TRS-483 has recently recommended values of output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 for many 

detectors for 6 and 10 MV WFF and FFF beams for performing accurate relative dosimetry 

(i.e., measurements of field output factors) in high energy photon beams. Values of 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 

for different detectors are given as a function of photon beam (i.e., 6 MV and 10 MV) as well 

as equivalent square small field size 𝑆𝑐𝑙𝑖𝑛. The data given in TRS-483 for 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 does not 

distinguish between linacs, filtration of beams (i.e., does not distinguish between WFF and FFF 

beams), and the types of collimation used, i.e., output correction factors do not depend on 

whether the collimation is performed using MLC, jaws or SRS cones. 

Comparisons were performed between the 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  values obtained in the present study and 

those recommended in the IAEA TRS-483 CoP for six solid-state detectors for both the filtered 

(WFF) and unfiltered (FFF) 6 MV and 10 MV photon beams. TRS-483 did not provide any 

data for the IBA Razor diode, therefore, comparisons could not be performed for this detector. 

For every photon beam energy, detector and 𝑆𝑐𝑙𝑖𝑛 combination used in the present work, 

the values of 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 from TRS-483 were obtained by linear interpolation of the 

corresponding data given in TRS-483. A two-tailed Student’s t-test was performed to evaluate 

the statistical significance of differences between the data for 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 given in TRS-483 and 

the corresponding data in the present study. Unless stated otherwise, only statistically 

significant differences will be pointed out in the rest of the discussion. 

For IBA SFD diode statistically significant differences (p < 0.05) were found only for the 

smallest field of 0.5 cm on Elekta linac for 6 MV FFF and 10 MV FFF beams. 

For PTW 60012 Diode P statistically significant differences (p < 0.05) were found on both 

linacs for 10 MV WFF beams for small fields 1.5 and 2.0 cm. The comparison was not made 

for fields below 1.5 cm as the data for these fields are not provided in the TRS-483. 

For PTW 60012 Diode E statistically significant difference (p < 0.05) was found only for 

one beam, 6 MV WFF on Elekta linac for the smallest field 0.5 cm. 
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In the case of PTW 60018 Diode SRS, statistically significant differences (p < 0.05) were 

found on both linacs; on Elekta linac for the smallest field 0.5 cm for 6 MV WFF and FFF 

beams as well as for 0.8 cm field for 10 MV WFF beam, whilst on Varian linac only for 10 MV 

WFF beam for field size of 0.8 cm. 

Comparison of 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 values for SN EDGE detector revealed statistically significant 

differences when 10 MV WFF beams are used on both linacs for small fields 0.8, 1.0, 1.5 and 

2.0 cm with p-values of 0.033, 0.009, 0.013 and 0.024 for the Elekta linac and 0.033, 0.012, 

0.026 and 0.034 for the Varian linac respectively. Comparison was not performed for 0.5 cm 

field since the data for this field are not provided in the TRS-483. One-tailed Student’s t-test 

was used in this case for the statistical evaluation as the 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 values from the present study 

were lower than the corresponding values from TRS-483 for all field sizes. 

Similar differences were also observed when the values of 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 from TRS-483 were 

compared with those obtained from the present study for the PTW 60019 microDiamond 

detector. For this case, however, statistically significant differences (see Tables 7.1 and 7.2) 

were found for all photon beams on the Elekta Versa HD linac for fields ranging from  

0.5 to 1.0 cm; additionally, for the 10 MV WFF and FFF beams, this behavior was observed 

for fields up to 2.0 cm.  

On the Varian linac statistically significant differences (p < 0.05) were found only for  

10 MV WFF beam for small fields 0.8 and 1.0 cm with p-values of 0.033 and 0.022 respectively. 

Similar to the SN EDGE detector, the 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 values of the PTW 60019 microDiamond 

detector from the present study were found to be always lower than the corresponding values 

given in TRS-483. A one-tailed Student’s t-test was used to evaluate the statistical difference 

between the two sets of data. 
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Table 7.1. Output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓 (𝑆𝑐𝑙𝑖𝑛) published in the TRS-483 and those obatined in this study on Elekta Versa HD linac in four 

investigated megavoltage beams for PTW 60019 mD detector. Data represent „total“ correction factors and include contributions from both, volume 

averaging effect as well as perturbation correction factors. TRS-483 data were obtained by linear interpolation of published data matching clinical 

field sizes 𝑆𝑐𝑙𝑖𝑛 from our study (see Table 6.1). 

 

aField size is indicated as nominal square field side length. The relationship between the nominal size and the corresponding equivalent square 

small field sizes 𝑆𝑐𝑙𝑖𝑛 is provided in Table 6.1 for all investigated photon beams and field sizes.  

  

 Output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 for PTW 60019 microDiamond 

 TRS-483  THIS STUDY 

Field 

sizea 

[cm] 

6 MV WFF 6 MV FFF 10 MV WFF 10 MV FFF  6 MV WFF 6 MV FFF 10 MV WFF 10 MV FFF 

0.5 0.968 0.967 0.969 0.967  0.922 0.925 0.906 0.905 

0.8 0.979 0.979 0.979 0.979  0.964 0.962 0.936 0.946 

1.0 0.985 0.985 0.986 0.985  0.968 0.966 0.955 0.963 

1.5 0.993 0.993 0.993 0.993  0.984 0.983 0.977 0.979 

2.0 0.997 0.997 0.997 0.997  0.991 0.985 0.984 0.984 
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Table 7.2 Statistical significance (p-values) of the differences between output correction factors 

𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for PTW 60019 mD detector given in TRS-483 and the corresponding values from 

the present study evaluated with one-tailed Student’s t-test. Data for 6 and 10 MV beams from 

TRS-483 were compared with data from present study for both filtered (WFF) and unfiltered 

(FFF) 6 MV and 10 MV beams on Elekta Versa HD linac. 
 p-values  

P
T

W
 6

0
0
1
9
 m

D
 

Field 

sizea 

(cm) 

Elekta Versa HD 

6 MV 

WFF 

6 MV 

FFF 

10 MV 

WFF 

10 MV 

FFF 

0.5 0.001 0.003 0.001 0.001 

0.8 0.027 0.025 0.001 0.004 

1.0 0.014 0.014 0.002 0.010 

1.5 0.070 0.059 0.016 0.027 

2.0 0.118 0.042 0.023 0.031 

a Field size is indicated as nominal square field side length. The relationship between the 

nominal field size and the corresponding equivalent square field sizes 𝑆𝑐𝑙𝑖𝑛 is provided in  

Table 6.1 for all photon beams and field sizes. 

7.2.2. Influence of beam filtration and collimating system on output 

correction factors 

As stated earlier, TRS-483 provided tabulated data for output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 for 

several solid-state detectors as a function of the equivalent square small field size 𝑆𝑐𝑙𝑖𝑛. These 

data do not distinguish between WFF and FFF beams for a given beam energy. Furthermore, 

the data also do not distinguish between the types of collimation that are used to create a small 

field, i.e., whether the fields are collimated using MLC, jaws or SRS cones. To investigate the 

validity of that approach, an analysis was done to determine the dependence of the  𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 

values for different detectors on beam collimation and beam filtration for a given beam energy. 

