Lukačić, Ana

Master's thesis / Diplomski rad

2019

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: **University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet**

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:880512

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-08-06

Repository / Repozitorij:

Repository of the Faculty of Science - University of Zagreb

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO–MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK

Ana Lukačić

OPTIMIZACIJA FORME ELASTIČNE LJUSKE

Diplomski rad

Voditelj rada: prof. dr. sc. Josip Tambača

Zagreb, 2019.

Ovaj diplomski rad obranjen je dana	pred ispitnim povjerenstvom
u sastavu:	

 1.
 _______, predsjednik

 2.
 _______, član

 3.
 _______, član

Povjerenstvo je rad ocijenilo ocjenom _____.

Potpisi članova povjerenstva:

- 1. _____
- 2. _____
- 3.

Sadržaj

Sa	držaj	ržaj		iii
U	vod			1
1	Nag 1.1	hdijev ı Geome	model ljuske etrija ljuske	2 2
	1.2	Model	l ljuske	4
2	Opt	imizacij	ja	6
	2.1	Defini	cija problema	6
	2.2	Svojst	wa	6
	2.3	Jednoo	dimenzionalni slučaj	12
3	Nun	nerička	aproksimacija	15
	3.1	Opis n	netoda	15
		3.1.1	Bisekcija	
		3.1.2	Nelder-Mead metoda	16
	3.2	Primje	eri i rezultati	21
		3.2.1	Detalji implementacije	21
		3.2.2	Prvi primjer	21
		3.2.3	Drugi primjer	28
Bi	bliog	rafija		35

Uvod

Optimizacija forme elastične ljuske, čiju pozadinu možemo naći u raznim sferama života, ima mnogo važnih primjena u znanosti i tehnologiji.

U teoriji elastičnosti ljuskom nazivamo trodimenzionalno tijelo koje je u jednoj dimenziji relativno malo u odnosu na druge dvije dimenzije. Mnogo je primjera elastičnih ljuski koje susrećemo u svakodnevnom životu kao što su krovovi, mostovi, cijevi, krvne žile, oplata broda, itd. Iz tog razloga, modeliranje elastičnih ljuski privlači veliku pozornost te je široko istraženo područje.

Pri dizajniranju mehaničkih konstrukcija gore navedenih primjera, inženjer ili arhitekt se susreće s nekim važnim pitanjima kao što su maksimiziranje mehaničke otpornosti konstrukcija ili minimiziranje troškova. Općenito, optimalni dizajn predstavlja kompromis među danim zahtjevima.

Model elastične ljuske kojim se bavimo je model Naghdijeva tipa koji je najavljen u [1], a opisan u [2]. Pronalazak optimalne forme elastičnih struktura oslanja se na svojstva neprekidnosti i diferencijabilnosti rješenja modela u ovisnosti o nekim parametrima te je opisan u [3].

U ovome radu opisujemo model elastične ljuske Naghdijeva tipa, problem optimizacije forme elastične ljuske Naghdijeva tipa koji svodimo na minimizaciju funkcije cilja te pokazujemo da traženi minimum postoji. Na kraju pokazujemo dvije numeričke metode te primjere i rezultate dobivene njima.

Poglavlje 1

Naghdijev model ljuske

U prvom poglavlju opisujemo model elastične ljuske Naghdijeva tipa. Prvo izlažemo geometriju ljuske odnosno način parametrizacije središnje plohe ljuske. Zatim postavljamo model uz uvođenje dodatnih pojmova i nekih pokrata koje ćemo koristiti dalje u radu.

1.1 Geometrija ljuske

Modeliranje elastične ljuske je jako istraženo područje zbog mogućnosti široke primjene. U ovome radu bavimo se modelom elastične ljuske Naghdijeva tipa dok su u upotrebi i drugi modeli kao što su membranski, fleksijski, Koiterov, Budansky-Sandersov te brojni drugi. Naghdijev model uključuje membransku, fleksijsku i energiju smicanja. Naime, u ovom modelu je dopušteno smicanje poprečnog presjeka s obzirom na deformiranu središnju plohu.

Neka je $\omega \subset \mathbb{R}^2$ otvoren, ograničen i povezan skup s Lipschitzovim rubom te neka je središnja ploha ljuske parametrizirana injektivnom funkcijom $\varphi \in C^3(\overline{\omega}; \mathbb{R}^3)$.

Slika 1.1: Središnja ploha ljuske $\varphi(\overline{\omega})$

Točke skupa $\overline{\omega}$ označavamo s $y = (y_{\alpha})$ te neka je $\partial_{\alpha} := \partial/\partial_{y_{\alpha}}$. Pretpostavka da su vektori $a_{\alpha}(y) = \partial_{\alpha}\varphi(y)$, $\alpha = 1, 2$ linearno nezavisni u svakoj točki $y \in \overline{\omega}$ osigurava da φ parametrizira dvodimenzionalnu plohu $S = \varphi(\overline{\omega})$ u \mathbb{R}^3 . Vektori $a_1(y), a_2(y)$ čine kovarijantnu bazu tangencijalne ravnine plohe S u točki $\varphi(y)$, a kontravarijantnu bazu čine vektori $a^{\alpha}(y)$ definirani s

$$\boldsymbol{a}^{\alpha}(\mathbf{y}) \cdot \boldsymbol{a}_{\beta}(\mathbf{y}) = \delta^{\alpha}_{\beta}, \ \alpha, \beta \in \{1, 2\}.$$

gdje je δ^{α}_{β} Kroneckerov simbol. Dodavanjem vektora

$$a_3(y) = a^3(y) = \frac{a_1(y) \times a_2(y)}{\|a_1(y) \times a_2(y)\|}$$

proširujemo te baze do baza za cijeli prostor \mathbb{R}^3 .

Metrički tenzor s kovarijantnim $\mathbf{A}_c = (a_{\alpha\beta})$ ili kontravarijantnim $\mathbf{A}^c = (a^{\alpha\beta})$ komponentama plohe *S* dan je, respektivno, s

$$a_{\alpha\beta} = a_{\alpha}(y) \cdot a_{\beta}(y), \ a^{\alpha\beta} = a^{\alpha}(y) \cdot a^{\beta}(y), \ \forall \alpha, \beta \in 1, 2.$$

Primijetimo da je $\mathbf{A}^c = \mathbf{A}_c^{-1}$. Element površine je $\sqrt{a}dy$ gdje je $a := \det \mathbf{A}_c$. Lako je dokazati da su $\mathbf{A}_c, \mathbf{A}^c, a$ uniformno pozitivno definitne, odnosno

$$\operatorname{ess\,inf}_{y\in\omega}\sigma(\mathbf{A}_{c}(y)), \operatorname{ess\,inf}_{y\in\omega}\sigma(\mathbf{A}^{c}(y)), \operatorname{ess\,inf}_{y\in\omega}a(y) > 0. \tag{1.1}$$

Za funkcije $\varphi \in W^{1,\infty}(\omega; \mathbb{R}^3)$ to će biti pretpostavka.

Time smo opisali parametrizaciju središnje plohe ljuske dok je ljuska kao trodimenzionalno tijelo dana kao slika funkcije $\mathbf{F}: \overline{\omega} \times [-h/2, h/2] \to \mathbb{R}^3$

$$\mathbf{F}(y, x_3) = \varphi(y) + x_3 \boldsymbol{a}_3(y),$$

gdje je *h* debljina ljuske.

1.2 Model ljuske

Model ljuske je definiran za središnju plohu ljuske parametriziranu s $\varphi \in W^{1,\infty}(\omega; \mathbb{R}^3)$. Primijetimo da za tu parametrizaciju vektori kovarijantne i kontravarijantne baze pripadaju prostoru $L^{\infty}(\omega; \mathbb{R}^3)$. Neka je $\gamma_0 \subset \partial \omega$ dio ruba pozitivne duljine. Definirajmo prostor:

$$V_N(\omega) = H^1_{\gamma_0}(\omega; \mathbb{R}^3) \times H^1_{\gamma_0}(\omega; \mathbb{R}^3) = \{ (\tilde{\mathbf{v}}, \tilde{\mathbf{w}}) \in H^1(\omega; \mathbb{R}^3)^2 : \tilde{\mathbf{v}}|_{\gamma_0} = \tilde{\mathbf{w}}|_{\gamma_0} = 0 \}.$$

To je Hilbertov prostor opskrbljen normom

$$\|(\tilde{\boldsymbol{u}},\tilde{\boldsymbol{\omega}})\|_{V_N(\omega)} = (\|\tilde{\boldsymbol{u}}\|_{H^1(\omega;\mathbb{R}^3)}^2 + \|\tilde{\boldsymbol{\omega}}\|_{H^1(\omega;\mathbb{R}^3)}^2)^{1/2}$$

U notaciji $(\tilde{u}, \tilde{\omega}) \in V_N(\omega)$, \tilde{u} je vektor pomaka središnje plohe ljuske, dok je $\tilde{\omega}$ infitezimalna rotacija poprečnog presjeka. Definirajmo bilinearne forme na $V_N(\omega) \times V_N(\omega)$:

$$B_{ms}((\tilde{\boldsymbol{u}},\tilde{\boldsymbol{\omega}}),(\tilde{\boldsymbol{v}},\tilde{\boldsymbol{w}})) := \int_{\omega} \mathbf{Q} C_m(\mathbf{Q}^T [\partial_1 \tilde{\boldsymbol{u}} + \boldsymbol{a}_1 \times \tilde{\boldsymbol{\omega}} \quad \partial_2 \tilde{\boldsymbol{u}} + \boldsymbol{a}_2 \times \tilde{\boldsymbol{\omega}}])$$
$$\cdot [\partial_1 \tilde{\boldsymbol{v}} + \boldsymbol{a}_1 \times \tilde{\boldsymbol{w}} \quad \partial_2 \tilde{\boldsymbol{v}} + \boldsymbol{a}_2 \times \tilde{\boldsymbol{w}}] \sqrt{a} dx,$$
$$B_f((\tilde{\boldsymbol{u}},\tilde{\boldsymbol{\omega}}),(\tilde{\boldsymbol{v}},\tilde{\boldsymbol{w}})) := \frac{1}{12} \int_{\omega} \mathbf{Q} C_f(\mathbf{Q}^T \nabla \tilde{\boldsymbol{\omega}}) \cdot \nabla \tilde{\boldsymbol{w}} \sqrt{a} dx,$$

te linearni funkcional na $V_N(\omega)$:

$$L(\tilde{\mathbf{v}}, \tilde{\mathbf{w}}) = \int_{\omega} \tilde{f} \cdot \tilde{\mathbf{v}} \sqrt{a} dx$$

