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Cxenerating functions for the Racah decomposition

D. K. Sunko
Theoretical Physics Department, University of Zagreb, 41000 Zagreb, Yugoslavia

(Received 21 October 1986)

Generating functions are given for the angular momentum states of prescribed seniority of an as-
sembly of identical particles, both for bosons and for fermions. The method is extended for mul-
tilevel configurations. Possible applications are discussed.

The problem of determining the multiplicities of angu-
lar momentum in a system of identical particles is an old
one and standard solutions appear in textbooks. ' In
mathematical terms it corresponds to finding the rnultipli-
cities of SU(2) representations appearing in the decompo-
sition

SU(2j+ 1)Z R(2j + 1 ) D SU(2) D SO(2) (2)

with R the seniority group, orthogonal for bosons and
symplectic for fermions. '

It has been shown' that the generating function corre-
sponding to (1) is

r
G ( r n q ) q

n ( r —n ) /2
n

(3)

with

r =2j +1 for fermions,

r =21 +n for bosons .

The square brackets in (3) denote a Gaussian polynomial
in q of order 2J,„=n(r —n):

(1—q")(1—q" ') . (1 —q" "+')
q (1—q)(1 —q') (1 —q")

Then the coefficient of q in (3) is equal to the multiplici-
ty of angular momentum projection M appearing in (1).

The extension to (2) is based on a simple observation,
often mentioned in the literature: If an angular momen-
tum state of an n-particle configuration contains at least
one zero-coupled pair, then that state also appears in the
(n —2)-particle configuration, since the zero-coupled pair
does not contribute to the angular momentum. Therefore
the generating functions are

Vb(2l +n, n;q) =G(2l +n, n;q) —G(21+n —2, n —2;q),

(5)

SU(2j + 1)D SU(2) Z SO(2)

of the fully symmetric I n I or fully antisymmetric repre-
sentation I 1 "I of SU(2j+ 1). This problem has recently
been solved with the use of generating functions. '

The purpose of this article is to report on a further
development of the generating function method. It is now
possible to treat the full Racah decomposition

Vf (2j + 1, n;q) =6 (2j + 1, n;q) —G (2j + 1, n —2;q)

(6)
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Note the formal similarity with (4). Only the first two
(last two) terms in the numerator of the Gaussian polyno-
mial (4) have been changed in Vb ( Vf ).

An algorithm was previously given' to calculate the
coefficients in (3). If the coefficient of q

'" in (3), (5),

for bosons and fermions, respectively, with n ( —,(2j+ 1)
for fermions, because of Pauli blocking. Incidentally, we
note that the binomial coefficient symmetry n~r —n is
valid for (3), giving the particle-hole symmetry for fer-
mions. [The bosonic analog is a symmetry between n and
21. The author is unaware of any physical interpretation
of this. Also, note that (3) allows one to construct a sys-
tem of bosons with the same angular momentum distribu-
tion as a given system of fermions, and vice versa. The
spin-statistics relation is not always satisfied in this con-
struction. ]

The coefficient of q in (5) or (6) gives the multiplicity
of SO(2) states with weight equal to M and seniority
s =n. In this way the multiplicity problem of Eq. (2) is
solved.

The polynomials (5) and (6) are well defined under the
usual convention that (4) vanishes when r or n become
negative. By the interpretation given above, they must be
unimodal, the coefficient of q being largest. Interesting-
ly enough, they are unimodal only for the correct spin-
statistics relation. The reason is that a zero-coupled pair
vanishes identically for particles violating spin statistics,
and the interpretation leading to (5) and (6) fails.

Assuming $ )2, the seniority generating functions are
explicitly
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or (6) is called c, the general recursion is

mcm P1cm —1+P2cm —2+ +Pm 1C1 +P~ (7) E(Mev)

with co ——1. To obtain the coefficients in (5) or (6), the pk
are specialized:

r —2
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where a
~

k means that a should divide k in order to con-
tribute to pk, and similarly for the term in curly brackets.
This should be compared with the pk that give' (3):

pt= ga-
a=1
a tk

a =r —s+1
a /k

a, (3')

where we have set n =s in (3) to emphasize the similarity.
The extension to the multilevel case works exactly as in

Ref. 5. If there are z levels, then

pt = gpk(i) (8)

Pk ~Pk

in (7). Then the c will give the J multiplicities directly.
As an exercise, the reader may wish to extend the exam-

ple of Ref. 5, which gave the total multiplicities for the
configuration (

—', ) (
—', ) (

—'
, ) ( —, )'( —', ) . There are 16 dis-

tinct seniority configurations.
The second example follows from the observation that

the method just described constructs the basis which diag-
onalizes the Hamiltonian

will give the multiplicities for the total system via (7),
where now the levels are specified by seniority and not by
number of particles. This means that a given configura-
tion will give rise to as many distributions as there are
combinations of seniority among the levels.

To calculate the distribution, the pk must be obtained
up to k =J,„. Then, since the recursion (7) must be exe-
cuted da capo for each new c, the algorithm is quadra-
tic in J,„. If only the J multiplicities are required (as is
usual), it may be noted that the necessary subtraction of
successive c 's corresponds to a multiplication of the gen-
erating function by (1—q), as far as the first J,„coeffi-
cients are concerned. This, in turn, corresponds to replac-
ing
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FIG. 1. Shell-model ground-state band for '"Ce (solid line).
Dots show yrast states that do not belong to it.

H = gn;F.;+G gS'+S", (10)
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with the usual single-particle part and a pairing force
within levels but not among levels. This means that the
total seniority is conserved, which is not very realistic,
but is the price paid for a considerable computational ad-
vantage, since the energy of (10) is given by a simple ex-
pression. A valence-shell demonstration was made for

Ce. It has eight protons and three neutron holes dis-
tributed over the five levels in the 50—82 shell. The com-
plete spectrum of (10), containing 2.68X10 states dis-
tributed over 72451 levels, was generated in 2.9 min of
CPU time on a UNIVAC 1100. With Kisslinger-
Sorensen energies and G =,37 part of the results is
shown in Fig. 1. The yrast band is indeed "wiggly and
kinky, "' but our point here is primarily in the states
below the shell model ground-state band. They show that
the correlations in (10) may be sufficient to destabilize the
shell model ground state, and thus model the essential
feature of superfluidity.

In conclusion, the method presented is computationally
efficient enough to hold promise as an alternative ap-
proach to the shell-model calculation of level densities.
Since it is exact, it could also be used to investigate the
particle-number dependence of the normal-to-superfluid
phase transition. Work along these lines is in progress.
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