First, for given beam energy and a selected linac, all small field 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 values for the 

investigated detectors for WFF and FFF beams were compared with each other to determine 

whether output correction factors differed significantly from each other or not. No significant 

differences were observed for measurements done with the IBA Razor, PTW 60012 E, and 

PTW 60019 mD detectors on both Versa HD and TrueBeam linacs using both  
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6 MV WFF/6MV FFF and 10 MV WFF/10MV FFF beams. For the other four detectors, 

significant differences (p < 0.05) were found for the smallest field sizes when measurements 

were done on the Elekta Versa HD linac. Measurements with IBA SFD diode showed 

significant differences using both 6 MV WFF/FFF and 10 MV WFF/FFF beams for field size 

0.5 cm. In the case of PTW 60012 diode E, significant differences were found for 6 MV 

WFF/FFF beams for 0.5 cm field, while comparison of measurements performed with PTW 

60018 Diode SRS and SN Edge detector showed significant differences for 10 MV WFF/FFF 

beams for field sizes 0.8 and 0.5 cm respectively. The PTW 60008 P diode showed a significant 

dependence on beam filtration for 10 MV beams on the Varian linac; statistically significant 

differences (p < 0.05) were found for field sizes 0.8 and 1.0 cm, and this was the only case 

where significant differences were found between WFF and FFF beams on Varian linac. 

Second, 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 values for selected beam energy and filtration on one linac was 

compared to the corresponding values on the second linac, e.g., 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 values for  

6 MV WFF beam on Elekta linac were compared to the corresponding values for 6 MV WFF 

beam on the Varian linac, etc. Analysis of the results show that statistically significant 

differences (p < 0.05) were found for all detectors but the IBA Razor diode, predominantly for 

the smallest clinical field 0.5 cm for 6 MV WFF (PTW 60008 Diode P, PTW 60008 Diode E, 

PTW 60008 Diode SRS, SN EDGE and PTW mD detectors) and 6MV FFF beams (IBA SFD, 

PTW 60012 E, PTW 60008 Diode SRS and PTW mD detectors). 

For both, the 10MV WFF and 10MV FFF beams, significant differences in 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 

values were found between the two linacs when the PTW 60019 mD detector was used for 

measurements in the smallest field 0.5 cm. For this detector, observed differences for 0.5 cm 

field were 5.9% (p = 0.009), 5.5% (p = 0.019), 6.1% (p = 0.017) and 7.1% (p = 0.004) for  

6 MV WFF, 6 MV FFF, 10 MV WFF and 10 MV FFF beam respectively. For all the other 

detectors, no statistically significant differences were observed for both the 10 MV WFF and 

10 MV FFF beams. 

It can then be concluded that different collimation system affects the output correction 

factors significantly for 6 MV WFF and 6 MV FFF beams for the smallest investigated field 

size 0.5 cm for all solid-state detectors included in the present study, with the only exception of 

IBA Razor diode for which no differences were seen. PTW 60019 mD detector showed 

differences in output correction factors for the smallest field also for 10 MV WFF and FFF 
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beams. The other detectors did not show any beam collimation dependence for the 10 MV WFF 

and 10 MV FFF beams. These results show that for given beam energy, the 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 values 

obtained from different linacs (i.e., different collimation system) using different detectors can 

be different for 𝑆𝑐𝑙𝑖𝑛 < 0.8 cm. 

7.2.3. PTW 60019 microDiamond detector 

Properties of the PTW 60019 mD detector (mD) have been studied extensively, in particular, 

the determination of field output correction factors in small fields for combinations of various 

types of linacs, photon beam energies, and collimation systems. While the reported data for 

field output correction factors are reasonably consistent for field sizes of about 1 cm or larger, 

they diverge for field sizes below 1.0 cm.58 Remarkably, published data show a specific pattern 

for the smallest fields around 0.5 cm. Monte Carlo (MC) studies and hybrid studies (partly 

Monte Carlo, partly experimental) report 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 values which are close to unity or slightly 

higher,22,39,44,56–58,84 indicating that an under-response (an increase of 𝑘𝑄𝑐𝑎𝑛 𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 values 

compared to the next larger field size) of the mD detector was observed for the smallest field 

size. On the contrary, in several experimental studies, authors have found a rather continuous 

increase of over-response of the mD detector down to the smallest field sizes, yielding 

𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 values, which are always few percent below unity.14,18,20,36  

Andreo et al. reported two different results within their MC study.44 First, they calculated 

field output correction factors for the mD detector following the manufacturer's blueprints of 

its design and components. In this part of the study, they found a similar response of the mD 

detector for the smallest field sizes as it was reported in several other MC studies. 22,39,44,56–58,84 

However, they found that the dimensions of the mD detector did not match those stated by the 

manufacturer, which brought them to repeat the calculations based on the new data for the active 

volume of the mD detector. Results from that part of the study were in close agreement with 

the experimental data. Interestingly, in the study by Marinelli et al.,24 published shortly after 

the paper by Andreo et al., no differences between manufacturer’s stated active volume and 

experimentally determined active volume were found, hence contradicting the approach and 

results from the second part of the study by Andreo et al. Nonetheless, we need to wait for new 

studies, experimental and MC, which might contribute to the understanding of the behavior of 

mD detector in small MV photon beams. 
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While it is not easy to understand neither to explain those differences between both 

approaches, experimental and MC, it seems that one of the poosible origins of observed 

differences in output correction factors could be a mismatch between real detector geometry 

and the geometry provided by the manufacturer or the geometry chosen for MC studies.  

In our study 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 values for the mD detector were below unity for all investigated 

clinical field sizes, regardless of the beam energy, filtration or linac used. Lowest 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 

values (largest corrections needed) were found for the Elekta Versa HD linac for 0.5 cm field 

size - 0.924 and 0.906 for 6 and 10 MV beams respectively, which represent an average of the 

data set for the WFF and FFF beams (see Table 6.7). For 6 MV beam, our values are around  

3-4% lower than the corresponding values from TRS-483 and values from previously 

mentioned experimental studies,14,18,20,36 while for the 10 MV beam, the present data for 

𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 are lower than corresponding data reported in TRS-483 by close to 6% for 0.5 cm 

field size. These differences are outside the uncertainties reported in both studies. For the Varian 

TrueBeam, corresponding averaged values of 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 are 0.983 and 0.973 for 6 and 10 MV 

beams respectively (Table 6.8), which is around 1-2% higher compared to data from TRS-483, 

however, within the reported uncertainties. On Elekta linac, we noticed continuous over-

response (𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓 < 1) of the mD detector down to the smallest field size, while it was not 

the case for the Varian linac, where 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 for 0.5 cm field size were always higher than 

those for the 0.8 cm field size for all photon beams; we attributed this to the type of linac and 

different collimating systems used. It is important to note that for the mD detector, published 

values for 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 in TRS-483 are exactly the same for the 6 and 10 MV beams, which clearly 

suggests, that there is no distinction in the field output correction factors for the mD detector 

regardless of the beam energy, filtration, collimation system and linac, an observation, which 

was not confirmed in our work. 

