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Quite recently the dielectric electronic-response properties of small metal particles were investigat-

ed within a strictly self-consistent spherical jellium model. The bottleneck of this kind of calculation

for a larger cluster is the self-consistent solution of the single-electron Kohn-Sham equations.

Therefore, in this work simple model potentials are investigated and compared with the Kohn-Sham

barrier. The result of this comparison is that the widely used model potentials such as finite- or
infinite-step potentials are not able to mimic the complex dynamical behavior of a fully self-

consistently responding surface.

I. INTRODUCTION

Quite recently a number of authors started investigating
the dielectric properties of small metal particles at a
strictly microscopic level. ' s The model used in all of
these investigations was the self consistent spherical jelli-
um model, and the concept used to describe the response
properties was the time-dependent local-density approxi-
mation (TDLDA) due to Zangwill and Soven9 and Stott
and Zaremba 'o

A major problem to apply this method consists in the
self-consistent solution of the Kohn-Shatn equa-
tionss " 's for a larger number of electrons (say beyond
500 valence electrons of sodium) describing the ground
state of the system. Therefore, one very often tries to
avoid this time-consuming computational work either by
the application of qu~~iclassical concepts such as the
semiclassical infinite-bamer model (SCIB),' ' or by ap-
plying the quantum-infinite-barrier (QIB) model, ' ' or
even other models such as the hydrodynamical model, 's

the sum rule technique, 's and the statistical method. ~
In this paper we adopt a different approach. Because

of our knowledge of the exact results (within a spherical
jellium model) both concerning the dipolar response'
and concerning the response properties of the higher mul
tipoles, we are now in a better position. Using the exact
results as a bench mark, we simply study a number of po-
pular model potentials confining the electronic motion
within a spherical particle and look at the results. In this
paper we investigate three different step potentials as the
simplest way to describe electronic localization within a
sphere. The motivation for doing so is as follows. We
know from the current literature that both for planar jelli-

um surfaces ' and for spherical ones' a steplike single-
particle potential gives rather accurate ground-state prop-
erties provided that step height and edge position (with
respect to the jellium background) are determined by
minimizing the ground-state energy functional. Hence, it
is tempting to use the single-particle potential obtained in
this way for the calculation of the various ingredients
needed for the application of the TDLDA. As we shall
see below, this procedure yields reasonable results as far as
the static polarizability is concerned (this outcome is, of
course, not surprising; nevertheless, it is a new result),
whereas the dynamical response, of course, deviates con-
siderably from the corresponding Kohn-Sham behavior.

Therefore, we investigated in a second step another step
potential which was especially designed to reproduce the
dynamical behavior. This potential is not sanctioned by
any minimization principle. Its parameters are simply
determined to give a best fit to the occupied part of the
(known) Kohn-Sham single-particle level scheme. As ex-
pected, the dynamical polarizabilities compare now better
with the corresponding Kohn-Sham results, but not as
well as one might think.

Finally, we present the various dynamical multipole
properties of the qu'uitum-infinite-barrier model. The re-
sult here is similar to what is known for the planar jellium
surface. The QIB possesses so many intrinsic flaws that it
should no longer be used, at least insofar as one believes in
the relevance of the Kohn-Sham barrier.

The rest of the paper is organized as follows: In Sec. II
we present the ground-state potentials and charge densi-
ties and compare them with the corresponding Kohn-
Sham properties. Section III gives a short summary of
the TDLDA formalism as used in this paper. Section IV
contains the static response properties, whereas Sec. V
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gives a detailed account of the dynamical properties. Sec-
tion VI is the conclusion.

II. MODEL POTENTIALS

O
C

@=92
R =18.057
Ro = 18.365
V -02889

[—&+V(r;p(r))]4;(r) =~;@;(r), (2)

which, however, are not solved self-consistently. On the
contrary, the potential V(r;p(r)) is replaced by a finite-
step potential

V(r;p(r)) = —Voe(Ro r), — (3)

which makes Eq. (2) analytically tractable. The wave
functions 4;(r) depend parametrically on Vp and Ro, and
so does the density p(r) and the total energy E[p]. Hence
the best potential within the family of trial potentials, Eq.
(3), is easily found by searching for E;,. The input data
needed for this model are the saine as for the correspond-
ing Kohn-Sham problem, namely the jellium density r,
and the number of valence electrons N to be considered.
This gives, via Rz —N' r„ the jelliu—m background radius
Rz. We performed these calculations for a variety of par-
ticle numbers in the case of r, =4 and reproduced (with
slight modifications) the results concerning the ionization
potential already published in the literature. At the
same time we looked at the convergency of Vp aild Rp to-
ward their known semi-infinite half-space values. ' The
convergence is slow but takes place.

