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Effects of plasmon dispersion and damping on strengths and shapes of plasmon sate]1ites
in x-ray photoemission spectra of metals
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Rugger Boskovic Institute, P.O. Box 1016, 41001 Zagreb, Croatia, Yugoslavia

M. Sunjic
Department ofPhysics, Uniuersity of Zagreb, P.O. Box 162, 41001 Zagreb, Croatia, Yugoslauia

(Received 28 March 1984)

We calculate the effect of bulk- and surface-plasmon dispersion and damping on satellite
.strengths in photoelectron spectra in x-ray photoemission from core levels of metals. The calcula-
tion reveals an appreciable reduction in satellite intensities when compared with predictions of previ-
ous dispersionless infinite-lifetime models. Comparison with experimental data shows good agree-
ment for the value of the mean free path for short-range processes and the shapes of satellite lines in
the spectra.

I. INTRODUCTION

In the last few years considerable attention has been
paid to the problem of bulk- and surface-plasmon excita-
tion in x-ray photoemission from core levels of metals.

The theoretical interpretation of these satellites requires
a many-body theory of photoemission which would in-
clude both inelastic and elastic scattering processes. In
the absence of such a theory, the first theoretical ap-
proaches were based on the so-called three-step model. '

In spite of the fact that the quantum-mechanical interfer-
ence between different scattering mechanisms was neglect-
ed, this model was often used to describe many-body ef-
fects in x-ray photoemission spectroscopy (XPS).'

Later, two equivalent approaches were developed in
which all scattering mechanisms were properly accounted
for. The first is the so-called quadratic-response formal-
ism, or a 3-j correlation-function approach. The
second is based on the Green-function perturbation
method used to describe the plasmon-excitation probabili-
ty. At the same time several authors 6 developed a
model based on a semiclassical calculation of the correla-
tion function, describing the response of the plasmon field
to the created electron-hole pair. In the XPS regime,
when the recoil of the localized hole and the fast electron
can be neglected, this model becomes physically
equivalent to the Green-function approach, and provides
useful quantitative predictions for strengths of plasmon-
loss lines in photoelectron spectra.

In all these models plasmons were assumed to be
infinite-lifetime-independent boson excitations of the sys-
tem. In spite of a large number of experimental studies in
this field, ' comparison of experimental data with
theoretical predictions was made only in a few pa-
pers. ' ' However, even in these papers it was clear-
ly indicated that the existing theoretical models appreci-
ably overestimated plasmon-excitation probabilities. It
was natural to expect that a better description of plasmon
modes might lead to better agreement between theory and
experiment.

Dispersion and damping of plasmons were included
phenomenologically in several related problems, e.g. , in
x-ray photoemission from core. levels of adsorbates treated
in a semiclassical model by Sokcevic et al. Later, a
similar approach including only dispersion was used to
study the problems of energy loss of fast charged particles
passing through a thin metallic film and of image poten-
tial at a solid surface.

However, we feel that the inclusion of plasmon damp-
ing is essential because it leads to appreciable reduction of
the plasmon-excitation probability and, on the other hand,
it properly describes the cutoff of plasmon modes.

The plan of the paper is as follows. In Sec. II the
derivation of the photoelectron spectrum and its applica-
tion to XPS are briefly reviewed. Expressions for satellite
intensities and for the shape of the spectrum in the region
of the first bulk- and surface-plasmon losses are derived.
Matrix elements for photoemission from core levels of
metals are calculated by using the explicit summation
over bulk modes. Plasmon dispersion and damping are
included semiphenomenologically.

In Sec. III the results obtained are applied to photo-
emission from the 2p core level of Al. Values of the pa-
rameters describing plasmon dispersion and damping are
used from experiments. Matching the theoretical intensi-
ty of the first bulk-plasmon loss with the experimental
one, the mean free path for short-range scattering is cal-
culated, which is close to the usually accepted value. For
this value of the mean free path we obtain rather good
agreement in the shape of the spectrum.

In Sec. IV we make a brief cotnparison with other pa-
pers which considered the effect of plasmon dispersion
and damping and analyzed experimental results. A sum-
mary of the results is given in Sec. V.