In the present study, differences of up to 6% for 6 MV and close to 7% for 10 MV were 

observed for field output correction factors for 0.5 cm field size when measurements were made 

using the mD detector on Varian and Elekta linacs. This observation suggests that for field sizes 

below 1 cm, field output correction factors for the mD detector depend on the combination of 

linac type, photon beam energy and beam collimation system used. It is worth noting that 

similar but less pronounced differences of field output correction factors were also observed for 
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the smallest field size for two different collimation systems in the experimental study by 

Underwood et al.18 

To summarize, the results of our experimental study show that 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 values for the 

mD detector are below unity for field sizes below 1 cm, regardless of the linac type, beam 

collimation system, and beam energy or filtration used; this confirms observed over-response 

(regardless of the field size) from several experimental studies,14,18,20,36 as well as form the 

second part of MC study by Andreo et al.44 Moreover, present results also suggest that the mD 

detector cannot be considered as an almost correction-less detector for small field dosimetry; 

additionally, the field output correction factors for this detector depend on the type of linac, 

beam energy and collimations used. 

7.3. Detector specific output correction factors for ionization 

chambers 

7.3.1. Comparison with data given in TRS-483  

TRS-483 has recommended values for output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 for nine mini and 

micro ionization chambers down to the minimal field size for which detector specific output 

correction factors fall within the interval 0.95 – 1.05. Absence of data for output correction 

factors for smaller fields is intended to prevent measurements with a large chamber and then 

apply correction factors which are unreliable.11 Data for 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 are provided only for 

perpendicular orientation of the ionization chambers, which is also recommended orientation 

in the TRS-483, since at the time of publishing TRS-483 CoP there were not enough data 

available for ionization chambers in parallel orientation.12 From that reason, we did the 

comparison of output correction factors for perpendicular orientation only. Similar as for solid-

state detectors, TRS-483 CoP does not make a distinction between the fields collimated by 

MLC, jaws or SRS cones. 

Among seven chambers from our study set, data for only three of them are available in the 

TRS-483 CoP.  

Since we did not observe any apparent one-sided difference between the data from  

TRS-483 CoP and those from our study, we have applied two-tailed Student’s t-test to verify 

the statistical significance of differences between both sets of output correction factors. Data 

from TRS-483 CoP were compared separately for each photon beam energy, filtration, and 
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linac. No statistically significant differences (P > 0.05) were found regardless of the beam 

energy, linac, filtration or field size being evaluated. However, we have to note that output 

correction factors were compared only for the field sizes given in the TRS-483: for IBA CC04 

and PTW 31016 PinPoint 3D chambers down to 1.0 cm, while for SI Exradin A16 chambers 

the smallest field in the comparison was 0.8 cm. The only exception (among 24 compared sets) 

was noticed for SI Exradin A16 chamber for 0.8 cm field in 6 MV WFF beam on Elekta linac, 

where the statistically significant difference (P < 0.05) was found between the value for output 

correction factor published in TRS-483 CoP and value obtained in our study.   

We can conclude that detector specific output correction factors obtained in our study for 

three ionization chambers (IBA CC04, PTW 31016 PinPoint 3D and SI Exradin A16) confirm 

the corresponding data published in TRS-483 CoP. Output correction factor data presented in 

this experimental study for the remaining four ionization chambers, IBA Razor IC, PTW 31021 

3D Semiflex, PTW 31022 PinPoint 3D and PTW 31023 PinPoint is considered to be a valuable 

supplement to the literature and the TRS-483 dataset. 

7.3.2. The orientation of ionization chambers  

Following the advice from IAEA TRS-483 CoP, the determination of field output factors using 

ionization chambers should be performed in the perpendicular orientation, i.e., orienting 

chamber’s axis perpendicular to the central beam axis (see Figure 3.1 and Table 3.1). On the 

other hand, in the recently published ICRU Report 91 we can find a general statement on the 

orientation of detectors: “In small fields, output correction factors is typically performed by 

orienting the detector with its longest axis parallel to the beam axis.”9 In the case of ionization 

chamber, longest axis usually coincides with the central electrode, therefore the above statement 

from ICRU Report means that ionization chamber is supposed to be positioned in the parallel 

orientation, i.e., with its long axis parallel to the central axis of the beam, which contradicts to 

the advice from the TRS-483 CoP.  Authors of the IAEA TRS-483 CoP have additionally 

explained their stand regarding the recommendation on the orientation of the ionization 

chambers in their correspondence published in Medical Physics journal.12 They state that 

perpendicular orientation was recommended in the CoP only because of a lack of data for 

parallel orientation, which is true. Indeed, only a few studies report experimental results for 

𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 in small fields determined with only a few small or micro ionization chambers in 

both orientations.85–87 Further, lack of homogeneity regarding the size of the normalization 

field, differences in the definition of field sizes, variations in set-up (SSD or SDD used), among 
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others, make the potential analysis very difficult and unreliable. Therefore, we will keep the 

discussion in this section predominantly within the limits of the results obtained in our study.  

While the orientation of ionization chamber is not crucial for the accuracy of relative 

measurements in large fields where LCPE exists, it is becoming an important issue when we 

conduct relative dosimetry studies in small fields below 2.0 cm, where lack of LCPE steps in. 

Since some ionization chambers show considerable stem effect, parallel orientation is 

advantageous also from this point of view, since stem effect can be minimized if the chamber 

is oriented with its stem parallel to the beam. In this work, as presented earlier (chapter Methods 

and materials Figure 5.2), we utilize two orientations for the determination of field output 

factors, perpendicular and parallel, aiming to resolve the ambiguity concerning the orientation 

of ionization chambers in megavoltage photon beams.12,82,10,9   

In the chapter Results, we have shown that our experimental data support the hypothesis 

that output correction factors determined with our set of ionization chambers are smaller if the 

chamber is positioned with its axis parallel to the central beam axis compared to the output 

correction factors obtained in a perpendicular orientation. (Tables 6.9 to 6.12, Figures 6.7 to 

6.10 and Appendixes 10.1 and 10.3). Since the output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 were always 

lower for parallel orientation compared to the perpendicular, the significance of differences was 

tested with one-tailed Student’s t-test. We found statistically significant differences (p < 0.05) 

in the output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
, depending upon the orientation of the ionization 

chamber in the beam; 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 values were almost always significantly higher for 

perpendicular orientation compared to the parallel one for smallest fields as presented in  

Tables 7.3 and 7.4, which means, that corrections needed to correct the readings of the 

ionization chambers are larger for perpendicular orientation.  

Detailed analysis reveals that only for IBA CC04 ionization chamber we did not find any 

statistically significant differences in 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 with respect to the orientation in the beam, 

regardless of the photon beam energy, linac or field size used. Such finding is not surprising 

and can be attributed to the dimensions of the cavity. Comparable dimensions of the chamber’s 

cavity in two main axis – the diameter of the cavity is 4.0 mm, while the length of the cavity is  

3.6 mm (Table 5.2) - result in a very similar volume averaging effect for perpendicular and 

parallel orientation, which is the main contributing factor for 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 in that case.  
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Similarly, for PTW 31021 Semiflex 3D we found statistically significant differences  

(p < 0.05) only for two photon beams (10 MV WFF and FFF) on Elekta linac for the smallest 

field size of 0.5 cm, while no significant differences were found on Varian linac concerning the 

orientation. Also in this case, constructional characteristics of the chamber are the reason for a 

similar response in both utilized orientations, since the length of the cavity of 4.8 mm is equal 

to the cavity diameter (Table 5.2). This chamber has the largest active volume V = 0.07 cm3 

among all investigated chambers. Thus it's under response due to the volume averaging is most 

pronounced. 

