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are linked with kinetochore fibers and that human mitotic spindle is a chiral structure.  

 

(94 pages, 42 figures, 2 tables, 103 references, original in english) 

 

Key words: mitosis, mitotic spindle, metaphase, microtubule, bridging fiber 

 

Supervisor: Dr. sc. Iva Tolić, Prof. 

Reviewers: Dr. sc. Inga Marijanović, Assoc. Prof. 
       Dr. sc. Juraj Simunić, Assist. Prof. 
       Dr. sc. Marin Barišić, Assoc. Prof.



 

Sveučilište u Zagrebu       Doktorski rad 

Prirodoslovno-matematički fakultet 

Biološki odsjek 

 

Uloga premošćujućih vlakana u arhitekturi metafaznoga diobenoga vretena 

 

Bruno Polak 

Institut Ruđer Bošković 

 
Mitoza je fundamentalan process kojim se genetička informacija prenosi na stanice kćeri, 

a struktura koja upravlja ovim procesom je diobeno vreteno, Između dva nasuprotna pola vretena 

pružaju se vlakna mikrotubula koja stvaraju interakcije sa kromosomima. Vlakna koja se vežu za 

kinetohore na kromosomima nazivaju se kinetohorna vlakna. Neki od ostalih svežnjeva stvaraju 

antiparalelne preklapajuće regije u centralnom djelu diobenog vretena. U ovom radu ispitati će se 

lokalizacija i zastupljenost antiparalelnih preklapajućih regija u metafazi te će se istražiti prostorna 

organizacija navedenih i kinethornih vlakana. Uz pomoć metode konfokalne mikroskopije snimati 

će se cijela vretena što će omogućiti utvrđivanje broja antiparalelnih svežnjeva, a odgovoriti će na 

pitanje njihove povezanosti sa kinetohornim vlaknima. Daljnji rad biti će usmjeren na 

razumijevanje prostorne organizacije metafaznog diobenog vretena. Uz primjenu navedenog 

pristupa, otkriveno je da su antiparalelna vlakna povezana sa kinetohornim vlaknima te da je 

diobeno vreteno u ljudskim stanicama kiralna struktura. 

 

(94 stranice, 42 slike, 2 tablice, 103 reference, jezik izvornika: engleski) 

 

Ključne riječi: mitoza, diobeno vreteno, metafaza, mikrotubuli, premošćujuća vlakna 

 

Voditelj: Dr. sc. Iva Tolić, prof. 

Ocjenitelji: Dr. sc. Inga Marijanović, izv. prof. 
       Dr. sc. Juraj Simunić, doc. 
       Dr. sc. Marin Barišić, izv. prof.



 

Contents  
1 Introduction ........................................................................................................................ 1 
2 Overview of research .......................................................................................................... 5 

2.1 The cell – a building block of life ................................................................................ 6 

2.1.1 One day in life of a cell ........................................................................................ 7 

2.1.2 Control of accuracy - cell cycle checkpoints ...................................................... 11 

2.2 Building blocks of the mitotic spindle ....................................................................... 13 

2.2.1 Microtubule organizing centers - spindle strongholds ........................................ 13 

2.2.2 Microtubules - growing versus shrinking stems ................................................. 14 

2.2.3 Kinetochores - sticky links ................................................................................. 16 

2.2.4 Microtubule Associated proteins - supporting players ........................................ 18 

2.2.4.1 Protein Regulator of Cytokinesis 1 - central stabilizer .................................... 18 

2.2.4.2 End binding proteins - points of growth ......................................................... 23 

2.2.4.3 Motor proteins - pushing/pulling players ........................................................ 24 

2.3 Four states of the spindle ........................................................................................... 27 

2.3.1 Prophase - construction period ........................................................................... 27 

2.3.2 Metaphase - probing period ............................................................................... 29 

2.3.3 Anaphase - separation period ............................................................................. 31 

2.3.4 Telophase - demolition versus composition ....................................................... 33 

3 Materials and methods ...................................................................................................... 34 
3.1 Cell lines ................................................................................................................... 35 

3.2 Sample preparation .................................................................................................... 35 

3.3 Immunostaining ........................................................................................................ 37 

3.4 Confocal microscopy for abundance of bridging fibers .............................................. 38 

3.4.1 Image analysis for abundance of bridging fibers ................................................ 39 

3.5 Lysate preparation and Western blot analyses ............................................................ 41 

3.6 Confocal microscopy for 3D reconstruction of bundles ............................................. 42 

3.6.1 Image analysis for 3D reconstruction of bundles ................................................ 42 

3.7 Statistical analysis and results representation ............................................................. 43 

4 Results and discussion ...................................................................................................... 45 
4.1 One-to-one association between overlap fibers and sister kinetochores ...................... 46 



 

4.1.1 Overlap fibers are linked to kinetochore fibers ................................................... 54 

4.1.2 Endogenous PRC1 distribution and perturbation of bridging fiber parameters.... 59 

4.2 Microtubule bundles possess left-handed helicity ...................................................... 70 

4.3 Concluding discussion ............................................................................................... 78 

5 Conclusions ...................................................................................................................... 81 
6 References ........................................................................................................................ 83 
7 Biography ......................................................................................................................... 93 
 

 



 1 

1 INTRODUCTION  

Mitosis is a process during which duplicated chromosomes get separated and positioned 

into newly formed daughter cell. It is a basic process responsible for transferring genetic 

information to offspring and for continuation of life. The successfulness of the process relies on 

proper assembly of a functional micromachinery called mitotic spindle. Its main components are 

microtubules that form tubes and bundles with defined orientation and other proteins that interact 

with them. The thickest and most stable microtubule bundles in the spindle are kinetochore fibers 

(k-fibers). A functional spindle will assemble as the duplicated chromosomes are incorporated into 

the spindle with a goal to properly attach and orient these structures that contain two copies of the 

whole genetic information. K-fibers will form an end-on attachment with the complex protein 

assembly on the centromeric region of the chromosome called kinetochore. Properly attached and 

oriented chromosomes will in metaphase of mitosis contain two sister kinetochores attached to 

opposite spindle poles via two sister k-fibers. Besides k-fibers certain microtubules will form 

antiparallel overlap bundles in the spindle midzone [1]. These bundles contain the passive 

crosslinker protein called Protein Regulator of Cytokinesis 1 (PRC1) which stabilizes antiparallel 

interdigitating microtubules within the overlap bundles. It was recently shown that an overlap fiber 

links outermost k-fibers and balances forces on the periphery of the spindle. In experimental setup 

with laser ablation coupled to a confocal microscope, it was revealed that this bundle is associated 

with sister kinetochores in metaphase. This bundle was named bridging fiber and it is antiparallel 

as it contains passive crosslinker PRC1 [2]. Even though different aspects of metaphase have been 

extensively studied, it is not known what the abundance of antiparallel bundles in this phase is and 

what fraction contains the PRC1 protein. The new finding on bridging microtubules and their 

connection to peripheral k-fibers opens new questions regarding structural organization and 

architecture of the mitotic spindle. In order to understand the proper performance of the spindle it 

is important to explore how the chromosomes are incorporated in the spindle and what are the 

structural elements specific for the metaphase state. The question is whether other PRC1-

containing fibers and what fraction of these fibers is associated with sister kinetochores in other 

positions throughout the whole spindle. By using a confocal microscope whole metaphase spindle 

in different cell lines and conditions will be imaged. This approach provides information on the 

distribution of bridging fibers in metaphase. The goal of the research is to describe architecture 
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and organization of the whole metaphase spindles. Once the fraction of bridging fibers throughout 

spindle is determined, the spatial organization of bundles in the spindle in metaphase will be 

explored. Our hypothesis is that majority of overlap fibers are linked to corresponding sister k-

fibers and that these bundles possess specific spatial organization not yet observed.       
The model that will be used is a human cell line U2OS (osteosarcoma, female) permanently 

transfected and stabilized with proteins CENP-A-GFP (kinetochore complex), mCherry-a-tubulin 

and photoactivatable (PA)-GFP-tubulin as well as the human cell lines HeLa (cervix cancer, 

female) with certain labeled proteins of interest (tubulin in microtubules, crosslinker PRC1, 

kinetochore protein CENP-B). 

HeLa cells will be transfected by electroporation using the high-viability program. Cells will be 

transfected with mRFP-CENP-B plasmid to visualize kinetochores. Prior to imaging or following 

the transfection cells will be seeded in glass bottom microscopy dishes and imaged by using laser 

scanning confocal microscopes oil immersion objective heated with an objective integrated heater 

system. For excitation of GFP and mCherry fluorescence, a 488 and a 561 nm diode laser line are 

used, respectively. Z-stacks will be acquired so that the whole spindle is covered with confocal 

images with a 0.5 µm spacing between individual images of spindles. Measurements will be 

performed in ImageJ (National Institutes of Health, Bethesda, MD, USA), whilst statistical 

analysis will be performed in MatLab (MathWorks, Natick, USA), SciDavis (Free Software 

Foundation Inc., Boston, MA, USA) and R studio (R Foundation for Statistical Computing, 

Vienna, Austria, 2016).  

First step is to image cells with labeled PRC1 protein which will be transfected with a plasmid 

(mRFP-CENP-B) to visualize kinetochores. This will enable to determine the number of PRC1-

labeled bundles in the whole individual spindle which will then be correlated to the number of 

sister kinetochore pairs per spindle in HeLa cells with variable number of chromosomes. One idea 

is to image spindles with their long axes oriented vertically with respect to the imaging plane 

(vertical spindles). This experiment with a time component will provide insights into dynamics 

between PRC1-labeled bundle and a kinetochore in its vicinity which will give insights into their 

association. Labelling of endogenous PRC1 protein by using immunocytochemistry method will 

determine its spatiotemporal localization regardless of overexpression due to transfection for green 

fluorescent protein (GFP) labelling. Once these questions are answered, description will follow on 

how mutually connected kinetochore and bridging fibers are organized in one structural element 
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in the spindle. For this purpose, vertical spindles will be imaged where fluorescently tagged 

proteins of interest will appear as spots in one individual confocal image. In this experiment 

fluorescently tagged tubulin will be used (to visualize parallel microtubules in the k-fibers) as well 

as fluorescently tagged PRC1 (to visualize antiparallel microtubules in the bridging fibers). This 

will provide insights into differences and similarities in 3D organization between these bundles. 

Acquired images will cover whole spindle width and length which will enable us to reconstruct 

the spatial organization of these bundles. One additional idea is to image the spindles with their 

long axes oriented horizontally with respect to the imaging plane and to transform them into 

vertical projections using R programming language. Once the organization of these bundles is 

determined along the spindle long axis, next step is to find key proteins that contribute to their 

level of spatial organization. Since today there are commercially available drugs that specifically 

inhibit certain proteins in the spindle, they will be used to determine which proteins are important 

for the spatial architecture of the spindle. All acquired images need to be carefully analyzed by 

using ImageJ. Individual spots that correspond to fluorescently labelled proteins of interest can be 

tracked in this program and their coordinates (x, y positions) will be marked from one image to 

another in a set of confocal images that cover whole individual spindles. To get statistically 

significant results many number of cells will be imaged in each experimental setup and the results 

will be shown graphically. 
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2 OVERVIEW OF RESEARCH 
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2.1 THE CELL – A BUILDING BLOCK OF LIFE 

A living system is characterized by the ability to catalyze metabolic processes and the ability 

to transfer genetic information to its offspring. Such a system is specifically organized to comprise 

structures that enable it to grow, develop and evolve. A single unit of life is a cell which can live 

as a fully functional organism or as the simplest component of a multicellular organism. The 

components that characterize a system as being alive are enclosed in a membrane which is also a 

place where communication between cell’s interior and exterior takes place. From cell’s membrane 

through cytoskeleton and organelles, nucleus and genetic material comprised within, there are 

hundreds of signaling pathways that orchestrate the complex life of a cell. The first person who 

described the cell as a basic unit of life was Robert Hook, an architect, natural philosopher and 

scientist. He first used the term in 1665, while looking at thin slices of cork (Figure 1a) [3]. His 

observations were soon extended to wood and plant tissue, as well as to fly’s eye. 

Possibly the most remarkable characteristic of a living organism is to create a new one by 

transferring copies of its genes into its offspring. The simplest way to achieve this fundamental 

task is to duplicate the genetic information, separate it equally and eventually to divide the 

cytoplasm to create two genetically identical daughter cells. In single cell organisms this is a 

process called mitosis and it is a form of asexual reproduction which takes place in bacteria, 

protists, algae, fungi and plants. Somatic cells of multicellular organisms (fungi, plants, animals) 

undergo mitosis to produce more cells during processes of growth and repair. Already in 1880s 

Walther Flemming drew in detail his observations on mitosis (Figure 1b) [4]. His study and 

interpretation of events in the mitosis laid foundations for further research on mitotic cell division 

(Figure 1c). 
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Figure 1. View on the cell and the mitotic division: a) Hook’s sample of thin cork slice shows first insight into cellular 

organization [3]. b) Drawing of mitotic division as seen by Flemming with major components (chromosomes and 

microtubules) of the spindle [4]. c) Image of a HeLa cell (kinetochore protein, green; tubulin, microtubules, red; DNA, 

chromosomes, blue) as seen under confocal microscope. The cell is in anaphase stage of mitosis. Image is a property 

of Andrew McAinsh group, acquired by Phillip Auckland on API Deltavision Elite DV1 wide field microscope.   

2.1.1 One day in life of a cell   

A cell takes nutrients from its surrounding in a variant of feeding and in that way it grows and 

matures. As the cell matures it eventually becomes prepared to produce two new genetically 

identical daughter cells. The scenario in which the symmetric distribution of chromosomes in two 

daughter cells occurs is complex and intriguing. During ~24 hours, the cell is going through series 

of events known as the cell cycle. It is roughly divided in interphase and mitosis (M phase), (Figure 

2). As interphase is a period between two mitotic divisions, during this time cell recovers from the 

recent division of cytoplasm, reorganizes its interior, grows and prepares for the next cycle of 

mitosis. It is divided in G1, S and G2 phase, during which cell doubles its mass of proteins and 

organelles. ” G” in G1 and G2 stands for gap phase and it gives the cell time to feed, grow and to 

control the accuracy of ongoing events. In S phase that lasts for 10-12 hours, the cell’s genetic 

material is being duplicated, so that it could be equally distributed to new daughter cells in M 

 

 a                                 b         c 
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phase. During G2 phase certain events are preparing a cells interior for division, as is for example 

the process of centrosome duplication. At this point it is also possible for cell to enter the, so called 

G0 phase, which is a resting period that can last for days, weeks or even years before the cell 

resumes the cell cycle [1].  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 2. Scheme of a 24-hour cell cycle with pointed G1, S, G2 (interphase) and M phase (mitosis). Mitosis occupies 

approximately an hour of the complete cycle. Copyright 2013 Ricochet Creative Productions, LLC.  

