Two- and four-quasiparticle states in the interacting
boson model: Strong-coupling and decoupled band
patterns in the SU(3) limit

Vretenar, Dario; Paar, Vladimir; Bonsignori, G.; Savoia, M.

Source / Izvornik: Physical Review C - Nuclear Physics, 1990, 42, 993 - 1003

Journal article, Published version
Rad u casopisu, Objavljena verzija rada (izdavacev PDF)

https://doi.org/10.1103/PhysRevC.42.993

Permanent link / Trajna poveznica: https://urm.nsk.hr/urn:nbn:hr:217:158238

Rights / Prava: In copyright /Zasticeno autorskim pravom.

Download date / Datum preuzimanja: 2024-04-23

4 STE U 2
& %,

) -

Repository / Repozitorij:

& %

= = . . L

7;‘_; __;.“:T‘ Repository of the Faculty of Science - University of
S

> Zagreb
.QF’

DIGITALNI AKADEMSKI ARHIVI I REPOZITORILII


https://doi.org/10.1103/PhysRevC.42.993
https://urn.nsk.hr/urn:nbn:hr:217:158238
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://repozitorij.unizg.hr/islandora/object/pmf:6328
https://dabar.srce.hr/islandora/object/pmf:6328

PHYSICAL REVIEW C

VOLUME 42, NUMBER 3

Two- and four-quasiparticle states in the interacting boson model:
Strong-coupling and decoupled band patterns in the SU(3) limit
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An extension of the interacting boson approximation model is proposed by allowing for two- and
four-quasiparticle excitations out of the boson space. The formation of band patterns based on two-
and four-quasiparticle states is investigated in the SU(3) limit of the model. For hole-type (particle-
type) fermions coupled to the SU(3) prolate (oblate) core, it is shown that the algebraic K-
representation basis, which is the analog of the strong-coupling basis of the geometrical model, pro-
vides an appropriate description of the low-lying two-quasiparticle bands. In the case of particle-
type (hole-type) fermions coupled to the SU(3) prolate (oblate) core, a new algebraic decoupling
basis is derived that is equivalent in the geometrical limit to Stephens’ rotation-aligned basis. Com-
paring the wave functions that are obtained by diagonalization of the model Hamiltonian to the
decoupling basis, several low-lying two-quasiparticle bands are identified. The effects of an interac-
tion that conserves only the total nucleon number, mixing states with different number of fermions,
are investigated in both the strong-coupling and decoupling limits. All calculations are performed

SEPTEMBER 1990

for an SU(3) boson core and the h% fermion orbital.

I. INTRODUCTION

The interacting boson approximation (IBA) model' in
its various versions has been remarkably successful in the
description of a variety of nuclear structure phenomena.
The approach based on the IBA model was also extended
to the description of two-quasiparticle high-spin states in
even-even nuclei.” > The purpose of this paper is to ex-
tend the IBA-1 model by allowing for two- and four-
quasiparticle excitations out of the boson space. In Sec.
IT we give a short outline of the model. As one of the
possible applications, we consider the description of rota-
tional bands based on two- and four-quasiparticle states
in deformed even-even nuclei. All calculations are per-
formed for the illustrative case: a prolate boson core
characterized by SU(3) symmetry and the fermion space
restricted to the unique parity orbital 4. In Sec. III we
consider the case of hole-type (particle-type) fermions
coupled to the SU(3) prolate (oblate) core. It is shown
that the lowest two-quasiparticle bands near the yrast line
can be described by the algebraic K-representation basis
that is the analog of the strong-coupling basis of the
geometrical model. With the inclusion of an interaction
that conserves only the total nucleon number, mixing
states with different number of fermions, we obtain a
crossing of the ground-state band with the lowest two-
quasiparticle band.

In Sec. IV we investigate the formation of band pat-
terns for the case of particle-type (hole-type) fermions
coupled to the SU(3) prolate (oblate) core. For the
lowest two-quasiparticle high-spin states the boson-
fermion interaction is repulsive and the bands are decou-
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pled. For the description of these bands we derive a new
algebraic basis that, for large boson number, becomes
equivalent to the strong-coupling—to-rotation-aligned
transformation of Stephens. In both the strong-coupling
and decoupling limits we study the behavior of the mo-
ment of inertia as a function of angular velocity.

II. OUTLINE OF THE MODEL

In the simplest version of the interacting boson ap-
proximation model, referred to as IBM-1,! a system of N
bosons of angular momentum O (s bosons) and 2 (d bo-
sons) interacts with one- and two-body forces. A stan-
dard microscopic interpretation of the IBM is that the s
and d bosons are approximations to valence nucleon
pairs. The fact that the bosons in the IBM-1 can be re-
garded as collective fermion pair states introduces a natu-
ral link between the IBM-1 and the shell model. Most
directly, this link is established through the introduction
of the generalized seniority scheme.! Another possible
interpretation of the IBM-1 is given by the truncated
quadrupole phonon model. Then the destruction of an s
boson and the creation of a d boson corresponds to the
excitation of a quadrupole phonon. The connection be-
tween the two possible microscopic interpretations of the
IBM-1 has been reviewed, for example, in Ref. 6.

In its basic versions (IBM-1 and IBM-2), the interact-
ing boson model has been applied mostly in the descrip-
tion of low-spin states in medium heavy and heavy nuclei.
On the other hand, a large amount of data on high-spin
states in these regions have been accumulated in the last
decade. In order to attempt a description of high-spin
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states, various extensions of the IBM have been investi-
gated that include selective noncollective two-fermion
states in addition to s and d bosons. In this paper we in-
troduce an extension of the IBM-1 by including two- and
four-fermion noncollective states. It is assumed that a
boson can break to form a noncollective fermion pair.
This means that an even-even nucleus with 2N valence
nucleons is described in the Hilbert space

F—|N bosons)® |(N —1) bosons & 1 broken pair )
®|(N —2) bosons ®2 broken pairs) .