Two more ionization chambers in our study, PTW 31016 3D PinPoint and its successor 

PTW 31022 3D PinPoint, are classified as 3D chambers implying that there should be no or 

negligible difference in their response regardless of the orientation in the beam. Both chambers 

have a cavity length of 2.9 mm which is identical to their cavity diameters. However, in this 

case, differences between the two orientations are more noticeable than in the previous two 

examples. Namely, in some beams, we found significant differences also for field size 0.8 cm: 

for PTW 31016 chamber on Varian linac in both 10 MV beams, while on Elekta linac similar 

difference was found in 10 MV WFF beam. Detailed data are presented in Tables 6.9 to 6.12. 

We can conclude that for these two ionization chambers, equivalency concerning the orientation 

was not proven for smallest fields up to 0.8 cm, despite their 3D construction. 

We have also studied the response of two ionization chambers which have elongated 

cavities, having a cavity dimension in the principal chamber’s axis (direction of the central 

electrode) larger than the diameter of the cavity. To this group belong ionization chambers IBA 

Razor and PTW 31023 PinPoint. Both chambers have a cavity diameter of 2.0 mm. However, 

they have different cavity lengths: IBA Razor has a cavity length of 3.6 mm, while the PTW 

31023 PinPoint chamber has a cavity of length 5.0 mm. (Table 5.2) For IBA Razor chamber 

significant differences were found only for 0.5 cm field size in all photon beams on both linacs, 

while for PTW 31023 chamber, significant differences in the response were found for three 

smallest fields (up to 1.0 cm) on Elekta linac and two smallest fields 0.5 and 0.8 cm on Varian 

linac. Among all chambers included in the study, most pronounced differences, concerning the 

orientation, were found for PTW 31023 PinPoint chamber, which was expected, since this 

chamber has most elongated cavity geometry, thus most expressed volume averaging effect in 

the perpendicular orientation. 
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Table 7.2 Statistical significance (p-values) of the differences between output correction factors 

𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 for seven ionization chambers for two investigated orientations: perpendicular, when 

chamber’s main axis was placed perpendicular to the central beam axis, and parallel, when 

chamber’s main axis was placed parallel to the central beam axis. Data obtained on Elekta Versa 

HD linac for 6 and 10 MV filtered (WFF) and unfiltered (FFF) beams were compared and 

evaluated with one-tailed Student’s t-test. Since no significant differences were observed for 

field sizes above 1.0 cm, p-values for those fields are omitted. 

p-values 

 
Field 

sizea 

[cm] 

Elekta Versa HD 

6 MV 

WFF 

6 MV 

FFF 

10 MV 

WFF 

10 MV 

FFF 

IBA CC04 

0.5 0.236 0.101 0.217 0.161 

0.8 0.171 0.148 0.106 0.148 

1.0 0.247 0.354 0.167 0.096 

IBA Razor 

IC 

0.5 0.011 0.016 0.008 0.012 

0.8 0.065 0.114 0.047 0.063 

1.0 0.127 0.171 0.103 0.127 

PTW 31016 

3D PinPoint 

0.5 0.006 0.012 0.007 0.046 

0.8 0.008 0.167 0.035 0.093 

1.0 0.014 0.100 0.021 0.122 

PTW 31021 

3D Semiflex 

0.5 0.061 0.226 0.016 0.024 

0.8 0.211 0.339 0.229 0.252 

1.0 0.430 0.485 0.423 0.404 

PTW 31022 

3D PinPoint 

0.5 0.010 0.106 0.008 0.019 

0.8 0.127 0.111 0.038 0.066 

1.0 0.176 0.115 0.420 0.089 

PTW 31023 

PinPoint 

0.5 0.001 0.004 0.000 0.003 

0.8 0.004 0.006 0.008 0.019 

1.0 0.034 0.032 0.021 0.043 

SI Exradin 

A16 

0.5 0.085 0.029 0.034 0.080 

0.8 0.065 0.102 0.074 0.080 

1.0 0.069 0.145 0.256 0.153 

a Field size is indicated as a nominal square small field side length. The relationship between 

the nominal field size and the corresponding equivalent square small field sizes 𝑆𝑐𝑙𝑖𝑛 is provided 

in Table 6.1 for all energies and field sizes. 
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Table 7.3 Statistical significance (p-values) of the differences between output correction factors 

𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 for seven ionization chambers for two investigated orientations: perpendicular and 

parallel (see also Fig. 5.2). Data obtained on Varian TrueBeam linac for 6 and 10 MV filtered 

(WFF) and unfiltered (FFF) beams were compared and evaluated with one-tailed Student’s t-

test. No significant differences were observed for field sizes above 1.0 cm. 

p-values 

 
Field 

sizea 

[cm] 

Varian TrueBeam 

6 MV 

WFF 

6 MV 

FFF 

10 MV 

WFF 

10 MV 

FFF 

IBA CC04 

0.5 0.143 0.151 0.185 0.105 

0.8 0.285 0.345 0.275 0.230 

1.0 0.439 0.463 0.367 0.348 

IBA Razor 

IC 

0.5 0.018 0.024 0.029 0.011 

0.8 0.141 0.182 0.110 0.092 

1.0 0.332 0.345 0.240 0.205 

PTW 31016 

3D PinPoint 

0.5 0.030 0.042 0.038 0.017 

0.8 0.053 0.090 0.041 0.031 

1.0 0.110 0.185 0.082 0.066 

PTW 31021 

3D Semiflex 

0.5 0.220 0.186 0.230 0.129 

0.8 0.469 0.478 0.467 0.491 

1.0 0.441 0.471 0.447 0.473 

PTW 31022 

3D PinPoint 

0.5 0.086 0.123 0.085 0.047 

0.8 0.168 0.403 0.134 0.154 

1.0 0.281 0.419 0.218 0.244 

PTW 31023 

PinPoint 

0.5 0.003 0.004 0.007 0.002 

0.8 0.017 0.052 0.020 0.016 

1.0 0.072 0.172 0.064 0.054 

SI Exradin 

A16 

0.5 0.058 0.073 0.079 0.040 

0.8 0.183 0.209 0.154 0.150 

1.0 0.316 0.359 0.273 0.259 

a Field size is indicated as a nominal square small field side length. The relationship between 

the nominal field size and the corresponding equivalent square small field sizes 𝑆𝑐𝑙𝑖𝑛 is provided 

in Table 6.1 for all energies and field sizes. 

 

Smallest chamber in our study, SI Exradin A16, showed significant differences in 

𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 with respect to the orientation for 0.5 cm field, however, only in 6 MV FFF and  

10 MV WFF beams on Elekta linac and in 10 MV FFF beam on Varian linac. Exradin A16 
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chamber has cavity dimensions equal in both principal chamber’s axis, similar as PTW 31016 

and PTW 31022 3D PinPoint chambers discussed earlier, which qualifies this chamber to the 

group of “3D chambers”, although its name does not suggest that. On the other hand, its cavity 

volume of 0.007 cm3 is two time smaller than corresponding volumes of the PTW 31016 and 

PTW 31022 3D chambers, which additionally minimize volume averaging effect in both 

orientations.  