Model sada glasi : naći $(\tilde{\boldsymbol{u}}, \tilde{\boldsymbol{\omega}}) \in V_N(\boldsymbol{\omega})$ tako da

$$hB_{ms}((\tilde{\boldsymbol{u}},\tilde{\boldsymbol{\omega}}),(\tilde{\boldsymbol{v}},\tilde{\boldsymbol{w}})) + h^3B_f((\tilde{\boldsymbol{u}},\tilde{\boldsymbol{\omega}}),(\tilde{\boldsymbol{v}},\tilde{\boldsymbol{w}})) = L(\tilde{\boldsymbol{v}},\tilde{\boldsymbol{w}}), \quad (\tilde{\boldsymbol{v}},\tilde{\boldsymbol{w}}) \in V_N(\boldsymbol{\omega}).$$
(1.2)

Ovdje je \tilde{f} gustoća vanjske sile, a tenzori elastičnosti $C_m, C_f : M_{3,2}(\mathbb{R}) \to M_{3,2}(\mathbb{R})$ dani su s

$$C_m \hat{\mathbf{C}} \cdot \hat{\mathbf{D}} = \frac{2\lambda\mu}{\lambda + 2\mu} (\mathbf{I} \cdot \mathbf{C}) (\mathbf{I} \cdot \mathbf{D}) + 2\mu \mathbf{A}_c \mathbf{C} \mathbf{A}^c \cdot \mathbf{D} + \mu \mathbf{A}^c \mathbf{c} \cdot \mathbf{d},$$

$$C_f \hat{\mathbf{C}} \cdot \hat{\mathbf{D}} = a\mathcal{A} (\mathbf{J} \mathbf{C}) \cdot \mathbf{J} \mathbf{D} + aM \mathbf{c} \cdot \mathbf{d},$$
(1.3)

gdje je *M* pozitivno definitna matrica.

Pri tome smo koristili

$$\hat{\mathbf{Q}} = \begin{bmatrix} \mathbf{a}^1 & \mathbf{a}^2 \end{bmatrix}, \mathbf{Q} = \begin{bmatrix} \mathbf{a}^1 & \mathbf{a}^2 & \mathbf{a}^3 \end{bmatrix},$$
$$\hat{\mathbf{C}} = \begin{bmatrix} \mathbf{C} \\ \mathbf{c}^T \end{bmatrix}, \ \hat{\mathbf{D}} = \begin{bmatrix} \mathbf{D} \\ \mathbf{d}^T \end{bmatrix} \in M_{2,3}(\mathbb{R}), \ \mathbf{C}, \mathbf{D} \in M_2(\mathbb{R}), \ \mathbf{c}, \mathbf{d} \in \mathbb{R}^2, \ J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$
Uvodimo pokrate:

$$B = hB_{ms} + h^3 B_f.$$

Tenzor elastičnosti A dan je s

$$\mathcal{A}\mathbf{D} = \frac{2\lambda\mu}{\lambda + 2\mu} (\mathbf{A}^c \cdot \mathbf{D}) \mathbf{A}_c + 2\mu \mathbf{A}^c \mathbf{D} \mathbf{A}^c, \ \mathbf{D} \in M_2(\mathbb{R}).$$

Za **E**, **D** \in *Sym*(\mathbb{R}^2) imamo

$$\mathcal{A}\mathbf{E}\cdot\mathbf{D}=\frac{2\lambda\mu}{\lambda+2\mu}(\mathbf{A}^c\cdot\mathbf{E})\mathbf{A}^c\cdot\mathbf{D}+2\mu\mathbf{A}^c\mathbf{E}\mathbf{A}^c\cdot\mathbf{D}.$$

Konstante λ, μ nazivaju se Laméovi koeficijenti. Ovise o materijalu, a vrijedi i

$$\lambda = \frac{\nu E}{(1+\nu)(1-2\nu)}, \ \mu = \frac{E}{2(1+\nu)}$$

gdje su v Poissonov broj, a E Youngov modul elastičnosti. $hB_{ms}((\tilde{u}, \tilde{\omega}), (\tilde{u}, \tilde{\omega}))$ je membranska i energija smicanja dok je $h^3B_f((\tilde{\boldsymbol{u}}, \tilde{\boldsymbol{\omega}}), (\tilde{\boldsymbol{u}}, \tilde{\boldsymbol{\omega}}))$ fleksijska energija.

U nastavku navodimo dva teorema bez dokaza. Teorem 1.2.1. se odnosi na koercitivnost bilinearne forme B u modelu (1.2), a Teorem 1.2.2. na egzistenciju i jedinstvenost modela (1.2). Ovim smo kompletirali sve potrebno za opis modela ljuske Nagdijeva tipa.

Teorem 1.2.1. Neka je $\varphi \in W^{1,\infty}(\omega, \mathbb{R}^3)$ takav da vrijedi (1.1) te neka je $3\lambda + 2\mu, \mu > 0$. Tada su tenzori C_m, C_f pozitivno definitni, odnosno, postoje $c_m, c_f > 0$ takvi da

$$C_m \hat{D} \cdot \hat{D} \ge c_m \hat{D} \cdot \hat{D}, \ C_f \hat{D} \cdot \hat{D} \ge c_f \hat{D} \cdot \hat{D}, \ \hat{D} \in M_{3,2}(\mathbb{R}).$$

. .

Nadalje, postoji $C_N > 0$ takav da za sve $(\tilde{v}, \tilde{w}) \in V_N(\omega)$

$$\|(\tilde{\boldsymbol{v}},\tilde{\boldsymbol{w}})\|_{V_N(\omega)} \leq C_N \Big(\| \left[\partial_1 \tilde{\boldsymbol{v}} + \boldsymbol{a}_1 \times \tilde{\boldsymbol{w}} \quad \partial_2 \tilde{\boldsymbol{v}} + \boldsymbol{a}_2 \times \tilde{\boldsymbol{w}} \right] \|_{L^2(\omega,M_{3,2}(\mathbb{R}))}^2 + \| \nabla \tilde{\boldsymbol{w}} \|_{L^2(\omega,M_{3,2}(\mathbb{R}))}^2 \Big)^{1/2}.$$

Teorem 1.2.2. Neka vrijede pretpostavke Teorema 1.2.1. Tada model (1.2) ima jedinstveno rješenje.

Poglavlje 2

Optimizacija

U ovom poglavlju razmatramo problem optimizacije oblika ljuske. Prvo definiramo problem optimizacije koji svodimo na minimizaciju funkcije cilja. Zatim pokazujemo da minimum postoji oslanjajući se na svojstva neprekidnosti i diferencijabilnosti rješenja ($\tilde{u}, \tilde{\omega}$) varijacijske jednadžbe (1.2) u ovisnosti o geometriji φ . Na kraju uvodimo funkciju cilja i računamo izraze koji su nam potrebni za numeričku aproksimaciju minimuma.

2.1 Definicija problema

Neka je zadana sila \tilde{f} koja djeluje na ljusku, debljina ljuske *h* te neka je \mathcal{U} zatvoren i ograničen podskup od $W^{1,\infty}(\overline{\omega};\mathbb{R}^3)$. Kao i do sad označimo s $\varphi \in \mathcal{U}$ jednu parametrizaciju središnje plohe ljuske. U nastavku ćemo na sljedeći način označavati izraze $(\tilde{u}^{\varphi}, \tilde{\omega}^{\varphi})$ ili $(\tilde{u}(\varphi), \tilde{\omega}(\varphi)), B^{\varphi}, L^{\varphi}$ u ovisnosti o parametrizaciji φ . Neka je $J : V_N(\omega) \times W^{1,\infty}(\overline{\omega};\mathbb{R}^3) \to \mathbb{R}$ dana funkcija cilja. Promatramo sljedeći problem minimizacije:

$$\min_{\varphi \in \mathcal{U}} \left\{ \Pi(\varphi) = J((\tilde{\boldsymbol{u}}^{\varphi}, \tilde{\boldsymbol{\omega}}^{\varphi}), \varphi) \right\}$$
(P)

gdje je $(\tilde{\boldsymbol{u}}^{\varphi}, \tilde{\boldsymbol{\omega}}^{\varphi}) \in V_N(\omega)$ jedinstveno rješenje od (1.2) vezano uz parametrizaciju φ . Jasno se vidi da bilinearna forma $B = B^{\varphi}$ i desna strana $L = L^{\varphi}$ od (1.2) ovise o parametrizaciji φ . Problem optimizacije (P) ima za cilj naći oblik ljuske odnosno nepoznatu plohu $S = \varphi(\overline{\omega})$ za koju je pod utjecajem zadane sile vrijednost funkcije cilja minimalna.