Such an extension should allow the description of high-
spin states well above the second backbending, as well as
a more realistic description of low-spin states.

The fermions in broken pairs will occupy the same set
of valence orbitals from which the bosons are construct-
ed. However, for the description of the yrast region the
most important orbitals occupied by noncollective fer-
mion pairs will be the unique parity high-j orbitals as, for
example, h4 or i£. In the following we employ the trun-
cated quadrupole phonon version of the IBM-1. In this
representation the one and two broken pairs are
represented by two- and four-quasiparticle states, and we
require that

ngp+2ng <2N ,

where ng, and np denote the number of quasiparticles
and quadrupole phonons in the basis states, respectively.
We use the Hamiltonian

H=Hp+H;+Hp, )]

where Hj is the IBM-1 boson Hamiltonian' expressed in
the TQM form.” Hy denotes the fermion Hamiltonian
for identical quasiparticles

=S Ea8,t13 3V
a a‘l;JM

bcd AJM(ab)AJM(Cd) . (2)

The notation for single-quasiparticle states is
a=(ng,l,,j,.m,)=(a,m,) ,

and the quasiparticle-pair operator is defined as

Aly(ab)=[ A 5 (ab)]’
S (amalomy|IMalal, (3)
my My
Vipea =ugupu uy +v,0,0.04)G(abcdJ)
+4v,u,v.uy FlabedJ) , 4

where the matrix elements G and F of a two-nucleon in-
teraction in the coupled basis are defined in Ref. 8.

The boson-fermion interaction H gy contains dynamical
and exchange terms as used in the interacting boson-
fermion model;’

HEFszyn+Hexc . &)

In the particle-truncated quadrupole phonon (PTQM)
representation of the IBFM,!° the dynamical part that

conserves the number of fermions is given by

Hy,=0%-0%, 6)

where the boson and fermion quadrupole operators are,
respectively,

Q§#=b§ﬂ(N—ﬁ)‘/2+ (N —N)'2b,, +X(b*b I )

05.=Te X (uju, —v )(]1”’ Y, |12 @y - (8
JyJ,
The exchange term reads
~ gt
Hexc 2 AJIJZJJ {(ajlb j (ajzbZ)j3}0: ’ 9
JvJads

where
Aj i =~ ARV/5 /2y + Dy v; o )

X(ujzvj3+vj2uj3)<j3”r Y,|li) sllr? Yl
(10)
An additional term in the boson-fermion interaction that

conserves only the total nucleon number, mixing states
with different number of fermions, is defined as

H_,=AYb,+H.c., 1y

where
F _— EO . 2 . t
Azp_'—’2‘2<]1”’ Y,y ) (u; Uy, T )(a @ oy -
J1Jy
(12)

The total boson-fermion interaction is then

Hpp=Hyy, +H+Hpy (13)

The Hamiltonian (1) is diagonalized in a model space
consisting of states with N bosons, N —1 bosons plus two
fermions, and N —2 bosons plus four fermions:

|nvI), (n<N)
[(j 12y onvI I,
G112 Gaja e WpnvIsT), (n

|[nvI) denotes a state with n quadrupole phonons [n d
bosons and (N —n) s bosons in the IBA representation]
coupled to angular momentum I. Additional quantum
numbers needed to specify the state are denoted by wv.
The notation for fermion states is self-explanatory.

(n=N-—1) (14)
=N-—-2).

I11. SU@3) LIMIT—STRONG COUPLING

The study of high-spin states in even-even nuclei, and
especially the description of “backbending” phenomena''
should present a straightforward application of the pro-
posed model. In order to investigate the formation of
band patterns based on two- and four-quasiparticle states
in deformed nuclei, we consider a somewhat schematic
case: a prolate boson core characterized by SU(3) sym-
metry and the fermion space restricted to the unique par-
ity orbital AL



The boson part of the Hamiltonian (1) takes the form

a
HB=—EQ§-Q§+T%I?-I?, (15)
where the quadrupole operator is defined in Eq. (7), and
I% is the angular momentum operator

12, =V10(b3b,),, . (16)

The creation of a fermion pair out of the boson space
breaks the SU(3) symmetry of the boson core (N de-
creases by one in the basis). The interaction between fer-
mions will be dominated by long-range quadrupole forces
that act through polarization of the core. The basic
structure of the energy spectrum will be determined by
the dynamical and mixing interactions. The residual fer-
mion interaction and the exchange interaction will act as
perturbation.

J

Qa2 ) 5 0 the band pattern is decoupled .
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For a given type of boson core (prolate or oblate), the
structure of two-quasiparticle bands depends basically on
the position of the Fermi level. In odd-even nuclei (single
fermion coupled to a boson core), a strongly coupled
band pattern arises if a particle-type (v j2 <0.5) fermion is
coupled to an oblate core, or a hole-type (vj2>0.5) fer-
mion to a prolate core. If on the other hand a particle-
type fermion is coupled to a prolate core, or a hole-type
fermion to an oblate core, the boson-fermion interaction
is repulsive and a decoupled band pattern is formed. This
rule can also be stated in terms of quadrupole moments.'?
The spectroscopic quadrupole moment of the boson core
0.(2,) <0 for a prolate core, and Q,(2,)> 0 for an oblate
core. For the odd-quasiparticle we have

sgn[Q,(/)]=sgn(2v}—1),

and, therefore, for

<0, the band pattern is of a strongly coupled type

For the two-quasiparticle state |(7)2J ), the sign of the quadrupole moment is determined by

sgn{Qq,[()I ]} =sgn[Q,(/)]-sgn{3[J(J +1)—1]1—4j(j +1)} .