When the cell becomes ready to undergo dramatic reorganization of its interior it will 

proceed to the M phase. Depending on the movement of chromosomes and behavior of the mitotic 

spindle, it is as well divided in distinct subphases (Figure 3). The process of mitosis relies on 

certain complex structures that are newly assembled or disassembled on its onset while others are 

degraded or assembled when mitosis comes to an end. During prophase proteins called condensins 

regulate condensation of replicated DNA strands in the nucleus. Thus condensed into structures 

called chromosomes, the DNA becomes compact and its length is reduced by more than 1000-fold 

[5]. Duplicated DNA forms two equal halves of the chromosome called chromatids with central 

gap between them called centromere. Possibly the most dramatic change at the onset of mitosis is 

the reorganization of microtubules. In interphase these structures act as cytoskeletal components 

that support the cells interior and act as tracks for intracellular repositioning of proteins and 

organelles. As the nuclear envelope breaks down in prophase of opened mitosis, basically the 

entire pool of microtubules is rearranged to build up the mitotic spindle. Alternatively, in closed 

 

G1/S checkpoint 

G2/S checkpoint 

M checkpoint 
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mitosis the nuclear envelope stays intact as is the case in for example yeast cells. The spindle is a 

micromachine that comprises hundreds of proteins involved in its dynamics and stability. This 

structure will attach and precisely integrate condensed chromosomes and orchestrate the process 

towards their separation throughout mitosis until it disassembles as mitosis comes to an end. After 

the nuclear envelope breakdown, the mitotic spindle will begin to form between duplicated 

centrosomes. The main structural elements of the mitotic spindle are microtubules which form 

hollow polar tubes built by tubulin subunits. Prior to nuclear envelope breakdown and nucleation 

of spindle microtubules, the complex protein assembly called kinetochore forms at specific spots 

on the chromosome. It is assembled on highly condensed chromosomes at both sides of the 

centromeric region and is the most specific spot of interaction with microtubules of the spindle. 

Microtubules will interact in many different ways with the chromosomes but the goal is to achieve 

a specific interaction between kinetochore and the plus ends of microtubules. Once this connection 

is established, the active movement of chromosomes can begin. The following step of mitosis 

called metaphase is directed to achieve the proper orientation and alignment of attached 

chromosomes. Metaphase becomes stable when all chromosomes are aligned in the equatorial 

plane of the mitotic spindle halfway between two poles of the spindle. Here, two sister chromatids 

of a chromosome are held tightly bound by multisubunit protein complexes called cohesins. Once 

cohesins become degraded, sister chromatids can separate in a synchronized manner during the 

following anaphase. First, during anaphase A sister chromatids are pulled away from each other 

towards two poles of the spindle. Kinetochore bound microtubules shorten, and in subsequent 

anaphase B the distance between two spindle poles begins to increase and chromatids are pulled 

further away. As separating chromosomes meet the spindle poles, they already begin to de-

condense marking the telophase stage of mitosis. Nuclear envelope now starts to reassemble 

around separated sets of chromosomes. As the fundamental part of the process is finished, the 

cytoplasm needs to be divided as well. On two sides of the former metaphase plate the contractile 

ring is formed and finally the process comes to completion as the narrowing of the contractile ring 

separates the cytoplasm (Figure 3) [1]. At this point, reassembled nuclear envelopes encircle 

daughter chromosomes and these two new cells can now begin to feed and grow until they are 

ready to start a new cycle of mitosis.  
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Figure 3. Live cell images summarizing mitotic stages (Zeiss LSM 710 NLO inverted laser scanning confocal 

microscope, Zeiss, Germany). Starting from interphase, stages in mitosis are shown in human HeLa cell (cervical 

cancer) expressing H2B-mCherry (chromosomes, magenta) and GFP-tubulin (microtubules, green;): condensation of 

chromosomes (prophase); nuclear envelope breakdown and attachment of chromosomes to microtubules of the spindle 

(prometaphase); alignment of chromosomes in equatorial plane of the spindle (metaphase); segregation of 

chromosomes (anaphase), narrowing of contractile ring (telophase); division of cytoplasms (cytokinesis). 
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2.1.2 Control of accuracy - cell cycle checkpoints  

For the newly formed daughter cells it is crucial to carry out the same process with as less 

errors as possible. For the continuation of life, it is vital to ensure genetic duplication and transfer 

with as less unfavorable error as possible. To help with accuracy and viability, the cell has evolved 

a complex signaling network that regulates and controls a pause or progression through the process 

itself. Regulation of the cell cycle is evolutionary well preserved amongst all eukaryotic cells. In 

yeast cells cdc genes (cell-division-cycle genes) are crucial in passing through the control steps of 

the cell cycle [6]. The control steps function as a clock, which can stop so as to give time for an 

appropriate machinery to be fixed or to fix the encountered error. Basically, this system delays 

certain sequential steps of the cycle, if necessary, and is regulated by means of negative 

intracellular signals. At the heart of the cell cycle control system is a family of protein kinases 

known as cyclin dependent kinases (CDKs), which are present in a cell in constant levels but are 

cyclically active. By phosphorylating certain intracellular proteins, they regulate DNA replication, 

mitosis and cytokinesis- major events in the cell cycle [1]. CDKs are regulated by cyclins, which 

can bind to CDKs and activate them. Since the cyclins themselves undergo cyclic synthesis and 

degradation, CDKs’ activity depends on the abundance of cyclins in the cell. There are 3 described 

checkpoints that control the accuracy of fundamental events (Figure 4). In G1 checkpoint, also 

known as the restriction checkpoint, a control mechanism ensures that the conditions are favorable 

for cell to enter the S phase. Since G1 is the first phase after cytokinesis, this control step checks 

how the cell is feeling and investigates when is the right time to continue the cycle. If conditions 

are favorable, a cell can proceed past restriction point and begin with the duplication of DNA, or 

it can, alternatively, enter the G0 quiescent state, thus postponing S phase. During G2 checkpoint, 

just finished DNA synthesis is checked for damage and errors that could have occurred during 

DNA replication. At this point a cell can either enter mitotic division or delay it. The final 

checkpoint, called the spindle checkpoint, occurs in metaphase to ensure that chromosomes are 

properly attached to microtubules of the mitotic spindle and aligned in the metaphase plate [7]. 

This checkpoint is the last barrier for chromosomes to get separated in the following anaphase. 

Functionality of these control steps makes the processes of chromosome segregation, cytoplasm 

division and production of healthy new cells the basis of continuation of life.  
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Figure 4. Restriction points of a cell cycle with pointed out precise timing of major accuracy checkpoints. G1 

checkpoint makes sure that the conditions are appropriate for DNA duplication. G2 checkpoint checks whether DNA 

was duplicated without errors. Mitotic spindle checkpoint (checkpoint in mitosis) ensures that all chromosomes are 

properly attached to k-fibers and oriented in a way that they could be pulled to centers of new daughter cells at the 

end of mitosis [Oregonstate.edu].	
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2.2 BUILDING BLOCKS OF THE MITOTIC SPINDLE 

Mitotic spindle is a machine, it is on a cellular level a micro-building assembled accurately 

with all the individual components having a precise time and place of action. Some of those will 

be key to stability of the spindle while at the same time others will be crucial for its dynamic 

behavior. These properties of the spindle are established by timely precise protein activation, 

recruitment and association or dissociation with the spindle.  

2.2.1 Microtubule organizing centers - spindle strongholds 

The main structural elements of the mitotic spindle are microtubules. They form long or short 

hollow polar tubes with well-defined orientation of minus and plus ends. While plus ends are free 

to form interactions with non-spindle elements like kinetochores of the chromosome or the cell 

cortex, minus ends are embedded at specific spots within the spindle. These spots are mostly 

microtubule organizing centers (MTOCs) which anchor microtubule minus ends. Not only do these 

spots act as anchors but also, they nucleate new microtubules that grow with their plus ends 

oriented away from the nucleation site. Main MTOCs in the spindle are centrosomes which 

nucleate majority of microtubules from prophase on. Centrosomes are composed of two centrioles 

and associated pericentriolar matrix (Figure 5a). They are duplicated during G2 phase of interphase 

in a process of centrosome cycle. Once duplicated, centrosomes move to opposite sides of the 

nucleus where they form two poles of the future spindle (Figure 5b). As the nuclear envelope 

breaks down in an opened mitosis they start nucleating microtubules in all directions. Microtubules 

that meet and interact mutually between centrosomes are the ones that will lead the formation and 

maturation of the spindle. Centrosomes and associated components determine the geometry of 

microtubules arrays throughout the cell cycle, and thus influence cell shape, polarity and motility, 

as well as spindle formation, chromosome segregation and cell division [8]. All centrosomes 

contain a structured core to which more than 50 copies of γ-tubulin ring complex (γ-TuRC) are 

connected [5]. Each γ-TuRC contains 13 copies of γ-isoform of tubulin that define the position of 

microtubule nucleation, the polar orientation of the polymer, and the lattice into which tubulin 

assembles [9]. 
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Figure 5. a) Schematic representation of a centrosome with its major components: centrioles as the central structure, 

light green circle as pericentriolar matrix and thin rods as newly nucleated microtubules [Study.com]. Minus and 

pluses represent – ends of microtubules embedded in the centrosome whilst + represents growing free ends. b) 

Confocal image of the mitotic cell in metaphase with centrosomes labeled red, microtubules green and chromosomes 

blue. Centrosomes in red represent two poles of the spindle [10].  

2.2.2 Microtubules - growing versus shrinking stems 

As microtubules have their beginning at described spots they will form tubes as subunits are 

added in a defined structural order (Figure 6a). The tubulin subunit of microtubules is a 

heterodimer formed from two closely related globular proteins, α and β tubulin. They are tightly 

bound together by non-covalent bonds thus forming microtubules as long, hollow tubes with an 

outer diameter of 25 nm. This cylindrical structure is built from 13 protofilaments, each composed 

of alternating α tubulin and β tubulin molecules [1]. Both these monomers can bind one molecule 

of GTP. When bound to α tubulin, GTP will never be exchanged or hydrolyzed, while β tubulin 

bound GTP can undergo hydrolysis to produce GDP. This hydrolysis is important for microtubule 

dynamics (Figure 6b). Both in interphase and mitosis microtubules often switch between phases 

of growth and shrinkage. This remarkable property was discovered in 1984 when Tim Mitchison 

and Marc Kirschner [11] deduced that microtubules switch from growth to shrinkage when they 
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lose their GTP caps: ”We report here that microtubules in vitro coexist in growing and shrinking 

populations which interconvert rather infrequently”. The dynamic instability is a general property 

of microtubules and may be fundamental in explaining cellular microtubule organization. As 

described above, they possess intrinsic polarity with their minus ends embedded in MTOC, e.g. 

centrosome, while the (free) plus end is more dynamic and switches fast between growth and 

shrinkage, a.k.a. catastrophe (Figure 6b). Microtubules grow when αβ tubulin collides with the end 

of a protofilament and forms a non-covalent bond. These collisions occur more frequently when 

the tubulin concentration is higher, and thus the growth rate increases linearly with more tubulin 

[12]. Microtubule ends with bound GTP are stable and polymerize, whereas ends containing GDP 

are unstable and depolymerize. In addition, there is a possibility for microtubules to switch from 

shrinkage to growth in a process known as rescue (Figure 6b). Driving these processes are a host 

of microtubule-associated proteins (MAPs) that make microtubules grow faster, shrink slower, 

undergo catastrophe more often, and so on [13]. This, so called, dynamic instability is particularly 

frequent within microtubule populations that build up the mitotic spindle. Microtubules of the 

mitotic spindle are more dynamic than ones present in interphase, with complete exchange of 

spindle microtubules and soluble subunits occurring within seconds [14]. Already in 1950s Shinya 

Inoué [15] observed that spindles are made of aligned protein fibers that exist in rapid dynamic 

equilibrium with a pool of unassembled subunits. He proposed that spindle fiber disassembly 

generates force to move chromosomes. Indeed, once the nuclear envelope breaks down in pro-

metaphase, chromosomes become free to make contact with the growing microtubules via their 

kinetochores. These, kinetochore bound microtubules are called k-fibers and they generate forces 

on chromosomes throughout mitosis. During prophase, these forces direct the alignment of 

chromosomes to the metaphase plate and in anaphase they are directed to segregate chromosomes 

and pull them towards each pole of the spindle. There is also a way to modify the microtubule 

lattice which is important for microtubule behavior. This group of reversible alterations is called 

posttranslational modifications and has a role in structural variations of all newly synthesized 

proteins. These modifications affect protein’s functional properties and for tubulin they occur on 

α/β heterodimers of already polymerized stable microtubules. In this way dynamics, stability, 

distribution of microtubule populations in the spindle and interactions of microtubules with MAPS 

are finely tuned. For these variations some important modifications include polyamination, 

acetylation, methylation, phosphorylation and (de)tyrosination [1].  
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Figure 6. a) Microtubules as seen under electron microscope where their rod-like structure can be observed [18]. b) 

Scheme of microtubules with depicted dynamic property. Exchange of GDP/GTP tubulin can be observed as process 

that determines switches between growth and shrinkage [17]. 

2.2.3 Kinetochores - sticky links 

As the spindle forms in a highly dynamic and directed manner, chromosomes have to be 

captured and integrated in the spindle. To ensure specific and tight interaction between 

chromosomes and microtubules, large sticky protein complexes called kinetochores are formed on 

centromeric regions of chromosomes during late prophase. Thus, one chromosome with two sister 

chromatids will contain two sister kinetochores on opposite sides of the centromeric region (Figure 

7a). For high-fidelity chromosome segregation, kinetochores must be correctly captured by 

microtubules in order to begin with the anaphase onset. Transmission electron microscopy 

revealed the structure of the vertebrate kinetochore (Figure 7b). It appears as a trilaminar stack of 

plates that is situated on opposite sides of the centromeric heterochromatin of the mitotic 

 - 

+ 
 

 

a b 

Assembly Disassembly 

G
TP

 
hy

dr
ol

ys
is

 

Catastrophe 

Rescue 



 17 

chromosome [18]. The properly assembled kinetochore contains two main regions. The inner one 

is tightly associated with the centromeric DNA and appears like a discrete heterochromatin domain 

throughout the cell cycle. The outer, highly dynamic plate is the site of interaction with the growing 

microtubules. In vertebrate cells, it contains about 20 anchoring sites for plus ends of growing 

microtubules of the spindle. Besides this basic function, kinetochores can also act as nucleation 

sites of microtubules, both on isolated mitotic human chromosomes [19] as well as in vivo [20; 

21]. These kinetochore-nucleated microtubules may speed up kinetochore capture and the process 

of spindle assembly [22; 23]. During prometaphase, microtubules nucleated at centrosomes grow 

and shrink rapidly until they encounter and bind to kinetochore. Once this connection occurs on 

both sister kinetochores (on two sides of centromeric region), which links chromosome to opposite 

spindle poles, the bipolar orientation of a chromosome is established. This form of orientation is 

crucial for establishment of forces that will act on chromosomes throughout the following events 

in mitosis. 

 

 

 
 

Figure 7. a) Scheme of a chromosome with two chromatids as seen in M phase of the cell cycle. Kinetochore is 

positioned on each side of the centromeric region with inner layer connected to chromatin fibrils and outer layer that 

both nucleates and binds microtubules. b) Electron microscope image of a kinetochore with shown layers and attached 

microtubules [24]. 
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2.2.4 Microtubule Associated proteins - supporting players  

Besides described core building elements of the spindle, its dynamic properties and stability 

depend heavily on microtubule associated proteins (MAPs) and motor proteins. These are the 

elements that tune the assembly, dynamics and stability of the spindle to direct its performance 

and functionality. MAPs act as supporting structural elements of microtubules and mitotic spindle 

as a whole. Whilst certain MAPs stabilize the assembled polymer, others mediate the interaction 

between individual microtubules in a bundle as well as between already established microtubule 

bundles. In that way they act as cross-linkers that hold microtubules in close vicinity. By precisely 

regulated time and place for microtubule affinity, they support the basic composition of different 

bundle populations in the spindle. They also mediate interaction of microtubules with other 

components of the spindle and other components of the cytoskeleton. Non-motor proteins promote 

the formation and maintenance of mitotic spindles through diverse mechanisms including the 

nucleation and organization of microtubules, influence on motor function, and regulation of cell 

cycle control. In general, these proteins are relatively large, and many are only expressed during 

G2/M phase of the cell cycle [25]. For example, NuMa binds microtubules directly and 

mechanically crosslinks microtubules at spindle poles [26]. Some non-motor cross-linking 

proteins like PRC1 stabilize antiparallel microtubule bundles in the spindle midzone thus 

maintaining overlap interdigitating regions. Others act as end-binding proteins that control 

microtubule dynamics and persistent microtubule growth. Further on, non-motor proteins can 

interact with motor proteins. In some circumstances, the interaction is direct and the non-motor 

protein controls the function of the motor protein [26]. 

