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Csenerating function for angular momentum multiplicities
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.(Received 6 June 1984)

It is shown that the multiplicities of the total angular momentum projections for n-particle sys-
tems are given by the coefficients of certain Gaussian polynomials, for both bosons and fermions.
These polynomials are parametrized in the same way as would be the corresponding binomial coeffi-
cients which solve the Bose-Einstein or Fermi-Dirac counting problems for the total number of al-
lowed states. A comment on spin and statistics is included.

I. INTRODUCTION

When considering a system of n identical particles, one
is faced with the problem of deducing the allowed total
angular momenta I to which they may couple. Some
values of I are forbidden by (anti)symmetrization; some
occur more than once. A method for solving the problem
has been known for a long time. ' One can write all possi-
ble states in the m scheme which are consistent with the
statistics. Then the state with maximal total projection
M=M, „ is simultaneously the state with I=M „,
M =M,„. The states of a given M &0 are counted, and
if there are more of them than those with M'=M + 1, the
difference gives the number of states with I=M. Other-
wise there is no state of that I.

A more practical solution was given by Racah' in terms
of the seniority scheme. Unfortunately, it does not resolve
the multiplicities completely, and additional quantum
numbers have to be introduced ad hoc, usually by comput-
er choice.

In this paper an efficient method is described by which
one may deduce the J multiplicities of any system of iden-
tical particles. Since it is based on the I scheme, it gives
primarily the number of states with a given total projec-
tion M. They turn out to be equal to the coefficients of
certain Gaussian polynomials. A recursion relation is also
available to calculate these coefficients.

Not all Gaussian polynomials correspond to soIutions
of multiplicity problems. Some are excluded because they
solve problems with the wrong spin-statistics connection.
An interesting analogy exists between the classification
scheme for Gaussian polynomials with correct spin statis-
tics and the classification of classical simple Lie groups
according to the metric they preserve.

The principal result of this paper is obtained by demon-
strating a connection between the multiplicity problem
and some problems in combinatorics whose solutions may
be traced in the literature. For example, Eqs. (11) and (12)
are also found on p. 19 of Macdonald; the derivation of
(13) from (5) and (6) is given, e.g. , in pp. 33—35 of An-
drews, in a slightly different notation. Indeed, much of
Secs. III and IV could have been replaced by references to

the literature, once (5) and (6) [or (17) and (18)] have been
established. We have chosen instead to carry out the
derivations in full, believing that a cryptic style would
have made our results appear unnecessarily obscure.

II. NOTATION AND DEFINITIONS

p (1—q~)(1 —q~ ') . . (1 q~ "+')—
(1—q)(1 —q') (1—q')

(3)

It is a generalization (q analog) of the ordinary binomial
coefficient, to which it specializes for q = 1,

The degree of polynomial (3) is r (p r). —

We first give a compact notation for I scheme states.
It is best explained by an example. Take n =3 fermions
of j= —,. Then the possible states of total projection
M= —,

' are

~

100011&,
~
010101&,

~

001110&,

where each column is weighted with a single particle pro-
jection, from m = ——', to —,

' . The total number of
columns is 2j+1=6. The total projection is lowered
(raised) by moving a single unit to the left (right). This is
somewhat easier to work with than the usual "odometer"
listing, since the number of columns is fixed by j and not
n. Also, when constructing overlaps between the I and jj
schemes. ,

' each column can be assigned a permanent fac-
tor [(j+m)(j —m+1)]'~.

For bosons, several can occupy one single-particle state;
e.g., the M =7 states of n =5 bosons of l =2 are

~

01004 & 10o113& 1000

When constructing overlaps, in addition to the factor al-
ready mentioned, one has to include the square roots of
boson occupation numbers. These are explicitly exhibited
by scheme (2). Finally, let us introduce the Gaussian poly-
nomial '
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III. FERMIONS

m1+m2+ . . +m„=M, (4)

where m; (m; &m;+1) are the single-particle projections
ranging from —j to j. By letting