For high values of J, Q. ,[(/)*J] has the same sign as
Q). As we shall see in the following, two-
quasiparticle bands near the yrast line are dominated by
high fermion angular momentum couplings. Therefore,
for these states the same strongly-coupled/decoupled
band pattern rule applies as for the case of a single quasi-
particle coupled to a boson core.

In Fig. 1(a) we present the energy spectrum that is ob-
tained by diagonalization of the Hamiltonian (1) in the
basis (14) for the following set of parameters: prolate
SU(3) core with N =7, «=0.4 MeV, = —0.05 MeV; hil
orbital with v, ,=0.8 and E,,,=1 MeV; dynamical
boson-fermion interaction with I';=0.32 MeV and
X=—V'7/2. There is no mixing between states with
different number of fermions. The two-body fermion in-
teraction in Eq. (2), and the exchange interaction (9) are
not included. Here we have hole-type fermions coupled
to a prolate core, so that the spectrum presents a strongly
coupled truncated band pattern. The equivalent situation
in the geometrical model of Bohr and Mottelson'? arises

J

f

for the case of strong coupling of fermions to the defor-
mation.

In order to keep the dimensions of bases under 103, a
relatively small number of bosons, N =7, is included in
all our calculations. Nevertheless, two- and four-
quasiparticle rotational bands are well developed. For
x=—V'7/2, the boson part of the dynamical interaction
is an SU(3) generator so that the Hamiltonian we have
used does not mix states based on different SU(3) repre-
sentations of the boson core. Therefore, the two- and
four-quasiparticle bands that are shown in Fig. 1(a) are
based on the ground-state band of the core. As we men-
tioned before, there is a small breaking of SU(3)-boson
symmetry in two- and four-quasiparticle states. Never-
theless, we expect that the wave functions of the few
lowest two-quasiparticle bands are, apart from Coriolis
effects, described to a good approximation by the K-
representation basis that was introduced in Refs. 14 and
15 for the description of rotational bands in deformed
odd-odd nuclei. The KR-basis states are defined by

I(K,,K,)KIM)=N 3 EI—(JIZKICO’JK)(le,szzlleK)I(jljz)le,Ic;JM)Twc 17

JIZ‘I(' IC

where N is the normalization constant and B,C is given by Egs. (51), (52), and (54) of Ref. 10. The functions 1/B, are
also displayed in Fig. 1 of Ref. 15. The truncated weak-coupling (TWC) basis states are defined as

[Gria W IM Y rwe= 3,

le’Mc

(Jyom 2 I M IM (G j) T amya) [ I.M,) (18)
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E (MeV)

200 (b)

20/0% (MeV)

100}.—.—/ "

0.65 0.1I0 0.‘;5
2 2
Mw)® (MeV)

FIG. 1. (a) Excitation energy versus angular momentum for
the illustrative IBA +2qp +4qgp calculation: prolate SU(3) bo-
son core with N =7, hil orbital with v},,,=0.8 and E,,,,=1
MeV. Only the dynamical boson-fermion interaction is includ-
ed with I';=0.32 MeV, and there is no mixing between states
with different number of fermions. For a description of the
band pattern, see the text. (b) The moment of inertia as a func-
tion of angular velocity for the yrast states with even spin in (a).
2J/#* and #iw are calculated from Egs. (20) and (21), respective-
ly.

Here, |(j,j,)J ,m,) denotes the two-quasiparticle state
(in our example j,=j,=1). |I.M_) is the wave func-
tion of the state with angular momentum I, and z projec-
tion M., which belongs to the ground-state band of the
boson core.

The KR-basis (17) is derived by angular momentum
projection from the adiabatic product of single-fermion
intrinsic states and the SU(3) boson coherent state. K,
can be interpreted as the projection of j,,, along the in-
trinsic symmetry axis, and J is the total angular momen-
tum with projections K and M along the intrinsic symme-
try and laboratory =z axis, respectively. The K-
representation basis represents the algebraic analog of the
strong-coupling basis of the geometrical model.'?

Comparing K-representation basis states to the wave
functions that are obtained by diagonalization of the
model Hamiltonian, we have grouped the lowest two-
quasiparticle states in Fig. 1(a) in rotational bands
characterized by ‘‘algebraic projections” (K ,K,)K
(K=K,+K, or |K;—K,|). In order to make such a
comparison, the wave functions of two-quasiparticle
states based on the ground-state band of the core are
transformed from the basis (14) into the TWC-basis (18):

}:NZS = E(nllz.nvlc)

(4
n,v

2112

where 7 Ty v, denotes amplitudes in the standard basis

(14). Only amplitudes with an absolute value greater
than 0.1 were taken into account. Since the KR-basis
(17) is not orthogonal, one should also perform the
Gram-Schmidt orthogonalization procedure in order of
increasing energy when comparing it with wave functions
that are obtained by diagonalization.

In Table I we present the KR-basis states for (K, =1,
K,=2) K =10 and N =6. The wave functions of yrast
states with J > 10 from Fig. 1(a) are shown in Table II
(only amplitudes with an absolute value greater than 0.1).
It is seen that these functions agree quite well for lower
spins. Note that since K =10, the only nonvanishing
components in the wave functions are those with the fer-
mion coupling J,,=10. With increasing spin Coriolis
effects become more pronounced. Besides the mixing
with (K, =4, K,=1)K =9, the yrast states have also
small admixtures of states with K =7,8. Above J =18,
Coriolis effects, now combined with strong truncation
effects, make the identification of bands very difficult.