 

 

Figure 7.1. Ratios 𝑘𝑝𝑒𝑟𝑝/𝑘𝑝𝑎𝑟𝑎 of output correction factors determined in two orientations 

(perpendicular and parallel) for two ionization chambers, PTW 31022 3D PinPoint and PTW 

31023 PinPoint, having different dimensions of their cavities (active volumes) in the 

longitudinal and radial direction. 𝑑𝐿 𝑑𝑅 =⁄ 1 correspond to the PTW 31022 3D PinPoint 

chamber, while 𝑑𝐿 𝑑𝑅 =⁄ 2.5 corresponds to the PTW 31023 Pinpoint chamber. Average values 

for output correction factors for all investigated beams were considered for the determination 

of  𝑘𝑝𝑒𝑟𝑝/𝑘𝑝𝑎𝑟𝑎 values. Error bars represent standard deviations of mean values. 

 

The response of two small ionization chambers, PTW 31022 3D PinPoint and PTW 31023 

PinPoint, was analyzed more in detail. Those two chambers have almost equal active volumes 

(cavity volumes). However, they differ considerably in their cavity dimensions, 𝑑𝐿 and 𝑑𝑅, 

along longitudinal and radial axes respectively (see also Figure 2.6 and Table 5.2):  PTW 31022 

3D PinPoint chamber has equal cavity dimensions in its longitudinal and radial directions, 
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𝑑𝐿 = 𝑑𝑅 = 2.9 𝑚𝑚, while PTW 31023 PinPoint chamber is more elongated, having 

𝑑𝐿 = 5.0 𝑚𝑚 and 𝑑𝑅 = 2.0 𝑚𝑚. Plot in Figure 7.1 shows a dependence of ratios between 

output correction factors determined in perpendicular and parallel orientations (𝑘𝑝𝑒𝑟𝑝/𝑘𝑝𝑎𝑟𝑎) 

on clinical field size 𝑆𝑐𝑙𝑖𝑛 for two different ratios 𝑑𝐿/𝑑𝑅; one corresponds to the PTW 31022 

3D PinPoint chamber (𝑑𝐿 𝑑𝑅 =⁄ 1), while the other to the PTW 31023 Pinpoint chamber 

(𝑑𝐿 𝑑𝑅 =⁄ 2.5). Ratios 𝑘𝑝𝑒𝑟𝑝/𝑘𝑝𝑎𝑟𝑎 were determined from average values determined in all 

megavoltage beams on both linear accelerators using analytical function from Eq. (5.15) and 

fitting coefficients from Appendixes 10.2 and 10.4. In the case of ionization chambers, fitting 

parameter d is equal to -1. 

From the graph in Figure 7.1 we clearly identify three main characteristics: 

- 𝑘𝑝𝑒𝑟𝑝/𝑘𝑝𝑎𝑟𝑎 values strongly depend on the 𝑑𝐿 𝑑𝑅⁄  ratio;  

- 𝑘𝑝𝑒𝑟𝑝/𝑘𝑝𝑎𝑟𝑎 values are higher for a more elongated chamber having larger 𝑑𝐿 𝑑𝑅⁄  

ratio; 

- 𝑘𝑝𝑒𝑟𝑝/𝑘𝑝𝑎𝑟𝑎 values gradually approach to 1 as 𝑆𝑐𝑙𝑖𝑛 are becoming larger.  

However, all mentioned characteristics are expected and have a solid physical background, 

mostly within the concept of volume averaging effect. Also, they were explicitly or implicitly 

encompassed in our second hypothesis of the thesis. 

To summarize, output correction factors for ionization chambers included in the study are 

lower if they are oriented with their main axis parallel to the central axis of the beam even if 

the length of the cavity is equal to the cavity diameter as it is in the case of 3D ionization 

chambers. Therefore, to minimize the output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
, we recommend to 

use ionization chambers in parallel orientation for the determination of field output factors in 

small fields.  

However, considering the construction and size of the ionization chambers, we do not 

recommend to use ionization chambers below certain minimum field size. The minimal field 

size is such that output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 comply with the requirement 

0.95 < 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓 < 1.05 .11 At this point, we highlight that two ionization chambers from our 

set fulfil this requirement down to the smallest field size of 0.5 cm, IBA Razor IC and PTW 

31023 PinPoint, if they are positioned parallel to the beam axis, and are therefore suitable 

detectors for relative small field dosimetry even for very small fields below 1.0 cm. 
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7.3.3 Clinical relevance of the thesis results 

While there is no rule about the magnitude of systematic dosimetry errors above which we 

would face with unacceptable clinical outcome of the radiotherapy treatment, it seems 

reasonable to make every effort to keep systematic dosimetric errors (i.e., systematic difference 

between prescribed and delivered dose) within the range of about 1 – 2%.88 Therefore, 

systematic errors in the determination of field output factors should be minimized as much as 

reasonably achievable, as those inaccuracies affect a large group of patients and can remain 

undetectable for a longer period. 

Although we have obtained rather small output correction factors for some of the solid-

state detectors included in the study even for very small fields, we focus our discussion on the 

ionization chambers since we have determined 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 values for two orientation. Latter is 

an important contribution to the dosimetry of small fields. Detector specific output correction 

factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 determined in our study for micro and mini ionization chambers, have 

revealed that we can be more confident in the accuracy of field output factors if they were 

determined in the parallel orientation. While there is practically no difference between 

𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 values determined in either of orientations down to the field size of 2 × 2 cm2, the 

differences between both orientations become more apparent for smaller fields, the fact, that 

deserves a consideration in the scope of clinical relevance of our findings.  

From the radiobiological point of view and the analysis of dose-response curves, we can 

expect 10 – 20% change in the tumor control probability (TCP) for a 5% change in the delivered 

dose, at a 50% TCP. A similar change in the dose may result in a 20 – 30% change in the normal 

tissue complication probability (NCTP).88,89 Radiobiological aspects of dosimetric errors are 

known for decades. However, they were not closely related to the dosimetry of small fields, as 

the use of large static fields was the most common approach in the radiotherapy until recently. 

In the last two decades, widespread use of new radiotherapy techniques, such as intensity 

modulated radiotherapy (IMRT), volumetric arc therapy (VMAT), stereotactic radiosurgery 

(SRS), and stereotactic body radiotherapy (SBRT) have raised the importance of small field 

dosimetry. Lastly mentioned techniques have in common the use of single or multiple small 

fields for which we need to import and define accurate data in the treatment planning system, 

in particular field output factor values for small fields. Also, some radiotherapy units can form 
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only very small fields below 2.0 cm, such as the GammaKnife, which increase the importance 

of accurate small field dosimetry. 