Generally, if we have n fermions of spin j, the number
of possible states with total projection M is equal to the
number of all arrangements of length 2j +1 consisting of
0's and n 1's [see (1)] for which

It is easy to prove by induction on p that

P P
Q(1+q't)= g q"'"+" P t"

r qi=1 r=0
(12)

The multiplicity we are seeking is theri the coefficient of
q in (12) with r =n and p =2j+1. By moving back to
M via (5), we complete the proof of Theorem 1:The num-
ber of states with total projection M for n fermions of
spin j is given by the coefficient of q in

b; =m;+j+1,
(4) becomes equivalent to

. . +b„=M+nj(+1):M,—

where

(5)

—(n/2)(2j+1 —n) 2j + 1

n q

In our example, j= —,, n =3, we get

—9/2 —9/2+ —7/2+ 2 —5/2+ 3
—3/2—q

(13)

1(b1&b2« . b„(2j+1.
The total number of arrangements satisfying (5) is found
by using certain properties of polynomials.

Any polynomial in x may be written in terms of its
roots x;. By collecting powers of x, one gets

P+ (x —x;)= g ( —1) ek(x„x2, . . . , xp)x"
Ic =0

where ek is the kth elementary symmetric function, e.g. ,

2(X1 X2 X3) X1X2+X2X3+X1X3

and, generally,

ek(X1p exp): X; X; ' ' X;
1 2 k

where the summation extends over all (i „i2, . . . , ik ) for
which

3q 1 /2 +3q 1 /2 +3q 3 /2

+2q 5 /2 +q
7/2 +q

9/2 (14)

which shows that there is one state for each of I= —,', —,',
and —,

' and no states of I= —,'or —,'. As mentioned before,
this result is obtained by subtracting successive multiplici-
ties appearing in (14).

Notice that the result (13) has a very suggestive form.
The binomial coefficient

2j+1
n

is just the solution of the Fermi-Dirac counting problem,
giving the total number of allowed configurations for n
fermions distributed over 2j +1 single particle states. The
factor in (13) is equal to

—Imax

1&F1 &t2 ' &tk &p

It is important to notice that condition (9) is the same as
(6). So (7) will be a natural device for counting our ar-
rangements, if we are careful of two things. First, the to-
tal number of b s in (5) is n, the number of fermions. By
putting

x;-t
in (7), one only has to consider coefficients of t". (In our
case, p =2j + 1.) Similarly, to accommodate (5), we
demand

where

I,„=—,n(2j+1 n), —

the maximal allowed I [put all "ones" to the right in (1)].

IV. BOSON S

Following the discussion at the end of Sec. III, we can
immediately state Theorem 2: The number of states with
total projection M for n bosons of spin l is given by the
coefficient of q in

b,xb-q '
2l +n

n
(15)

on the right-hand side (rhs) of (8). Thus, by putting

x; =q't (10)

in the polynomial

2j+1 2j+1
(1+q't)= g t"ek(q, q, q, . . . , q J+') .

i=1 k=0

on the left-hand side (lhs) of (8), we get the result that the
number of states satisfying (5) is equal to the coefficient
of

Mtn

a1m1+a2m2+ . +a„m, =~, (16)

Note that for bosons 1. „=nl, and the solution of the
Bose-Einstein counting problem for n bosons in
r =2l + 1, single-particle states are given by

r +n —1

n

We shall only sketch the proof, since it is dual of the one
given. Conditions (4)—(6) are changed, since more than
one boson can occupy a projection state. Instead of (4) we
have
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a1+a2+ +a, =n, 0&a; &n . (17) mc =pic~ ~+p2c~ 2+ . . +p~ Icl+p~ . (26)

(q 't) '(q 't) ' . . (q "t) "=qlt" (19)

with M and n fixed. In order to do this, instead of (7), we
now use the following expansion: '

p 1 oc=gh (x,, . . . , x ),
'=1 k=p

(20)

obtained by computing the lhs as a product of the
geometric series, and where the rhs denotes the kth com-
plete homogeneous symmetric function, e.g. ,

2 2 2h2(xl~x2~x3) x.1 +x2+x3+xi 2+x2x3+xlx3

and in general

aI a& a
hk(x ~, . . . , x~ ) =g x ~ x p

' '
x&

where the sum extends over all (a; & 0) such that

a +a2+ . +ap ——k . (22)

Again, (22) is the same as (17), and we need the coefficient
of q~t" in

21 +1
(23)

(1—q't) „p
where (23) [like (12)] can be proved by induction. Replac-
ing M by M from (18), Eq. (15) is justified.