We show in Fig. 1 a plot of the charge density and the
single particle levels in the case of r, =4 and X=92. The
value of Vp in that case is Vp ——0.2889 Ry and the radius
of the potential Rp, is given by Rp ——18.365 a.u. (com-
pared to Rz ——18.057 a.u.}. The charge density looks
indeed very similar to the corresponding Kohn-Sham
charge density, shown in Fig. 2, whereas the potential
looks rather different. It is considerably shallower than
the Kohn-Sham potential Fig. 2. This result qualitatively
agrees with what has been found by Rose and Shore ' for
the semi-infinite half-space. As we shall see later, it is
mainly this shallowness which makes the dynamical
response so different from the Kohn-Shayn response.

Another potential ~hose response properties we investi-
gated is the one with depth and width simply used as fit-
ting parameters to reproduce the occupied part of the
Kohn-Sham single-particle level scheme. For Vo ——0.4413

The most straightforward reasonable step potential
which can be used in any type of response calculation
would be that potential minimizing the total energy of the
system. This would mean that we are constructing a
model which is completely analogous to the original
TDLDA except for the missing self-consistency. Such a
potential is sanctioned by the minimization principle and,
therefore, its parameters are in no way arbitrarily fixed.
For that reason we studied this potential first. The start-
ing point to obtain this potential is completely the same as
in the exact Kohn-Sham theory. The variation of the to-
tal energy functional E[p],

E[p]=Eh fpl+E*.[p]+E [pl

with respect to the electronic density p(r), leads directly to
the Kohn-Sham equations,

-0.1
iz -0.2

-0.3
& 0.
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FIG. 1. Step potential minimizing the total energy of 92 elec-
trons of sodium, r, =4. The electronic density and the occupied
single-electron levels are also shown, no ——1/{err/3)r, . The ener-

gy is given by Rydberg and the radial coordinate in 1 bohr = ao.
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FIG. 2. Single-particle potential, charge density, and occu-
pied electronic levels the ground state for %=92 and r, =4, fol-
lowing from a completely self-consistent Kohn-Sham procedure.
The size dependence of these quantities was extensively dis-
cussed in Ref. 11.

Ry and Rp ——18.805 a.u. , we found close agreement be-
tween these two and the result of that fit is shown in
Table I together with the level scheme of the other poten-
tials under study. As we see from this table, the agree-
ment is indeed remarkably good!

Finally, we studied a potential whose parameters,
Rp RJ and Vp ——100 Ry, are thought to be representa-
tive for the classical QIB model. The reason why we did
not use strictly Vp = ae ls a simple numerical one. For a
very large but finite step, we can use all numerical algo-
rithms without any modification whereas in the case of
Vp ——ae, we would have to modify the numerical work.
On the other hand, it is obvious that the results for fre-
quencies rp in the eV range are more or less the same for
Vp ——100 Ry and Vp ——ae.

Already a glance at the charge density of the QIB
model compared to the Kohn-Sham charge density makes
it clear that rather artificial results are to be expected
from a straightforward application of this model. It was
mainly for this reason that two of us (Z.P. and M. S.}ap-
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TABLE I. Single-particle levels occupied in the ground state of the various model potentials studied

in this paper. All energies are given in Ry, %=92 electrons and r, =4. c": Kohn-Sham result, Ref.
11, as the reference. e': total-energy-minimizing step potential. e~: single-particle-level-scheme fixing
step potentiaL e3: JIB model with Ro ——Rq and Vo ——100.

KS—
&l,aI

0.417 38
0.34498
0.229 31
0.39262
0.299 16
0.361 11
0.24593
0.323 65
0.2S053
0.231 98

0.417 38
0.346 13
0.229 25
0.39245
0.297 91
0.361 06
0.243 30
0.323 54
0.280 12
0.23100

0.264 82
0.19352
0.079 38
0.239 77
0 14575
0.208 31
0.092 35
0.170 82
0.12?61
0.078 98