2.2 Svojstva

Prvo pokazujemo neprekidnu zavisnost rješenja danog s (1.2) s obzirom na promjenu geometrije središnje plohe ljuske. Neka je niz parametrizacija dan s $(\varphi^n)_n \subset W^{1,\infty}(\omega;\mathbb{R}^3), \varphi_0 \subset W^{1,\infty}(\omega;\mathbb{R}^3)$ te neka

$$\varphi^n \to \varphi^0 \quad \text{jako u } W^{1,\infty}(\omega; \mathbb{R}^3).$$
 (2.1)

Za $n \in \mathbb{R} \cup \{0\}$ definiramo operatore

$$\mathbf{A}^{n} \tilde{\boldsymbol{\omega}} = [\boldsymbol{a}_{1}^{n} \times \tilde{\boldsymbol{\omega}} \ \boldsymbol{a}_{2}^{n} \times \tilde{\boldsymbol{\omega}}],$$
$$\mathcal{A}_{m}^{n} \mathbf{D} = h \mathbf{Q}^{n} C_{m}^{n} ((\mathbf{Q}^{n})^{T} \mathbf{D}) \sqrt{a^{n}},$$
$$\mathcal{A}_{f}^{n} \mathbf{D} = \frac{h^{3}}{12} \mathbf{Q}^{n} C_{f}^{n} ((\mathbf{Q}^{n})^{T} \mathbf{D}) \sqrt{a^{n}}$$

gdje su a_1^n, a_2^n, a^n i \mathbf{Q}^n određeni s geometrijom φ^n te C_m^n i C_f^n dani s (1.3) određeni s geometrijom φ^n i svojstvima materijala. Tada iz (2.1) slijedi

$$\mathbf{A}^{n} \to \mathbf{A}^{0} \quad \text{jako u} \ L^{\infty}(\omega; M_{3,2}(\mathbb{R})),$$

$$\mathcal{A}_{m}^{n} \to \mathcal{A}_{m}^{0} \quad \text{jako u} \ L^{\infty}(\omega; L(M_{3,2}(\mathbb{R}); M_{3,2}(\mathbb{R}))) =: L_{\mathcal{A}},$$

$$\mathcal{A}_{f}^{n} \to \mathcal{A}_{f}^{0} \quad \text{jako u} \ L^{\infty}(\omega; L(M_{3,2}(\mathbb{R}); M_{3,2}(\mathbb{R}))).$$

$$(2.2)$$

Ovdje L(X, Y) označava prostor ograničenih linearnih funkcionala sa X na Y s operatorskom normom. Za silu pretpostavljamo

$$\tilde{f}^n \sqrt{a^n} \to \tilde{f}^0 \sqrt{a^0}$$
 jako u $L^2(\omega; \mathbb{R}^3).$ (2.3)

Model za *n*-tu geometriju glasi : naći $(\tilde{\boldsymbol{u}}^n, \tilde{\boldsymbol{\omega}}^n) \in V_N(\omega)$ tako da

$$\int_{\omega} \mathcal{A}_{m}^{n} (\nabla \tilde{\boldsymbol{u}}^{n} + \mathbf{A}^{n} \tilde{\boldsymbol{\omega}}^{n}) \cdot (\nabla \tilde{\boldsymbol{v}} + \mathbf{A}^{n} \tilde{\boldsymbol{v}}) + \int_{\omega} \mathcal{A}_{f}^{n} \nabla \tilde{\boldsymbol{\omega}}^{n} \cdot \nabla \tilde{\boldsymbol{w}} = \int_{\omega} \tilde{f}^{n} \cdot \tilde{\boldsymbol{v}} \sqrt{a^{n}} dx, \quad (\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{w}}) \in V_{N}(\omega) \quad (2.4)$$

Primijetimo da su \mathcal{A}_m^n i \mathcal{A}_f^n pozitivni definitni operatori, te zbog (2.2) postoji n_0 tako da su \mathcal{A}_m^n i \mathcal{A}_f^n uniformno pozitivni definitni za $n \ge n_0$ tj. postoji $\alpha > 0$ tako da za svaki $n \ge n_0$

$$\mathcal{A}_m^n \mathbf{M} \cdot \mathbf{M} \ge \alpha \mathbf{M} \cdot \mathbf{M} i \mathcal{A}_f^n \mathbf{M} \cdot \mathbf{M} \ge \alpha \mathbf{M} \cdot \mathbf{M}, \forall \mathbf{M} \in M_{3,2}(\mathbb{R}).$$

Ova tvrdnja zajedno s (2.3) daje uniformnu ocjenu za rješenje od (2.4):

$$\|(\tilde{\boldsymbol{u}}^n, \tilde{\boldsymbol{\omega}}^n)\|_{H^1(\omega; \mathbb{R}^3) \times H^1(\omega; \mathbb{R}^3)} \le C.$$
(2.5)

Sada uzimamo u obzir ocjenu za $(\tilde{\boldsymbol{u}}^n, \tilde{\boldsymbol{\omega}}^n) - (\tilde{\boldsymbol{u}}^0, \tilde{\boldsymbol{\omega}}^0)$. Donosimo je u nastavku ocjenjujući energiju za razliku $(\tilde{\boldsymbol{u}}^n, \tilde{\boldsymbol{\omega}}^n) - (\tilde{\boldsymbol{u}}^0, \tilde{\boldsymbol{\omega}}^0)$.

$$\int_{\omega} \mathcal{A}_m^0 (\nabla (\tilde{\boldsymbol{u}}^0 - \tilde{\boldsymbol{u}}^n) + \mathbf{A}^0 (\tilde{\boldsymbol{\omega}}^0 - \tilde{\boldsymbol{\omega}}^n)) \cdot (\nabla (\tilde{\boldsymbol{u}}^0 - \tilde{\boldsymbol{u}}^n) + \mathbf{A}^0 (\tilde{\boldsymbol{\omega}}^0 - \tilde{\boldsymbol{\omega}}^n)) dx$$

$$+ \|\mathcal{A}_{f}^{0} - \mathcal{A}_{f}^{n}\|_{L_{\mathcal{A}}} \|\nabla \tilde{\boldsymbol{\omega}}^{n}\|_{L^{2}(\omega; M_{3,2}(\mathbb{R}))} \|\nabla (\tilde{\boldsymbol{\omega}}^{0} - \tilde{\boldsymbol{\omega}}^{n})\|_{L^{2}(\omega; M_{3,2}(\mathbb{R}))}$$

$$\leq (\|\tilde{\boldsymbol{f}}^{0}\sqrt{a^{0}}-\tilde{\boldsymbol{f}}^{n}\sqrt{a^{n}}\|_{L^{2}(\omega;\mathbb{R}^{3})} + \|\mathcal{A}_{m}^{0}-\mathcal{A}_{m}^{n}\|_{L_{\mathcal{A}}}\|\nabla\tilde{\boldsymbol{u}}^{n}+\mathbf{A}^{n}\tilde{\boldsymbol{\omega}}^{n}\|_{L^{2}(\omega;M_{3,2}(\mathbb{R}))}(1+\|\mathbf{A}^{n}\|_{L^{\infty}(\omega;M_{3,2}(\mathbb{R}))}) \\ + \|\mathcal{A}_{m}^{0}\|_{L_{\mathcal{A}}}\|\mathbf{A}^{0}-\mathbf{A}^{n}\|_{L^{\infty}(\omega;M_{3,2}(\mathbb{R}))}\|\tilde{\boldsymbol{\omega}}^{n}\|_{L^{2}(\omega;\mathbb{R}^{3})}(1+\|\mathbf{A}^{n}\|_{L^{\infty}(\omega;M_{3,2}(\mathbb{R}))}) \\ + \|\mathcal{A}_{m}^{0}\|_{L_{\mathcal{A}}}\|\nabla\tilde{\boldsymbol{u}}^{n}+\mathbf{A}^{0}\tilde{\boldsymbol{\omega}}^{n}\|_{L^{2}(\omega;M_{3,2}(\mathbb{R}))}\|\mathbf{A}^{0}-\mathbf{A}^{n}\|_{L^{\infty}(\omega;M_{3,2}(\mathbb{R}))} \\ + \|\mathcal{A}_{f}^{0}-\mathcal{A}_{f}^{n}\|_{L_{\mathcal{A}}}\|\nabla\tilde{\boldsymbol{\omega}}^{n}\|_{L^{2}(\omega;M_{3,2}(\mathbb{R}))})\|(\tilde{\boldsymbol{u}}^{n},\tilde{\boldsymbol{\omega}}^{n})-(\tilde{\boldsymbol{u}}^{0},\tilde{\boldsymbol{\omega}}^{0})\|_{H^{1}(\omega;\mathbb{R}^{3})\times H^{1}(\omega;\mathbb{R}^{3})}.$$

Prva jednakost slijedi iz (2.4) za n = 0 i test funkciju ($\tilde{\boldsymbol{u}}^{0}, \tilde{\boldsymbol{\omega}}^{0}$) – ($\tilde{\boldsymbol{u}}^{n}, \tilde{\boldsymbol{\omega}}^{n}$). Za dobivanje druge jednakosti dodali smo i oduzeli jednake izraze koji se odnose na *n*-tu parametrizaciju. Treća jednakost slijedi iz (2.4) za dani *n* i test funkciju ($\tilde{\boldsymbol{u}}^{0}, \tilde{\boldsymbol{\omega}}^{0}$) – ($\tilde{\boldsymbol{u}}^{n}, \tilde{\boldsymbol{\omega}}^{n}$). Prva i druga nejednakost slijede iz Schwarz-Cauchy-Bunyakovsky nejednakosti u L^{2} , ograničenosti linearnih operatora i Poincare-ove nejednakosti. Nadalje, koristeći pozitivnu definitnost matrica \mathcal{A}_{m}^{n} i \mathcal{A}_{f}^{n} i ocjenu (2.5) dobivamo ocjenu razlike rješenja za *n*-tu i nultu geometriju u sljedećem teoremu.

Teorem 2.2.1. Neka su $(\varphi^n)_n \subset W^{1,\infty}(\omega, \mathbb{R}^3)$ $i \varphi_0 \subset W^{1,\infty}(\omega, \mathbb{R}^3)$ tako da

$$\varphi^n \to \varphi^0 \quad jako \ u \ W^{1,\infty}(\omega,\mathbb{R}^3)$$

te neka vrijedi (1.1) za sve $n \in \mathbb{N} \cup \{0\}$. Neka je $(\tilde{\boldsymbol{u}}^n, \tilde{\boldsymbol{\omega}}^n)$ rješenje od (2.4) za geometriju danu s $\varphi^n, n \in \mathbb{N} \cup \{0\}$. Tada postoji C > 0 tako da

$$\|(\tilde{\boldsymbol{u}}^n, \tilde{\boldsymbol{\omega}}^n) - (\tilde{\boldsymbol{u}}^0, \tilde{\boldsymbol{\omega}}^0)\|_{H^1(\omega; \mathbb{R}^3) \times H^1(\omega; \mathbb{R}^3)}$$

$$\leq C(\|\tilde{f}^{0}\sqrt{a^{0}} - \tilde{f}^{n}\sqrt{a^{n}}\|_{L^{2}(\omega;\mathbb{R}^{3})} + \|\mathcal{A}_{m}^{0} - \mathcal{A}_{m}^{n}\|_{L^{\mathcal{A}}} + \|A^{0} - A^{n}\|_{L^{\infty}(\omega;M_{3,2}(\mathbb{R}))} + \|\mathcal{A}_{f}^{0} - \mathcal{A}_{f}^{n}\|_{L^{\mathcal{A}}}),$$

gdje je $L_{\mathcal{A}} := L^{\infty}(\omega; L(M_{3,2}(\mathbb{R}); M_{3,2}(\mathbb{R}))).$

Definicija 2.2.2. Neka je X metrički prostor, $f : X \to [-\infty, +\infty]$ i $x \in X$. Tada je f poluneprekidna odozdo u x ako za svaki niz $(x_n)_{n \in \mathbb{N}}$ u X vrijedi

$$x_n \to x \implies f(x) \le \liminf_{x_n \to x} f(x_n)$$

ili, ekvivalentno, ako

$$(\forall \xi \in \langle -\infty, f(x) \rangle (\exists V \in \mathcal{V}(x)) \quad f(V) \subset \langle \xi, -\infty].$$

Posljedica prethodnih razmatranja je sljedeći teorem.