II. FORMULATION OF THE PROBLEM

The main aim of this paper is to study the influence of
plasmon excitations on photoelectron spectra. We adopt a
model which assumes that, at least in the XPS limit, one
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can separate plasmon-excitation probabilities from other
(low-energy and short-range) processes, calculate their
probabilities exactly, taking properly into account the
nonlocal character of that scattering, and, finally, convo-
lute all processes to obtain the true spectra in order to
compare them with experiment. Since the various aspects
of such a problem were extensively studied in our previous
papers, ' ' we shall not repeat the discussion here; we re-
peat only the main steps leading to expressions for the
photoelectronic spectrum and then we apply this result to
our case.

A. Derivation of the photoelectron spectrum

If a metal is perturbed by an external electromagnetic
field, then the photoabsorption cross section is given by
the expression

Such a system is described by the Hamiltonian

a =ao+ai
Ho H,——+E~c~c~+ g co;a; a; .

(2.8)

(2.9)

In Eq. (2.9) the first term, describing the free electron, has
the form

H, =np Ep — .VP.
771

(2.10)

i.e., we can describe the outgoing electron in the wave-

packet approximation. The second term describes the
free deep level and the third term the free-plasmon field.
Owing to the high kinetic energy of the outgoing electron,
its interaction with the boson field takes the form

o'(ci)0) = g ) (f ~

h
~

t & [ 5(E;+co Eg) .— (2.1)
HI gn~ ——V~a;+ H.c. (2.11}

Here, the Hamiltonian
Similarly, the interaction of the deep recoilless hole has
the form

h =—f dr j (r).A(r)
C

(2.2) H, = g n~ V~a;+H. c. (2.12)

describes the external perturbation (coo being its frequen-
cy}.

The initial state
~

i & is the metal with X electrons. The
final state

~ f & is an (X—1)-electron system (generally
excited) plus the photoelectron. These states can be ex-
pressed in terms of the adiabatically decoupled states

and
~
{{)~&, respectively. There exists an energy

shift bE; between the free and the interacting initial
states:

For such a form of the interaction Hamiltonian, the prob-
lem can be solved exactly. The spectral function P(E) is
given by

2m
(2.13)

where (we consider only one mode, as the contributions
from various modes are added up)

'II'U
~ P & = U

The decoupled final state
~ Py & has the form

/@y&= [p& [&—1&,

(2.3)

(2.4)

i.e., in the t~ ~ limit the excited photoelectron is decou-
pled from the metal. This implies b,E~ =0.

Then, from (2.1) one obtains the spectrum of electrons
emitted with energy Ez.

P(t)=exp[
~
Qq+Q, ~

(e '"'—1)],
with QI, =Qt, (0) and Q,

—=Q, (0), and

Q, (t) = i V~(—r)e '""+'dr
0

0
Qi, (t) =i f V~(r)e '""+'d~ .

C. Satellite intensities

(2.14)

(2.15)

(2.16)

=g(Ep) g ~Mgq ~

p g 21K

~(E+SE~if dte

X (P; i
B ~(t)c c B ~(0) i P; & . (2.5)

The operators in the correlation function are

Bz~(t) =e ' U( oo, O)c~c~U(0, —oo )e

Bqg(0) = U( oo, O)cqcg U(0, —oo ) .

All other notation is given elsewhere.

(2.6)

(2.7)

B. Application to the XPS from core levels

In the following we consider only those scattering pro-
cesses of the excited electron-hole pair in which energy
losses are much smaller than the electron kinetic energy.

It is obvious that approximations (2.11) and (2.12} are
not valid for scattering mechanisms with large energy
transfers. However, these mechanisms transfer a consid-
erable amount of spectral weight from the low-energy and
characteristic (plasmon) loss region. Nevertheless, if we

only consider the characteristic loss region. in the spectra,
then the damping of the photoelectron current caused by
these short-range (but large-energy-transfer) processes can
be well approximated by the mean-free-path approxima-
tion, i.e.,

—2/A,
I~b, ——I0e (2.17)

where A, is a mean free path for short-range scattering
processes. Generally, A, depends on energy. However, ow-

ing to the fact that it does not change much in the region
of interest (=20 eV around the no-loss line), ' we will
take it to be a constant.

Although the theory outlined in this paper can be easily
adapted for the low-energy ("line-shape" ) region, we will
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not adopt it here because this subject has already been ex-
tensively discussed in the literature.

However, since the three types of scattering processes
described above differ markedly in energy and range, it is
rather a good approximation to treat them independently
and obtain the final result by convolution.