TABLE I. KR-basis states (17) for (K, = %,Kz = %)K =10, expressed in the TWC basis (18).

7)Y
Jis I 10 11 12 13 14 15 16 17 18
10 0 0.41
10 2 0.71 0.51 0.21
10 4 0.52 0.69 0.63 0.42 0.19
10 6 0.24 0.47 0.65 0.71 0.62 0.42 0.20
10 8 0.07 0.19 0.35 0.53 0.68 0.73 0.67 0.50 0.27
10 10 0.01 0.04 0.10 0.21 0.35 0.51 0.66 0.77 0.77
10 12 0.02 0.04 0.08 0.15 0.26 0.41 0.58
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TABLE II. Wave functions of the yrast states with J > 10 in Fig. 1(a), expressed in the TWC basis (18).
iJr )
Jis I 10, 11, 12, 13, 14, 15, 16, 17, 18,
10 0 0.43
10 2 0.73 0.56 0.21
10 4 0.47 0.69 0.69 0.50 0.22
10 6 0.15 0.40 0.61 0.73 0.71 0.58 0.35
10 8 0.26 0.43 0.59 0.73 0.77 0.58 0.11
10 10 0.23 0.36 0.50 0.71 0.82
10 12 0.13 0.38 0.48

The wave functions in this region feel more strongly the
breaking of the SU(3) boson symmetry. In Table III we
compare the bandheads (4, )00, (%,3)11, and (,7)99
with the corresponding wave functions that are obtained
by diagonalization. As seen from Fig. 1(a), the lowest
two-quasiparticle bands are those with the highest values
of K| and K,. Of two bands having the same K| and K,
the lower is the one with K =K, +K,. The wave func-
tions of states that belong to the band
(K, =4,K,=3)K =1 contain also components with low
fermion angular momentum couplings. According to our
previous discussion, such states tend to decouple from
the boson core. The result is the odd-even staggering

TABLE III. Comparison of the KR-basis bandheads
(4,400, (4,2)11, and (4,1)99, with the wave functions of
the corresponding states in Fig. 1(a). The wave functions are ex-
pressed in the TWC basis (18).

Ji, I, (K\,K,)KJ I,
(4,400 0,
0 0 0.49 0.46
2 2 0.75 0.75
4 4 0.43 0.43
6 6 0.12
8 8 0.02
10 10
(3,911 1,
2 2 —0.67 0.63
4 4 —0.69 0.69
6 6 —0.29 0.31
8 8 —0.05
10 10
(5,319 9
10 2 —-0.53 0.61
10 4 —0.70 0.67
10 6 —0.45 0.34
10 8 —0.16
10 10 —0.03

shown in Fig. 1(a). It is also interesting to notice the
presence of the low-lying band (K,=4,K,=1)K =0.
From Eq. (17) one can see that, for j, =j,, a band with
K =0 contains only states with even values of the total
angular momentum. Since most of the neighboring bands
have high values of the quantum number K, the amount
of admixtures in the band (4,1)0 is rather low. This
also means that, with the inclusion of the mixing interac-
tion (11), two-quasiparticle admixtures in the ground-
state band come principally from the band (4, 11)0.

In Table IV the wave functions of the lowest four-
quasiparticle states in Fig. 1(a) are expressed in the trun-
cated weak-coupling basis

(R T d 5T ) (19)

where |1, ) denotes the state with spin I, that belongs to
the ground-state band of the boson core.

In Fig. 1(b) we plot the moment of inertia J as a func-
tion of w® for the yrast states with even spin. The mo-
ment of inertia is defined as

2J _ 22 —1)

# EWUJ-—-EWUJ-2)’ 20
and the angular velocity is calculated from

Jieo E(J)—E(J—2) @1

TVIT DV 20T 1)

Since the boson core is characterized by SU(3) symmetry,
the moment of inertia is constant in the ground-state
band. At J =10 the two-quasiparticle band (1,3)10 be-
comes the yrast-band, and there is a sharp increase of the
moment of inertia. The value of J in this band is some
12% higher than in the ground-state band, and remains
nearly constant up to J =18 where Coriolis and trunca-
tion effects cause a further increase. The increase of J at
J =10 is not accompanied by a decrease in w?, so what
we have here is really an “upbending” of J as a function
of w?.

In the next step we have investigated the effect of the
mixing interaction (11) on the yrast states. Figure 2(a)
presents the energy spectrum that is obtained by diago-
nalization of the model Hamiltonian for the same set of
parameters as the one shown in Fig. 1(a), except that now
the mixing interaction is also included with the strength
parameter £,=0.2 MeV. This value has been chosen in
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order to obtain a crossing between the ground-state band
and the two-quasiparticle band (1,2)10 near the J =12
yrast state. The mixing interaction (11) contains a fer-
mion operator of rank 2, so that states that belong to the
ground-state band can be connected in the first order to
two-quasiparticle basis states with fermion coupling
J1,=2. Asis seen from Eq. (17), states that belong to a
band (K|,K,)K based on the ground-state band of the
core cannot have fermion couplings with J,, <K. There-

fore, the ground-state band mainly interacts with the

TABLE IV. Wave functions of the lowest high-spin four-
quasiparticle states in Fig. 1(a), expressed in the TWC basis (19).

17, (L) TR, 1)
185 0.32|(h4)*10,8,.)
—0.18|(h4)*11,8,)
0.56/(h4)*12,6,.)
—0.21|(n4)*13,6, )
0.56/(hi)*14,4,)
0.33[(h41)*16,2.)
19, —0.21|(h%)%12,8,)
—0.40|(h 1 )*14,6, )
—0.67|(h4)*16,4,)
—047|<hﬂ>4166 )
—0.22[(hil)*16,8, )
20, 0.16](h%)410,105)

0.45|(h41)*12,8.)
—0. 16|<h£)413 8.)