Teorem 2.2.3. Ako je \mathcal{U} kompaktan u $W^{1,\infty}(\overline{\omega}, \mathbb{R}^3)$ i $J : V_N(\omega) \times W^{1,\infty}(\overline{\omega}, \mathbb{R}^3) \to \mathbb{R}$ poluneprekidna odozdo funkcija, tada problem optimizacije (P) ima barem jedno rješenje $\varphi \in \mathcal{U}$. *Dokaz.* Neka je $(\varphi^n) \subseteq \mathcal{U}$ infimizirajući niz takav da je

$$J((\tilde{\boldsymbol{u}}^{\varphi^n}, \tilde{\boldsymbol{\omega}}^{\varphi^n}), \varphi^n) \to \inf_{\varphi \in \mathcal{U}} J((\tilde{\boldsymbol{u}}^{\varphi}, \tilde{\boldsymbol{\omega}}^{\varphi}), \varphi).$$

Jer je \mathcal{U} kompaktan podskup od $W^{1,\infty}(\overline{\omega}, \mathbb{R}^3)$, postoji podniz i dalje označen s φ^n i $\varphi^0 \in \mathcal{U}$ tako da

$$\varphi^n \to \varphi^0$$
 u $W^{1,\infty}(\overline{\omega},\mathbb{R}^3).$

Zbog Teorema 2.2.1. slijedi da je tada

$$(\tilde{\boldsymbol{u}}^{\varphi^n}, \tilde{\boldsymbol{\omega}}^{\varphi^n}) \to (\tilde{\boldsymbol{u}}^{\varphi^0}, \tilde{\boldsymbol{\omega}}^{\varphi^0}) \quad \mathrm{u} \ H^1(\overline{\boldsymbol{\omega}}, \mathbb{R}^3) \times H^1(\overline{\boldsymbol{\omega}}, \mathbb{R}^3).$$

Sada poluneprekinutost odozdo funkcije J povlači

$$\inf_{\varphi \in \mathcal{U}} J((\tilde{\boldsymbol{u}}^{\varphi}, \tilde{\boldsymbol{\omega}}^{\varphi}), \varphi) = \liminf_{n \to \infty} J((\tilde{\boldsymbol{u}}^{\varphi^n}, \tilde{\boldsymbol{\omega}}^{\varphi^n}), \varphi^n) \ge J((\tilde{\boldsymbol{u}}^{\varphi^0}, \tilde{\boldsymbol{\omega}}^{\varphi^0}), \varphi^0),$$

pa je stoga φ_0 minimum.

U nastavku ispitujemo svojstva diferencijabilnosti preslikavanja $\varphi \in W^{1,\infty}(\overline{\omega}, \mathbb{R}^3) \rightarrow (\tilde{u}, \tilde{\omega}) \in V_N(\omega)$ definirana s (1.2).

Uzimamo u obzir perturbacije forme $\varphi_{\alpha} = \varphi + \alpha \psi$, $\alpha \in \mathbb{R} \setminus \{0\}$, $\psi \in W^{1,\infty}(\overline{\omega}, \mathbb{R}^3)$, $|\psi|_{|W^{1,\infty}(\overline{\omega}, \mathbb{R}^3)} = 1$. Kao i prije, uvodimo operatore $\mathbf{A}^{\alpha}, \mathcal{A}^{\alpha}_m, \mathcal{A}^{\alpha}_f$ koji su dani s obzirom na geometriju $\varphi_{\alpha} = \varphi + \alpha \psi$. Također, zapisujemo bilinearnu formu $B = B^{\alpha}$ i desnu stranu sustava $L = L^{\alpha}$. Za $\alpha = 0$ jednostavno pišemo φ .

Iz svojstava neprekidnosti koje smo utvrdili prije i (1.1), slijedi da postoji $\alpha_0 > 0$ tako da za sve $0 < |\alpha| \le \alpha_0$ (1.2) ima jedinstveno rješenje za parametrizaciju $\varphi_{\alpha} = \varphi + \alpha \psi$. Rješenje za tu parametrizaciju obilježavamo s ($\tilde{\boldsymbol{u}}^{\alpha}, \tilde{\boldsymbol{\omega}}^{\alpha}$) $\in V_N(\omega)$.

Po Teoremu 2.2.1. znamo da

$$(\tilde{\boldsymbol{u}}^{\alpha}, \tilde{\boldsymbol{\omega}}^{\alpha}) \to (\tilde{\boldsymbol{u}}, \tilde{\boldsymbol{\omega}}) \text{ jako u } V_N(\boldsymbol{\omega}).$$
 (2.6)

Oduzimamo jednadžbe modela čije je rješenje ($\tilde{u}^{\alpha}, \tilde{\omega}^{\alpha}$) jedndžbama za ($\tilde{u}, \tilde{\omega}$)

$$B^{\alpha}((\tilde{\boldsymbol{u}}^{\alpha}, \tilde{\boldsymbol{\omega}}^{\alpha}), (\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{w}})) = L^{\alpha}(\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{w}}),$$
$$B((\tilde{\boldsymbol{u}}, \tilde{\boldsymbol{\omega}}), (\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{w}})) = L(\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{w}}),$$

i dijelimo rezultat s $\alpha \neq 0$. Pokazat ćemo da postoji limes kad $\alpha \rightarrow 0$. Imamo sljedeći račun

$$B\left(\frac{(\tilde{\boldsymbol{u}}^{\alpha}, \tilde{\boldsymbol{\omega}}^{\alpha}) - (\tilde{\boldsymbol{u}}, \tilde{\boldsymbol{\omega}})}{\alpha}, (\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{w}})\right) = \frac{1}{\alpha}B((\tilde{\boldsymbol{u}}^{\alpha}, \tilde{\boldsymbol{\omega}}^{\alpha}), (\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{w}})) - \frac{1}{\alpha}L(\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{w}})$$
$$= \frac{1}{\alpha}\left(B^{\alpha}((\tilde{\boldsymbol{u}}^{\alpha}, \tilde{\boldsymbol{\omega}}^{\alpha}), (\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{w}})) + (B - B^{\alpha})((\tilde{\boldsymbol{u}}^{\alpha}, \tilde{\boldsymbol{\omega}}^{\alpha}), (\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{w}})) - L(\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{w}})\right)$$

POGLAVLJE 2. OPTIMIZACIJA

$$= \frac{1}{\alpha} \Big(L^{\alpha}(\tilde{v}, \tilde{w}) - L(\tilde{v}, \tilde{w}) + (B - B^{\alpha})((\tilde{u}^{\alpha}, \tilde{\omega}^{\alpha}), (\tilde{v}, \tilde{w})) \Big)$$
$$= \int_{\omega} \tilde{f} \cdot \tilde{v} \frac{\sqrt{a^{\alpha}} - \sqrt{a}}{\alpha} dx + \frac{(B - B^{\alpha})}{\alpha}((\tilde{u}^{\alpha}, \tilde{\omega}^{\alpha}), (\tilde{v}, \tilde{w})).$$

Definiramo

$$\tilde{Z}^{\alpha}((\tilde{\boldsymbol{u}}^{\alpha},\tilde{\boldsymbol{\omega}}^{\alpha}),(\tilde{\boldsymbol{v}},\tilde{\boldsymbol{w}})) := \int_{\omega} \tilde{f} \cdot \tilde{\boldsymbol{v}} \frac{\sqrt{a^{\alpha}} - \sqrt{a}}{\alpha} dx + \frac{(B - B^{\alpha})}{\alpha}((\tilde{\boldsymbol{u}}^{\alpha},\tilde{\boldsymbol{\omega}}^{\alpha}),(\tilde{\boldsymbol{v}},\tilde{\boldsymbol{w}})).$$

Dobivamo sljedeće

$$B\left(\frac{(\tilde{\boldsymbol{u}}^{\alpha}, \tilde{\boldsymbol{\omega}}^{\alpha}) - (\tilde{\boldsymbol{u}}, \tilde{\boldsymbol{\omega}})}{\alpha}, (\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{w}})\right) = \tilde{Z}^{\alpha}((\tilde{\boldsymbol{u}}^{\alpha}, \tilde{\boldsymbol{\omega}}^{\alpha}), (\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{w}})), \ (\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{w}}) \in V_{N}(\omega).$$
(2.7)

Koristeći svojstva neprekidnosti i diferencijabilnosti geometrije u odnosu na α vidimo da limes

$$Z(\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{w}}) = \lim_{\alpha \to 0} \tilde{Z}^{\alpha} ((\tilde{\boldsymbol{u}}^{\alpha}, \tilde{\boldsymbol{\omega}}^{\alpha}), (\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{w}}))$$

postoji bez uzimanja podniza za svaki $(\tilde{v}, \tilde{w}) \in V_N(\omega)$. Zapravo $Z \in V_N(\omega)^*$. Sada za test funkciju stavljamo $(\tilde{v}, \tilde{w}) = \alpha^{-1}((\tilde{u}^{\alpha}, \tilde{\omega}^{\alpha}) - (\tilde{u}, \tilde{\omega})), \alpha \neq 0$ u (2.7). Dobivamo

$$B\left(\frac{(\tilde{\boldsymbol{u}}^{\alpha}, \tilde{\boldsymbol{\omega}}^{\alpha}) - (\tilde{\boldsymbol{u}}, \tilde{\boldsymbol{\omega}})}{\alpha}, \frac{(\tilde{\boldsymbol{u}}^{\alpha}, \tilde{\boldsymbol{\omega}}^{\alpha}) - (\tilde{\boldsymbol{u}}, \tilde{\boldsymbol{\omega}})}{\alpha}\right) = \tilde{Z}_{\alpha}((\tilde{\boldsymbol{u}}^{\alpha}, \tilde{\boldsymbol{\omega}}^{\alpha}), \frac{(\tilde{\boldsymbol{u}}^{\alpha}, \tilde{\boldsymbol{\omega}}^{\alpha}) - (\tilde{\boldsymbol{u}}, \tilde{\boldsymbol{\omega}})}{\alpha}), \\ \leq C \|(\tilde{\boldsymbol{u}}^{\alpha}, \tilde{\boldsymbol{\omega}}^{\alpha})\|_{V_{N}(\omega)}\|\frac{(\tilde{\boldsymbol{u}}^{\alpha}, \tilde{\boldsymbol{\omega}}^{\alpha}) - (\tilde{\boldsymbol{u}}, \tilde{\boldsymbol{\omega}})}{\alpha}\|_{V_{N}(\omega)}.$$