From Eq. (2.13) for P(E) one can derive the intensity
of plasmon sat'ellites with m bulk and n surface plasmons
excited for electrons originating from depth z inside the
metal:

pm~ m
P~„(z)=exp( —A~ —Ag ) mtnf

(2.18)

It is seen from (2.14) that each A contains the contribu-
tions from the hole, the electron, and their interference.
We denote them by h, e, and i, respectively.

The observed spectrum is then obtained by integration
over the crystal, i.e.,

P „= f dz e '~ P „(z) . (2.19)

Here the low-energy processes contribute only to the
broadening and asymmetry of plasmon lines.

However, we can obtain another form for terms
describing the losses in the spectra. Consider the term
describing the excitation of one bulk plasmon. One can
interchange the order of integration over z and k to obtain

P)g(E) = f Ig(k)QE —co(k)), (2.20)1co/dk

where

(2.21)

Equation (2.20) would give the shape of the first bulk-
plasmon loss in the spectra if the no-loss line had the
form of the 5 function.

In order to obtain the real spectrum, one has to take
into account two additional points:

(a) the shape Po(E) of the no-loss line;
(b) the background D(E) in the characteristic loss re-

gion, mostly due to secondary electrons.

S(E)= f dE' P ig(E')Po(E E') +—D (E) . (2.22)

An analogous expression holds for the first surface-
plasmon satellite in the spectra.

D. Matrix elements

In our previous papers' ' ' ' we used the so-called clo-
sure relation to perform the summation over bulk modes
in order to obtain the matrix elements entering into (2.13).
A similar approach was used by some other authors. '

However, the summation over bulk modes can be per-
formed explicitly, and one obtains [k=(K,k, )]

Then the expression for the shape of the first bulk satellite
has the form

Ag ——2 f d k Ag(k),

Ag (k) =A~(k) +A~(k)+ Ag(k),

(2.23)

(2.24)

A$(k) =c „[4k,uj +4k, uf cos (k,z)+4b sin (k,z) Sk, v) co—s(kzz)cos(bz/vj ) —Sbk, vgsin(k, z)sin(bz/u~)],

A~(k) =c sin (k,z),2

C2
Ag(k) = —

z 2 sin(k, z) Iso[2k, uz sin(bz/uz ) —2b sin(k, z)] 2yk, uz—[cos(k,z) cos(bz/vj )—] I .

(2.25)

Here,

a =y +co, P —(k,u~) b—
b =co+K.v~~, c =See h (k) E +k

(2.26)

k„+ky (k„—oo (kz( oo (2.27)

we obtain the same results as those obtained previously by

and other notation is given elsewhere. '

Expressions for the surface-plasmon contribution
remain the same' and we do not repeat them here.

In Eq. (2.23) the integration is performed over a sphere
of radius k„where k, is a three-. dimensional cutoff wave
vector. At this point it is interesting to note that if we in-
tegrate the bulk term (2.25) over the region

use of the closure relation. This means that the latter ap-
proach overestimates plasmon-excitation probabilities a
priori by including the unphysical regions of k space in
the integration.

Baird et al. compared the prediction of our
dispersionless- and independent-plasmon model with ex-
periment. They showed that this model appreciably
overestimated plasmon-excitation probabilities.

Although the reduction of the probabilities in the
model with the explicit summation over the bulk modes is
surprisingly large, as compared with the model in which
the closure relation is used, these quantities are still too
large even if some other small improvements are made, as
discussed by Baird et al. This indicates that further im-
provement should include a better description of plasmon
modes.

In our considerations we will further solve the problem
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approximately in the same way we did for photoemission
from adsorbed core levels, &.e., by including plasmon
dispersion and damping phenomenologically.

At this point we want to comment. The only problem
that can be solved exactly when there is plasmon disper-
sion is the case where the dispersion is only due to the
geometry of the specimen. (However, in this case there
is no damping. )

We therefore proceed by replacing the plasmon fre-
quency in the plasmon propagator by the exact self-energy

(e.g. , for bulk plasmons):

cog +—cog(k) i—I ~(k), (2.28)

Ae(k, z)=
( g, +gg (

where

(2.29)

where the dispersion cd and the damping I z are func-
tions of k. By introducing this into expressions for P(E),
one obtains

Qp, = —c sin(k, z)/Ii~g(k)+ [I g(k)+y] I, (2.30)

(2.31)

Inserting (2.31) in (2.29), we obtain the extrinsic and intrinsic contributions, as well as the interference between them.
Then, integrating over k, one obtains the excitation probability for bulk plasrnons if the photoelectron is excited at the
depth z inside the metal.