A shift by 1+ 1 produces

1&c1&c2 . . &c, &21+1,

alc, +azc2+ . +a„c„=M=M+n(l+I).
The problem is now reduced to counting all possible mo-
nomials

The point is that it is easy to write a closed expression for
the p's of a Gaussian polynomial because the logarithm of
(3) is a simple expression. Using the expansion of
ln(l —x), one gets

min(r, p —r)

s=1
s/m

s =max(r, p —r)+1
s /m

S (27)

cp ——1,
C11yC4=5&C7=9&C1p=12 ~

c2 ——2, c5 ——6, c8 ——11,
c3 ——3, c6 ——8, c9 ——11,

(29)

Thus we have one state of L, =10; c1 —cp ——0 states of
L =9; the c2 —c1 ——1 state of I. =8; one state of I. =7;
c4 c3 —2 states of L, =6; the c& —c4 ——1 state of L =5;
two states of L =4; one of L =3; two of L =2; none of
L =1;and clp —c9=1 of L =0.

where r and p on the rhs are the parameters of (3), and
s

~

m means that s divides m. This additional restriction
severely reduces the number of terms which contribute to
(27), and the p's are usually small integers. As an exam-
ple, consider the case of n =5 bosons of spin I =2. The
relevant polynomial has p=9, r =5 [see (15)]. It has
terms up to q, but we need to calculate only up to q ',
since it is symmetric (i.e., positive and negative projections
are equivalent). Using (27), we obtain

P1 ~ P4 ~ Pj ~ @10

72=3 ~ P5=1 ~ P8= —1 ~.

J3 4~ JP6 0~ J9
The recursion (26) then gives

V. CALCULATING THE COEFFICIENTS

1P(q)= g c q =exp g pkq—
M&0 k&1

(24)

Then the c's and p's are connected by the identity

The Gaussian polynomials in (13) and (15) contain

powers of q from zero to 2I „.The factors q
'" will

be omitted in the following. We shall give a procedure for
calculating the coefficients of Gaussian polynomials
without using definition (3). Any formal series P(q) may
be expressed in two ways (if cp ——1):

VI. COMMENT ON SPIN AND STATISTICS

We have seen in (13) and (15) how Gaussian polynomi-
als generate the angular momentum multiplicities for fer-
mions and bosons. Let us now pose the inverse question:
Given a polynomial (3), of what problem is it a solution?
For instance, if p is odd, (3) cannot solve any fermion
problem (13), and it can solve a boson problem only if r is
also odd since 2l in (15) is an even number. Table I is
constructed by similar considerations. We note that
r (p r) is the degree —of (3), so it is not unnatural to con-
sider (p r) instead —of P. We have implicitly assumed the
correct spin-statistics relation. The box labeled "none"
actually solves both problems with the relation reversed.

P2 P1
1

c = det
m~

t

(25)

0 ~ ~ ~ ~ 0
I—2
I

p, ( n+1)—
—P2 P1 odd r even

TABLE I. A classification of Gaussian polynomials (3) ac-
cording to which multiplicity problem they solve. The correct
spin-statistics relation is assumed.

or, equivalently,

(p —r) even

(p —r) odd
Bosons
Fermions

Both
None
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TABLE II. A classification of classical simple groups ac-
cording to the metric they preserve (from Ref. 9).

Symmetry property
of metric

Functional form of metric
- Bilinear Sesquilinear

Symmetric glJ gJl
Orthogonal

glJ gJl
Unitary

Antisym metric glJ gJl
Symplectic

None

Similarly, the column (r odd) also gives the solutions for
"fermions" for (p —r) even and "bosons" for p rodd-,
but with the wrong statistics. A moment's reflection
shows that our derivation of (13) and (15) did not need the
spin-statistics relation; it is an external condition.