Zbog koercitivnost forme B (Teorem 1.2.1.) slijedi

$$\|\frac{(\tilde{\boldsymbol{u}}^{\alpha},\tilde{\boldsymbol{\omega}}^{\alpha})-(\tilde{\boldsymbol{u}},\tilde{\boldsymbol{\omega}})}{\alpha}\|_{V_{N}(\omega)}^{2} \leq C\|(\tilde{\boldsymbol{u}}^{\alpha},\tilde{\boldsymbol{\omega}}^{\alpha})\|_{V_{N}(\omega)}\|\frac{(\tilde{\boldsymbol{u}}^{\alpha},\tilde{\boldsymbol{\omega}}^{\alpha})-(\tilde{\boldsymbol{u}},\tilde{\boldsymbol{\omega}})}{\alpha}\|_{V_{N}(\omega)},$$

pa je

$$\|\frac{(\tilde{\boldsymbol{u}}^{\alpha}, \tilde{\boldsymbol{\omega}}^{\alpha}) - (\tilde{\boldsymbol{u}}, \tilde{\boldsymbol{\omega}})}{\alpha}\|_{V_{N}(\omega)} \leq C \|(\tilde{\boldsymbol{u}}^{\alpha}, \tilde{\boldsymbol{\omega}}^{\alpha})\|_{V_{N}(\omega)}$$

Uzimajući u obzir (2.6) vidimo da je $\{\alpha^{-1}((\tilde{\boldsymbol{u}}^{\alpha}, \tilde{\boldsymbol{\omega}}^{\alpha}) - (\tilde{\boldsymbol{u}}, \tilde{\boldsymbol{\omega}}))\}_{\alpha}$ ograničen u $V_N(\omega)$. Stoga postoji podniz $\alpha_n \to 0$ tako da

$$\frac{(\tilde{\boldsymbol{u}}^{\alpha_n}, \tilde{\boldsymbol{\omega}}^{\alpha_n}) - (\tilde{\boldsymbol{u}}, \tilde{\boldsymbol{\omega}})}{\alpha_n} \to (\hat{\boldsymbol{u}}, \hat{\boldsymbol{\omega}}) \text{ slabo u } V_N(\boldsymbol{\omega}) \quad \text{za } n \to \infty.$$

Prelazimo na limes za $n \to \infty$ u (2.7) i dobivamo

$$B((\hat{u},\hat{\omega}),(\tilde{v},\tilde{w})) = Z((\tilde{v},\tilde{w})), \quad (\tilde{v},\tilde{w}) \in V_N(\omega)$$
(2.8)

koji zahvaljujući Lax-Milgram lemi ima jedinstveno rješenje. Dokazali smo sljedeći rezultat.

Propozicija 2.2.4. Preslikavanje $\varphi \in W^{1,\infty}(\overline{\omega}; \mathbb{R}^3) \to (\tilde{\boldsymbol{u}}, \tilde{\boldsymbol{\omega}}) \in V_N(\omega)$ dano s (1.2) je Gâteaux diferencijabilno na \mathcal{U} i derivacija u smjeru od $(\hat{\boldsymbol{u}}, \hat{\boldsymbol{\omega}})$ u φ u smjeru $\psi \in W^{1,\infty}(\overline{\omega}; \mathbb{R}^3)$ zadovoljava (2.8).

2.3 Jednodimenzionalni slučaj

Promatramo parametrizaciju $\varphi(\alpha)$ koja je oblika

$$\varphi(\alpha) = \varphi_0 + \alpha \varphi_1 + (1 - \alpha) \varphi_2,$$

gdje je $\alpha \in [0, 1]$, te $\varphi_0, \varphi_1, \varphi_2 : \overline{\omega} \to \mathbb{R}^3$ zadane funkcije.

Funkcija cilja koju promatramo je

$$J((\tilde{\boldsymbol{u}}(\varphi), \tilde{\boldsymbol{\omega}}(\varphi)), \varphi) = \int_{\omega} \tilde{\boldsymbol{f}} \cdot \tilde{\boldsymbol{u}}(\varphi) \sqrt{a(\varphi)} dx,$$

gdje je $(\tilde{\boldsymbol{u}}(\varphi), \tilde{\boldsymbol{\omega}}(\varphi)) \in V_N(\omega)$ rješenje jednadžbe (1.2) za parametrizaciju φ . Kao i prije, ovisnost izraza o zadanoj parametrizaciji zapisujemo na isti način.

Vidimo da funkciju cilja možemo zapisati na sljedeći način

$$J(\alpha) = \int_{\omega} \tilde{f} \cdot \tilde{u}(\alpha) \sqrt{a(\alpha)} dx.$$

Primijetimo da u ovom slučaju promatramo funkciju cilja kao funkciju jedne varijable koja ovisi o parametru α . Optimizacijski problem se svodi na traženje minimuma te funkcije. Odnosno, za unaprijed zadanu silu \tilde{f} tražimo α u rasponu [0, 1] za koju će funkcija cilja $J(\alpha)$ poprimati najmanju vrijednost. Za potrebe traženja minimuma računamo derivaciju funkcije $J'(\alpha)$.

$$J'(\alpha) = \lim_{\Delta \alpha \to 0} \frac{J(\alpha + \Delta \alpha) - J(\alpha)}{\Delta \alpha} dx$$
$$= \lim_{\Delta \alpha \to 0} \int_{\omega} \tilde{f} \cdot \frac{\tilde{u}(\alpha + \Delta \alpha) \sqrt{a(\alpha + \Delta \alpha)} - \tilde{u}(\alpha) \sqrt{a(\alpha)}}{\Delta \alpha} dx$$
$$= \lim_{\Delta \alpha \to 0} \int_{\omega} \tilde{f} \cdot \frac{\tilde{u}(\alpha + \Delta \alpha) \sqrt{a(\alpha + \Delta \alpha)} - \tilde{u}(\alpha + \Delta \alpha) \sqrt{a(\alpha)} + \tilde{u}(\alpha + \Delta \alpha) \sqrt{a(\alpha)} - \tilde{u}(\alpha) \sqrt{a(\alpha)}}{\Delta \alpha} dx$$
$$= \lim_{\Delta \alpha \to 0} \int_{\omega} \tilde{f} \cdot \left(\frac{\tilde{u}(\alpha + \Delta \alpha) - \tilde{u}(\alpha)}{\Delta \alpha} \sqrt{a(\alpha)} + \tilde{u}(\alpha + \Delta \alpha) \frac{\sqrt{a(\alpha + \Delta \alpha)} - \sqrt{a(\alpha)}}{\Delta \alpha}\right) dx.$$

Kad pustimo limes $\triangle \alpha \rightarrow 0$ dobivamo:

$$J'(\alpha) = \int_{\omega} \tilde{f} \cdot \left(\tilde{\boldsymbol{u}}'(\alpha) \sqrt{a(\alpha)} + \tilde{\boldsymbol{u}}(\alpha) (\sqrt{a(\alpha)})' \right) dx$$

Dakle, da bismo izračunali $J'(\alpha)$ potreban nam je $\tilde{u}'(\alpha)$, dok se izraz $(\sqrt{a(\alpha)})'$ može izračunati direktno. U prošloj sekciji smo pokazali da je $\tilde{u}'(\alpha)$ rješenje jednadžbe:

$$B^{\alpha}((\tilde{\boldsymbol{u}}'(\alpha), \tilde{\boldsymbol{\omega}}'(\alpha)), (\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{w}})) = (L^{\alpha})'(\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{w}}) - (B^{\alpha})'((\tilde{\boldsymbol{u}}(\alpha), \tilde{\boldsymbol{\omega}}(\alpha)), (\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{w}})), \quad (\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{w}}) \in V_N(\omega), \quad (2.9)$$

gdje je $(\tilde{\boldsymbol{u}}(\alpha), \tilde{\boldsymbol{\omega}}(\alpha)) \in V_N(\omega)$ rješenje jednadžbe (1.2). Raspišimo izraze na desnoj strani jednadžbe (2.9).

$$(L^{\alpha})'(\tilde{\boldsymbol{v}},\tilde{\boldsymbol{w}}) = \int_{\omega} \tilde{\boldsymbol{f}} \cdot \tilde{\boldsymbol{v}} (\sqrt{a(\alpha)})' dx.$$

Izraz za $(B^{\alpha})' = (B^{\alpha}_{ms})' + (B^{\alpha}_{f})'$ je nešto složeniji i donosimo ga u nastavku.