A closer look at the 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 values in the Tables 6.9 – 6.12 and figures in the Appendix 

10.1 and 10.3 for the smallest field of 0.5 × 0.5 cm2 reveals that they are well below 1.05 (5%) 

for ionization chambers PTW 31023 PinPoint and IBA Razor, if they have been determined in 

the parallel orientation. Latter lead us to the conclusion that we could expect a change in TCP 

below 10% and a change in NTCP below 20% even if we would not take output correction 

factors into consideration. However, since dosimetry errors, also systematic, can be introduced 

at various levels of the radiotherapy process, such an assumption would be imprudent. Also, 

previously mentioned techniques IMRT, VMAT, SRS, and SBRT do not use exclusively small 

fields or small beam segments during radiation treatment delivery. In fact, usually, only a 

portion of radiotherapy treatment consists of very small fields or beam segments, which 

fortunately minimize the possibility of severe dosimetric errors due to incorrectly determined 

or modelled small field output factors.  

Nonetheless, the advantage of parallel orientation of the ionization chambers for the 

determination of field output factors over the perpendicular one, have been clearly and 

unambiguously shown for all micro and mini ionization chambers used in the present work. 
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8 CONCLUSIONS 

The thesis presents the results of field output factors for small photon fields determined by two 

reference detectors, radiochromic films EBT3 and Exradin W1 plastic scintillator, which are 

perturbation free except for volume averaging. Results are presented as analytical functions as 

well as discrete values for nine clinical fields, ranging from 0.5 cm to 10 cm. Measurements 

were performed at a Varian TrueBeam and Elekta Versa HD linear accelerators using  

6 MV WFF, 6 MV FFF, 10 MV WFF and 10 MV FFF photon beams. Only volume averaging 

correction factors 𝑘𝑣𝑜𝑙 were applied to the measured datasets; these were calculated from 2D 

dose matrices obtained from EBT3 films for each small field and photon beam individually, 

which were fitted to bivariate Gaussian function. This is a novel approach for the determination 

of field output factors in small static fields in megavoltage photon beams. Field output factor 

data presented in this study can be used as a reference data sets on linacs with same collimation 

of the fields as was used in the present study. First hypothesis of the thesis was confirmed, since 

our novel method for the determination of field output factors in small megavoltage beams was 

proven as appropriate.   

Additionally, based on calculated field output factors, detector specific output correction 

factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓  were determined for six diodes, a microDiamond detector, and seven small 

and micro ionization chambers, which are widely used detectors for performing relative 

dosimetry in the clinics.  

A large set of field output factor and output correction factor data for 16 detectors and four 

photon beams were determined/measured on two linacs by a single group; this is considered to 

be a valuable supplement to the literature and the TRS-483 dataset. Data are presented in 

graphical form using an analytical function from TRS-483 as well as in the form of discrete 

values. To the best of our knowledge, no similar comprehensive study on the orientation of 

ionization chambers in MV photon beams has been published until present. 

Comparison between the output correction factors reported in the present work and those 

published in TRS-483 show statistically significant difference (p < 0.05) when an SN EDGE 

detector is used for measurements made with 10 MV WFF beams at both Varian TrueBeam 

and Elekta Versa HD linacs for field sizes < 2.0 cm.  Statistically significant differences  

(p < 0.05) were also found when a PTW 60019 mD detector was used with 6 MV WFF,  
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6 MV FFF and 10 MV FFF beams on Elekta Versa HD linac. Those findings do not confirm 

entirely the approach in the TRS-483 CoP. 

For most combinations of field size, beam energy, and beam collimation, no significant 

differences were found between TRS-483 data set and the present results for output correction 

factors for WFF and FFF beams; a few exceptions were found for the smallest field sizes.  

Results of the present study also show that different collimation systems can significantly 

influence the output correction factors for the smallest field size of 0.5 cm for 6 MV WFF and 

6 MV FFF beams regardless of the detector used. For PTW 60019 mD detector this effect was 

also observed for the 10 MV WFF and 10 MV FFF beams. The only exception was IBA Razor 

diode for which dependence of output correction factors on beam collimating system was not 

observed. These results show that for given beam energy, the 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 values obtained from 

different linacs (i.e., different collimation system) can be different for 𝑆𝑐𝑙𝑖𝑛 < 0.8 cm. 

Our second hypothesis was mainly directed toward the problem connected to the 

orientation of small and micro ionization chambers when determining field output factors and 

output correction factors in small fields. While TRS-483 recommends perpendicular 

orientation, we were hypothesizing that parallel orientation is advantageous since detector 

specific correction factors are smaller compared to those obtained in a perpendicular 

orientation. We have used seven small and micro ionization chambers to test the hypothesis in 

four megavoltage photon beams on two linear accelerators. Results of our study confirm the 

second hypothesis without exceptions: output correction factors were lower if they were 

determined in a parallel orientation of ionization chambers compared to those obtained in a 

perpendicular orientation. This observation has been confirmed for all seven ionization 

chambers regardless of the photon beam energy or linear accelerator being used. As a 

consequence, if the parallel orientation is utilized for the determination of output correction 

factors, they can be determined for field sizes smaller than those reported in the TRS-483 CoP, 

since the requirement 0.95 < 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓 < 1.05 is not violated even for field sizes below  

1.0 cm for five ionization chambers used in our study: three PTW PinPoint chambers, IBA 

Razor chamber and Exradin A16 chamber. Even more, output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 

determined with IBA Razor and PTW 31023 PinPoint ionization chambers in parallel 

orientation were always within the specified interval 0.95 – 1.05 regardless of the photon beam 

energy or linac used down to the smallest investigated field of 0.5 cm. Therefore, to minimize 
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corrections in the experimental determination of field output factors, we recommend to use 

ionization chambers in parallel orientation. Latter is considered as a valuable and vindicated 

upgrade to the present recommendations given in the IAEA TRS-483 CoP, where perpendicular 

orientation is advised.  

TRS-483 recommends the use of two (or more) detectors for the determination of field 

output factors.10,11 In such combination, detectors should have individual correction factors 

𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 above and below unity, yielding to the combined 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
 values close to 1.00. 

Nonetheless, we have to accept the fact, that the lastly mentioned recommendation given in the 

TRS-483 is in principal general only. Namely, no such pair of detectors has been specifically 

recommended or identified yet, neither from the authors of the TRS-483, nor from any other 

research group. Importantly, our large set of output correction factors determined for seven 

solid stated detectors and seven small ionization chambers under the same experimental 

conditions, allows us quantitative approach in finding most suitable pairs of detectors for which 

no correction factors would be necessary to apply, even for the smallest fields down to 0.5 × 

0.5 cm2. Latter remains a challenge and motivation for our future work. 
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10 APPENDIX 

1 Output correction factors for perpendicular and parallel 

orientation of ionization chambers on Elekta Versa HD linac 

 

 

Figure I. Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for IBA CC04 ionization 

chamber for two orientation with respect to the central beam axis; perpendicular (blue symbols 

and blue dotted lines) and (red symbols and red full lines) for four photon beams on Elekta 

Versa HD linac. Output correction factors are presented as individual values/points and as 

curves of analytical function applying Eq. (5.14) and Eq. (5.15) respectively.   