2.2.4.1 Protein Regulator of Cytokinesis 1 - central stabilizer  

PRC1 is a conserved non-motor cross-linking protein localized in the antiparallel overlaps of 

microtubules in vitro [27, 28, 29] and of the spindle midzone [30, 31, 32, 33, 34] where it plays an 

essential role in regulating its formation and cytokinesis [35]. This human CDK substrate protein 

was discovered in 1998 by using an in vitro phosphorylation screening method. With that research 

it was shown that its expression is finely regulated during the cell cycle with peaks of expression 

in mitosis. At that time, it was shown that PRC1 is phosphorylated in vivo in a cell cycle-regulated 

manner at cyclin-Cdk phosphorylation sites. Indirect immunofluorescence staining demonstrated 
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that PRC1 becomes associated with mitotic spindle midzone in anaphase and to contractile ring 

during cytokinesis. It was already then proposed that PRC1 may act as a crucial regulator involved 

in cytokinesis and cell cycle progression [30]. At that point Ase1 (anaphase spindle elongation 1), 

an orthologue of PRC1 found in budding yeast was already known [36]. A homology search of 

GenBank database revealed 57% similarity in their central region with no other significant 

sequence homology. Similarity between those two proteins led to investigation of the levels of its 

expression depending on the phase of the cell cycle. Synchronization experiments in HeLa cells 

revealed high levels of PRC1 during S to G2/M transition (mitotic entry), with dramatic decline at 

the entry to G1 phase (mitotic exit). Besides Ase1, orthologues of PRC1 with conserved function 

include SPD-1 (spindle defective 1) in Caenorhabditis elegans [37], Feo (Fascetto) in Drosophila 

melanogaster [38], and MAP65 (microtubule-associated protein 65) in plants [39], all of which 

fall in a conserved family of non-motor microtubule-associated proteins (MAPs).  

Full-length PRC1 cDNA encodes a protein containing 620 amino acids with a size of 71 kDa. 

The NH2-terminal region is largely a-helical with multiple coiled-coil motifs and COOH-terminal 

one quarter is largely composed of b sheets and turns. At the junction between these two distinct 

regions two Cdk phosphorylation sites are positioned at Thr-470 and Thr-481 and these two 

regions are clustered with two nuclear localization signals, NLSs. Central region of the sequence, 

comprising residues 240-440, is highly conserved among eukaryotes and is probably important for 

the function of PRC1. Within the protein there is also a putative consensus sequence for 

ubiquitination-dependent proteolysis, including two D boxes and a KEN box [30]. Truncation 

mutants revealed that distinct regions of the protein have distinct roles. NH2-terminal region is 

required for protein’s association with the cleavage furrow and midbody, whilst sequence within 

residues 273-486 is required for microtubule binding. This central microtubule binding domain 

forms two long antiparallel a-helixes connected by a low-complexity structure with b sheets and 

turns that probably mediate binding between PRC1 and a microtubule. This conserved microtubule 

binding domain has a spectrin fold also specific for several other proteins with crosslinking ability 

(Figure 8). Spectrin fold is the most ordered region in the PRC1-microtubule complex and makes 

it possible for PRC1 to distinguish parallel and antiparallel bundles. The dimerization domain has 

a single conformation when crosslinking two microtubules, and its structural rigidity is likely 

responsible for PRC1’s affinity for antiparallel microtubules [40]. The linker domain has more 

possible conformations when PRC1 is bound to microtubules, thus enabling the initial contact with 
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another microtubule that can have a range of possible orientations. COOH terminus is important 

for the function of PRC1 in a way that changes in conformation in this region disrupt function of 

the midzone microtubule bundles and this as a consequence blocks cleavage [31, 41]. Thus, this 

region does not display any particular localization or activity but is rather important for the 

functionality of the rest of the protein.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8. Schematic representation of overlap antiparallel regions crosslinked by PRC1 in a dividing cell. In zoomed 

region opposite orientation of crosslinked microtubules is pointed out. Scheme of a spectrin and dimerization domain 

and their positions with respect to the rest of the protein and attached microtubules [40]. 

PRC1 is required to maintain stable midzone MT bundles by binding and bundling 

microtubules in vitro. Its microtubule bundling is regulated by Cdk phosphorylation in a way that, 

when phosphorylated, it can bind to microtubules but cannot cross-link them. During mitosis its 

bundling capacity is timely regulated by (de)phosphorylation processes. Once dephosphorylated, 

it can cross-link microtubules and form antiparallel bundles. Phosphorylation by Cdc2/cyclin B 

specifically downregulates PRC1 bundling capacity in early mitosis and holds the protein in an 
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inactive monomeric state. Upon dephosphorylation during metaphase-to-anaphase transition, 

PRC1 forms oligomers and can begin to bundle antiparallel, interdigitating microtubules in order 

to provide stability for the midzone which is necessary for cytokinesis (Figure 9). PRC1 forms 

bundles of aligned microtubules where inter-microtubule linkage is made through filamentous 

projections at a constant angle with a value of ~38° with respect to the longitudinal microtubule 

axis [30, 35, 42]. Not only does PRC1 have affinity to interact with microtubules, but it also has 

other binding partners. In vivo immunoprecipitation assays revealed that its binding partner is 

KIF4, a chromokinesin. As will be described in further section, KIF4 is a member of microtubule-

based motors that generate directional movement along microtubules. KIF4 is a motor protein that 

translocates PRC1 to the plus-ends of interdigitating microtubules. The domains of KIF4 that are 

required for interaction with PRC1 are stalk and tail domain and during metaphase-to-anaphase 

transition upon PRC1 dephosphorylation interaction with KIF4 is enabled. Amino-terminal half of 

PRC1 interacts both with PRC1 and with carboxyl-terminal half of KIF4. With this association it 

is made possible for PRC1 to localize to the midzone and to bundle antiparallel microtubules in 

late mitosis. KIF4 depletion experiments revealed that this protein is required for the assembly and 

stability of organized central spindle midzone and midbody [28, 32, 33]. It is with functionality of 

KIF4 achieved that the central spindle becomes organized and that other midzone-associated 

proteins concentrate into compact structures in this region which will consequently give rise to the 

midbody. Besides KIF4, endogenous PRC1 associates with MKLP1/CHO1 and CENP-E in cell 

extracts.  
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Figure 9. Confocal images of a cell with labeled PRC1, tubulin and chromosomes in metaphase, anaphase and 

telophase of mitosis. In metaphase PRC1 signal is localized more towards spindle center rather than the poles. In 

anaphase PRC1 translocates to the central spindle and to the midzone where it stays bound as the spindle grows and 

the contractile ring starts to contract [35]. 

Taken together, upon dephosphorylation PRC1 forms oligomers and associates with a motor 

protein Kif4 which then translocates PRC1 along the spindle to the plus-ends of antiparallel 

interdigitating microtubules and at this point it will allow for the antiparallel microtubules to 

bundle and form a midzone of the spindle. In that way organized central spindle can now serve as 

a platform for localization other midzone-associated proteins like centralspindlin and 

chromosomal passenger proteins involved in the completion of mitosis, cytokinesis. By combining 

structural flexibility and rigidity, PRC1 stabilizes antiparallel overlaps whilst not impeding sliding 

between them driven by motor proteins, like kinesin-5. 
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2.2.4.2 End binding proteins - points of growth 

Growing microtubules accumulate at their plus ends multiple structurally unrelated factors 

collectively termed microtubule plus-end tracking proteins, or +TIPs. The most conserved and 

ubiquitous +TIPs are end binding proteins (EBs) [43] (Figure 10). They are core components of 

microtubule plus-end tracking protein networks. EBs are relatively small dimeric proteins which 

contain an N-terminal calponin homology (CH) domain, responsible for the interaction with 

microtubules, a linker region of unknown function, and a C-terminal coiled coil domain that 

extends into a four-helix bundle, required for dimer formation [44]. Through their C-terminal 

sequences, EBs interact with most other known +TIPs and recruit many of them to the growing 

microtubules ends [45]. Structural studies suggest that the EBs probably act by enhancing lateral 

interactions between individual protofilaments and may affect MT lattice structure [46, 47]. 

Mammalian cells express three members of the EB family- EB1, EB2 and EB3. It has been shown 

in mouse fibroblasts that EB1 is involved in formation of stable microtubules and that 

simultaneous depletion of EB1 and EB3 increases microtubule catastrophe frequency and disrupts 

persistent microtubule growth [44]. EB3 localizes throughout the cell cycle only to the plus ends 

of growing microtubules [48], and accumulates at the centrosome [49, 50, 51], from early prophase 

until the end of mitosis, concurrently with the increase of microtubule nucleation rates at the 

centrosome [52]. In mitosis, microtubule property to switch between growth and catastrophe 

becomes important for generating forces on chromosomes. This dynamic instability is, not 

exclusively, but still highly regulated by exchange of EBs and GTP/GDP. 

 

 

  



 24 

 

 

 

 

 

 

 

 
 

Figure 10. a) Scheme showing microtubule (gray spheres) and the + end with regions where EB1 is bound as the 

microtubule grows. b) U2OS cell with labeled EB3 protein (red) and tubulin labeled with SiR (green) in metaphase. 

Red spots define the comets that indicate growing microtubules. Yellow regions are overlay between tubulin and EB3 

[53]. 

2.2.4.3 Motor proteins - pushing/pulling players  

Motor proteins move across cytoskeleton and actively organize cell’s interior. By using energy, 

they make traffic of all intracellular components possible. Transport inside the cell requires forces 

to move and position various molecular assemblies and organelles. These forces are mostly 

generated by motor proteins such as myosin, kinesin and dynein. To exert forces, motor proteins 

bind with one end to cytoskeletal filaments and with the other end to the cell cortex, a vesicle or 

another motor [54]. Whilst myosins are associated with contractile activity in muscle and non-

muscle cells, kinesins and dyneins are microtubule motor proteins. Cytoskeletal motor proteins 

use structural changes in their nucleoside-triphosphate-binding sites to produce cyclic interactions 

with a partner protein. Further on, each cycle of binding and release must propel them forward in 

a single direction along a filament to a new binding site on the same filament. For such 

unidirectional motion, a motor protein must use the energy derived from ATP binding and 

hydrolysis to force a large movement in part of the protein molecule (Figure 11), [1]. The 

organization of microtubules into the highly ordered bipolar array of the mitotic spindle depends 

on activities of numerous motor and non-motor microtubule-associated proteins. Motor proteins 

have received significant attention because they generate force on microtubules during spindle 
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formation and throughout mitosis. In that way, motor proteins actively walk across microtubule 

fibers and direct their active movement, thus, for example, controlling the separation of mitotic 

spindle poles. Some of the motor proteins form oligomers that can crosslink adjacent microtubules, 

and in that way, they can move one microtubule relative to the other, with the direction of 

movement dependent on the polarity of both motor protein and microtubules. Alternatively, such 

motor proteins can slide antiparallel microtubules past each other in the overlap zone of the spindle. 

There are approximately 14 families of kinesin-related proteins. Most of them walk towards plus 

end of the microtubule, but in addition to this behavior, some walk towards the minus end, and 

some depolymerize microtubules. At the cellular level, kinesin motors perform a variety of 

functions during cell division and within the mitotic spindle where they help chromosomes get 

incorporated and segregated with the highest fidelity possible [55]. Their structure can roughly be 

summarized in having two heavy chains and two light chains per active motor, two globular head 

motor domains, and an elongated coiled-coil responsible for heavy chain dimerization. Most 

kinesins have a binding site in the tail for either a membrane organelle or another microtubule, 

thus giving them specific roles in mitotic and meiotic spindle formation and chromosome 

separation during cell division. The fastest kinesins can move their microtubules at about 2-3 

µm/sec [1]. 

Dyneins are a family of minus-end-directed microtubule motors and are unrelated to 

kinesin superfamily. They are composed of two or three heavy chains, including motor domain, 

and a large and variable number of associated light chains. The dynein family has two major 

branches. Cytoplasmic dyneins are found in, probably all eukaryotic cells. They have a role in 

vesicle trafficking and in localization of the Golgi apparatus near the center of the cell. Other 

branch contains the axonemal dyneins which are highly specialized for the rapid and efficient 

sliding movements of microtubules that drive the beating of cilia and flagella, as well as of one’s 

orchestrating mitosis. Dyneins are the largest of the known molecular motors, and they are also 

among the fastest with the ability to move their microtubules at the remarkable rate of 14 µm/sec 

[1]. 
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Figure 11. a) Electron microscope image of a dynein motor with head and tail domain as it was walking along the 

microtubule [56]. b) Scheme of a microtubule with attached motor proteins kinesin and dynein and the preferred 

direction of their movement where + and – indicate the orientation of microtubule (copyright 2012 Pearson Education, 

Inc). 
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2.3 FOUR STATES OF THE SPINDLE 

2.3.1 Prophase - construction period 

First, the spindle needs to assemble in a finely tuned and regulated manner. Once the cell is 

ready to yield two daughter cells and all the preparation checkpoints are passed, centrosomes will 

separate in a motor-dependent process that will push them to approximately opposite sides of the 

nucleus. As the nuclear envelope breaks down microtubules will grow rapidly from two separated 

centrosomes. As they grow in all directions, many will meet between the two poles and will 

mutually interact to form the origin of the spindle. Despite the high dynamic rate of events 

occurring at the centrosome, it is stable and capable of focusing parallel microtubules to form the 

functional pole of the spindle. This is achieved with assistance of cytoplasmic dynein which 

clusters parallel microtubules. Now nonmotor protein NuMa can be transported to these regions 

and will together with dynein tether microtubules in a way that pole structure remains robust 

despite dynamic instability of microtubules [58]. In order to maintain its structural integrity, it is 

crucial for the spindle to be able to continuously rebuild poles by reorganizing and sorting new 

microtubule structures [45]. 

To form the functional spindle, chromosomes need to be captured by growing dynamic 

microtubules and establish well defined positions and orientations between spindle poles. 

Chemically microtubules are preferentially growing in directions towards dispersed chromosomes. 