$$\begin{split} \frac{B_{f}^{\alpha+\Delta\alpha}((\tilde{\boldsymbol{u}},\tilde{\boldsymbol{\omega}}),(\tilde{\boldsymbol{v}},\tilde{\boldsymbol{w}})) - B_{f}^{\alpha}((\tilde{\boldsymbol{u}},\tilde{\boldsymbol{\omega}}),(\tilde{\boldsymbol{v}},\tilde{\boldsymbol{w}}))}{\Delta\alpha} = \\ &= \frac{1}{12} \frac{1}{\Delta\alpha} \int_{\omega} \left[\mathbf{Q}^{\alpha+\Delta\alpha} C_{f}^{\alpha+\Delta\alpha}((\mathbf{Q}^{\alpha+\Delta\alpha})^{T} \nabla \tilde{\boldsymbol{\omega}}) \sqrt{a(\alpha+\Delta\alpha)} - \mathbf{Q}^{\alpha} C_{f}^{\alpha}((\mathbf{Q}^{\alpha})^{T} \nabla \tilde{\boldsymbol{\omega}}) \sqrt{a(\alpha)} \right] \cdot \nabla \tilde{\boldsymbol{w}} dx \\ &= \frac{1}{12} \frac{1}{\Delta\alpha} \int_{\omega} \left[(\mathbf{Q}^{\alpha+\Delta\alpha} - \mathbf{Q}^{\alpha}) C_{f}^{\alpha+\Delta\alpha}((\mathbf{Q}^{\alpha+\Delta\alpha})^{T} \nabla \tilde{\boldsymbol{\omega}}) \sqrt{a(\alpha+\Delta\alpha)} \right. \\ &\quad + \mathbf{Q}^{\alpha} (C_{f}^{\alpha+\Delta\alpha} - C_{f}^{\alpha})((\mathbf{Q}^{\alpha+\Delta\alpha})^{T} \nabla \tilde{\boldsymbol{\omega}}) \sqrt{a(\alpha+\Delta\alpha)} \\ &\quad + \mathbf{Q}^{\alpha} C_{f}^{\alpha}(((\mathbf{Q}^{\alpha+\Delta\alpha})^{T} - (\mathbf{Q}^{\alpha})^{T}) \nabla \tilde{\boldsymbol{\omega}}) \sqrt{a(\alpha+\Delta\alpha)} \\ &\quad + \mathbf{Q}^{\alpha} C_{f}^{\alpha}((\mathbf{Q}^{\alpha})^{T} \nabla \tilde{\boldsymbol{\omega}})(\sqrt{a(\alpha+\Delta\alpha)} - \sqrt{a(\alpha)}) \right] \cdot \nabla \tilde{\boldsymbol{w}} dx. \end{split}$$

Treća jednakost je dobivena dodavanjem i oduzimanjem izraza $[\mathbf{Q}^{\alpha}C_{f}^{\alpha+\Delta\alpha}((\mathbf{Q}^{\alpha+\Delta\alpha})^{T}\nabla\tilde{\omega})$ $\sqrt{a(\alpha+\Delta\alpha)}]\cdot\nabla\tilde{w}, \ [\mathbf{Q}^{\alpha}C_{f}^{\alpha}((\mathbf{Q}^{\alpha+\Delta\alpha})^{T}\nabla\tilde{\omega})\sqrt{a(\alpha+\Delta\alpha)}]\cdot\nabla\tilde{w}, \ [\mathbf{Q}^{\alpha}C_{f}^{\alpha}((\mathbf{Q}^{\alpha})^{T}\nabla\tilde{\omega})\sqrt{a(\alpha+\Delta\alpha)}]\cdot$ $\nabla\tilde{w}, \ [\mathbf{Q}^{\alpha}C_{f}^{\alpha}((\mathbf{Q}^{\alpha})^{T}\nabla\tilde{\omega})\sqrt{a(\alpha)}]\cdot\nabla\tilde{w}.$ Pustimo limes $\Delta\alpha \to 0$

$$(B_{f}^{\alpha})'((\tilde{\boldsymbol{u}},\tilde{\boldsymbol{\omega}},(\tilde{\boldsymbol{v}},\tilde{\boldsymbol{w}})) = \frac{1}{12} \int_{\omega} \left[(\mathbf{Q}^{\alpha})' C_{f}^{\alpha} ((\mathbf{Q}^{\alpha})^{T} \nabla \tilde{\boldsymbol{\omega}}) \sqrt{a(\alpha)} \right. \\ \left. + \mathbf{Q}^{\alpha} (C_{f}^{\alpha})' ((\mathbf{Q}^{\alpha})^{T} \nabla \tilde{\boldsymbol{\omega}}) \sqrt{a(\alpha)} \right. \\ \left. + \mathbf{Q}^{\alpha} C_{f}^{\alpha} (((\mathbf{Q}^{\alpha})^{T})' \nabla \tilde{\boldsymbol{\omega}}) \sqrt{a(\alpha)} \right. \\ \left. + \mathbf{Q}^{\alpha} C_{f}^{\alpha} ((\mathbf{Q}^{\alpha})^{T} \nabla \tilde{\boldsymbol{\omega}}) (\sqrt{a(\alpha)})' \right] \cdot \nabla \tilde{\boldsymbol{w}} dx.$$

Izraz za $(B_{ms}^{\alpha})'$ dobivamo na isti način te zapisujemo:

$$(B^{\alpha}_{ms})'((\tilde{\boldsymbol{u}},\tilde{\boldsymbol{\omega}},(\tilde{\boldsymbol{v}},\tilde{\boldsymbol{w}})) = \int_{\omega} \left[(\mathbf{Q}^{\alpha})' C^{\alpha}_{m} \Big((\mathbf{Q}^{\alpha})^{T} [\nabla \tilde{\boldsymbol{u}} + \mathbf{A}^{\alpha} \tilde{\boldsymbol{\omega}}] \Big) \cdot [\nabla \tilde{\boldsymbol{v}} + \mathbf{A}^{\alpha} \tilde{\boldsymbol{w}}] \sqrt{a(\alpha)} \right. \\ \left. + \mathbf{Q}^{\alpha} (C^{\alpha}_{m})' \Big((\mathbf{Q}^{\alpha})^{T} [\nabla \tilde{\boldsymbol{u}} + \mathbf{A}^{\alpha} \tilde{\boldsymbol{\omega}}] \Big) \cdot [\nabla \tilde{\boldsymbol{v}} + \mathbf{A}^{\alpha} \tilde{\boldsymbol{w}}] \sqrt{a(\alpha)} \right. \\ \left. + \mathbf{Q}^{\alpha} C^{\alpha}_{m} \Big(((\mathbf{Q}^{\alpha})^{T})' [\nabla \tilde{\boldsymbol{u}} + \mathbf{A}^{\alpha} \tilde{\boldsymbol{\omega}}] \Big) \cdot [\nabla \tilde{\boldsymbol{v}} + \mathbf{A}^{\alpha} \tilde{\boldsymbol{w}}] \sqrt{a(\alpha)} \right]$$

$$+\mathbf{Q}^{\alpha}C_{m}^{\alpha}\Big((\mathbf{Q}^{\alpha})^{T}[\nabla\tilde{\boldsymbol{u}}+(\mathbf{A}^{\alpha})'\tilde{\boldsymbol{\omega}}]\Big)\cdot[\nabla\tilde{\boldsymbol{v}}+\mathbf{A}^{\alpha}\tilde{\boldsymbol{w}}]\sqrt{a(\alpha)}$$
$$+\mathbf{Q}^{\alpha}C_{m}^{\alpha}\Big((\mathbf{Q}^{\alpha})^{T}[\nabla\tilde{\boldsymbol{u}}+\mathbf{A}^{\alpha}\tilde{\boldsymbol{\omega}}]\Big)\cdot[\nabla\tilde{\boldsymbol{v}}+(\mathbf{A}^{\alpha})'\tilde{\boldsymbol{w}}]\sqrt{a(\alpha)}$$
$$+\mathbf{Q}^{\alpha}C_{m}^{\alpha}\Big((\mathbf{Q}^{\alpha})^{T}[\nabla\tilde{\boldsymbol{u}}+\mathbf{A}^{\alpha}\tilde{\boldsymbol{\omega}}]\Big)\cdot[\nabla\tilde{\boldsymbol{v}}+\mathbf{A}^{\alpha}\tilde{\boldsymbol{w}}](\sqrt{a(\alpha)})'\Big]dx.$$

Sad imamo sve potrebno za numeričku aproksimaciju minimuma funkcije $J(\alpha)$.

Poglavlje 3

Numerička aproksimacija

U ovom poglavlju opisujemo numeričke metode koje smo koristili za problem optimizacije. Minimizaciju vršimo za dvije funkcije cilja

$$J_1(\alpha) = \int_{\omega} \tilde{f} \cdot \tilde{u}(\alpha) \sqrt{a(\alpha)} dx,$$
$$J_2(\alpha) = \|\tilde{u}(\alpha)\|_{L^{\infty}(\omega; \mathbb{R}^3)}.$$

Kako smo naveli u prethodnom poglavlju za $J_1(\alpha)$ imamo na raspolaganju derivaciju funkcije cilja, pa ćemo za nju koristiti metodu bisekcije za $J'_1(\alpha)$. Za funkciju $J_2(\alpha)$ nemamo derivaciju pa koristimo Nelder-Mead metodu. Navedene metode i rješavanje sustava implementirano je u programskom paketu *FreeFem* + +. Na kraju pokazujemo primjere i dobivene rezultate na njima.

3.1 Opis metoda

Metoda bisekcije (polovljenja) je najjednostavnija metoda za rješavanje nelinearnih jednadžbi. Metodu bisekcije koristimo za nalaženje približnog realnog rješenja jednadžbe $J'_1(\alpha) = 0$. Za pronalazak najmanje vrijednosti pomaka \tilde{u} tj. minimizaciju funkcionala $J_2(\alpha)$ koristimo Nelder-Mead metodu. To je jedna od najpoznatijih lokalnih direktnih metoda bezuvjetne optimizacije u višedimenzionalnom prostoru. Metode ćemo opisati u terminima općenite funkcije f(x).

3.1.1 Bisekcija

Bisekcija se temelji na važnom svojstvu funkcije neprekidne na segmentu:

Ako je funkcija f(x) neprekidna na segmentu [a,b], $a, b \in \mathbb{R}$, i f(a)f(b) < 0, onda postoji barem jedan $c \in \langle a, b \rangle$ takav da je f(c) = 0. Ako je pritom f(x) strogo monotona funkcija, onda je c jedinstven.

Pretpostavimo da se u intervalu [a, b] nalazi jedinstveno rješenje jednadžbe f(x) = 0, gdje je f(x) neprekidna. Stavimo $a_1 = a$, $b_1 = b$ i $c_1 = \frac{a_1+b_1}{2}$. Ako je $f(c_1) = 0$, tada je c_1 traženo rješenje. Ako nije i vrijedi $f(a_1) \cdot f(c_1) < 0$, sljedeću aproksimaciju c_2 tražimo u intervalu $[a_1, c_1]$ i stavljamo $a_2 = a_1$, $b_2 = c_1$ i $c_2 = \frac{a_2+b_2}{2}$. Ako je $f(a_1) \cdot f(c_1) > 0$ aproksimaciju c_2 tražimo u intervalu $[c_1, b_1]$ te stavljamo $a_2 = c_1$, $b_2 = b_1$. Postupak ponavljamo sve dok ne postignemo zadanu točnost ili unaprijed zadan broj koraka.