99.97006
99.88026
99.730 5S
99.938 76
99.81898
99.899 25
99.749 10
99.851 89
99.79692
99.734 51

plied a modified QIB model to the problem of dielectric
screening in small metal particles. ' However, the prob-
lem with this modified model is that the input value of
Ro is somewhat arbitrary. It was fixed by demanding
that the uppermost filled level, with respect to the bottom
of the potential, agrees with the Fermi energy of the bulk
metal. However, due to the size effects in small particles,
that is not a valid criterion. Furthermore, invoking the
electrostatic force sum rule2s to adjust a certain kind of
background radius Rq+Rq, pertaining to the choice value
of Ro is meaningless simply because this sum rule is not
valid within the random-phase approximation (RPA).
Hence, in this paper we go back to the "classical" QIB
model' and compare the results produced by it with those
obtained from more sophisticated models. We think that,
in this way, we obtain the clearest impression on the in-
trinsic limitations of the QIB model.

III. TDI DA POIDCAI. ISM

The application of the TDLDA formalism ' was
described in detail in our previous work. ' ' ' ' Hence,
only a very condensed summary is given in this paper.

V,„= r'P, (co—s8)eIe (4)

an induced charge density is set up which, for a spherical-
ly invariant system, has the same symmetry as V,„.
Within linear response the induced charge density is given
as follows:

p; d(r, 8;co)= —etPt(cos8) f dr'(r') +Xi(r, r';co) . (5)

In Eqs. (4) and (5), et is a (small) constant, Pt is a Legen-
dre polynomial, and co is the frequency.

Within TDLDA, which has the same structure as the
RPAE (random-phase approximation with exchange), the
l-pole density-density correlation function XI(r, r;co) is
obtained as the solution of the following integral equation:

For a detailed discussion the interested reader is referred
to the work quoted above.

If the particle is placed in an external l-pole potential of
the form

Xt(r, r';ei)=XI(r, r';co)+ f dr"(r") Xt(r, r";co)(dV„,/dp)Xt(r", r', co)

+ ~" ~" 2 ~"' ~"*
I ~,~";~ ~ 2I+~ ~I ~",r"'

Here, XI is the corresponding independent-particle l-pole susceptibility, d V„,/dp is the density derivative of the exchange
correlation potential in the ground state, and St(x,y)—:2x & /y'&+ . Hence, we see that as a prerequisite for the applica-
tion of the TDLDA the corresponding ground-state problem must be solved first. Once it is solved, XI can be calculated
as follows:

"I"&~ &I-k&k«, —k 21,.+21 —4k+1
Xt(r, r', co)= g Rt, „(r)RI, „,(r')(2l;+ I )

, „2m ' ' ' '
k o &t.+t k 2l;+2l —2k+I

(7)
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In Eq. (7), I l;,n; I are the quantum numbers of the occu-

pied single-particle states in the ground state with energy

ct, „, and wave function Rt, „(r}.The coefficients aq are

defined by ak ——(2k —1)!!/k! and the retarded Green's

function G{(r,r', E) can be calculated from the ground-

state potential as described elsewhere.
Once Eq. (6) is solved, the dynamical 1-pole polarizabil-

ity at(c0) is obtained from the following equation:

ai(t0)= J dr r'( —1) r
21+1

I P,f;6)

All the information we need for the interpretation of ex-

perimental results on clusters are contained either directly
in ut(co) (for long-wavelength probes) or in Xt(r, r', co).
This has been shown, e.g., for electron-energy-loss experi-
ments in Ref. 8.

IV. STATIC POLARIZASILITY

1 ~ 2

I I I I I I I I I I I I I I I I

I I I I I I I I I I I I

4 5 6 7 8 9 10
angular momentum

I I I I I I I I I I I I I I I I

u /a
I I

Vo= 0,442
Ro= 18,805

The classical l-pole polarizability of a sphere with a
bulk dielectric constant e(ro) reads

( )
e(to) —1

e(co)+ (l + 1)/1

0.6—

0.4

Ik,

0.2— SI /OO

(b)

e(t0) = 1 co& /(t0—+i 0+ }

we obtain for the static polarizability

a (0)/Z" +'=1,

(10)

If the metal dielectric constant is assumed to be given by
the classical Drude form

0.5

I I I

1 2
I I I I I I I

4 5 6 7 8 9
angular momentum

I ! ! I I I I I I I

a /aCI
I I

I

10

for all values of l.
Quantum mechanically, a constant ratio of 1 is not to

be expected, simply because the screening charge possesses
structure which will certainly depend on the way it is
created (e.g., the i value of the external potential}. The
structure of this screening charge for a Kohn-Sham bar-
rier was discussed in detail in Refs. 1—8. In the following
the results especially of Refs. 2, 7, and 8 will be used as a
bench mark to estimate the value of a simplifying model
potential. Quite recently the static dipole polarizability of
small sodium clusters was experimentally determined by
Knight et al. The size dependence of the
polarizability —as predicted by the spherical jellium
model —agreed well with the experimental data. The
only difference is that the absolute value of the experi-
mental polarizabilities are off by about 20%.