This is dependent on the concentration gradient of RanGTP, a member of GTPase family of 

proteins. RanGTP facilitates microtubule rescue, enables bipolar spindle formation and mediates 

microtubule-chromosome interactions. As these highly dynamic processes may seem rather 

random, kinetochores are already fully formed making it possible to achieve the end-on attachment 

with growing microtubule plus ends. By sole coincidence some chromosomes will at this point 

already find themselves on the way of growing microtubules between two centrosomes. These 

chromosomes will soon begin to form the specific interaction with microtubules. Chromosomes 

that are dispersed around the forming spindle need to be captured by growing microtubules and 

pulled closer to microtubule bundles that are forming between poles. As a microtubule grows from 

the centrosome in an arbitrary direction, it probes the space as it searches for kinetochores. Even 
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though a single microtubule probes only one direction, numerous directions will be explored 

eventually because numerous microtubules grow from the centrosome [26]. Plus, it was shown in 

yeast cells that growing microtubules pivot around the centrosome thus improving the possibility 

to catch a chromosome. Once kinetochore is encountered, its proper capture is achieved in a 

stepwise manner. First, kinetochores are captured by the lateral surface of a single microtubule 

that extends from either spindle pole. A captured kinetochore is then transported poleward along 

the microtubule [59], until the end-on connection is established (Figure 10). After the initial 

microtubule capture, kinetochores develop a bundle of 15-30 parallel microtubules that connect 

them to spindle poles. In that way a k-fiber is formed. In a mature k-fiber, tubulin heterodimers 

are constantly added in the kinetochore and removed from the minus ends in the pole thus 

promoting k-fragment elongation [25]. This form of attachment needs to be established on both 

sister kinetochores in order for them to become bioriented.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Top row: Scheme of prophase with two yellow spheres representing duplicated centrosomes. Black lines 

represent newly nucleated microtubules. Dashed black circle stands for nuclear envelope that is breaking up in 

prophase. Right: microtubules (black) growing in random directions and encountering chromosomes (blue). Adopted 

and modified from [57]. Bottom row: confocal images represent schemes above. U2OS cell (human osteosarcoma) 

with labeled CENP-A-GFP (kinetochore, magenta) and mCherry-tubulin (microtubules, green). Scale bar, 1 µm. 
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2.3.2 Metaphase - probing period 

The physical stability of the spindle is reached after all the chromosomes are captured and 

precisely oriented. Once all chromosomes are attached by microtubules, they can be positioned 

halfway between spindle poles with two sister k-fibers linking them to opposite poles. Whilst k-

fibers are forming, some microtubules will meet in the central part of the spindle and together form 

antiparallel bundles. These themselves will not form direct end-on attachment with kinetochore 

but rather with k-fibers as will be described below. Once all chromosomes become bioriented, they 

begin to oscillate in the spindle midzone. This is a specific movement of chromosomes towards 

opposite spindle poles with regulated switches that change the direction of their oscillations. Both 

microtubule attachments and dynamics at the kinetochore contribute to this process. Plus and 

minus end-directed motors associate with kinetochores, suggesting that motors could drive the 

movement of chromosomes either towards or away from the spindle equator [58]. The velocity of 

chromosome movement is rather constant, occurring at 2 µm/min, which is consistent with the 

rates of motor proteins associated with kinetochores [59]. For example, microtubule 

depolymerizing kinesin MCAK is important for sister kinetochore coordination during oscillations 

[60]. Eventually, all chromosomes actively get positioned in the equatorial plane of the spindle. 

Congression of the last chromosome marks the transition to the metaphase, during which 

oscillations are continued until anaphase. These movements are probing the chromosome’s proper 

attachment and biorientation. 

In addition to k-fibers, non-kinetochore microtubules comprise the majority of microtubules 

in mammalian spindles that have been studied by electron microscopy. During metaphase, they 

bundle together 30-50 nm apart in groups of 2-6, with antiparallel interactions apparently preferred 

[61]. These bundles are important for the whole spindle stability and distribution of forces between 

spindle poles. Their antiparallel region contains motor and non-motor cross-linking proteins. 

Motors contribute to antiparallel microtubule sliding, whereas passive cross-linkers take part in 

maintenance of the overlap integrity [25, 62]. For example, kinesin-14 and kinesin-5 are capable 

of sliding antiparallel spindle microtubules. Kinesin-14 is a minus end directed motor and it is 

believed to promote spindle shortening (inward directed force), whilst kinesin-5 probably 

promotes increased spindle length (outward directed force) [63]. When it comes to passive 

crosslinkers, PRC1 protein is the key for stability of antiparallel regions in the central spindle. 

PRC1 forms dimers and binds to microtubules to form cross-linkages between neighboring 
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interdigitating fibers [31, 64]. Its affinity to bind to microtubules is regulated by phosphorylation 

and dephosphorylation events precisely timed throughout mitosis [31, 65]. By combining 

structural flexibility and rigidity, PRC1 stabilizes antiparallel overlaps while not impeding sliding 

between them [40]. One such bundle of overlap microtubules which contains PRC1 links 

outermost sister k-fibers [2, 66, 67]. This fiber, termed “bridging fiber”, balances the tension 

between sister kinetochores and helps the spindle to obtain a rounded shape in metaphase.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Top: scheme of spindle in metaphase with all formed k-fibers (thick yellow lines) and properly aligned 

chromosomes (blue) in the equatorial plane [wikivisually.com]. Bottom left: confocal image of a HeLa cell expressing 

PRC1 (green) and transiently transfected with mRFP-CENP-B (kinetochore, magenta) in metaphase. Right: HeLa cell 

expressing tubulin-GFP (green) immunostained against endogenous PRC1 shows its localization in metaphase. Scale 

bar, 2 µm. 
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2.3.3 Anaphase - separation period 

When and if the metaphase control checkpoint is passed, chromosomes and poles of the spindle 

can begin to separate. This is a stage where all the chromosomes are bioriented and the cohesins 

that hold together the two sister chromatids can be degraded. It is with this degradation achieved 

that the pulling and pushing forces can separate duplicated chromosomes and transport them to the 

opposite spindle poles. As it is widely accepted, only in anaphase an organized central spindle 

midzone forms between separating chromosomes and consists of a dense network of overlapping 

antiparallel microtubules cross-linked by PRC1 [31, 32, 61, 65]. There are two mechanisms that 

contribute to separation of duplicated chromosomes, one acting at spindle poles and the other at 

the kinetochore. First, in anaphase A, detached sister chromatids move towards the opposite 

spindle poles via shortening of the attached sister k-fibers. The Pacman mechanism helps with 

anaphase A movement as it drives depolymerization of k-fibers at the kinetochore [68]. A 

synchrony of chromatid-to-pole movement is achieved by poleward flux of spindle microtubules. 

Poleward microtubule flux occurs due to the depolymerization of microtubule minus-ends and is 

driven mostly by members of the kinesin-5 family of motors which push microtubule minus-ends 

apart and drive sliding of antiparallel microtubules thus exerting force on the spindle poles [69]. 

Once separated in anaphase A, the whole spindle begins to elongate thus increasing the distance 

between two poles of the spindle. Even though they are two main stages occurring in anaphase, 

these two mechanistically distinct processes occur simultaneously in many cell types [70]. As main 

spots for exerting forces are kinetochores, the movement of chromosomes in anaphase seems like 

random swinging easily comparable with the “rag-doll” like movements. Due to this characteristic 

movement, the role of chromosomes during this process was interestingly compared to that of “a 

corpse at a funeral” as stated by Mazia. The chromosomes are the reason for the proceedings but 

do not take an active part in them [71]. The trigger that switches the transition from metaphase to 

anaphase is dependent on the anaphase promoting complex (APC). This large complex consists of 

11-13 subunit proteins and its role is to tag specific proteins at this point destined for degradation. 

Some of these are already mentioned cohesins [72]. As the anaphase stage is successful with 

chromosome separation, the next stage can begin to prepare the basis for formation of two divided 

daughter cells. 
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Figure 14. Left: schemes of two stages of anaphase movement. Upper scheme shows movement of chromosomes 

towards opposite spindle poles. Bottom scheme corresponds to movement of spindle poles further away from one 

another [Adopted and modified from imgbuddy.com]. Images on the right correspond to described schemes as seen 

under confocal microscope in U2OS cell with labeled CENP-A-GFP (kinetochore, magenta) and mCherry-tubulin 

(microtubules, green) in anaphase [Adopted and modified from 73]. Scale bar, 1 µm. 
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2.3.4 Telophase - demolition versus composition 

Anaphase will pass to telophase as the central part of the spindle contracts. Now mitosis slowly 

comes to an end when separated chromosomes meet the spindle poles and begin to decondense. 

This stage of mitosis can be considered as reverse in processes occurring in prophase and 

prometaphase and occupies approximately 2% of the duration of the cell cycle. Telophase ongoing 

is primarily driven by dephosphorylation of mitotic cyclin-dependent kinase substrates. Above 

mentioned APC targets cyclins for proteolytic degradation. Dephosphorylation of same substrates 

that were phosphorylated at the beginning of mitosis drives spindle disassembly, chromosome 

decondensation and reassembly of nuclear envelopes. On two sides of the former metaphase plate 

the contractile ring is formed and it consists of filamentous actin, motor protein myosin-2 and other 

structural and regulatory proteins. The contractile ring is formed under the plasma membrane to 

which it is linked so that as it constricts, it simultaneously creates the cleavage furrow that will 

eventually partition the cell in two to create two new cytoplasms. (Figure 3) [1]. At this point the 

nuclear envelopes are fully formed around segregated chromosomes and the production of two 

identical cells is completed. These newly formed daughter cells can now begin to feed and grow 

until they are ready to begin with this same remarkable process. 

 

 

 

 

 

 

 

 

 

 
 

Figure 15. Left: scheme of telophase with decondensating chromosomes (red and yellow), newly assembling nuclear 

envelope (dashed circle), leftover microtubules (thin blue lines) as remains of the spindle and orange cylinders 

representing centrosomes. Confocal image of a cell in telophase with structures as stated in description of the scheme 

[courses.lumenlearning.com]. 
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3 MATERIALS AND METHODS 
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3.1 CELL LINES 

HeLa-TDS cells were permanently transfected and stabilized (courtesy of Mariola Chacon) 

using pEGFP-α-tubulin plasmid, which was acquired from Frank Bradke (Max Planck Institute of 

Neurobiology, Martinsried). HeLa-Kyoto BAC lines stably expressing PRC1-GFP [74] were 

courtesy of Ina Poser and Tony Hyman (MPI-CBG, Dresden). HeLa cells stably expressing 

EGFP-CENP-A and EGFP-centrin1 were a courtesy of Emanuele Roscioli and Andrew 

McAinsh (University of Warwick). Human U2OS cells, both unlabeled and permanently 

transfected with CENP-A-GFP, mCherry-α-tubulin, and photoactivatable (PA)-GFP-tubulin, 

were courtesy of Marin Barišić and Helder Maiato (Institute for Molecular Cell Biology, 

University of Porto, Portugal). Cells were grown in DMEM (1 g/l D-glucose, L-glutamine, 

pyruvate obtained from Sigma, St. Louis, MO, USA) with 50 µg/ml geneticin (Santa Cruz 

Biotechnology, Inc., Dallas, USA) and appropriate supplements. The cells were kept at 37°C and 

5% CO2 in a Galaxy 170 R CO2 humidified incubator (Eppendorf, Hamburg, Germany). All used 

cell lines were confirmed to be mycoplasma free by using MycoAlert Mycoplasma Detection 

Kit (Lonza, Basel, Switzerland). 

3.2 SAMPLE PREPARATION 

HeLa cells were transiently transfected by electroporation using Nucleofector Kit R (Lonza, 

Basel, Switzerland) with the Nucleofector 2b Device (Lonza, Basel, Switzerland), using the high-
viability O-005 program. Transfection protocol provided by the manufacturer was followed. Cells 

were transfected with mRFP-CENP-B plasmid (pMX234) provided by Linda Wordeman 

(University of Washington). 1 × 106 cells and 2 µg of plasmid DNA were used. Transfection of 

PRC1-GFP BAC line cells with mRFP-CENP-B (2.5 µg DNA) was performed 25–35 h before 

imaging. For labeling of microtubules with SiR-tubulin (Spirochrome AG, Stein am Rhein, 

Switzerland), the dye was added to cells at a final concentration of 50–100 nM, 16 h prior to 

imaging. 

For PRC1 siRNA, 1 × 106 cells at 50–60% confluency were transfected with 200 nM targeting 

or control non-targeting siRNA raw constructs diluted in a Nucleofector solution R together with 

2.5 µg mRFP-CENP-B plasmid. The constructs used were as follows: siGENOME SMART pool 
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for human PRC1 (M-019491-00-0005) and siGENOME control pool (D-001206-13-05), both 

from Dharmacon (Lafayette, CO, USA). To prepare samples for microscopy, following the 

transfection, HeLa cells were seeded and cultured in 1.5 ml DMEM medium with supplements at 

37°C and 5% CO2 on uncoated 35-mm glass coverslip dishes, No 1.5 coverglass (MatTek 

Corporation, Ashland, MA, USA). For experiments regarding abundance of bridging fibers, before 

live-cell imaging, the medium was replaced with Leibovitz's L-15 CO2-independent medium 

supplemented with fetal bovine serum (FBS, Life Technologies, Carlsbad, CA, USA). For 

experiments with the fixed samples, cells were fixed in ice-cold methanol for 3 min, washed three 

times with phosphate-buffered saline (PBS, Merck, Darmstadt, Germany) with followed imaging 

or immunostaining.  

For synchronization, cells were seeded at 40% confluency in uncoated 35-mm glass coverslip 

dishes, No 1.5 coverglass (MatTek Corporation, Ashland, MA, USA) with 2 ml DMEM medium 

with supplements. At 4 pm the day before imaging, thymidine (Sigma-Aldrich, St. Louis, MO, 

USA) was added at a final concentration of 2 mM. Cells were left in thymidine for 17 h, and at 9 

am each dish was washed three times with warm PBS and 2 ml of fresh DMEM medium with 

supplements was added. At 12:30 pm, RO-3306 (Calbiochem, Merck Millipore, Billerica, MA, 

USA) was added at a final concentration of 9 mM. At 7 pm, the dishes were washed three times 

with warm PBS. Then, the cells were left in the incubator with 2 ml DMEM medium with 

supplements for 30 min to recover. At 7:30 pm, the medium was replaced with L-15 with 

appropriate supplements and 20 mM of the proteasome inhibitor MG-132 (Sigma-Aldrich, St. 