Similarly, for the surface-plasmon contribution we have (K is now a two-dimensional wave vector)

gi, =g [@+Iz(k)+ice@(k)] 'e
K (2.32)

g, = —g [[Kut + I s(K)+ib (K)] 'e '+[Kuj +I s(K)+ib (K)] '[K ib (K)—/uq] '(e ' —e ')I . (2.33)K

(cf. Ref. 33).

~ruos(K) =10.75+1.1IC +2K',
I s(K) =1.85+3K,

fmtt (k) = 15.2+3.05k',

I (k)=0.53+0.lk +1.05k" .

(3.1)

III. APPLICATION TO XPS
FROM THE 2p LEVEL OF ALUMINUM

To compare the predictions of our model with experi-
ment, we apply it to the photoemission from the 2P level
of Al. For parameters describing the plasmon dispersion
and damping we take the values quoted by Duke and
Landman:

curve denoted by (3) shows the results with the inclusion
of dispersion and damping. As can be seen from the fig-
ure, almost two-thirds of a total reduction, in comparison
with earlier models, is due to the explicit summation over
the bulk modes. However, this is still not sufficient to re-
move the discrepancy between theoretical predictions and
experiment.

Figure 2 shows the various contributions (electron, hole,
and interference) to the bulk term A~(z). Again, the re-
sults for the independent-plasmon model are also given
for comparison. As expected, the hole contribution is

0
Here the energy is measured in eV and k (K) in A '. The

,analytical expressions (3.1) for I ~ and I s were taken to
be valid from k=O to values of k close to k, . For values
of the wave vector approaching k„ the damping was as-
sumed to grow exponentially, so that in the following
calculations it provides a natural cutoff for the plasmon
contribution.

We consider the electrons emerging normally to the sur- '

face with the kinetic energy Eo= 1410 eV, corresponding
to the experiment of Baird et al.

In Fig. 1 the bulk contributions Az for the three
models are given for comparison. The result denoted by
(1) shows the results for the independent-plasmon model,
i.e., without dispersion and damping, in which the closure
relation has been used. The curve denoted by (2) is also
calculated in the independent-plasmon model, but with
the explicit summation over the bulk modes. Finally, the

0.5

1 2 5 10 15
z(A)

FIG. 1. Bulk term [see Eq. (2.1S)j as a function of excitation
depth z for three models: (1) independent-plasmon model using
the closure relation, (2) independent-plasmon model with the ex-
plicit summation over bulk modes, and (3) plasmon dispersion
and damping included.
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Pia/Po (3.3)

instrumental resolution, natural width of the x ray, and
the finite lifetime of the core level) was approximated by
two half-Gaussians with different widths.

The resulting spectrum S(E,A, ) still depends on the
mean free path for short-range attenuation processes. Its
value has been varied until the relative intensity

S(E)

5-

t i.2
II

l

where

Pui f P——ui(E)dE, Po ——f Po(E)dE (3.4)

~Jy~
~0 P

I

1B

become equal to the experimental value P i'/Po ——0.52.
This yields A, =29 A, close to the usually accepted
values. ' We have fitted the bulk-plasmon relative in-
tensity because it has better statistics, as can be seen from
the experimental points in Fig. 5 (cf. also Ref. 29).

Figure 4(a) shows the first bulk loss line before convolu-
tion (i.e., Piii). Similarly, Fig. 4(b) represents Pis.

The total spectrum after convolution in the energy re-
gion of the first bulk and surface loss, S =Si~+Sis, is
shown in Fig. 5.

We see from Fig. 5 that the agreement in shape is rath-
er good. Since A, was found by matching the bulk loss
values, the agreement for the bulk-plasmon peak is better.
For this value of A, , Pis/Po ——0.082, which still lies within
the error range of the results obtained by Baird et al.