0.66](hil)*14,6,)

0.51]( %)“16,49

21, —0.15|(hi)*12,10, )
011|(h£>413 8.)
—0.46|(h1)*14,8.)
—0.78|(hi1)*16,6, )

—0.34|(h%)416,8c>

22, 0.27|(h4H)*12,10, )
0.63|(h4l)*14,8.)
0.70|(h41)*16,6, )
0.12](h4)*16,8, )

23, 037|<h£)414 10,)
0.89|(h4)*16,8,)
0.24|(nil)*16,10,)

24, 0.50]( hT‘ 14,10, )

0.85/(h1)*16,8, )
0.14[(h4)%*16,10,)

two-quasiparticle bands (4,1)0 and (4,2)1. The result
is an increase of the moment of inertia of the ground-
state band. As we shall see, the mixing interaction has
practically no effect on the band (4,3)10, and therefore
the bending of the ground-state band causes its crossing
with (4,3)10. Since the mixing (11) is the only block
off-diagonal interaction we have used, the behavior of the
energy spectrum does not depend on the sign of the in-
teraction. The amount of admixtures in the ground-state
band is 9% for the ground state |Ol ), and increases very
slowly to 10% for |10,). These admixtures are mainly
states based on two quasiparticles with J;,=2. The
amount of four-quasiparticle admixtures in the ground-
state band is below 1%. The interaction also breaks to
some extent the SU(3) symmetry in the boson part (0 fer-
mions) of the wave functions. In order to enhance the

(a)

E (MeV)

5 10 15 20 25
J
200 (b)
T
>
)
2
o~
< H—J—f
S~
-~
o 100
1 | 1
005 010 015
(hw)?  (MeV)?
FIG. 2. (a) The energy spectrum that is calculated for the

same set of parameters as the one shown in Fig. 1(a), except that
now the mixing interaction (11) is included with €,=0.2 MeV.
(b) The plot of J vs w* for the yrast states in Fig. 2(a).



mixing with two-quasiparticle states for higher-spin
members of the ground-state band, one could add interac-
tions that contain fermion operators of higher rank, i.e.,
4,6,. .. . However, such an interaction would also imply
higher order boson matrix elements, so that its overall
contribution could be rather small. The yrast states after
the crossing, i.e., states that belong to the (%,%)10 band,
are practically unaffected by the mixing interaction (11).
Since the dominant components have fermion coupling
J,,=10, the mixing interaction cannot connect these
states directly to zero-fermion states. The mixing with
four-quasiparticle states becomes visible only for higher
spins, J = 16. However, the amount of four-quasiparticle

(a)

E (MeV)

(b)
- 200
>
Q
2z
=
>
™~ 100
1 1 1
0.05 010 0.15
(hw)?  (MeV)?
FIG. 3. (a) Decoupled band pattern in the illustrative

IBA +2qp+4qp calculation: prolate SU(3) boson core with
N =17, hil orbital with v},,,=0.2 and E,;,,=1 MeV, and the
dynamical boson-fermion interaction with I';=0.4 MeV. (b) J
vs w® for yrast states in (a).
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admixtures does not exceed 5%.

In Fig. 2(b) we plot J vs w’ for the yrast states with
even spin from Fig. 2(a). As compared to the case
without mixing interaction [Fig. 1(b)], the moment of in-
ertia of the ground-state band is higher by =~2%, and the
increase of J to the value it has in the band (4},2)10 is
now more smooth. Thus, we have obtained a crossing of
the ground-state band with the lowest two-quasiparticle
band, which is not accompanied with a backbending of
the moment of inertia. We can say that the behavior of J
vs o’ is determined by the interaction of the ground-state
band with two-quasiparticle states, but not with the band
it crosses.

1V. SU@R) LIMIT—DECOUPLING

In this section we investigate the spectrum that arises
in coupling particle-type fermions to an SU(3) prolate
core or, equivalently, hole-type fermions to an oblate
core. This case corresponds in the geometrical model to
the situation in which fermions are decoupled from the
deformation and, under the action of the Coriolis force,
tend to align their angular momenta along the axis of ro-
tation.!®!”

The energy spectrum shown in Fig. 3(a) presents the
result of diagonalization of the Hamiltonian (1) for the
same set of parameters as in our first example from Sec.
III, except that v?, ,, has been changed from 0.8 to 0.2.
Again, only the dynamical part of the boson-fermion in-
teraction is included with I';=0.4 MeV. There is no
mixing between states with different fermion number.
Two-quasiparticle states are organized into decoupled ro-
tational bands with AJ =2 between neighboring states.
These bands do not have sharp bandheads, i.e., the pro-
jections of angular momenta on the symmetry axis are
not good quantum numbers. The only exact quantum
number with which these bands can be characterized is
the signature:'*> r=-+1 (—1) for states with even (odd)
spin. The splitting between states with different signature
can also be noted in the lowest lying four-quasiparticle
states.