Louis, MO, USA) to arrest the cells in metaphase. Cells were fixed in ice-cold methanol 30 min 

after adding MG-132. 
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3.3 IMMUNOSTAINING 

Unlabeled U2OS and tubulin-labeled HeLa cells were fixed in ice-cold 100% methanol for 

3 min and washed. To permeabilize cell membranes, cells were incubated in Triton (0.5% in 

phosphate-buffered saline (PBS)) at room temperature for 25 min. To block unspecific binding 

of antibodies, cells were incubated in 1% normal goat serum (NGS) in PBS for 1 h at 4 °C. Cells 

were then incubated in 250 µl of primary antibody solution (4 µg ml−1 in 1% NGS in PBS) for 

48 h at 4 °C. Mouse monoclonal anti-PRC1 antibody (C-1; sc-376983, Santa Cruz 

Biotechnology, USA) was used. After washing off the primary antibody solution, cells were 

incubated in 250 µl of secondary antibody solution (4 µg ml−1 in 2% NGS in PBS; Alexa Fluor 

488 preadsorbed donkey polyclonal anti-mouse IgG, Ab150109; Abcam, Cambridge, UK) for 

1 h at room temperature protected from light. After each incubation step, cells were washed 

three times for 5 min in PBS softly shaken at room temperature. In HeLa cells, we occasionally 

observed shrinkage of the spindle upon fixation; therefore, for the analysis we only chose 

spindles which were longer than 9 µm. 
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3.4 CONFOCAL MICROSCOPY FOR ABUNDANCE OF BRIDGING 

FIBERS 

HeLa cells were imaged by using a Leica TCS SP8 X laser scanning confocal microscope with 

a HC PL APO 63×/1.4 oil immersion objective (Leica, Wetzlar, Germany) heated with an objective 

integrated heater system (Okolab, Burlingame, CA, USA). Excitation and emission lights were 

separated with Acousto-Optical Beam Splitter (AOBS, Leica, Wetzlar, Germany). For live-cell 

imaging, cells were maintained at 37°C in Okolab stage top heating chamber (Okolab, Burlingame, 

CA, USA). For excitation, a 488-nm line of a visible gas Argon laser and visible white light laser 

at 575 nm were used for GFP and mRFP/Alexa Fluor-555, respectively. GFP and mRFP/Alexa 

Fluor-555 emissions were detected with HyD (hybrid) detectors in ranges of 498–558 and 585–

665 nm, respectively. Pinhole diameter was set to 0.8 µm. In experiments with PRC1-GFP BAC 

line cells (counting and coupling experiments), images were acquired at 25–35 focal planes with 

0.5 µm spacing and 400 Hz unidirectional xyz scan mode. For experiments with dynamic 

properties in vertical spindles, live PRC1-GFP cells transiently transfected with mRFP-CENP-B 

were imaged at five focal planes with 0.5 µm spacing and 600 Hz unidirectional xyzt scan mode 

with time interval set to 13 s. In the cases when the transiently expressed mRFP-CENP-B 

significantly bleached during the experiment, the power of the white light laser (575 nm) was 

increased during the acquisition, which did not affect the measurements because the mRFP-CENP-
B signal intensity was not quantified. In experiments with tubulin-GFP cells (MG132 arrested cells 

and siRNA experiments), images were acquired at 4–10 focal planes with 0.5 µm spacing and 400 

Hz unidirectional xyz scan mode. The system was controlled with the Leica Application Suite X 

software (LASX, 1.8.1.13759, Leica, Wetzlar, Germany). 
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3.4.1 Image analysis for abundance of bridging fibers 

Image processing and measurements were performed in ImageJ (National Institutes of Health, 

Bethesda, MD, USA). Quantification, data analysis, and scientific graphing were performed in 

SciDAVis (Free Software Foundation Inc., Boston, MA, USA). Cross-correlation analysis was 

performed in MATLAB (MathWorks, Natick, MA, USA). Figures and schemes were assembled 

in Adobe Illustrator CC (Adobe Systems, Mountain View, CA, USA). Statistical analysis was 

performed using Student's t-test. Data are given as mean ± s.e.m., unless otherwise indicated. 

We used acquired z-stack images of whole spindles to quantify the number of kinetochore pairs 

and PRC1-labeled fibers. In spindles that were oriented with their long axis roughly parallel to the 

imaging plane both kinetochore pairs and PRC1-labeled fibers were observed in each z-slice of 

individual spindle. In spindles with their long axis oriented roughly perpendicular to the imaging 

plane, an individual PRC1-labeled bundle appeared as a bright green dot that spans about 10 z-
slices (5 µm), whereas kinetochores were observed only in central planes that correspond to the 

metaphase plate area. We counted each kinetochore pair and PRC1-labeled fiber throughout the 

spindle minding the presence of its signal in the upper and lower z-plane with respect to the plane 

in which it had highest signal intensity. 

Kinetochore pairs and PRC1-labeled fibers were defined associated if the distance between the 

central part of the fiber and the midpoint between centers of sister kinetochores was smaller than 

0.3 µm. Spindle length was calculated as the distance between the spindle poles, whereas spindle 

width was calculated as the distance between the midpoints of the outermost sister kinetochores 

on the opposite spindle sides. The density of kinetochore pairs coupled with PRC1-labeled bundles 

was calculated as the number of kinetochore-PRC1 pairs in a cross section of the central part of 

the spindle divided by the cross-sectional area. 

Trajectories of kinetochores and PRC1-labeled bundles in spindles with their long axis oriented 

roughly perpendicular to the imaging plane were acquired by using Low Light Tracking Tool, an 

ImageJ plugin [75]. Tracking of kinetochores and PRC1-labeled bundles in the xy plane was 

performed on maximum-intensity projections of up to four planes. To avoid the possible effect of 

trajectories being the result of the entire spindle moving as a cohesive unit, we calculated the 

trajectories of kinetochore pairs and of PRC1-labeled bundles with respect to the spindle's center 

of mass in each image. Cross-correlation was calculated with the MATLAB inbuilt function 
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normxcorr2, which includes normalization by dividing with the product of the local standard 

deviation [76]. We acquired only correlation coefficients at unshifted positions, that is, at lag = 0. 

In HeLa cells stably expressing tubulin-GFP that were immunostained for PRC1, we tracked a 5-
pixel-thick pole-to-pole contour of tubulin-GFP signal of the sister k-fibers and the corresponding 

bridging fiber that spans between them. The positions of the spindle poles were estimated as the 

merging points of k-fibers. The bundles were tracked manually, point-by-point along the curved 

line, following the tubulin-GFP signal path (note that the bundles that disappeared in the z-
direction were not tracked). We used this contour to measure intensity profiles of endogenous 

PRC1 in the red channel (immunostaining). 

In cells expressing PRC1-GFP we tracked the pole-to-pole contour of PRC1-GFP by using 

approximately 30 points and measured the intensity profile in the green channel. The positions of 

the spindle poles were estimated as the merging points of k-fibers in the maximum-intensity 

projection of all z-slices covering the entire spindle. The mean value of the background signal 

present in the cytoplasm was subtracted from the intensity profiles. The length of the PRC1-labeled 

overlap region, LPRC1, was manually determined as the width of the peak of the PRC1-GFP signal 

intensity in the central part of the contour. The width of the peak was defined as the distance 

between the positions at the base of the PRC1-GFP peak where the PRC1-GFP signal intensity is 

roughly equal to the mean value of the PRC1-GFP signal intensity along the contour on either side 

of the peak. We defined signal intensity I as the total sum of intensities in the intensity profile of 

a 5-pixel-thick pole-to-pole contour of PRC1-GFP signal, divided by the contour's total length, 

and I cross as the total intensity under the peak in the intensity profile along a 5-pixel-thick line 

drawn transversely to the PRC1-GFP signal. The same method was used for quantification of 

endogenous PRC1-immunostained bundles. 

The signal intensity of a cross section of a bridging fiber in cells expressing tubulin-GFP 

and mRFP-CENP-B was measured by drawing a 3-pixel-thick line between sister kinetochores 

and perpendicular to the line joining centers of the two kinetochores, whereas a cross section of 

the bundle consisting of a bridging fiber and a k-fiber was measured about 1 µm laterally from 

either kinetochore. The mean value of the background signal present in the cytoplasm was 

subtracted from the intensity profile. 

The distance from the center was measured between the central part of the overlap fiber and 

the spindle long axis, perpendicular to the spindle long axis. Distance between sister kinetochores 
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was measured as the distance between their centers, acquired by optimizing and tracking with Low 

Light Tracking Tool [75]. 

3.5 LYSATE PREPARATION AND WESTERN BLOT ANALYSES 

HeLa cells grown on six-well plates were transfected with 200 nM control siRNA (non-
targeting) or PRC1 siRNA. Non-treated samples were not transfected. Following transfection and 

synchronization, the cells were washed with sterile PBS, and harvested by addition of RIPA buffer 

(Sigma, St. Louis, MO, USA) containing protease inhibitors (Complete TM; Roche, Basel, 

Switzerland). SDS–PAGE was performed using 12% gels and blotted onto nitrocellulose 

membranes (BIO-RAD, Hercules, CAL, USA). Membranes were blocked in 5% bovine serum 

albumin and probed using rabbit anti-PRC1 (sc-8356; Santa Cruz Biotechnology, Santa Cruz, CA, 

USA) or rabbit anti-GAPDH antibody (G9545; Sigma, St. Louis, MO, USA), which was used as 

a loading control. Bound primary antibodies were detected using peroxidase-conjugated anti-rabbit 

immunoglobulin G (A0545. Sigma, St. Louis, MO, USA) and Clarity ECL Western Blotting 

substrate (Bio-Rad, Hercules, CAL, USA). Images were acquired using the C-DiGit blot scanner 

(LI-COR, Bad Homburg, Germany). Images were analyzed using Image Studio software (LI-COR, 

Bad Homburg, Germany). Percent of PRC1 protein was calculated from Western blot band 

intensities of all the PRC1 isoform bands in one gel line after normalizing to the corresponding 

GAPDH band intensity. The data were acquired from 3 to 6 independent experiments. 
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3.6 CONFOCAL MICROSCOPY FOR 3D RECONSTRUCTION OF 

BUNDLES 

HeLa and all U2OS cells were imaged using Bruker Opterra Multipoint Scanning Confocal 

Microscope [77] (Bruker Nano Surfaces, Middleton, WI, USA). The system was mounted on a 

Nikon Ti-E inverted microscope equipped with a Nikon CFI Plan Apo VC ×100/1.4 numerical 

aperture oil objective (Nikon, Tokyo, Japan). During imaging, cells were maintained at 37 °C 

in Okolab Cage Incubator (Okolab, Pozzuoli, NA, Italy). A 60 µm pinhole aperture was used 

and the xy-pixel size was 83 nm. For excitation of GFP and mCherry fluorescence, a 488 and a 

561 nm diode laser line was used, respectively. The excitation light was separated from the 

emitted fluorescence by using Opterra Dichroic and Barrier Filter Set 405/488/561/640. Images 

were captured with an Evolve 512 Delta EMCCD Camera (Photometrics, Tucson, AZ, USA) 

with no binning performed. To cover the whole metaphase spindle, z-stacks were acquired at 

30–60 focal planes separated by 0.5 µm with unidirectional xyz scan mode. The system was 

controlled with the Prairie View Imaging Software (Bruker Nano Surfaces, Middleton, WI, 

USA). 

3.6.1 Image analysis for 3D reconstruction of bundles 

Microscopy images were analyzed in Fiji Software. For the analysis of horizontal spindles, 

only the spindles with both poles roughly in the same plane were used to ensure that spindles 

are maximally vertical after the transformation into vertical orientation, which was done by 

using a code written in R programming language [78] in RStudio. Before the transformation, 

the z-stack of the spindle in a single channel was rotated in Fiji so that the spindle major axis 

was approximately parallel to the x-axis. Signal intensity at each pixel in a z-stack is denoted 

as I(i, j, k), where indices i, j denote coordinates in the imaging plane, and k denotes the number 

of the imaging plane of the z-stack. To transform the 3D image of the spindle into vertical 

orientation, we applied the transformation I'(i, j, k) = I(k, i, j), which preserves the orientation 

(handedness) of the coordinate system, that is, corresponds to rotation of the image without 

mirroring. The coordinates (i, j, k) correspond to 3D positions (x, y, z)=(i ⋅ pixel size, j ⋅ pixel 
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size, k ⋅ z-distance). The aberrations caused by refractive index mismatch between immersion 

oil and aqueous sample were taken into account by multiplying z-step size by a correction factor 

of 0.81 to obtain the correct z-distance. We calculated this factor as a ratio of the cell diameter 

in y and z direction, assuming that a mitotic cell is spherical [79]. This value is consistent with 

theoretical predictions for z-aberrations due to refractive index mismatch [80] and experimental 

measurements [81]. 

Bundles in 3D images of spindles oriented vertically (including transformed images of 

horizontal spindles and images of vertical spindles) were tracked manually using Multipoint 

tool in Fiji. Individual bundles were determined by moving through the z-stack. Because 

microtubule bundles appear as spots in a single z-image, each point was placed at the center of 

the signal. Moving up and down through the z-stack helped to determine this point. Each bundle 

was tracked through all z-planes where it appears as a single spot. In addition, positions of the 

spindle poles were determined as the focus point where the PRC1 signal on the microtubule 

bundles, which is faint in the region close to the pole, ends. Coordinates of bundles and poles 

from images of vertical spindles were transformed so that both poles are on the z-axis. For the 

analysis of helicity only the tracked points in the central part of the spindle, between 0.3 and 

0.7 of the normalized spindle length, were taken into account. We used only bundles with 

average distance from the major axis larger than 1.35 µm. 

3.7 STATISTICAL ANALYSIS AND RESULTS REPRESENTATION 

Figures and schemes were assembled in Adobe Illustrator CC or CS6 (Adobe Systems, 

Mountain View, CA, USA) and Adobe Photoshop CS6 (Adobe Systems, Mountain View, CA, 

USA). Data are given as mean ± s.e.m., unless otherwise indicated. Fiji was used to scale images 

and adjust brightness and contrast. Data are given as mean ± s.e.m., unless otherwise stated. 

Significance of data was estimated by Student’s t-test (two-tailed and two-sample unequal-

variance). p < 0.05 was considered statistically significant. Values of all significant differences 

are given with degree of significance indicated (*0.01 < p < 0.05, **0.001 < p < 0.01, 

***p < 0.001). The number of analyzed cells and microtubule bundles is given in the respective 

figure panel. For representation of results for 3D reconstruction of bundles, graphs were 

generated in the programming language R.
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4 RESULTS AND DISCUSSION 
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4.1 ONE-TO-ONE ASSOCIATION BETWEEN OVERLAP FIBERS AND 

SISTER KINETOCHORES 

 
Above described bridging fiber was discovered on periphery of the metaphase spindle by 

combining confocal fluorescence microscopy and laser ablation applied on the outermost sister k-

fibers (Figure 16a). It was shown that bridging fiber contains PRC1, links outermost sister k-fibers 

and balances tension and compression in these regions [2], (Figure 16b).  

 

 

 
 
 
 

 

 

 

 

 

 

 

Figure 16. HeLa cell in metaphase expressing GFP-tubulin (green) transiently transfected with mRFP-CENPB 

(magenta) as seen under confocal microscope. Enlarged boxed region shows outermost sister k-fibers linked by a 

bridging fiber. Right: experimental setup with laser ablation assay that revealed association between outermost overlap 

bundle and sister kinetochores. Yellow lightning represents the commonly used position of the ablation and outward 

movement of the k-fiber and sister kinetochores as the response to the applied cutting [2]. 
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In continuation, findings will be described that are published in 2016, in a peer-reviewed 

scientific journal EMBO Reports as a scientific report entitled “PRC1-labeled microtubule bundles 

show one-to-one association in metaphase” by authors Polak Bruno, Risteski Patrik, Lesjak Sonja 

and Tolić Iva M. To study the abundance of overlap microtubules that act as bridging fibers 

throughout the metaphase spindle, whole individual spindles were imaged. HeLa cells stably 

expressing PRC1-GFP from a bacterial artificial chromosome (BAC) [74] were used which 

enables to visualize overlap antiparallel regions in spindles. These were transiently transfected 

with mRFP-CENP-B to visualize kinetochores and fixed. Z-stacks of images that cover a whole 

metaphase spindle were acquired in fixed cells (Materials and Methods). Metaphase was identified 

by the alignment of sister kinetochores on the metaphase plate, and kinetochores were defined as 

sisters if the bi-orientation was estimated within individual planes. This approach enables to 

measure the proportions of unperturbed spindles. Spindle length determined as the distance 

between two spindle poles was measured to be in average 10.65 ± 0.16 µm (all results are mean ± 

s.e.m. unless otherwise indicated, n = 29). Spindle width defined as the distance between two 

outermost midpoints of sister kinetochores was measured to be in average 11.21 ± 0.25 µm (n = 

29), consistent with previous measurements [2, 82] (Figure 17).  