20 &0 0 E.' aE(eV)

FIG. 5. Comparison of our theoretical results (solid line, in
arbitrary units) for A, =29 A with the experimental results (dots)
of Baird et al. (Ref. 29) for the XPS spectra from the 2p level
of Al. Other parameters are the Gaussian half-widths a~ ——1.17
eV and oz ——0.68 eV, and the background constant C=0.05
1 eV.

(they obtained 0.02 & P,v /Po & 0.095).
As can be seen from Fig. 4, the shape and broadening

of the (convoluted) loss line is mainly due to plasmon
dispersion effects. However, since the asymmetry of the
no-loss line is in the opposite direction (towards lower ki-
netic energies), as compared with Piji and Pi~, the final
spectral lines are more symmetrical, as can be seen from
Fig. 5. Generally speaking, the influence of dispersion on
the final shape (and therefore on the strength) of the satel-
lite is stronger than that of damping. However, damping
is essential for k~k, because it provides a cutoff for
plasmon modes.

IV. DISCUSSION AND COMPARISON
WITH OTHER MODELS

20 zE(ev)

c )3 h, E(eV)

FIG. 4. (a) Shape of the first bulk-plasmon satellite before
the convolution with the no-loss line. [co,=co(k, ).] (b) Shape
of the first surface-plasmon satellite before the convolution with
the no-loss line.

Laramore and Camp used an approach similar to ours
to include the effect o'f dispersion and damping on the
screening of the core hole in the metal. Practically, they
computed Qz and Qz in a similar way, but assumed that
the damping retained the behavior (3.1) even for k ~k,
and extended the integration region to infinity. Their ap-
proach overestimated the plasmon contribution.

At the same time, Ashley and Ritchie considered the
influence of the plasmon damping on the mean free path
in an infinite metal. They used the available experimental
data for the damping, correctly integrated only to k, . For
the plasmon dispersion they used the results for the jelli-
um model.

Later, Pardee et al. used a model in which they
described the extrinsic scattering in the mean-free-path
approximation and neglected interference effects. Howev-
er, there is an inconsistency in the derivation of their Eq.
(12). Even if a plasmon emission is treated as a purely in-
trinsic process, the information about it is carried by-the
outgoing electron. The outgoing electron can be removed
from the plasmon-satellite region by some other scattering
process, and therefore the total excitation probability
should be weighted by the factor exp( —z/A, ) describing
the escape probability. Nevertheless, the fit obtained by
Pardee et al. was rather good. The main reason for that



30 EFFECTS OF PLASMON DISPERSION AND DAMPING ON. . . 6971

is obvious from our Fig. 2: Owing to the large cancella-
tion between the intrinsic and interference terms, the total
contribution is mostly influenced by the extrinsic-term
behavior. A similar approach, based on the work of Par-
dee et al. , was later used by Steiner et al. , Johansson
and Liridau, ' van Attekum and Trooster, and Norman
and Woodruff.

The results of Bradshaw et a/. were previously dis-
cussed in our paper on photoemission from core levels of
adsorbates.

The discussion presented above also applies to. the work
of Penn. Penn also neglected interference; to compensate
for its influence, he used a 'reduced coupling between
plasmons and the core hole. In the intrinsic part he con-
sidered only the bulk-plasmon contribution. In other as-
pects, there is much correspondence between his work and
ours. The shape of the no-loss line was an input parame-
ter. The nonplasmon contribution to the scattering proba-
bility in his transport equation relates to our mean free
path for short-range scattering and to our background in
Eq. (2.22). By including the dispersion and damping, he
obtained good agreement with experimental data.

Later, two papers appeared in which only dispersion
was included. Echenique et al. treated the semiclassical
image potential at a solid surface, while Sung and
Ritchie considered energy losses of fast charged particles
passing through a thin metallic film. Apart from neglect-
ing the damping, their approach is equivalent to that used
in our earlier work on the problem of photoemission from
adsorbed levels.

More recently, Bose et al. used the transition-matrix
formalism to study plasmon modes. They obtained re-
sults for bulk- and surface-plasmon satellites (including
shape) as functions of excitation depth (distance), i.e.,
without integrating over the metal in the case of photo-
emission from the bulk. They used different parameters
to describe the plasmon dispersion, and neglected the
damping completely (but used a sharp cutoff wave vector
instead). This means that the comparison of their results
with ours is not straightforward. However, there exist
some similarities between their results and our Fig. 4.
(Note the different behavior for k ~k, . )

An important point should be stressed here. If the
damping of plasmon modes is included, the Hamiltonian
cannot be written in a form similar to Eqs. (2.9) and
(2.11). Because of that, we have to introduce the disper-
sion and damping at the end of the calculation. This im-
mediately raises the question of the validity of our ap-

proximation (2.28) for the plasmon propagator. As can be
seen from our procedure, the dominant contribution to the
matrix elements in (2.14) comes from intermediate wave
vectors k. For small k, the available phase space is small.
For values of k approaching k„both the dispersion and
the damping strongly suppress the integrand.