In analogy to the treatment of decoupled structure in
odd-even nuclei in the framework of the IBFM,'® we in-
troduce a new algebraic basis for the description of two-
quasiparticle states

l(aj,a, JM)=N 3 (2NO0j K|]2N +a,K,)
KK,

X{(2N0j,K,2N+a,K,)
X|(K,K,))K,+K,JM) (22)

On the right-hand side we use nonorthogonal KR-basis
vectors (17), and the sum runs over both positive and neg-
ative values of K, and K,. In the geometrical limit, when
the boson number N — o, one has'’

zym (2NOJK2N+a K )=d}, (7/2) . (23)
Therefore, Eq. (22) represents the algebraic analog of the
strong-coupling—to-rotation-aligned transformation of
Stephens.!” The quantum numbers a, and a, correspond
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to the projections of fermion angular momenta j,; and j,
on the rotational axis. As for the KR basis, the states
(22) are orthogonalized in order of increasing energy.
For two-quasiparticle states in the geometrical model,
one also has a more specific definition of the signature
quantum number. Namely,

il .

where 2,=e¢ ' is the rotation operator, and I, is the
body-fixed component of the collective angular momen-
tum of the core. Therefore, in order that the wave func-
tions fulfill the 77, symmetry (rotation of the core by =7
around the 1 axis), J —(a;+a,) has to be even. Bands
characterized by (a,,a,) contain only even-spin or only
odd-spin states.

Rillay, @) IM ) =(— )Jﬁ(aﬁaz)l(al,az)JM) (24) Comparing the wave functions that are obtained by di-
TABLE V. Comparison of the decoupling-basis states (22) for (a;,a;)=( %, %) and (%,%), with the wave functions of the corre-

sponding states in Fig. 3(a). The wave functions are expressed in the TWC basis (18).
Jis I (aj,a)J |J,) Ji; (aja)J |J,)
(45,3)10 10, 6 —0.12 0.44

6 4 0.30 8 —0.18
8 2 0.18 —0.48 10 4 —0.94 —0.62
8 4 0.19 10 6 0.31 0.49
10 0 0.80 0.49 10 8 —0.23
10 2 —0.54 —0.42
10 4 0.17 0.24 (4,15 15,

8 8 —0.10 0.38
(F,9)12 12, 10 6 —0.98 —0.77

6 6 0.20 10 8 0.19 0.42

8 4 0.15 —0.46 10 10 —0.12
10 2 0.94 0.71
10 4 —0.29 —0.37 (4,7 17,
10 6 0.10 8 10 0.21

10 8 —0.99 —0.90
(4,214 14, 10 10 0.11 0.36

8 6 0.13 —0.41
10 4 0.98 0.80 (4, =10 0,
10 6 —0.18 —0.32 0 0 0.74 0.64

2 2 —0.60 —0.61
(4,216 16, 4 4 0.29 0.39

8 8 0.11 —0.34 6 6 —0.16
10 6 0.99 0.88
10 8 —0.11 —0.26 (5, =42 2,

0 2 0.46 0.17
(5,318 18, 2 0 0.24 0.45

8 10 —0.17 2 2 0.77 0.67
10 8 0.99 0.95 2 4 —0.11
10 10 —0.22 4 2 —0.16

4 4 —0.34 —0.40
(%, D1 11, 6 6 0.16

6 6 —0.29

8 4 —0.15 0.44 (3, =4 4,

8 6 —0.29 0 4 0.40 0.39
10 2 —0.83 —0.39 2 4 0.70 0.67
10 4 0.52 0.47 4 0 —0.16
10 6 —0.14 —0.33 4 2 0.27

4 4 0.47 0.26
(4,103 13, 4 6 —0.13 —0.27
6 8 —0.18 | © 6 —0.14
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agonalization of the model Hamiltonian to the basis (22),
we have assigned the algebraic quantum numbers (a,,a;)
to the lowest-lying two-quasiparticle bands in Fig. 3(a).
The lowest-lying states are the ones that are maximally
aligned (a¢;=j,a,=j —1). This corresponds to the pic-
ture of unpaired fermions whose angular momenta are
oriented perpendicular to the symmetry axis, while the
core is completely decoupled and rotates with
I=J—(a;+a,). The second lowest band has
(a;=1%,a,=1) and consists of odd-spin states. We have
also identified a third band as (a;=3,a,=7). Because of
strong Coriolis mixing, it is rather hard to classify higher
states in bands described by the simple basis (22). For the
two lowest bands (4,2) and (4!, ), we compare in Table
V the wave functions of some high-spin states with the
corresponding algebraic functions (22). The wave func-
tions are expressed in the truncated weak-coupling basis
(18), and only amplitudes with an absolute value greater
than 0.1 are shown. First, we notice that with increasing
spin the algebraic basis (22) becomes a better approxima-
tion to the exact wave functions. This is in accordance
with similar investigations in the geometrical model."”
The algebraic functions do not include mixing effects, and
therefore they are more ‘“aligned” than the wave func-
tions that are obtained by diagonalization. That means
that the component with

J|2:2j“15(.]12)max and IC:J_(zj_l)

will be more pronounced in the algebraic basis. The band
(4,2) is based mainly on J,,=2j —1=10, and the main
components in the band (,1) are those with J,,=8. As
is seen from Table V, the mixing between these bands
gives a higher amplitude for the J,, =8 components of
(4,2), and also a difference in phase, as compared to
pure algebraic functions. In accordance with results that
are obtained in the geometrical model,'” it is found that
the algebraic basis (22) is appropriate for the description
of states with J 22j —1. For states with lower spin, the
only quantum number that remains is the signature.
However, from Fig. 3(a) it seems that there is at least one
exception: the band (4, —14'). States in which one of the
fermion angular momenta is oriented antiparallel to the
angular momentum of the core, are generally expected at
a somewhat higher excitation energy. For low spins, i.e.,
in the absence of rotation, a state (a;, —a,)J will be only
slightly above (a;,a,)J. Because of large projections on
the rotational axis, the band (‘2—‘, —%) lies exceptionally
low in energy in the low-spin part of the spectrum. On
the other hand, since a, is negative, these states do not
mix very much with their neighbors. Therefore we have
been able, by comparing with the algebraic basis (22), to
identify several low-spin members of (4, —1). For the
first three states the comparison is shown in Table V. It
is interesting to note that the band (4, — L") is behaving
much in the same way as the (-, 11)0 band in the strong-
coupling limit [Fig. 1(a)].