 

 

 

 

 

 

 

 

 

 

 
Figure 17. Spindle in a fixed HeLa cell expressing PRC1-GFP (green) and mRFP-CENP-B in maximum projection 

of acquired z-stack images that cover the whole metaphase spindle. Same cell is shown on the right with gray lines 

showing measured parameters of the metaphase spindle, l (length) and w (width). Scale bar, 2 µm. 
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The visualized proteins of interest provided opportunity to count the number of PRC1-

labeled fibers as well as the number of sister kinetochore pairs in imaged spindles. Due to variable 

number of chromosomes in individual HeLa spindles [83, 84, 85], this unstable karyotype is used 

to determine whether the number of overlap fibers depends on the number of chromosomes per 

spindle. For this analysis two approaches of imaging the spindles were used. In first approach 

horizontal spindles were used which have their long axes connecting spindle poles oriented 

roughly horizontally with respect to the imaging plane (Figure 18). In this most frequent spindle 

orientation in the field of view, PRC1-labeled bundles appear as slightly curved lines with broader 

central part which gradually narrows in both directions towards opposite spindle poles. In 

metaphase, these bundles are present throughout the spindle, from the periphery to the central parts 

in the vicinity of the spindle long axis (Figure 19).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18. Scheme of metaphase spindle with its long axis oriented horizontally with respect to the imaging plane. 

Slide represents the bottom of the imaging dish. Imaging plane in the scheme shows orientation of individual z-stack 

images with 0.5 µm spacing that are acquired to cover the whole area that the spindle comprises. 
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Figure 19. Spindle in a fixed HeLa cell expressing PRC1-GFP (green) and mRFP-CENP-B (magenta) oriented 

horizontally with respect to the imaging plane, as shown in the scheme above. Images of different z-slices (central 

plane of the spindle z = 0, two images below, z = 4 µm and z = 2 µm, and above, z = +3 µm and z = +5 µm), maximum 

projection of a z-stack (max z). Scale bar, 2 µm. 

Occasionally, in the field of view spindles that are oriented with their long axes roughly 

perpendicular to the imaging plane can be found (Figure 20). Here, PRC1-labeled bundles appear 

as spots in individual imaging planes (Figure 21). It is not known what the exact reason for this 

orientation is, however these spindles are functional and metaphase can be determined by the 

number of planes in which kinetochores are present. Occasionally, these so-called vertical spindles 

were observed in anaphase, which implies that this orientation is not a sign of a defected spindle.  
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Figure 20. Scheme of metaphase spindle with its long axis oriented vertically with respect to the imaging plane. Slide 

represents the bottom of the imaging dish. Imaging plane in the scheme shows orientation of individual z-stack images 

with 0.5 µm spacing that are acquired to cover the whole area that the spindle comprises.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Spindle in a fixed HeLa cell expressing PRC1-GFP (green) and mRFP-CENP-B (magenta) oriented 

vertically with respect to the imaging plane, as shown in the scheme above. Images of different z-slices (central plane 

of the spindle z = 0, two images below, z = 4 µm and z = 2 µm, and above, z = +2 µm and z = +4 µm), maximum 

projection of a z-stack (max z). Scale bar, 2 µm.  

 

 

z=-4 µm z=-2 µm z=0

z=+2 µm z=+4 µm max z

slide 

imaging 

plane 



 51 

These two approaches with described spindle orientations were used to count the number 

of PRC1-labeled bundles and sister kinetochore pairs per individual spindle. In horizontally 

oriented spindles, the number of PRC1-labeled bundles per spindle was 63 ± 2 and the number of 

kinetochore pairs was 59 ± 2 (n = 29 spindles). Even though these numbers may be somewhat 

underestimated due to occasional overlaying of neighboring sister kinetochores or neighboring 

PRC1-labeled bundles, we conclude that the mean number of PRC1-labeled bundles is roughly the 

same as the mean number of chromosomes. In vertically oriented spindles the average number of 

PRC1-labeled bundles per spindle is measured to be 75 ± 3 and the number of kinetochore pairs 

72 ± 3 (n = 16 spindles). In comparison with the same analysis in horizontal spindles, these 

numbers here were larger due to less frequent overlaying of neighboring bundles. Importantly, 

here majority of kinetochores can be observed to be positioned right next to PRC1-labeled bundles. 

Images of vertically oriented spindles confirmed our observation in horizontally oriented spindles 

that the mean number of PRC1-labeled bundles is nearly the same as the number of kinetochore 

pairs (Figure 22). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 22. Correlation between the number of PRC1-labeled bundles and the number of pairs of sister kinetochores 

counted throughout horizontal (black) and vertical (blue) spindles of fixed HeLa cells in metaphase. Data points 

represent individual spindles, lines show linear fits. Data information: n, number of cells; R2, coefficient of 

determination; P, P-value from a t-test.  
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Once we knew how number of chromosomes varies from one spindle to another, we were 

interested to determine how the spindle changes to effectively perform its role regardless of the 

number of chromosomes that need to be correctly integrated and segregated. Here measured 

proportions of the spindle, length and width were taken into account with respect to the number of 

chromosomes. Whether spindle length and width vary to accommodate different numbers of 

overlap bundles and chromosomes was investigated. As expected, both spindle length and width 

increased with the number of kinetochore pairs and PRC1-labeled fibers. The increase in width 

was similar to the increase in length, which indicates that spindles accommodate a larger number 

of chromosomes by increasing their length and width to a similar extent. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 23. Spindle length and spindle width as a function of the number of kinetochore pairs coupled with PRC1-

labeled bundles. Data points represent individual spindles, lines show linear fits. Data information: n, number of cells; 

R2, coefficient of determination; P, P-value from a t-test. 

  

 

F

S
pi

nd
le

 le
ng

th
 (µ

m
)

Number of kinetochore 
pairs coupled with PRC1

R2=0.339
p=0.00092

n=295

10

15

40 60 80
Number of kinetochore 

pairs coupled with PRC1

5

10

15

40 60 80

S
pi

nd
le

 w
id

th
 (µ

m
)

R2=0.169
p=0.0265

n=29

Sp
in

dl
e 

le
ng

th
 (µ

m
)  

Sp
in

dl
e 

w
id

th
 (µ

m
) 

Number of kinetochore pairs coupled with 
PRC1 

Number of kinetochore pairs coupled with 
PRC1 

0 

5 

15 15 

40
0 

10 

5 
60
0 

80
0 

40
0 

60
0 

80
0 

R2=0.339 
p=0.00092 

n=29 
 

R2=0.169 
p=0.0265 

n=29 
 



 53 

It is interesting to consider the necessity to increase spindle’s length and width depending 

on the number of chromosomes. To examine the spatial distribution of overlap fibers in spindles 

with different numbers of chromosomes, the density of PRC1-labeled fibers coupled with 

kinetochores was measured. Density here applies to their number per unit area in the equatorial 

plane of vertical as well as horizontal spindles. Quantification revealed that the density does not 

depend significantly on the number of coupled pairs suggesting that the width of the spindle is 

accommodated to maintain neighboring PRC1-containing fibers at similar distances regardless of 

the total number of chromosomes in the spindle (Figure 24). Findings described above show that 

the number of chromosomes is important for the establishment of number of overlap antiparallel 

PRC1-containing regions.  

 

 

 
 

 

 

 

 

 

 

 
Figure 24. Left: a cross section of vertical spindles with 67 (upper) and 81 (bottom) chromosomes. On the right: 

number of kinetochore pairs coupled with PRC1-labeled bundles per unit area of the cross section of the central part 

of horizontal (black) and vertical (blue) spindles as a function of the number of kinetochore pairs coupled with PRC1-

labeled bundles in the spindle. Data information: n, number of cells; R2, coefficient of determination; P, P-value from 

a t-test. Scale bar, 2 µm. 
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4.1.1 Overlap fibers are linked to kinetochore fibers  

With above described findings, we have shown that there is a strong correlation between 

the number of overlap bundles and chromosomes. However, this find does not provide information 

about the association between PRC1-labeled spots and sister kinetochore pairs. Distances between 

axis connecting midpoints of sister kinetochores and the corresponding bridging fiber were 

measured in previous work focused on the bridging fiber on the periphery of the spindle. We next 

set out to determine whether these components in our experiments with fixed cells show similar 

spatial arrangement and whether certain individual spots are positioned close to each other. Same 

spindles that served for quantifications above were now used to measure the distances between a 

PRC1-labeled bundle and the nearest kinetochore pair. A PRC1-labeled bundle and a kinetochore 

pair were defined as associated if the distance between them was smaller than 0.3 µm 

(see Materials and Methods), based on a previous measurement of this distance for outermost 

kinetochores [2]. We found that > 90% of PRC1-labeled fibers were positioned next to a 

kinetochore pair, both in horizontal and vertical spindles (n > 1,000 PRC1-labeled bundles in each 

approach, Figure 25). This quantification revealed that the PRC1-labeled fibers and sister 

kinetochores are not just randomly distributed in the transversal cross section of metaphase 

spindles. In vertical spindles the proximity between two differently labeled spots were even more 

obvious. In analyzed spindles we did not often observe random associations between three or more 

individual PRC1-labeled fibers and kinetochores in metaphase. Also, no distinct groups with 

random numbers of associated pairs were determined in fixed spindles in metaphase. On the 

contrary to closely positioned green and magenta pairs, analysis revealed only a small fraction of 

PRC1-labeled bundles and kinetochore pairs that were not mutually linked (Figure 25). 

  



 55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 25. Pie charts showing the fraction of PRC1-labeled bundles associated with kinetochore pairs (blue), PRC1-

labeled bundles not associated with kinetochores (green) and kinetochores not associated with PRC1 bundles 

(magenta) in horizontal (top row) and vertical spindles (bottom row) from cells with up to 70 chromosomes (left 

column) and more than 70 chromosomes (right column). Horizontal spindles contained a total of 1,786 kinetochore-

PRC1 pairs (n = 29 cells) and vertical spindles 1,133 kinetochore-PRC1 pairs (n = 16 cells). 

We wanted to further fortify this postulated association which was estimated with above 

described approach in static spindles. Determined pairs gave a good starting point to examine 

whether distances between PRC1-labeled bundles and sister kinetochores are a sign of their 

association. Thus, we set out to investigate how PRC1-labeled bundles and kinetochores behave 

in time. If they are indeed associated, imaging of vertical spindles with a time component would 

reveal whether closely positioned magenta (kinetochore) and green (PRC1-labeled bundle) spots 

show mutually dependent movements. Here, central parts around the metaphase plate were imaged 
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and all individual spots that correspond to PRC1 and kinetochores per spindle were tracked. The 

dynamics in the transversal cross section was analyzed and revealed that in the majority of the 

associated pairs, the PRC1-labeled bundle and the kinetochores moved along identical trajectories 

or moved in the same direction and passed similar distances, whereas some pairs showed 

movements in mutually independent directions (Figure 26a). A PRC1-labeled fiber and a 

kinetochore were termed associated if they moved together for at least five time frames (~1 min) 

(n = 274 associated and individual PRC1-labeled fibers and kinetochores from five cells). 

Quantification revealed 82.5 ± 2.7% (n = 226) of mutually associated fibers and kinetochores, 

whereas 11.7 ± 2.3% (n = 32) of PRC1-labeled fibers did not have a coupled kinetochore with 

which they moved along the same or similar trajectories, and 5.8 ± 0.8% (n = 16) of kinetochores 

were observed as free of any PRC1-labeled fiber.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 26. a) Central plane of the spindle in a live HeLa cell expressing PRC1-GFP (green) and mRFP-CENP-B 

(magenta) oriented vertically with respect to the imaging plane. b) Examples of trajectories, with respect to the 

spindle’s center of the mass (white circle in the center), of individual PRC1-GFP (green) and corresponding mRFP-

CENP-B (magenta) signals from the spindle in left image that moved together for at least 200 s. Dots represent starting 

points of trajectories, t = 0 s. Trajectories finish at t = 200 s. c) correlation coefficients between trajectories (with 

respect to the spindle’s center of the mass) of a kinetochore pair and the trajectories of the PRC1-labeled fiber coupled 

with the kinetochore pair (green), the nearest neighbor PRC1-labeled fiber (blue), the next nearest neighbor (black) 

and a randomly chosen PRC1-labeled fiber (gray); n, the number of trajectories from three cells. Scale bar, 2 µm. 
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This experiment additionally gave insights into dynamic interplay between neighboring 

spots. Here, pairs at the periphery were chosen for analysis because those were most easily 

distinguished from their neighbors. Within this group, several types of behavior of neighboring 

PRC1-labeled fibers and kinetochores were observed. Due to the better clarity of events in this 

region, a stricter criterion was used for determining the interaction of PRC1-labeled fibers and 

kinetochores: PRC1-labeled fiber and kinetochore were termed associated if they were moving 

along the same or similar trajectories during the entire acquired video (~5 min). We found that 

65.7 ± 4.1% of PRC1-labeled fibers and kinetochores were mutually associated. Within this group, 

we included the following occasional events as well: one PRC1-labeled fiber moved together with 

two kinetochores which do not seem to be sisters; PRC1-labeled fiber moved together with sister 

kinetochores until they both disappeared from the imaged planes in the z-direction at the same 

time. Other scenarios in which we term a kinetochore and PRC1-labeled fiber uncoupled (34.3 ± 

4.1%) were as follows: first, the kinetochore seemed to be free of any PRC1-labeled fiber, and 

after a certain time, a PRC1 signal appeared and they started moving together; a kinetochore and 

PRC1-labeled fiber moved together and eventually separated to a distance greater than 0.3 µm; 

kinetochore first moved alone and at a certain time point moved to the vicinity of a neighboring 

PRC1 and they started moving together; a PRC1-labeled fiber merged with the neighboring bundle 

and they appeared as a single PRC1-labeled fiber; kinetochore moved with the PRC1 until PRC1 

disappeared; kinetochore moved with the PRC1, at one point separated from it, and subsequently 

associated with the same bundle to continue moving together. The observed events reveal the 

dynamic nature of the interactions between PRC1-labeled fibers and kinetochores (Figure 27a). 

However, most of the time PRC1-labeled bridging fibers and kinetochores are in close proximity 

and move along same or similar trajectories (Figure 27b). Our described approach and results give 

novel insights into the organization of metaphase mitotic spindle and reveal abundance and 

specificity of overlap antiparallel bundles which were not observed previously.  
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Figure 27. a) Examples of scenarios observed in dynamic interplay of PRC1-labeled bundles (green) and kinetochores 

(magenta) from the spindle in (A). Row 1: PRC1-labeled bundle and kinetochore move together until they separate at 

130 s. Row 2: kinetochore is free of any PRC1-labeled bundle until it appears at 130 s. Row 3: kinetochore and PRC1-

labeled bundle move together. Row 4: kinetochore moves with PRC1-labeled bundle which merges with neighboring 

bundle at 169 s. Row 5: two kinetochores move together with a single PRC1-labeled bundle. b) dynamics between 

PRC1-labeled bundles and corresponding kinetochores in live HeLa cells with distance between them plotted during 

150 s. n, number of pairs. Scale bar, 2 µm.    
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4.1.2 Endogenous PRC1 distribution and perturbation of bridging fiber 

parameters 

When PRC1 protein is overexpressed, its substantial fraction is cytosolic and localizes to 

brightly stained ring-shaped arrays around the interphase nucleus [31]. Thus, a cell line used here 

expresses PRC1-GFP but also it expresses endogenous nontagged PRC1 as well. To quantify the 

level of overexpression Western blot analysis was performed in cell lines used in this research. 