103 

 

 

Figure II. Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for IBA Razor ionization 

chamber for two orientation with respect to the central beam axis; perpendicular (blue symbols 

and blue dotted lines) and (red symbols and red full lines) for four photon beams on Elekta 

Versa HD linac. Output correction factors are presented as individual values/points and as 

curves of analytical function applying Eq. (5.14) and Eq. (5.15) respectively. 
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Figure III. Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for PTW 31016 3D PinPoint 

ionization chamber for two orientation with respect to the central beam axis; perpendicular 

(blue symbols and blue dotted lines) and (red symbols and red full lines) for four photon beams 

on Elekta Versa HD linac. Output correction factors are presented as individual values/points 

and as curves of analytical function applying Eq. (5.14) and Eq. (5.15) respectively. 
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Figure IV. Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for PTW 31021 3D Semiflex 

ionization chamber for two orientation with respect to the central beam axis; perpendicular 

(blue symbols and blue dotted lines) and (red symbols and red full lines) for four photon beams 

on Elekta Versa HD linac. Output correction factors are presented as individual values/points 

and as curves of analytical function applying Eq. (5.14) and Eq. (5.15) respectively. 
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Figure V. Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for PTW 31022 3D PinPoint 

ionization chamber for two orientation with respect to the central beam axis; perpendicular 

(blue symbols and blue dotted lines) and (red symbols and red full lines) for four photon beams 

on Elekta Versa HD linac. Output correction factors are presented as individual values/points 

and as curves of analytical function applying Eq. (5.14) and Eq. (5.15) respectively. 
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Figure VI. Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for PTW 31023 PinPoint 

ionization chamber for two orientation with respect to the central beam axis; perpendicular 

(blue symbols and blue dotted lines) and (red symbols and red full lines) for four photon beams 

on Elekta Versa HD linac. Output correction factors are presented as individual values/points 

and as curves of analytical function applying Eq. (5.14) and Eq. (5.15) respectively. 
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Figure VII. Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for SI Exradin A16 

ionization chamber for two orientation with respect to the central beam axis; perpendicular 

(blue symbols and blue dotted lines) and (red symbols and red full lines) for four photon beams 

on Elekta Versa HD linac. Output correction factors are presented as individual values/points 

and as curves of analytical function applying Eq. (5.14) and Eq. (5.15) respectively. 
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2 Fitting parameters for the analytical function for output 

correction factors for ionization chambers on Elekta Versa HD 

linac 

 

Table I Values of fitting parameters for the analytical function given in Eq. (5.15) shown 

graphically in Figure I (Appendix 1) for output correction factors for IBA CC04 ionization 

chamber for two utilized orientations with respect to the beam’s central axis. 

 

 

Table II Values of fitting parameters for the analytical function given in Eq. (5.15) shown 

graphically in Figure II (Appendix 1) for output correction factors for IBA Razor ionization 

chamber for two utilized orientations with respect to the beam’s central axis.  

 

 

Table III Values of fitting parameters for the analytical function given in Eq. (5.15) shown 

graphically in Figure III (Appendix 1) for output correction factors for PTW 31016 3D PinPoint 

ionization chamber for two utilized orientations with respect to the beam’s central axis.  

 

IBA CC04 perpendicular  parallel 

E a b c  a b c 

6 MV WFF 0.2502 0.2366 0  0.2411 0.2275 0 

6 MV FFF 0.2434 0.2343 0  0.2047 0.2320 0 

10 MV WFF 0.2297 0.2411 0  0.2116 0.2343 0 

10 MV FFF 0.2047 0.2184 0  0.1979 0.2002 0 

IBA Razor IC perpendicular  parallel 

E a b c  a b c 

6 MV WFF 0.1774 0.1934 0  0.1524 0.1388 0 

6 MV FFF 0.1729 0.1729 0  0.1342 0.1160 0 

10 MV WFF 0.1524 0.1911 0  0.1228 0.1046 0 

10 MV FFF 0.1342 0.1547 0  0.0819 0.0819 0.0023 

PTW 31016 3D PinPoint perpendicular  parallel 

E a b c  a b c 

6 MV WFF 0.2206 0.2366 0  0.1592 0.1911 0 

6 MV FFF 0.2070 0.2161 0  0.1865 0.1706 0 

10 MV WFF 0.2320 0.2297 0  0.1661 0.1956 0 

10 MV FFF 0.1615 0.2047 0  0.1410 0.1683 0 
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Table IV Values of fitting parameters for the analytical function given in Eq. (5.15) shown 

graphically in Figure IV (Appendix 1) for output correction factors for PTW 31021 3D Semiflex 

ionization chamber for two utilized orientations with respect to the beam’s central axis.  

 

 

Table V Values of fitting parameters for the analytical function given in Eq. (5.15) shown 

graphically in Figure V (Appendix 1) for output correction factors for PTW 31022 3D PinPoint 

ionization chamber for two utilized orientations with respect to the beam’s central axis.  

 

 

Table VI Values of fitting parameters for the analytical function given in Eq. (5.15) shown 

graphically in Figure VI (Appendix 1) for output correction factors for PTW 31023 PinPoint 

ionization chamber for two utilized orientations with respect to the beam’s central axis.  

 

 

 

 

PTW 31021 3D Semiflex perpendicular  parallel 

E a b c  a b c 

6 MV WFF 0.2730 0.2912 0  0.2752 0.2752 0 

6 MV FFF 0.2457 0.2843 0  0.2707 0.2593 0 

10 MV WFF 0.2934 0.2866 0  0.2639 0.2798 0 

10 MV FFF 0.2661 0.2593 0  0.2730 0.2320 0 

PTW 31022 3D PinPoint perpendicular  parallel 

E a b c  a b c 

6 MV WFF 0.2161 0.1865 0  0.1365 0.1524 0 

6 MV FFF 0.1911 0.2002 0  0.1774 0.1774 0 

10 MV WFF 0.2229 0.2070 0  0.1547 0.1661 0 

10 MV FFF 0.1592 0.1934 0  0.1456 0.1388 0 

PTW 31023 PinPoint perpendicular  parallel 

E a b c  a b c 

6 MV WFF 0.2479 0.2070 0  0.1251 0.1183 0 

6 MV FFF 0.1979 0.2229 0  0.1319 0.1479 0 

10 MV WFF 0.2138 0.2525 0  0.1092 0.1137 0 

10 MV FFF 0.2002 0.1911 0  0.1183 0.1115 0 
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Table VII Values of fitting parameters for the analytical function given in Eq. (5.15) shown 

graphically in Figure VII (Appendix 1) for output correction factors for SI Exradin A16 

ionization chamber for two utilized orientations with respect to the beam’s central axis.  