Općenito, greška aproksimacije ϵ rješenja jednadžbe f(x) = 0 nakon *n* koraka određena je nejednadžbom

$$\frac{b-a}{2^n} \le \epsilon$$

pa je broj koraka koji treba izvršiti da bi aproksimirali rješenje jednadžbe za zadanu točnost ϵ jednak

$$n \ge \frac{\log(b-a) - \log \epsilon}{\log 2}.$$

3.1.2 Nelder-Mead metoda

Nelder-Mead metoda koristi koncept simpleksa i zasniva se uspoređivanju vrijednosti funkcije u vrhovima simpleksa. Za funkciju $f(x), x \in \mathbb{R}^n$ odredi se n + 1 točaka početnog simpleksa te se zatim uspoređuju vrijednosti funkcije u tim točkama. Najgora točka simpleksa, odnosno ona za koju funkcija postiže najveću vrijednost (kod problema mimimizacije), odbacuje se i uvodi se nova točka koja s ostalima čini novi simpleks. Nalaženje novih točaka može dovesti do smanjivanja ili širenja simpleksa. U slučaju smanjivanja, sve točke simpleksa konvergiraju prema optimumu.

Algoritam:

Tražimo minimum funkcije cilja f(x), gdje je $x \in \mathbb{R}^n$.

- 1. Odredi n + 1 točaka početnog simpleksa
- 2. Izračunaj vrijednost funkcije cilja za sve točke simpleksa
- 3. Sortiraj točke simpleksa prema vrijednosti funkcije cilja u točkama:

$$f(x_1) \le f(x_2) \dots \le f(x_{n+1})$$

- 4. Refleksija
 - Izračunaj težište svih točaka osim najgore

$$x_0 = \frac{\sum_{i=1}^n x_i}{n}$$

• Izračunaj točku refleksije i vrijednost funkcije cilja u točki refleksije

$$x_r = x_0 + \alpha (x_0 - x_{n+1})$$

 Ako točka refleksije nije bolja od najbolje točke simpleksa a bolja je od druge najbolje točke simpleksa

$$f(x_1) \le f(x_r) \le f(x_n)$$

onda

- nova točka simpleksa je točka refleksije x_r i mijenja najgoru točku x_{n+1} – idi na korak 1
- 5. Ekspanzija

Ako je točka refleksije najbolja

$$f(x_r) \le f(x_1)$$

onda

• izračunaj točku ekspanzije i funkciju cilja u točki ekspanzije

$$x_e = x_0 + \gamma(x_0 - x_{n+1})$$

• Ako je točka ekspanzije bolja od točke refleksije

$$f(x_e) \le f(x_r)$$

onda

– nova točka simpleksa postaje točka ekspanzije x_e

– idi na korak 1

inače

– nova točka simpleksa postaje točka refleksije x_r

- idi na korak 1

6. Kontrakcija

Ovdje je sigurno

$$f(x_r) \ge f(x_n)$$

• Izračunaj točku kontrakcije i funkciju cilja u točki kontrakcije

$$x_c = x_{n+1} + \rho(x_0 - x_{n+1})$$

• Ako je točka kontrakcije bolja od najgore točke

$$f(x_c) < f(x_{n+1})$$

onda

- nova točka simpleksa postaje točka kontrakcije x_c
- idi na korak 1
- 7. Redukcija

Za sve točke osim najbolje izračunaj nove:

$$x_i = x_1 + \sigma(x_i - x_1)$$
 za $i = 2, ..., n + 1$

-idi na korak 1

Zapišimo algoritam za slučaj kada tražimo minimum funkcije cilja f(x), gdje je $x \in \mathbb{R}$.

- 1. Odredi dvije točke početnog simpleksa
- 2. Izračunaj vrijednost funkcije cilja u točkama simpleksa
- 3. Sortiraj točke simpleksa prema vrijednosti funkcije cilja u tim točkama

$$f(x_1) \le f(x_2)$$

4. Refleksija

Izračunaj točku refleksije

$$x_r = x_0 + \alpha(x_0 - x_2)$$

5. Ekspanzija

Ako je točka refleksije najbolja

$$f(x_r) \le f(x_1)$$

onda

• izračunaj točku ekspanzije i vrijednost funkcije cilja u točki ekspanzije

$$x_e = x_0 + \gamma(x_0 - x_2)$$

• Ako je točka ekspanzije bolja od točke refleksije

$$f(x_e) \le f(x_r)$$

onda

– nova točka simpleksa postaje točka ekspanzije x_e

– idi na korak 1

inače

- nova točka simpleksa postaje točka refleksije x_r
- idi na korak 1
- 6. Kontrakcija

Ovdje je sigurno

$$f(x_r) \ge f(x_1)$$

• Izračunaj točku kontrakcije i vrijednost funkcije cilja u točki kontrakcije

$$x_c = x_2 + \rho(x_0 - x_2)$$

• Ako je točka kontrakcije bolja od najgore točke

$$f(x_c) < f(x_2)$$

onda

- nova točka simpleksa postaje točka kontrakcije x_c
- idi na korak 1

7. Redukcija

Za najgoru točku izračunaj novu:

$$x_2 = x_1 + \sigma(x_2 - x_1)$$

-idi na korak 1

 α, γ, ρ i σ su respektivno, koeficijenti refleksije, ekspanzije, kontrakcije i redukcije. Njihove standardne vrijednosti su $\alpha = 1, \gamma = 2, \rho = 1/2, \sigma = 1/2$. Za metodu je predloženo više kriterija zaustavljnja dok se u ovom radu algotiram zaustavlja kad

$$\sqrt{\frac{1}{1+n}\sum_{i=1}^{n+1} (f(x_i) - \bar{f})^2} < tol$$

gdje je

$$\bar{f} = \frac{1}{1+n} \sum_{i=1}^{n+1} f(x_i)$$

za unaprijed određenu toleranciju tol.

3.2 Primjeri i rezultati

U uvodu rada spomenuti su problemi optimizacije koji se javljaju pri gradnji mehaničkih konstrukcija. Motivirani tim problemima, numeričke metode testirali smo na nekoliko primjera geometrije ljuske koji svojim oblikom predstvaljaju nadvoje i krovove.

Slika 3.1: Primjer krova

3.2.1 Detalji implementacije

Algoritam smo implementirali u programskom paketu *FreeFem* + +. Za samu implementaciju odabrali smo (P_2 , P_2 , P_2) elemente za pomak \tilde{u} i infitezimalnu rotaciju $\tilde{\omega}$. Za rješavanje matrice krutosti modela ljuske zadana je točnost $\epsilon = 10^{-30}$. Mreža za sve primjere je 100x100. Uzimamo materijal od drva, preciznije hrastovo drvo. Youngov modul elastičnosti za drvo iznosi $E = 11 \cdot 10^9$ Pa, dok je Poissonov omjer v = 0.369. Za metodu bisekcije zadana točnost iznosi $\epsilon = 10^{-3}$ odnosno broj koraka je n = 10. Tolerancija za Nelder-Mead metodu iznosi $tol = 5 \cdot 10^{-6}$. Debljina ljuske je jednaka za sve primjere i iznosi 0.0005*m*.

3.2.2 Prvi primjer

U prvom primjeru središnju plohu ljuske parametrizirali smo s $\varphi : [0, 1] \times [0, 2] \rightarrow \mathbb{R}^3$ koja je forme

$$\varphi(\alpha) = \varphi_0 + \alpha \varphi_1 + (1 - \alpha) \varphi_2,$$

gdje je $\alpha \in [0, 1]$ te $\varphi_0, \varphi_1, \varphi_2 : [0, 1] \times [0, 2] \rightarrow \mathbb{R}^3$:

$$\varphi_0(x, y) = (x, y, 0),$$

 $\varphi_1(x, y) = (0, 0, x(1 - x)),$

$$\varphi_2(x, y) = (0, 0, x^2(1 - x)^2).$$

Oblik ljuske varira s obzirom na promjenu vrijednosti α . Na Slici 3.2 možemo vidjeti ljuske za rubne slučajeve kada je $\alpha = 0$ i $\alpha = 1$.

Slika 3.2: Ljuske u prvom primjeru

Na varijacije oblika ljuske za $\alpha \in [0, 1]$ djelujemo s dvije različite sile. Prvo djelujemo sa silom gustoće $\tilde{f} = -5 \cdot 10^2 a_3 Nm^{-2}$, gdje je a_3 treći vektor kovarijantne baze koji je u svakoj točki okomit na tangencijalnu plohu ljuske. Na Slici 3.3 dani su grafovi funkcija cilja $J_1(\alpha)$ i $J_2(\alpha)$.

Slika 3.3: Grafovi funkcija $J_1(\alpha)$ i $J_2(\alpha)$ za ljusku pod utjecajem sile $\tilde{f} = -5 \cdot 10^2 a_3 m s^{-1}$

Funkcije $J_1(\alpha)$ i $J_2(\alpha)$ poprimaju minimalnu vrijednost na segmentu [0.75, 0.85]. Metoda bisekcije nam daje $\alpha = 0.8092089844$ za koji funkcija $J_1(\alpha)$ postiže minimum. Na Tablici 3.2 dane su točke c_i i vrijednosti funkcije $J_1(c_i)$ u svakoj iteraciji.

i	C_i	$J_1(c_i)$
1	0.405	20.51027243
2	0.6075	12.96679311
3	0.70875	11.63882042
4	0.759375	11.35963323
5	0.7846875	11.30277552
6	0.79734375	11.29392666
7	0.803671875	11.29428888
8	0.8068359375	11.29565488
9	0.8084179688	11.29663266
10	0.8092089844	10.40259512

Tablica 3.1: Koraci pri određivanju rješenja jednadžbe $J'_1(\alpha) = 0$

Na Slici 3.4a vidimo nedeformiranu ljusku dok na Slici 3.4b konačni pomak ljuske za $\alpha = 0.8092089844$.

Slika 3.4: Ljuska za $\alpha = 0.8092089844$

Nelder-Mead metodom dobivamo da za $\alpha = 0.806641$ funkcija $J_2(\alpha)$ postiže minimalnu vrijednost 0.5417252867. Na Slici 3.5a vidimo nedeformiranu ljusku dok na slici 3.5b konačni pomak ljuske za $\alpha = 0.806641$.