As an example, we may recall the Jordan-Schwinger
realization of the SU(2) group in terms of what are some-
times pedantically called "two kinds of bosons. " They
may be considered as one boson of spin —, and two projec-
tions. Using (15) with l = —,

' (!),we get

n+1
n q

qn+1

1 —g i=0
(30)

the known result that n Jordan-Schwinger bosons realize a
state of total I=n /2 and only that I, all the coefficients
in (30) being unity. Thus our formalism is indeed not
prejudiced as to spin and statistics.

There is, however, a very interesting analogy between
the classification of Table I, which assumes the correct
spin-statistics relation, and a classification of classical
simple Lie groups. Table II classifies them according to
the metric preserved by group operations. The similarity
between Tables I and II seems to be more than superficial.
Generators of a unitary group U(21+1) or U(2j+1) can .

be constructed from bilinear combinations of both boson
and fermion operators. If these bilinear combinations are
coupled to good angular momentum, those coupled to odd
angular momentum close the algebra of the seniority sub-
group. ' lt is the orthogonal group O(2l+ 1) for bosons
and the symplectic group Sp(2j+1) for fermions. The
fact that some Gaussian polynomials solve no multiplicity
problem with the correct statistics seems to be reflected in
the conspicuous absence of a class of simple groups from
Table II.

At present, this is nothing more than an analogy. If
one were able to construct an explicit connection between
Tables I and II, this would. independently corroborate the
spin-statistics relation. We shall briefly return to that
point in the fol1owing section.

which generates the allowed states of any configuration of
identical particles. This is useful when basis sets are con-
structed for diagonalizations, either in the shell model or
any phonon model.

From a more abstract point of view, it is interesting
that both boson and fermion problems are reduced to one
and the same task of calculating coefficients of Gaussian
polynomials. The polynomials even give multiplicities for
problems with the wrong spin-statistics connections. This
suggests that it is not possible to deduce the physical
spin-statistics relation from mathematical arguments
alone. Indeed, the very existence and usefulness of the
Jordan-Schwinger construction shows that an essential in-
gredient of this relation is ascribing a physical reality to
the particles in question. This is also implied by the tradi-
tional derivation of the relation, "which begins by writing
a Hamiltonian. A way to give a physical distinctioq to
those Csaussian polynomials which solve the multiplicity
problems with the correct spin statistics would be to pro-
vide a connection between them and compact simple
groups. The latter could be physically interpreted as
describing the conservation of probability. The analogy
between Tables I and II seems to imply that such a con-
nection is possible. Its actual construction remains an
open problem.

The main result of this work has been to remove a prin-
cipal disadvantage of the m scheme in determining multi-
plicities, that one had to write out all possible states of
type (1) or (2) and then count them. This procedure has
been replaced by a recursive algorithm. Another disad-
vantage has remained, since no definition of additional
quantum numbers is given.

Traditionally, quantum numbers have been assigned in
connection with subgroup chains. The Gel fand-Tseitlin
chain which completely resolves the multiplicity problem
does not exhibit the physical angular momentum group. '

The Racah chain is physical, but the seniority subgroup
does not resolve the multiplicities completely. ' The
seniority quantum number may be read off from the m-
scheme content of a jj state, if the appropriate overlaps
are constructed. It is conceivable that a definition of ad-
ditional quantum numbers could be constructed based on
the m scheme. One would not expect them all to be con-
nected with subgroups of the maximal compact unitary
group. The situation would then be analogous to the
separation of variables in differential equations, where
there exist separable coordinate systems which do not lie
on subgroup orbits of the symmetry group of the equa-
tion. ' We hope that our results for the multiplicity prob-
lem will stimulate efforts to solve the quantum numbers
problem by combinatorial arguments in the m scheme.

VII. DISCUSSION

The operational way to use the results of this work is
given by Eqs. (26) and (27). They are suitable for comput-
er applications, and a compact program can be written
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