 

  

SI Exradin A16 perpendicular  parallel 

E a b c  a b c 

6 MV WFF 0.2320 0.2002 0  0.1911 0.1888 0 

6 MV FFF 0.2206 0.1865 0  0.1820 0.1570 0 

10 MV WFF 0.2343 0.1865 0  0.1774 0.1706 0 

10 MV FFF 0.1797 0.1706 0  0.1501 0.1456 0 
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3 Output correction factors for perpendicular and parallel 

orientation of ionization chambers on Varian TrueBeam linac 

 

 

 

Figure VIII. Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for IBA CC04 ionization 

chamber for two orientation with respect to the central beam axis; perpendicular (blue symbols 

and blue dotted lines) and (red symbols and red full lines) for four photon beams on Varian 

TrueBeam linac. Output correction factors are presented as individual values/points and as 

curves of analytical function applying Eq. (5.14) and Eq. (5.15) respectively. 
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Figure IX. Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for IBA Razor ionization 

chamber for two orientation with respect to the central beam axis; perpendicular (blue symbols 

and blue dotted lines) and (red symbols and red full lines) for four photon beams on Varian 

TrueBeam linac. Output correction factors are presented as individual values/points and as 

curves of analytical function applying Eq. (5.14) and Eq. (5.15) respectively. 
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Figure X. Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for PTW 31016 3D PinPoint 

ionization chamber for two orientation with respect to the central beam axis; perpendicular 

(blue symbols and blue dotted lines) and (red symbols and red full lines) for four photon beams 

on Varian TrueBeam linac. Output correction factors are presented as individual values/points 

and as curves of analytical function applying Eq. (5.14) and Eq. (5.15) respectively. 
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Figure XI.  Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for PTW 31021 3D Semiflex 

ionization chamber for two orientation with respect to the central beam axis; perpendicular 

(blue symbols and blue dotted lines) and (red symbols and red full lines) for four photon beams 

on Varian TrueBeam linac. Output correction factors are presented as individual values/points 

and as curves of analytical function applying Eq. (5.14) and Eq. (5.15) respectively. 
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Figure XII.  Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for PTW 31022 3D PinPoint 

ionization chamber for two orientation with respect to the central beam axis; perpendicular 

(blue symbols and blue dotted lines) and (red symbols and red full lines) for four photon beams 

on Varian TrueBeam linac. Output correction factors are presented as individual values/points 

and as curves of analytical function applying Eq. (5.14) and Eq. (5.15) respectively. 
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Figure XIII.  Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for PTW 31023 PinPoint 

ionization chamber for two orientation with respect to the central beam axis; perpendicular 

(blue symbols and blue dotted lines) and (red symbols and red full lines) for four photon beams 

on Varian TrueBeam linac. Output correction factors are presented as individual values/points 

and as curves of analytical function applying Eq. (5.14) and Eq. (5.15) respectively. 
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Figure XIV.  Detector specific output correction factors 𝑘𝑄𝑐𝑙𝑖𝑛,𝑄𝑟𝑒𝑓

𝑓𝑐𝑙𝑖𝑛,𝑓𝑟𝑒𝑓
  for SI Exradin A16 

ionization chamber for two orientation with respect to the central beam axis; perpendicular 

(blue symbols and blue dotted lines) and (red symbols and red full lines) for four photon beams 

on Varian TrueBeam linac. Output correction factors are presented as individual values/points 

and as curves of analytical function applying Eq. (5.14) and Eq. (5.15) respectively. 
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4 Fitting parameters for the analytical function for output 

correction factors for ionization chambers on Varian TrueBeam 

linac 

 

Table VIII Values of fitting parameters for the analytical function given in Eq. (5.15) shown 

graphically in Figure VIII (Appendix 3) for output correction factors for IBA CC04 ionization 

chamber for two utilized orientations with respect to the beam’s central axis. 

 

Table IX Values of fitting parameters for the analytical function given in Eq. (5.15) shown 

graphically in Figure IX (Appendix 3) for output correction factors for IBA Razor ionization 

chamber for two utilized orientations with respect to the beam’s central axis.  

 

Table X Values of fitting parameters for the analytical function given in Eq. (5.15) shown 

graphically in Figure X (Appendix 3) for output correction factors for PTW 31016 3D PinPoint 

ionization chamber for two utilized orientations with respect to the beam’s central axis.  

IBA CC04 perpendicular  parallel 

E a b c  a b c 

6 MV WFF 0.2252 0.2457 0  0.2093 0.2366 0 

6 MV FFF 0.2457 0.2138 0  0.2229 0.2093 0 

10 MV WFF 0.2411 0.2320 0  0.2116 0.2275 0 

10 MV FFF 0.2388 0.2184 0  0.2297 0.2025 0 

IBA Razor IC perpendicular  parallel 

E a b c  a b c 

6 MV WFF 0.1729 0.1820 0  0.1433 0.1183 0 

6 MV FFF 0.1524 0.1797 0  0.1092 0.1183 0 

10 MV WFF 0.1479 0.1865 0  0.1024 0.1024 0 

10 MV FFF 0.1774 0.1638 0  0.1069 0.1001 0 

PTW 31016 3D PinPoint perpendicular  parallel 

E a b c  a b c 

6 MV WFF 0.2161 0.2184 0  0.1683 0.1865 0 

6 MV FFF 0.2047 0.2070 0  0.1956 0.1638 0 

10 MV WFF 0.2070 0.2206 0  0.1547 0.1774 0 

10 MV FFF 0.2047 0.2093 0  0.1820 0.1615 0 
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Table XI Values of fitting parameters for the analytical function given in Eq. (5.15) shown 

graphically in Figure XI (Appendix 3) for output correction factors for PTW 31021 3D Semiflex 

ionization chamber for two utilized orientations with respect to the beam’s central axis.  

 

 

Table XII Values of fitting parameters for the analytical function given in Eq. (5.15) shown 

graphically in Figure XII (Appendix 3) for output correction factors for PTW 31022 3D 

PinPoint ionization chamber for two utilized orientations with respect to the beam’s central 

axis.  

 

 

Table XIII Values of fitting parameters for the analytical function given in Eq. (5.15) shown 

graphically in Figure XIII (Appendix 3) for output correction factors for PTW 31023 PinPoint 

ionization chamber for two utilized orientations with respect to the beam’s central axis.  

 

 

 

PTW 31021 3D Semiflex perpendicular  parallel 

E a b c  a b c 

6 MV WFF 0.2639 0.2661 0  0.2570 0.2639 0 

6 MV FFF 0.2593 0.2502 0  0.2388 0.2570 0 

10 MV WFF 0.2752 0.2593 0  0.2730 0.2548 0 

10 MV FFF 0.2457 0.2616 0  0.2343 0.2593 0 

PTW 31022 3D PinPoint perpendicular  parallel 

E a b c  a b c 

6 MV WFF 0.2138 0.1774 0  0.1843 0.1547 0 

6 MV FFF 0.1615 0.1843 0  0.1410 0.1638 0 

10 MV WFF 0.1774 0.1956 0  0.1433 0.1592 0 

10 MV FFF 0.1911 0.1752 0  0.1388 0.1547 0 

PTW 31023 PinPoint perpendicular  parallel 

E a b c  a b c 

6 MV WFF 0.2070 0.2184 0  0.1433 0.1297 0 

6 MV FFF 0.2002 0.2047 0  0.1388 0.1228 0 

10 MV WFF 0.1979 0.2206 0  0.1297 0.1206 0 

10 MV FFF 0.2184 0.1956 0  0.1046 0.1115 0 
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Table XIV Values of fitting parameters for the analytical function given in Eq. (5.15) shown 

graphically in Figure XIV (Appendix 3) for output correction factors for SI Exradin A16 

ionization chamber for two utilized orientations with respect to the beam’s central axis.  

 

 

  

SI Exradin A16 perpendicular  parallel 

E a b c  a b c 

6 MV WFF 0.2116 0.1797 0  0.1592 0.1592 0 

6 MV FFF 0.1479 0.2047 0  0.1342 0.1683 0 

10 MV WFF 0.1888 0.1774 0  0.1274 0.1479 0 

10 MV FFF 0.1934 0.1683 0  0.1365 0.1433 0 
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