Slika 3.5: Ljuska za $\alpha = 0.806641$

Možemo vidjeti da optimalni oblici ljuske za koje dane funkcije cilja postižu minimum u ovom slučaju su približno jednaki. Djelujući silom gustoće $\tilde{f} = -5 \cdot 10^2 a_3 Nm^{-2}$ optimalni oblik ljuske je bliži krajnjem slučaju $\alpha = 1$. Utjecaj sile na ljusku je veći što idemo dalje od učvrćenih krajeva ljuske.

U drugom slučaju djelujemo silom gustoće $\tilde{f} = 10^3 e_2 Nm^{-2}$. Na Slici 3.6 dani su grafovi funkcija $J_1(\alpha)$ i $J_2(\alpha)$.

Slika 3.6: Grafovi funkcija $J_1(\alpha)$ i $J_2(\alpha)$ za ljusku pod utjecajem sile $\tilde{f} = 10^3 e_2 m s^{-1}$

U ovom slučaju funkcija $J_1(\alpha)$ postiže minimalnu vrijednost na segmentu [0.15, 0.25] a $J_2(\alpha)$ na segmentu [0.1, 0.2].

Metodom bisekcije dobivamo da se minimum funkcije $J_1(\alpha)$ postiže za $\alpha = 0.2001953125$.

i	c_i	$J_1(c_i)$
1	0.5	0.7675912671
2	0.25	0.1345296611
3	0.125	0.1473011606
4	0.1875	0.1095183513
5	0.21875	0.1147573605
6	0.203125	0.1102670842
7	0.1953125	0.1094165219
8	0.19921875	0.1097238917
9	0.201171875	0.1099661459
10	0.2001953125	0.1048020756

Tablica 3.2: Koraci pri određivanju rješenja jednadžbe $J'_1(\alpha) = 0$

Na Slici 3.7
a vidimo nedeformiranu ljusku dok na Slici 3.7
b konačni pomak ljuske za $\alpha = 0.2001953125.$

Slika 3.7: Ljuska za $\alpha = 0.2001953125$

Nelder-Mead metodom dobivamo da se najmanja vrijednost 0.04256263903 od $J_2(\alpha)$ postiže za $\alpha = 0.176758$. Na Slici 3.8a vidimo nedeformiranu ljusku dok na slici 3.8b konačni pomak ljuske za $\alpha = 0.176758$.

Slika 3.8: Ljuska za $\alpha = 0.176758$

Možemo primijetiti da utjecaj sila različitih smjerova utječe na funkcije cilja pa time i na minimume tih funkcija. U ovom slučaju za silu gustoće $\tilde{f} = 10^3 e_2 N m^{-2}$ optimalni oblici ljuske su slični, ne toliko kao u prošlom slučaju, te su bliži krajnjem slučaju $\alpha = 0$. Ovdje je utjecaj sile vidljiv na slobodnim krajevima koji se izvijaju prema van.

3.2.3 Drugi primjer

U ovom slučaju središnju plohu ljuske parametrizirali smo s $\varphi : [0,1] \times [0,2] \rightarrow \mathbb{R}^3$ koja je forme

 $\varphi(\alpha) = \varphi_0 + \alpha \varphi_1,$

gdje je $\alpha \in [0, 1]$, te $\varphi_0, \varphi_1 : [0, 1] \times [0, 2] \rightarrow \mathbb{R}^3$:

$$\varphi_0(x, y) = (x, y, 0),$$

$$\varphi_1(x, y) = (0, 0, x(1 - x)).$$

Na Slici 3.9 vidimo ljuske za rubne slučajeve $\alpha = 0$ i $\alpha = 1$.

Slika 3.9: Ljuske u drugom primjeru

U ovom primjeru djeluju s istim silama kao i u prošlom. Prvo djelujemo sa silom gustoće $\tilde{f} = -5 \cdot 10^2 a_3 Nm^{-2}$.

Slika 3.10: Grafovi funkcija $J_1(\alpha)$ i $J_2(\alpha)$ za ljusku pod utjecajem sile $\tilde{f} = -5 \cdot 10^2 a_3 m s^{-1}$

Funkcija $J_1(\alpha)$ postiže minimum na segmentu [0.15, 0.25], a $J_2(\alpha)$ postiže minimalnu vrijednost na segmentu [0.1, 0.2].

Metodom bisekcije dobivamo da se minimum funkcije $J_1(\alpha)$ postiže za $\alpha = 0.3076171875$.

i	C_i	$J_1(c_i)$
1	0.5	0.7552444555
2	0.25	0.2223541687
3	0.375	0.3019508022
4	0.3125	0.2219340554
5	0.28125	0.2118000624
6	0.296875	0.2143955967
7	0.3046875	0.2175528545
8	0.30859375	0.2195907745
9	0.306640625	0.2185336227
10	0.3076171875	0.2165443974

Tablica 3.3: Koraci pri određivanju rješenja jednadžbe $J'_1(\alpha) = 0$

Na Slici 3.11a vidimo nedeformiranu ljusku dok na Slici 3.11b konačni pomak ljuske za $\alpha = 0.3076171875$.

Slika 3.11: Ljuska za $\alpha = 0.3076171875$

Nelder-Mead metodom dobivamo da se najmanja vrijednost 0.01690715928 od $J_2(\alpha)$ postiže za $\alpha = 0.15$. Na Slici 3.12a vidimo nedeformiranu ljusku dok na slici 3.12b

konačni pomak ljuske za $\alpha = 0.15$

U ovom slučaju vrijednosti parametra α za koje funkcije cilja $J_1(\alpha)$ i $J_2(\alpha)$ postižu minimalne vrijednosti se razlikuju znatno više nego u dosadašnjim slučajevima. Za razliku od prvog primjera, djelujući silom gustoće $\tilde{f} = -5 \cdot 10^2 a_3 Nm^{-2}$, optimalni oblici ljuske su bliži krajnem slučaju $\alpha = 0$. Iako, utjecaj sile je veći što smo dalje od učvrćenih krajeva ljuske kao u prvom primjeru za istu silu.

U drugom slučaju djelujemo silom gustoće $\tilde{f} = 10^3 e_2 Nm^{-2}$.

Slika 3.13: Grafovi funkcija $J_1(\alpha)$ i $J_2(\alpha)$ za ljusku pod utjecajem sile $\tilde{f} = 10^3 e_2 m s^{-1}$

Funkcije $J_1(\alpha)$ i $J_2(\alpha)$ su strogo rastuće na segmentu [0, 1] i postižu minimum za $\alpha = 0$. Metodom bisekcije dobivamo da se minimum funkcije $J_1(\alpha)$ postiže za $\alpha = 0.0009765625$.

i	c_i	$J_1(c_i)$
1	0.5	0.9931960657
2	0.25	0.272959866
3	0.125	0.1038843147
4	0.0625	0.06155383697
5	0.03125	0.0500350986
6	0.015625	0.0465629629
7	0.0078125	0.04550477002
8	0.00390625	0.04509658492
9	0.001953125	0.04482086996
10	0.0009765625	0.04464754113

Tablica 3.4: Koraci pri određivanju rješenja jednadžbe $J'_1(\alpha) = 0$

Na Slici 3.14a vidimo nedeformiranu ljusku dok na Slici 3.14b konačni pomak ljuske za $\alpha = 0.0009765625$.

Slika 3.14: Ljuska za $\alpha = 0.0009765625$

Nelder-Mead metodom dobivamo da se najmanja vrijednost 0.0004384115069 od $J_2(\alpha)$ postiže za $\alpha = 0.0000610352$. Na Slici 3.15a vidimo nedeformiranu ljusku dok na Slici 3.15b konačni pomak ljuske za $\alpha = 0.0000610352$.

Slika 3.15: Ljuske za $\alpha = 0.0000610352$

U ovom slučaju optimalni oblik ljuske je ploča. Kao i u prvom primjeru utjecaj sile gustoće $\tilde{f} = 10^3 e_2 Nm^{-2}$ je najveći na slobodnim krajevima ljuske, dok je ostatak ostao učvršćen.

Bibliografija

- [1] J. Tambača, A New Linear Shell Model for Shells with Little Regularity, Journal of Elasticity 114 (2014),163-188.
- [2] J. Tambača i Z. Tutek, A new linear Naghdi type shell model for shells with little regularity, Applied Mathematical Modelling 40 (2016), 10549-10562.
- [3] P. Neittaanmaki, J. Sprekels, D. Tiba, *Optimization of elliptic Systems*, Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA, 2016.

Sažetak

U ovome radu promatrali smo problem optimizacije forme elastične ljuske koji je opisan u [3]. Za model ljuske uzeli smo model Naghdijeva tipa koji dopušta membranske i fleksijske efekte te smicanje, a opisan je u [1], [2].

Glavni rezultat u teorijskom dijelu rada je što smo pokazali da naš problem minimizacije ima rješenje. Pronalazak minimalne vrijednosti dane funkcije cilja oslanja se na svojstva neprekidne i diferencijabilne ovisnosti rješenja Naghdijeva modela ljuske o promjeni geometrije.

U numeričkom dijelu rada implementirane numeričke metode testirali smo na primjerima i pokazali numeričke aproksimacije rješenja u kojima dane funkcije cilja postižu minimum. Primjeri se temelje na različitim geometrijama ljuske i silama koje djeluju na njih.

Summary

In this thesis we deal with shape optimization problem of elastic shell model described in [3]. For elastic shell model we used a Naghdi's type shell model that captures membrane, bending effects and shear deformation and it is described in [1], [2].

The main result in theoretical part of paper is showing that our minimization problem has solution. Finding the minimum value of given object function relies on the continuity and differentiability properties of the solution of elastic shell model of Naghdi's type with respect to geometry.

In numerical part of the thesis we tested implemented numerical methods on examples and showed numerical aproximation of solutions in which given object function has minimum value. Examples are based on different geometry of shell and forces acting on them.

Životopis

Rođena sam 28. srpnja 1993. u Zagrebu. Nakon završetka Osnovne škole Biograd upisujem matematički smjer Gimnazije Franje Petrića u Zadru. Godine 2012. upisujem preddiplomski studij matematike na Prirodoslovno-matematičkom fakultetu u Zagrebu, gdje 2015. upisujem diplomski studij Primijenjena matematika.