On the other hand, a quasiparticle is a good description
of a plasmon mode if the pole of Green function (i.e., its
complex energy) is close to the real axis. ' This is certain-
ly true in our case for small k [compare coii(0) and
1 z(0)], but fails for large k ( k~k, ). However, for large
k's the contributions from the integrals (2.25) are small,
so we expect that the error involved in our calculation is
not large.

The parameters describing the dispersion and damping
in (2.1) are those which are usually accepted to describe
the behavior for k's of interest. However, it is out of the
scope of this paper to discuss various aspects of the prob-
lem of plasmon dispersion and damping, and the interest-
ed reader should consult the book by Raether.

V. CONCLUSIONS

In this paper we have studied the influence of plasmon
dispersion and damping on the strengths and shapes of
plasmon satellites in the XPS spectra of metals. We have
shown that dispersion and damping lead to an appreciable
reduction of the plasmon-excitation probability. In our
calculations we have used experimental values for the pa-
rameters describing dispersion and damping. Most other
authors used values from the jellium model which com-
pletely neglected the damping, and the terms describing
dispersion differed from the experimental values. With
respect to this point, the approach of Penn is similar to
ours. On the other hand, he used a three-step model in
which the interference between the electron and hole
scatterings was neglected. Moreover, Penn neglected the
surface-plasmon, contribution to the intrinsic scattering.

Inclusion of damping also provides a natural cutoff for
plasmon modes.

Using the mean-free-path approximation to describe
short-range scattering processes, we were able to calculate
the shape of the first surface- and bulk-plasmon lines in
the spectra. Comparing these results with experimental
spectra, we have obtained good agreement for the mean
free path for short-range processes at Eo ——1410 eV. Our
result, A, =29 A, is close to the generally accepted value.

C. N. Berglund and %. E. Spicer, Phys. Rev. 136, A1030
(1964).

R. Y. Koyoma and N. V. Smith, Phys. Rev. B 2, 3049 (1970).
G. D. Mahan, Phys. Rev. B 2, 4334 (1970).

4D. R. Penn, Phys. Rev. Lett. 38, 1429 (1977).
5W. L. Schaich and N. W. Aschroft, Phys. Rev. B 3, 2452

(1971).
H. Hermeking, Z. Phys. 253, 379 (1972).

7H. Hermeking and R. P. Wehrum, J. Phys. C 8, 3468 (1975).

SJ. J. Chang and D. C. Langreth, Phys. Rev. B 8, 4638 (1973).
J. J. Chang and D. C. Langreth, Phys. Rev. B 5, 3512 (1972)~

D. C. Langreth, Nobel Symp. 24, 210 (1973).
C. Caroli, D. Lederer-Rozenblatt, B. Roulet, and D. Saint-
James, Phys. Rev. B 8, 4552 (1973).
M. Sunjic and A. A. Lucas, Phys. Rev. B 3, 719 (1971).
G. D. Mahan, Phys. Status Solidi 55, 703 (1973).
M. Sunjic, D. Sokcevic, and A. Lucas, J. Electron Spectrosc.
Relat. Phenom. 5, 963 (1974).



6972 D. SOKCEVIC AND M. SUNJIC 30

~5M. Sunjic, Z. Crljen, and D. Sokcevic, Surf. Sci. 68, 479
(1977).
A. G. Eguiluz, Solid State Commun. 33, 21 (1980).
A. Sacr and G. Bush, Phys. Rev. Lett. 30, 280 (1973).
S. P. Kowalczyk, L. Ley, F. R. McFeely, R. A. Pollak, and D.
A. Shirley, Phys. Rev. 8 8, 3583 (1973).

~ A. Barrie, Chem. Phys. Lett. 19, 109 (1977).
20R. A. Pollak, L. Ley, F. R. McFeely, S. P. Kowalczyk, and D.