The quantification revealed 1.64 ± 0.10 times higher expression of PRC1 in PRC1-GFP tagged 

cell line compared with unlabeled HeLa cells (n = 6 independent experiments, P = 0.0004) while 

tubulin-GFP cell line showed the same expression level of PRC1 as determined in unlabeled cells 

(Figure 28).  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 28. Western blot for PRC1 in various HeLa cell lines and conditions, as denoted in the figure. PRC1 expression 

in PRC1-GFP HeLa cells was 60.97 ± 10.01% higher than in unlabeled cells. Synchronized cells were lysed in lysis 

buffer 29 h after transfection. Cell lysates were subjected to SDS-PAGE (12% polyacrylamide), transferred on to a 

nitrocellulose membrane and immunoblotted with anti-PRC1 and anti-GAPDH antibodies used as a loading control. 

Intensities of the Western blot bands of endogenous PRC1 isoforms (61–71 kDa) and PRC1-GFP (98 kDa) were 

quantified as described in Materials and Methods. P-value was 0.0004. 
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In order to exclude the side effects of PRC1 overexpression the aim is to define the localization 

and distribution of endogenous PRC1 in metaphase spindles and compare it with the localization 

of PRC1-GFP. HeLa cells stably expressing tubulin-GFP and immunostained for PRC1 

(see Materials and Methods) were used. Tubulin signal in this cell line enabled to identify the k-
fibers and bridging fibers. Since we were interested in the distribution of PRC1 in a well-

established metaphase, the proteasome inhibitor MG132 (see Materials and Methods) was used to 

ensure that the cells are arrested at this particular stage. Endogenous PRC1 was found to localize 

to the metaphase spindle with enrichment in its central part (Figure 29), as previously shown [2, 

31]. The tubulin-GFP labeled cell line enabled to determine individual bridging fibers throughout 

metaphase spindles. They were determined as the tubulin-GFP signal that spans the region between 

two sister k-fibers. Localization of endogenous PRC1 could be precisely determined in our 

experiments. In cells used here 97.8 ± 0.1% of the bridging fibers were found immunostained for 

endogenous PRC1 (n = 46 bridges in 10 cells; Figure 29). Thus, endogenous PRC1 localizes to the 

bridging fibers throughout metaphase spindles. In addition to this basic interpretation, the 

endogenous PRC1 signal was observed to extend to the region of k-fibers (determined by tubulin-
GFP signal), proximal to the estimated position of the kinetochore. This observation independently 

suggests that PRC1-labeled fibers are bound to sister k-fibers. 

  



 61 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 29. Left: MG132 arrested HeLa cell stably expressing tubulin-GFP (green) and immunostained for endogenous 

PRC1 (Alexa Fluor-555 shown in magenta) in maximum projection. Middle: one selected z-plane with enlargements 

of the boxed region (top: merge, middle: GFP, bottom: Alexa Fluor-555) below the first image which show the 

bridging fiber determined as the line connecting two ends of the sister k-fibers in green channel and localization of 

endogenous PRC1 (magenta). Right: Quantification of tubulin-GFP bridging fibers (green bar) immunostained for 

endogenous PRC1 (magenta bar). Scale bar, 2 µm. 

Next, the signal of endogenous immunostained PRC1 was quantified and compared with the 

signal of PRC1-GFP. We tracked pole-to-pole tubulin-GFP signals of the sister k-fibers and the 

corresponding bridging fiber in the green channel, and measured intensity profiles of endogenous 

PRC1 in the red channel (Figure 30), which confirmed localization of endogenous PRC1 in the 

central part of the spindle (n = 15 bridges from 10 cells). Similarly, pole-to-pole intensity profiles 

of PRC1-labeled bundles in the cell line expressing PRC1-GFP showed localization of PRC1-GFP 

in the central part of the spindle (n = 50 bridges from 10 cells; Figure 30). The length of the PRC1 

signal, LPRC1, is defined as the width of the peak in the intensity profile. The length of the 

endogenous PRC1 signal was 4.95 ± 0.18 µm (n = 15 bridges from 10 cells), whereas the length 

of the PRC1-GFP signal was 5.49 ± 0.17 µm (n = 50 bridges from 10 cells, P = 0.10; Figure 30).  
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These results confirm that PRC1-GFP localizes in the same regions as endogenous PRC1. 

Thus, antiparallel microtubule overlaps that bind PRC1 are present in the central part of bridging 

fibers in metaphase spindles and extend over a well-defined region. We next wanted to know 

whether PRC1 signal parameters in the bridging fiber depend on the distance of the fiber from the 

spindle long axis because k-fibers at the periphery of the spindle are longer and more curved than 

those near the spindle long axis We defined two additional measures of the signal intensity: I was 

defined as the total intensity in the pole-to-pole intensity profile divided by the contour length of 

this intensity profile (Materials and Methods), and Icross as the total intensity under the peak in the 

intensity profile acquired transversely to the PRC1 signal (Materials and Methods). LPRC1, I 

and Icross of the endogenous immunostained PRC1 was measured, as well as of PRC1-GFP in fixed 

and live cells throughout the spindle. In all these conditions, the parameters of the PRC1 signal 

did not depend on the distance from the spindle long axis. These results suggest that all bridging 

fibers in the spindle have a similar length of the PRC1-bound antiparallel overlap zone and a 

similar amount of PRC1, regardless of the length and curvature of the associated k-fibers. 
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Figure 30. Starting from top left, images show selected area from a HeLa cell expressing PRC1-GFP and mRFP-
CENP-B with pole-to-pole tracking (white curve) of PRC1-GFP signal (top, merge; middle, GFP; bottom, scheme). 

Images of the same spindle without (left) and with the tracked contour are shown. b) Graph shows normalized pole-
to-pole intensity profiles of PRC1-GFP acquired in HeLa cells expressing PRC1-GFP and mRFP-CENP-B. c) Graph 

shows example of length measurement of the immunostained PRC1 signal (L PRC1) in HeLa cell expressing tubulin-
GFP and immunostained for PRC1. d) Graph with bars shows comparison of the length LPRC1 between PRC1-GFP 

signal (green corresponds to the PRC1 fused to GFP from a PRC1-GFP cell line) and PRC1-Alexa Fluor-555 (magenta 

corresponds to the endogenous immunostained PRC1) (P = 0.10). e) Cross section signal intensity of the 

immunostained endogenous PRC1 (magenta line) from a HeLa cell expressing tubulin-GFP and immunostained for 

PRC1. Area under the peak is defined as I cross, measured at the position of the blue line as in scheme. Horizontal 

lines mark the background signal (black line), and vertical lines delimit the area (gray) where the signal was 

measured.Data information: numbers in bars are number of cells; n, number of bridging fibers; error bars, s.e.m.; ns, 

not significant difference (P ≥ 0.05, t-test). Scale bar, 2 µm. 
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Previous experiments showed that knockdown of PRC1 by small interfering RNA (siRNA) 

reduces the thickness of the bridging fiber on the outermost part of the spindle [2]. To characterize 

the effect of PRC1 silencing on the whole metaphase spindle, mild PRC1 knockdown was used in 

order to maintain spindle integrity in HeLa cells expressing tubulin-GFP and mRFP-CENP-B 

(Materials and Methods). Images of cells treated with PRC1 siRNA and control siRNA were 

acquired 24 h after transfection. Western blot analysis showed that in unlabeled HeLa cells treated 

with PRC1 siRNA the amount of PRC1 was reduced by 51.10 ± 5.49% compared to control cells 

(n = 3 independent experiments, P = 0.0092), whereas in cells expressing tubulin-GFP the amount 

of PRC1 was reduced by 53.40 ± 11.76% (n = 6 independent experiments, P = 0.0478, Figure 31). 

 

 

 

 

 

 

 

 

 

 

 
Figure 31. Western blot showing PRC1 protein from unlabeled cells, tubulin-GFP HeLa cell line, and PRC1-GFP 

HeLa cell line. Graphs show quantification of Western blots. Please note a decrease of the amount of PRC1 after 

treatment with PRC1 siRNA. HeLa cells grown on 6-well plates were transfected with 200 nM control or PRC1 

siRNA. Synchronized cells were lysed in lysis buffer 29 h after transfection. Cell lysates were subjected to SDS-
PAGE (12% polyacrylamide), transferred on to a nitrocellulose membrane and immunoblotted with anti-PRC1 and 

anti-GAPDH antibodies. Percent of PRC1 protein was calculated from Western blot band intensities measured in 

Image Studio Lite program after normalizing to the corresponding GAPDH band intensity. The data were acquired 

from three to six independent experiments. Please note that the tubulin-GFP HeLa was the least viable of the cell lines 

and thus the data varied. P-values are given in the graphs. 
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It is known that PRC1 is important for stability and integrity of overlap regions [35, 44]. 

The aim here is to determine how the reduced amount of PRC1 crosslinker affects the bridging 

microtubule bundle. Thus, signal intensities of tubulin-GFP in the bridging fiber and the k-fiber 

were used to determine whether the number of microtubules in the bridging fiber was changed due 

to reduced amount of PRC1. Following the method described in [2], we measured the signal 

intensity of tubulin-GFP between sister kinetochores, Ib, and across the k-fiber, laterally of 

kinetochore, Ibk. Ib is interpreted as the signal of the bridging fiber, and Ibk as the signal of the 

bundle consisting of the bridging fiber and the k-fiber together. In cells treated with control siRNA 

(control cells), the ratio Ib/Ibk was 0.44 ± 0.01 (n = 16 bridges in nine cells, Figure 32), consistent 

with previous results [2]. PRC1 knockdown reduced the ratio Ib/Ibk to 0.33 ± 0.01 (n = 21 bridges 

in six cells, P = 0.0003). The level of reduction was constant regardless of the distance of the 

bridging fiber from the spindle long axis. The signal intensity Ib was reduced by roughly 28% after 

PRC1 knockdown, which is interpreted as the reduction in the number of microtubules in the 

bridging fiber. On the contrary, the signal intensity Ik = Ibk − Ib, which corresponds to the number 

of microtubules in the k-fiber, was not affected significantly by PRC1 siRNA treatment (P = 0.6). 

Thus, our results suggest that PRC1 knockdown reduces the number of microtubules in the 

bridging fibers throughout the spindle.  
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Figure 32. a) Images of HeLa cells stably expressing tubulin-GFP (green) and transiently mRFP-CENP-B (magenta) 

treated with control siRNA (left images) and siRNA targeting PRC1 (right images). Enlargements of the boxed region, 

shown to the right of the image of the whole spindle, are focused on the bridging fiber. b) Graph shows mean ratio of 

signal intensities of the bridging fiber (Ib, measured at the position of a blue line as in scheme) and sum of the bridging 

and k-fiber (Ibk, measured at the position of the orange line as in scheme), measured in control cells (gray bar) and 

PRC1 siRNA-treated cells (black bar) (P = 0.0003). Scale bar, 2 µm. 

Indications for importance of bridging fiber in force balance have been described. It was shown 

that bridging fiber between the outermost sister k-fibers balances tension and compression within 

a k-fiber [2]. Since above described finding revealed that PRC1 knockdown reduces the number 

of microtubules in the bridging fiber, next aim is to test whether this consequence affected 

distances between sister kinetochores and spindle length and width. The distance between centers 

of sister kinetochores, dk, was reduced from 1.00 ± 0.02 µm in control cells (n = 79 pairs of sister 

kinetochores in 11 cells) to 0.88 ± 0.02 µm in cells treated with PRC1 siRNA (n = 76 pairs of sister 

kinetochores in 10 cells, P = 0.0001, Figure 33). The distance between sister kinetochores did not 

depend on their distance from the spindle long axis, in both control cells and those treated with 

PRC1 siRNA. Spindle length and width did not change significantly after PRC1 knockdown. We 
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conclude that PRC1 knockdown results in a decreased distance between sister kinetochores, which 

we interpret as a decrease in interkinetochore tension. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 33. a) Images of HeLa cells stably expressing tubulin-GFP (green) and transiently mRFP-CENP-B (magenta) 

treated with control siRNA (left images) and siRNA targeting PRC1 (right images). Enlargements of the boxed region, 

shown to the right of the image of the whole spindle, are focused on sister kinetochores. b) Mean interkinetochore 

distance (d k, see scheme) measured in control cells (gray bar) and PRC1 siRNA-treated cells (black bar) (P = 0.0001). 

Scale bar, 2 µm. 

To investigate the changes of the microtubule overlap region in the bridging fiber induced by 

PRC1 knockdown, HeLa cells expressing tubulin-GFP were used, and immunostained for PRC1 

(Materials and Methods). An overall reduction in the PRC1 signal in the metaphase spindle was 

found in cells treated with PRC1 siRNA compared with control cells. In control cells, the length 

of immunostained PRC1 signal, LPRC1, was 4.96 ± 0.08 µm (n = 29 bridges in 10 cells), which was 

similar to LPRC1 in non-treated synchronized cells described above (P = 0.95), and it did not depend 

on the distance from the spindle long axis. LPRC1 of immunostained PRC1 could not be determined 

in cells treated with PRC1 siRNA due to its low signal. PRC1 signal intensity, I, was found to be 
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reduced by 41.33 ± 1.70% (P = 0.0001), which was also independent of the distance from the 

spindle long axis. These data confirm the reduction in PRC1 intensity in the overlap regions due 

to PRC1 knockdown. 

To further determine the resulting difference between overlap fibers in control and PRC1 

siRNA-treated cells, HeLa cells expressing PRC1-GFP from a BAC immunostained for PRC1 

were used. Western blots showed that in PRC1-GFP cell line the amount of PRC1 was reduced by 

51.78 ± 5.40% in cells treated with PRC1 siRNA compared to control cells (n = 3 individual 

experiments, P = 0.0020). Next, signals of both immunostained PRC1 and PRC1-GFP in control 

and PRC1 siRNA cells were quantified as described above. Interestingly, neither the length, LPRC1, 

of immunostained PRC1 nor the length of PRC1-GFP was altered by PRC1 knockdown. As 

expected, both PRC1 signal intensity, I, and the signal intensity of the cross section, Icross, were 

reduced by PRC1 knockdown. Spindle length and width were not affected by PRC1 knockdown. 

Taken together, our data show that a mild knockdown of PRC1 (~50%) leads to a reduction in 

PRC1 signal intensity in the metaphase spindle, whereas the length of the PRC1-labeled regions 

remains unchanged. Now that we showed how specific antiparallel overlaps are throughout the 

spindle, it is interesting to consider that motor proteins localize to same areas as PRC1. Their 

contribution whilst they walk along antiparallel regions which are at their ends bound to sister k-

fibers has been described recently [73].  