Figures 3(a)—3(c}show the static multipole polarizabili-
ties at(0), in units of R +' (continuous line}, whereas the
dashed-dotted line shows the 1 dependence of the apparent
multipole surface of the sphere, 5t, defined by

(12)

Hence, the underlying physics of the 1 dependence of the
left-hand side of Eq. (12}is contained in 5t.

Compared to the Kohn-Sham barrier, extensively dis-
cussed in Refs. 2 and 7 for /=1 and in Ref. 8 for i& 1,
none of the model 5t's shows the "correct" behavior. For

0—
-05—
-1.0

Yo= 100
Ro= 18.057

(cj

tl-25—
-5.0

1

SI/aO

I I I I I I I I I I I I I

2 3 4 5 6 7 8 9 10
angular momentum

FIG. 3. Apparent multipole surface 5I of the various model
potentials [see Eq. {12)] along with ai fat'. {a) Energy-
minimizing step potential, {b) level-scheme fitting step potential,
and (c) QIB model. Compared to the Kohn-Sham result {Refs.
2, 7, and 8) only (a) shows the correct behavior for low I values.

low I values, 1=1 to 3, the total-energy-minimizing step
potential shows approximately the correct behavior, not
only qualitatively but even qn~ntitatively. %e think this
is a rather interesting, new result because it shows expli-
citly the usefulness of a step potential even in presence of
an external field. This gratifying feature is not attained at
larger I values, which means for an external field of short-
er wavelength. We believe this to be a consequence of the
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shallowness of the potential which leads to the wrong
description of the virtual excitation of electron-hole pairs.
This result was to be expected and it was for that reason
that we studied the level-scheme-fitting step potential.
The result for the corresponding 5i is shown in Fig. 3(b).
5i behaves qualitatively correct but quanti tatiuely it is now
much too small. In physical terms this means that the
sphere is less polarizable than the Kohn-Sham sphere.
This is related to the fact that the potential, compared to
the Kohn-Sham one, is less extended. As a consequence,
the number of unoccupied bound states is smaller and, for
that reason, the low-energetic highly polarizable electron-
hole pairs are less numerous.

A rather strange result, compared to the other poten-
tials, is obtained for the JIB model, shown in Fig. 3(c).
Due to the artificial confinement of the electrons, the in-
duced charge relaxes inward which makes 5i a negatiue
quantity. This is certainly an unphysical result. In the
picture of virtually excited "oscillators" the reduced po-
larizability is mainly a consequence of the fact that both
the electron-hole pairs and the collective surface mode are
overly high in frequency. We shall explicitly confirm this
picture in the next section.

To begin with, we show in Figs. 4(a} and 4(b) the
dynamical dipole (i= 1) results pertaining to the total-
energy-minimizing potential discussed at the beginning of
this work. The dipolar dynamical polarizability is ex-
clusively governed by two heavily damped collective
features around 0.92 (surface mode) and 1.92 (volume
mode}. Compared to the 1=1 Kohn-Sham results, there
are no features due to single electron-hole pairs (in the co

region of the figure), and the width of the collective
modes is much larger, which means physically a shorter
lifetime. Both of these features are, of course, a direct
consequence of the shallowness of the potential which
especially makes Landau damping an effective decay
channel for collective surface modes. That collective ef-
fects for 1=1 are important is evident on comparing the
TDLDA result with the independent-particle result. The
peak position of the collective modes is correct (up to a
few percent deviation}, and the total oscillator strength of
the surface mode seems to be very similar to the KS value.
Otherwise it would hardly be understandable why ai(0)
compares so favorably with the corresponding KS result.

Similar results are obtained for the higher i values (not

V. DYNAMICAL POLARIZABILITY

col'=co&/&(l +1)/i +1, (13)

is 8-independent and exclusively a topological effect.
However, we know that via qi =1/8 every surface mode
can be assigned a wave vector which has very much the
same meaning as the wave vector q, of the surface mode
at a planar surface. For this reason the classical disper-
sion law Eq. (15} can be expected to change to much
higher frequencies. On the other hand, collective surface
motion can be expected to be destroyed at an uppermost
critical i value I„beyond of which the Coulomb interac-
tion is a very weak perturbation on the independent-
particle motion. All this has been verified for the Kohn-
Sham barrier in Ref. 8 (for i values ranging from 1 to 10),
and we are now going to do the same for the model poten-
tials.