A. Shirley, J. Electron Spectrosc. Relat. Phenom. 3, 381
(1974).
J. C. Fuggle, L. M. Watson, D. J. Fabian, and S. Affrossman,
J. Phys. F 5, 375 {1975).

2A. Barrie and F. J. Street, J. Electron Spectrosc. Relat.
Phenom. 7, 1 (1975).

3L. Ley, F. R. McFeely, S. P. Kowalczyk, J. G. Jenkin, and D.
A. Shirley, Phys. Rev. B 11, 600 (1975).

~W. J. Pardee, G. D. Mahan, D. E. Eastman, R. A. Pollak, L.
Ley, F. R. McFeely, S. P. Kowalczyk, and D. A. Shirley,
Phys. Rev. B 11, 3614 (1975).

25A. M. Bradshaw, W. Domcke, and L. S. Cederbaum, Phys.
Rev. B 16, 1480 {1977).

26S. A. Flodstrom, R. Z. Bacharach, R. S. Bauer, J. C.
McMenamim, and S. B. M. Hagstrom, J. Vac. Sci. Technol.
14 303 (1977)

7P. Steiner, H. Hochst, and S. Hufner, Phys. Lett. 61A, 410
(1977).
R. S. Williams, P. S. Wehner, G. Apai, J. Stohr, D. A. Shirley,
and S. P. Kowalczyk, J. Electron Spectrosc. Relat. Phenom.
12, 477 (1977)~

R. J. Baird, C. S. Fadley, S. M. Goldberg, P. J. Feibelman,
and M. Sunjic, Surf. Sci. 72, 495 (1978).
P. M. Th. M. van Attekum and J. M. Trooster, Phys. Rev. B
20, 2335 (1979).
L. I. Johansson and I. Lindau, Solid State Commun. 29, 379

(1979).
D. Norman and D. P. Woodruff, Surf. Sci. 79, 76 (1979).
D. Sokcevic, M. Sunjic, and C. S. Fadley, Surf. Sci. 82, 383
(1979).

4C. C. Sung and R. H. Ritchie, J. Phys. C 14, 2409 (1981).
35P. M. Echenique, R. H. Ritchie, N. Barberan, and John Ink-

son, Phys. Rev. B 23, 6486 (1981).
M. Sunjic, Phys. Scr. 21, 561 (1980).

7H. Kanter, Phys. Rev. B 1, 522 (1970); 1, 2357 (1970).
38P. Nozieres and C. de Dominicis, Phys. Rev. 178, 1097 (1969).

S. Doniach and M. Sunjic, J. Phys. C 3, 285 (1970).
~J. W. Gadzuk and M. Sunjic, Phys. Rev. B 12, 524 (1975).

M. Sunjic and D. Sokcevic, Solid State Commun. 15, 1703
(1974); 18, 373 (1976); D. Sokcevic and M. Sunjic, Solid State
Commun. 15, 165 (1974).

42Z. Lenac and M. Sunjic, Fizika (Zagreb) 13, 23 (1981).
43R. Brako, J. Hrncevic, and M. Sunjic, Z. Phys. B 21, 193

(1975).
~C. B. Duke and U. Landman, Phys. Rev. 8 8, 505 (1973).
45P. C. Gibbons, S. E. Schnatterly, I. I. Rutsko, and I. R. Fields,

Phys. Rev. B 13, 2451 (1976).
6M. Klasson, J. Hedman, A. Berndtsson, R. Nilsson, and C.

Nordling, Phys. Scr. 5, 93 (1972).
47G. Laramore and W. Camp, Phys. Rev. B 9, 3270 (1974).
48J. Ashley and R. Ritchie, Phys. Status Solidi B 62, 253 (1974).
49C. C. Sung and R. H. Ritchie, J. Phys. C 14, 2409 (1981).

Shyamalendu M. Bose, Steven Prutzer, and Pierre Longe,
Phys. Rev. B 27, 5992 (1983).

s'A. L. Fetter and J. D. Walecka, Quantum Theory of Many
Particle Systems (McGraw-Hill, New York, 1971).

s2H. Raether, in Excitation of Plasmons and Interband Transi
tions by Electrons, Vol. 38 of Springer Tracts in Modern Phys-
ics, edited by G. Hohler (Springer, Berlin, 1965).