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 34. Graph on the left showing the length of the immunostained PRC1 signal, LPRC1 (P = 0.5167), signal 

intensity, I (P = 0.0003), and Icross (P = 0.0001) in siRNA targeting PRC1 in comparison with control HeLa cells 

expressing PRC1-GFP and immunostained for PRC1. Graph on the right shows same quantifications as in the left but 

for PRC1-GFP signal. 
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Based on described results, it is revealed that nearly all overlap bundles in the spindle act 

as bridging fibers that link sister k-fibers and that each sister kinetochore pair contains a bridging 

fiber in metaphase. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 35. Scheme representing one-to-one association between PRC1-labeled bundles and sister kinetochores in 

metaphase. 
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4.2 MICROTUBULE BUNDLES POSSESS LEFT-HANDED HELICITY 

Above the spindle proportions and the abundance and parameters of bridging fibers were 

described. Next goal is to investigate the three-dimensional (3D) organization of bridging fibers 

and k-fibers in metaphase. In continuation, findings will be described that are published in 2018 

in a peer-reviewed scientific journal Nature Communication as an article entitled “The mitotic 

spindle is chiral due to torques within microtubule bundles” by authors Novak Maja, Polak Bruno, 

Simunić Juraj, Boban Zvonimir, Kuzmić Barbara Thomae W. Andreas, Tolić Iva M and Pavin 

Nenad. First, we had to determine whether the investigated bundles are continuous from vicinity 

of one pole all the way to the vicinity of the other pole. This precondition was confirmed by using 

stimulated emission depletion (STED) super-resolution microscopy in experiments performed by 

Juraj Simunić and Barbara Kuzmić with provided expertise from Andreas W. Thomae at Ludwig-

Maximilians University of Munich. As investigating bridging fibers and k-fibers in metaphase 

spindle, distinct shapes that these bundles can acquire were observed. On the periphery of the 

horizontal spindle, that is in the two outermost groups of bundles in confocal images, the shapes 

resembling letter C can be observed. Bundles in the vicinity of the spindle long axis often acquire 

shapes resembling the letter S (Figure 36).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 36. STED image (single z-plane) of metaphase spindle in a live HeLa cell expressing EGFP-CENP-A and 

EGFP-centrin1 (both shown in magenta), panel on the right shows traces of microtubule bundles superimposed on the 

image where we observed continuity of microtubule bundles and their different shapes in metaphase. Scale bar, 2 µm. 
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STED imaging provided a good insight into xy components of the bundles in one plane but the 

third, z component required for the 3D reconstruction is still lacking due to the resolution limit in 

z direction with an approximate value of 800 nm. This was a barrier that disables examination of 

the spatial organization of individual bundles with high precision. For this reason, vertically 

oriented spindles were first examined because they bypass the mentioned limitation. For detailed 

insight into 3D arrangement of bundles, vertically oriented spindles were used to reconstruct the 

spatial organization of individual bridging fibers along their length in a direction from one spindle 

pole to another. As already described, in these spindles optical sections are roughly 

perpendicular to the bundles, allowing for precise determination of the bundle position in each 

section and thus of the whole contour (see Methods). Fixed HeLa cells that express GFP-tagged 

PRC1 [30, 31] and mRFP-CENP-B determining metaphase were used. When imaged in this 

manner and viewed end-on along the spindle axis in the projection containing images that cover 

all z planes of individual spindles, the bundles reveal rosette-like appearance. If the bundles 

had a planar shape they would form an aster-like arrangement when viewed from this 

perspective (Figure 37). With this approach on perspective of vertical spindles, it is revealed 

that the arrows connecting bottom and top end of each bundle rotate clockwise, implying that 

bundles follow a left-handed helical path along the spindle axis.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 37. Schemes show spindle with either planar (top row) or helical (bottom row) spatial arrangement as viewed 

from different perspectives. Comparison between aster-like and rosette-like arrangement from the top view and a 

corresponding 3D projection. Assembled by Zvonimir Boban.  
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The helicity of bundles was defined as the average change in angle with height (Figure 

38a), where negative numbers denote left-handed helicity. Quantification of tracked bridging 

bundles revealed the value of their helicity to be −2.5±0.2 deg µm−1 (mean ± s.e.m., n = 415 

bundles from 10 cells). When live cells with labeled tubulin (U2OS cells) were used, the result 

of the helicity of k-fibers coupled to bridging fibers was obtained with value of -1.3±0.2 

deg µm−1. Even though this value here is smaller, helicity was also present in these bundles as 

well. Since investigated bundles consist of individual microtubules, we come to conclusion that 

individual microtubules within the bundle twist around each other like metal wires in a steel 

wire rope (Figure 38b).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 38. a) Schematic representation of the microtubule bundle helicity measurement and a steel wire rope.  

b) Note metal wires that twist around each other as we propose do the individual microtubules within a bundle 

[indiamart.com]. 
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In order to eliminate the possible side effects of different orientation of analyzed spindles, next 

goal was to quantify observed helicity in horizontal spindles as well. Here, the acquired z-stacks 

need to be rearranged in order to obtain the slices perpendicular to the spindle axis, similar to the 

z-stacks of vertical spindles (Figure 39; see Methods). The method of stack rearrangement 

revealed that bundles in horizontal spindles possess left-handed helicity as is the case in vertical 

spindles (Figure 40). Here horizontal spindles had higher left-handed helicity 

(−3.3 ± 0.2 deg µm−1, mean ± s.e.m., n = 388 bundles from 10 cells) than vertical ones (p value 

from a Student's t-test = 0.012 (two-tailed and two-sample unequal-variance), and the reason 

for this should be further investigated. To further validate helicity of bundles different 

conditions were used which all revealed its presence (Table 1). Even though the values vary 

depending on the labeling, spindle orientation, and cell lines, the bundles consistently twist in 

a left-handed direction and do not strongly deviate from a value of -2 deg µm−1 (Table 1). With 

conducted experiments we can confirm that the mitotic spindle is a chiral object where 

microtubule bundles follow a left-handed helical pattern. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 39. Imaging scheme of vertically (left) and horizontally (right) oriented spindle. White rectangles indicate the 

orientation of the imaging plane and the idea to rearrange the acquired z-stack into the orthogonal plane in order to 

obtain slices perpendicular to the imaging axis.  
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Figure 40. Imaging plane of a vertical spindle in a fixed HeLa cell expressing PRC1-GFP and mRFP-CENP-B (only 

PRC1-GFP is shown) (left); orthogonal plane of the same spindle (middle); arrows connecting starting and ending 

points of PRC1-GFP bundles traced upwards (right). Longer arrows roughly correspond to larger twist around the 

spindle axis (circle), colors show z-distance between starting and ending points. Scale bar, 1 µm. 

Table 1. Values of bundle helicity depending on the labeling, spindle orientation, and cell lines 
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As obtained data was analyzed, the question was which contributing factors cause the 

chirality to be established in the spindle. Certain hypothetical contributing mechanisms were 

examined. From our point of view, the chirality could be established as a result of forces acting 

within microtubule bundles in the central spindle or on the other hand causal forces can be 

exerted by astral microtubules that interact with the cell cortex on two opposite sides of the 

spindle. We first examined the contributing factors within central parts of the spindle, and motor 

proteins came into question since it is known that they rotate the microtubule as they walk on 

the microtubule lattice, as is the case for kinesin-5 [86]. The most direct effect we could achieve 

was by using the drug that will cause the kinesin-5 to detach from the microtubule lattice and 

fall off the spindle. Thus, we used S-trityl-L-cysteine (STLC), which prevents movement of 

kinesin-5 along the microtubule lattice by targeting its catalytic domain and inhibiting ATP-ase 

activity [87, 88]. The experimental setup was established as described in the Methods section. 

Briefly, the whole untreated spindle was imaged, then the drug was added and the same spindle 

was imaged again 5 and 10 minutes after the addition of the drug. STLC treatment caused the 

bundle traces to change from a clockwise rotation to a more random distribution. Both vertical 

and horizontal spindles were examined. Average values of helicity in vertical spindles were 

close to zero after the addition of the drug (Figure 41). In horizontal spindles STLC reduced the 

helicity threefold with respect to the initial values (Table 2). Mock treatments used as a control 

did not affect significantly the helical property of the spindles, which additionally showed that 

repeatedly imaging the same spindles does not intervene with our experimental setup (Figure 

41). Importantly, STLC did not change spindle lengths and widths, which could affect our 

conclusions if happened. Based on these results, we conclude that kinesin-5 has an important 

role in the maintenance of the spindle chirality. To explore whether cortical pulling forces 

contribute to the maintenance of chirality, we used latrunculin A, an agent that depolymerizes 

actin cortex, thus disrupting forces exerted between astral microtubules and cell cortex [89]. 

Here no significant effect was observed and the helical property of bundles was preserved 

(Table 2). We conclude that cortical pulling forces have a minor effect on the shape of 

microtubule bundles within the spindle. 
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Figure 41. Helicity of vertical spindles from individual live HeLa cells expressing PRC1-GFP measured before and 

at 5 and 10 minutes after treatment with either STLC (left) or DMSO (solvent for STLC, control, right). Values from 

each cell are represented by different color and connected with lines.  

 
Table 2. Summary of spindle helicity values from live cells treated with STLC, Latrunculin A or 

DMSO in different conditions. 
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We conclude that the chiral architecture of the spindle we described relies mainly on 

forces generated within microtubule bundles by proteins that interact with and walk along the 

microtubule lattice. Chirality is an intriguing property of the biological world present at all 

scales ranging from molecules to whole organisms, and with our finding the spindle can now 

be classified as a chiral structure as well. 

 

 

 

 

 

 

 

 

 

 

Figure 42. Scheme summarizing conclusion on spatial arrangement of microtubule bundles and the whole metaphase 

spindle. Helical shape of microtubule bundles (model made of foam sponge tube and tube racks) determines the chiral 

architecture of the metaphase spindle (paper model of a spindle). 
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4.3 CONCLUDING DISCUSSION 

The spindle is a robust complex structure not easily accessible when it comes to studying 

of forces and individual structural components. To study such a complex structure, today most 

commonly used approach is microscopy coupled with treatment of the studied system in a way 

that different forms of perturbations give insights into importance of different components. 

Treatments can be performed on a level of one sort of protein with commonly used approaches as 

are for example RNA interference and/or optogenetics. Another approach is used on a level of 

direct mechanical perturbation applied in a specific region of interest. The example here is laser 

ablation coupled with simultaneous acquisition of time series on a microscope. The laser used for 

severing of distinct precisely determined regions is a femtosecond laser which enables application 

of short pulses set on specific, usually high wavelengths (above 700 nm). The description of 

bridging fiber on the periphery of the spindle [2] provided motivation to explore whether the 

revealed specific association is present in regions other than the outermost positions in the 

metaphase spindle. By imaging z-stacks of images that cover whole individual metaphase spindles 

we first found that there is a strong correlation between number of chromosomes and overlap 

bundles per spindle in HeLa cells with variable number of chromosomes. Dynamics in transversal 

cross section revealed that these closely positioned components move in pairs and often along 

identical trajectories. This type of interaction between overlap bundles and k-fibers throughout the 

spindle has not been previously observed.  

When the protein of interest is expressed from a Bacterial Artificial Chromosome (BAC), 

it is often simultaneously overexpressed. Previous studies have shown that PRC1 exhibits a 

slightly different localization when overexpressed. In particular, a substantial fraction of the 

protein is cytosolic and localizes to brightly stained ring-shaped arrays around the interphase 

nucleus [31]. Immunocytochemistry performed in this work revealed that endogenous PRC1 binds 

to overlap regions already in well-established metaphase. Localization and affinity of PRC1 to 

bind to microtubules at the onset of anaphase have been widely proposed [31, 35, 61] and now we 

revealed that stable PRC1 containing bundles are established even earlier and are associated with 

individual sister k-fibers throughout the whole metaphase spindles. This crosslinker seems to be 

key to stabilizing and incorporating new microtubules into the bridging fiber as they grow along 

the existing ones as indicated by RNAi specifically targeting PRC1. If all PRC1 molecules are 
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already occupied between antiparallel microtubules, it seems as if no other protein can hold them 

tightly bound within overlap regions. The reduced distance between sister kinetochores in RNAi 

experiment indicates the consequential perturbation of force distribution along k-fibers in 

metaphase. Despite this difference, spindle length and width were preserved. According to our 

previously published model [2], the compression in the bridging fiber counteracts the tension at 

the end of the k-fiber. Thus, when both forces are reduced, the spindle shape can remain 

unchanged, which is in agreement with our measurements. 

Motor proteins that localize to antiparallel region can exert forces that affect anaphase 

dynamics. Pushing forces exerted by bridging fiber are able to segregate chromosomes 

independently of the spindle pole and the most promising candidate motor that contributes to 

chromosome and pole separation is MKLP1 as shown in a recent research [73]. 

The chirality of the spindle is a novel organizational property not yet observed in human 

spindles. The exact role of the chirality in the spindle is difficult to discuss at the moment since 

it could solely be a property of a system with all its components making it organized in a well-

defined structural order. Physical interpretation of this find was conducted in group of Nenad 

Pavin at Faculty of science in Zagreb, Croatia. Applied theory together with experiments 

suggests that the twisting moment in the microtubule bundle is around −10 pNµm and the 

bending moment 140 pNµm. The theory predicts that torques generate curved shapes of 

bundles, where the twisting component of the torque is required for the helical component of 

the shape [90]. This level of organization has been previously observed in yeast spindles, which 

consist of a single rod-shaped microtubule bundle [91, 92]. We speculate that kinesin-5 turns 

antiparallel microtubules around each other while sliding them apart, which generates torque in 

the microtubule bundles and consequently their helical shape. Moreover, given that kinesin-5 

is localized mainly close to the spindle pole [93], it may have a role in the generation of torque 

at the pole. Alternatively, linear forces acting on microtubules may lead to torsion due to a 

helical arrangement of tubulin subunits in the microtubule [94, 95]. However, in our 

experiments with kinesin-5 inactivation spindle length did not change, suggesting that linear 

forces did not change, thus the observed change in spindle chirality is most likely due to torque 

exerted by this motor. Finally, in addition to kinesin-5, other mitotic motors, such as kinesin-

14, kinesin-8, and dynein [96, 97, 98], may be involved in the generation of torque. 
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Taken together, research conducted on whole metaphase human spindles revealed 

existence of stable overlap bundles already in metaphase which are bridging sister k-fibers and 

balancing force distribution in such elastic elements that span between two opposite spindle 

poles. Length of the overlap antiparallel region in these bundles is more finely tuned than their 

thickness and reduction of number of microtubules in the bridging fiber reduces tension exerted 

on kinetochores. Individual bundles, both parallel (k-fibers) and antiparallel (bridging fibers) 

possess left-handed helicity in metaphase which results in a chiral organization of the spindle 

as a whole. For human metaphase spindles this is a newly described property of spatial 

organization not previously observed.  
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5 CONCLUSIONS 

Spindle is a complex micromachinery involved in a basic process of transferring the genetic 

information to offspring. Experimental setups developed to study such a structure are various 

with approaches and are unique with specific questions in the focus. With described approach 

our goal was to investigate the organization of this remarkable structure as a whole. Imaging 

the area that comprises the entire spindle in the cytoplasm provided insights into fine levels of 

bundle organization in metaphase. First, we showed that nearly all overlap microtubules are 

linked to sister k-fibers. After the discovery of bridging fiber between the outermost k-fibers, 

this is the first time that all overlap microtubules were given such a specific property that is 

present throughout the metaphase mitotic spindle. All of these bundles are antiparallel, contain 

crosslinker PRC1 and link each pair of sister k-fibers in metaphase. Dynamics in the transversal 

cross section area around the metaphase plate revealed that PRC1 and kinetochores are not 

completely independent elements but rather spend most of the time moving together in pairs. 

For example, this approach can in future provide basis for experimental setups in determining 

the bridging fiber that corresponds to a specific chromosome in the spindle. As a continuation 

of described one-to-one association between PRC1-labeled bundles and sister kinetochores, novel 

insights into spatial organization of these bundles were provided with this research. By closely 

examining individual antiparallel bundles, it is shown that they possess a helical structure, a feature 

not previously described in human spindle. In metaphase of unperturbed spindles this property is 

present in majority of individual bundles, thus resulting in the chiral organization of the spindle as 

a whole. Individual microtubules twist around each other within a bundle which leads to the 

rotation of the bundle cross-section along its length. By examining the tubulin-labeled bundles, we 

confirm that this is a general architectural property of the spindle, not limited to specific 

populations of microtubules. At the moment we can say that motor proteins contribute to the 

generation of helical shapes of microtubule fibers. In near future, it will be interesting to define 

the stage of mitosis at which chirality of the spindle appears, and to reveal what aspects of 

mitotic division rely on this architectural property.  
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