We turn now to a discussion of the dynamical polariza-
bilities of the various model potentials. For this purpose,
Eq. (6) is solved for co+0 and the result is used to calcu-
late the complex polarizability ai(co), Eq. (8). The fre-
quency e is scaled with the classical surface-dipole fre-
quency co~/~3 and the calculations are performed in the
range of 0.8&co/(co&/v3)(2. 4 in steps of 0.01. We
know from our earlier studies, especially from Refs. 2, 7,
and 8, that this scanning is sufficient to catch all the 1111-

portant features and that the collective surface modes can
be expected to occur in the chosen range of (0.8, 2A}. In a
second calculation we did exactly the same except for re-
placing Xi by Xi [see Eqs. (6) and (7)]. Upon comparing
ai(ro) with the TDLDA-derived a)(c0), we are then able to
get insight hoio the collective motion of electron-hole
pairs carries characteristic features resulting from the
single-particle potential confining the electronic motion.

Classically, the I dispersion of the collective surface
&nodes, given by

(a)

C4

0
3

E

o
-2

O

3
0.8 1.2 2.0

(b)—

+
04
K

03

Ct

4P~ -2

2.0 24

FIG. 4. Imaginary {a) and real (b) part, respectively, of the
dynamical dipole polarizabihty of the step potential minimizing
the total energy of the system. Continuous lines: TDLDA re-
sults, Eq. (8) of the text; dotted lines: independent-electron re-
sults. Here, gi is used in Eq. (8). The polarizability is given in
units of its static value as calculated within classical physics,
namely 8 +', with R the classical (jeilium) radius of the
sphere.
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shown). The number of electron-hole pairs is too small,

the collective modes are much too broad, but their peak

positions are approximately correct.
Next, we present the results for the level-scheme-fitting

potential in Figs. 5(a) and 5(b). The long-wavelength

response, 1=1, consists mainly of the two collective
modes. The surface mode is overly strong at the cost of
particle-hole pairs which, consequently, are nearly

suppressed in the spectral region shown. The peak posi-

tion of the surface mode is overly high and that of the
bulk overly low (both of them compared with the Kohn-
Sham result). Again, similar results are obtained for the

higher 1 values.
Finally, we show the results pertaining to the QIB

model in Figs. 6(a) and 6(b). To facilitate comparison
with already published QIB results of Ref. 17, the results

are shown from at=a on. Compared to all the other
models, there is one striking feature: the spectrum con-
sists solely of undamped spectral lines, simply because
there are no bound-continuttttt transitions. For that
rmson, Landau damping does not occur in the interacting
spectrum. As a consequence, both the collective surface

plasmon and the collective volume plasmon are showing

up as lines but not as humps. Both of the collective
modes are considerably blue shifted and the oscillator
strength of the surface mode is overly large (at the cost of
single-pair lines). All this can be seen even more clearly

Al
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FIG. 6. Same as Fig. 4, but for the QIB model. The results

are shown mainly as a demonstration for the various intrinsic

flaws of the QIB model.

N
K

3
C
E
M

0,8 2.0

t

(b)—

from the real part of the response function for l=l,
which is shown in Figs. 6(b) on a linear scale (and not on
a logarithmic one). The same artificial behavior can be
seen for intermediate and high I values, not shown in the
figures. There is no similarity between the dynamical
behavior of the KS barrier and the QIB model, neither
quantitatively nor even qualitatively. For that reason, the
use of the QIB model seems to be improper even to a
qtt~m&'tative understanding of response phenomena at me-
tallic surfaces.

UI. CONCLUSION
40—

-40
0.8 1.2

20

3
y OW e et0 —.. .... .".. .."..

Vo = 0.442
Ro= 18.805

2.0

Three model potentials have been investigated aimed at
a microscopic description of dielectric screening in small
metal particles. If the results pertaining to a completely
self-consistent Kohn-Sham-TDLDA procedure are used
as a bench mark to estimate the merits of these potentials,
none of the models gives satisfactory results. Only the
total-energy-minimizing step potential shoes static, long-
wavelength screening properties comparable to the corre-
sponding Kohn-Sham results.
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