If the lowest high-spin four-quasiparticle states from
Fig. 3(a) are expressed in the TWC basis (19), it is seen
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that the wave functions are very similar to those that
were obtained in the strong-coupling limit and that are
displayed in Table IV. However, in the present case the
alignment in the wave functions of even-spin states is
somewhat more pronounced. The components with
Jr=(Jp)max=16 and I, =J —(Jg) ., have higher ampli-
tudes (by =~15%) than in the strong-coupling limit. For
states with lower spin, the distribution of amplitudes over
fermion angular momenta is gradually shifted towards
lower values of J. In the standard basis (14), the ampli-
tudes are fragmented over hundreds of components, mak-
ing the interpretation of the wave functions very difficult.

In Fig. 3(b) the moment of inertia as a function of the
angular velocity is shown for the yrast states up to
J=22. As is seen from Fig. 3(a), the crossing between

(a)

(b)
s
© 2
3 00}
NoC
£
S
N
100 +
1 1 1
0.05 010 Q15
thw)?  (MeV)?

FIG. 4. (a) The energy spectrum that is calculated for the
same strength parameters as the one shown in Fig. 3(a), and
with the inclusion of the mixing interaction (11) with £,=0.5
MeV. (b) J vs w? for the yrast states in (a).
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the ground -state band and the two- quasiparticle band
(11,2) lies in the region where the latter is almost flat
with energy. The backbending of the moment of inertia
is very pronounced. Immediately after the intersection,
the value of J is nearly three times that of the ground-
state band (somewhat lower, for lower values of T').
With increasing spin, the moment of inertia decreases
very rapidly to a value that is somewhat higher than that
of the ground-state band. Although the numerical values
depend on the strength of the dynamical interaction, the
plot of J vs w? looks very much the same for all values of
I, for which there is an intersection between the two
bands. We note that a very similar behavior of the mo-
ment of inertia has been obtained in the framework of the
geometrical model.'®
The effects of the mixing interaction (11) are shown in

TABLE VI. The wave functions of yrast states that belong to
the ground-state band in Fig. 4(a). Two-quasiparticle states are
expressed in the TWC basis (18). The percentage of two- and
four-quasiparticle admixtures is given in the third column; the
percentage of four-quasiparticle admixtures is given separately
in the last column.

7. 2qp +4qp 4qp

0, 0.93/0,) 14% 3%
0.17/(h'1)%,0, )
—0.30}( '7 )22,2.)

2, 0.93]2.) 14% 3%
0. 14‘<hu 20,2,)
—0.17|(h4)%2,0,)
0.15[(hL)%2,2,)

—0.15(( 7‘ )2,4.)

4, 0.92]4.) 15% 3%
0.14/(h%1)%0,4,.)
—0.21|(h '4)222 )
0.12[(h)%2,4,)

6, 0.91/6,) 17% 4%
0.13|(h 4 Z06 )
—0.27|(hi)?2,4.)

0. 131(’1‘7 12,6, )

8, 0.91/8,) 18% 4%
0.13|(h41)%0,8,)
—0.32[(h11)%2,6, )

0.11[(h1)%2,8.)

10, 0.8910,) 20% 5%
0.11|(h41)%0,10,.)
—0.35|(h4)%2,8.)

2
0.13[(hLl)%4,6.)
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Fig. 4(a). The calculation is performed for the same set
of parameters as the one shown in Fig. 3(a), and the mix-
ing interaction is included with the strength parameter
€o=0.5 MeV. The mixing with two- and four-
quasiparticle states results in an increase of the moment
of inertia of the ground-state band. Because of the bend-
ing of the ground-state band, the point of intersection
with the two-quasiparticle band (4,2) is shifted toward
J =12. We also notice a higher density of states com-
pared to the spectrum that is obtained without the mix-
ing interaction. The strong mixing makes rather difficult
the identification of four-quasiparticle states; especially in
the low-spin region. With the inclusion of the mixing in-
teraction the 8 and y bands are no longer degenerate.
However, as compared to the strong-coupling limit [see
Fig. 2(a)], it is interesting to note that the degeneracy is
removed in a different way. In the present case the y
band lies above the 3 band.

In Table VI we present the wave functions of yrast
states that belong to the ground-state band in Fig. 4(a).
Only amplitudes with an absolute value greater than 0.1
are shown. As before, |IC) denotes the collective state
that belongs to the ground-state band, and two-
quasiparticle states are expressed in the TWC basis (18).
The percentage of two- and four-quasiparticle admixtures
in these wave functions is given in the third column. It is
seen that the amount of admixtures increases slowly
along the yrast line. Finally, in the fourth column of
Table VI we give separately the percentage of four-
quasiparticle states in the yrast wave functions. From the
structure of the wave functions that are displayed in
Table V, it is clear that the mixing interaction will have
little effect on the yrast states that belong to the band
(4,2). There is practically no mixing with collective
states (also because there are no collective states above
J =14), and the mixing with four-quasiparticle states be-
comes significant only above J=16. The amount of
four-quasiparticle admixtures is somewhere around 10%.

The plot of the moment of inertia for the yrast states is
shown in Fig. 4(b). Compared to the case without mixing
[Fig. 3(b)], the value of J in the ground-state band is
higher by =10%. The moment of inertia immediately
after the intersection is somewhat lower, but the overall
effect of the mixing interaction in the region of band
crossing is very small.

V. CONCLUSIONS

In this work we have investigated the SU(3) limit of the
IBA model extended with two- and four-quasiparticle ex-
citations. This model should provide a description of ro-
tational bands based on two- and four-quasiparticle states
in deformed even-even nuclei. First, we have shown that,
for low-lying two-quasiparticle bands, the same strongly
coupled/decoupled band pattern rule applies as for the
case of a single quasiparticle coupled to the boson
core. For hole-type (particle-type) fermions coupled
to the SU(3) prolate (oblate) core, the product
QC(ZI)-qu[(f)ZJ] <0, and the resulting band pattern is
of a strongly-coupled type. The low-lying two-
quasiparticle bands are described by the algebraic K-
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representation basis that was recently introduced in the
interacting boson-fermion-fermion model for the descrip-
tion of rotational bands in odd-odd nuclei. This basis is
the algebraic analog of the strong-coupling basis of the
geometrical model. Therefore, it provides a geometrical
interpretation of the wave functions that are obtained by
diagonalization of the model Hamiltonian. With the in-
clusion of an interaction that mixes states with different
number of fermions in the model Hamiltonian, we have
obtained a crossing of the ground-state band with the
lowest two-quasiparticle band. This crossing, however, is
not accompanied by a backbending of the moment of in-
ertia. In fact, we have shown that the behavior of the
moment of inertia in the region of band crossing is deter-
mined by the interaction of the ground-state band with
two-quasiparticle states, but not with the band it crosses.
In the case of particle-type (hole-type) fermions cou-
pled to the SU(3) prolate (oblate) core, the boson-fermion
interaction for the low-lying two-quasiparticle bands is
repulsive, and a decoupled band pattern arises. The
four-quasiparticle bands are rather low in energy, com-
pared to the strong-coupling limit. By an algebraic trans-
formation of the K-representation basis, we have derived
a new decoupling-basis that provides a good approxima-
tion for the low-lying two-quasiparticle bands. In the
limit of large boson number, this basis becomes
equivalent to the strong-coupling—to-rotation-aligned
transformation of Stephens. Therefore, the lowest two-

quasiparticle bands can be characterized by ‘“‘algebraic
projections” of fermion angular momenta on the axis of
rotation. The crossing of the ground-state band with the
most aligned two-quasiparticle band gives an extremely
strong backbending of the moment of inertia as a func-
tion of angular velocity. Although the mixing interaction
we have used changes the structure of the wave functions
of the yrast states, its effect on the moment of inertia in
the region of band crossing is very small. In order to ob-
tain a greater effect, one should probably use mixing in-
teractions that contain fermion operators of higher rank.
Of special interest is also the inclusion of a larger number
of bosons in the calculation. In that case one would be
able to attempt a description of the second backbending
in the crossing with a four-quasiparticle band. We note
that since all calculations in the present approach are
performed in the laboratory frame, the results can be
directly compared with the experimental data, in contrast
to the cranking model calculations.!! Moreover, the
model is suitable for description of two- and four-
quasiparticle states in transitional and O(6)-like nuclei
where the cranking model cannot be applied.

ACKNOWLEDGMENTS

This work was partially supported by the Italian Min-
istry of Public Education and Istituto Nazionale di Fisica
Nucleare.

1A. Arima and F. Iachello, Phys. Rev. Lett. 35, 1069 (1975); F.
Iachello and A. Arima, The Interacting Boson Model (Cam-
bridge University Press, Cambridge, 1987).

ZA. Gelberg and A. Zemel, Phys. Rev. C 22, 937 (1980); N.
Yoshida, A. Arima, and T. Otsuka, Phys. Lett. 114B, 86
(1982).

3C. E. Alonso, J. M. Arias, and M. Lozano, Phys. Lett. B 177,
130 (1986).

41. Morrison, A. Faessler, and C. Lima, Nucl. Phys. A372, 13
(1981); A. Faessler, S. Kuyucak, A. Petrovici, and L. Peter-
sen, Nucl. Phys. A438, 78 (1985).

SD. S. Chuu and S. T. Hsieh, Phys. Rev. C 38, 960 (1988); D. S.
Chuu, S. T. Hsieh, and H. C. Chiang, Phys. Rev. C 40, 382
(1989).

6J. P. Elliot, Rep. Prog. Phys. 48, 171 (1985).

’D. Janssen, R. V. Jolos, and F. Dénau, Nucl. Phys. A224, 93
(1974).

8K. Allaart, E. Boeker, G. Bonsignori, M. Savoia, and Y. K.

Gambhir, Phys. Rep. 169, 209 (1988).

9F. Iachello and O. Scholten, Phys. Rev. Lett. 43, 679 (1979).

10y, Paar, S. Brant, L. F. Canto, G. Leander, and M. Vouk,
Nucl. Phys. A378, 41 (1982).

M. J. A. de Voigt, J. Dudek, and Z. Szymanski, Rev. Mod.
Phys. 55, 949 (1983).

12G. Alaga and V. Paar, Phys. Lett. 61B, 129 (1976).

3A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin,
New York, 1975).

145, Brant, V. Paar, D. K. Sunko, and D. Vretenar, Phys. Rev.
C 37, 830 (1988).

I5D. Vretenar, S. Brant, V. Paar, and D. K. Sunko, Phys. Rev.
C 41, 757 (1990).

I6F. S. Stephens and R. S. Simon, Nucl. Phys. A183, 257 (1972).

17F. S. Stephens, Rev. Mod. Phys. 47, 43 (1975).

18D K. Sunko and V. Paar, Phys. Lett. 146B, 279 (1984).

191, C. Biedenharn and J. D. Louck, Angular Momentum in
Quantum Physics (Addison-Wesley, New York, 1981).



