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The wave functions and energies of electrons in a two-dimensional Wigner lattice above the sur-
face of a dielectric (He, Ar) are determined in the Hartree approximation and compared with the
classical result. The lattice sum is performed with the Ewald transformation, which is modified to
include the effective electron-electron interaction in a rather general form. The electron binding en-
ergies are enhanced compared to the point-electron results due to electron delocalization perpendic-
ular and parallel to a dielectric surface. The perpendicular delocalization is strongly correlated

with the lateral electron interaction.

I. INTRODUCTION

It is well known that electrons above a liquid helium
surface can form a (hexagonal) Wigner lattice at low tem-
peratures and densities."> The phase diagram for this
system was calculated® assuming strictly two-dimensional
(2D) point electrons, and their Coulomb repulsion was
calculated in the classical approximation. In fact, if we
put a strictly 2D electron lattice on a flat dielectric sur-
face, the electrostatic interaction of electrons with their
image charges becomes infinite. To avoid this problem,
the dielectric layer was usually treated simply as a vacu-
um layer (e=1), which eventually separates the electron
lattice from the metallic substrate.*>

For 2D electrons moving freely along the dielectric
surface, the electron distribution perpendicular to the
surface was described as given by the hydrogenlike wave
function® ® and the theory agreed very closely with the
experimental results.'® Recently, the energy of the few
lowest electron levels was calculated in a self-consistent
way.!!

In our previous paper'? we calculated phase diagrams
for 2D electron lattice on a flat dielectric layer deposited
on a metallic substrate, taking into account the perpen-
dicular delocalization of electrons’ wave functions and we
showed how this modifies the Coulomb interaction. The
wave functions were calculated in the attractive electro-
static potential of the metal and the dielectric assuming a
strong repulsive potential at the surface due to the excita-
tion gap in the rare-gas solid substrate.

This quantum-mechanical treatment of electrons im-
mediately leads to the question of the self-consistency of
the model—namely, the electron densities and their ener-
gies evaluated in the electrostatic substrate potential are
expected to be modified due to the Coulomb repulsion of
the 2D electron lattice.

In this paper we therefore analyze the properties of a
two-dimensional electron Wigner lattice on a dielectric
with an arbitrary dielectric constant, in a Hartree ap-
proximation. We minimize the Hartree Hamiltonian by
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taking into account simultaneously (i) the attractive elec-
tron interaction with the substrate (electron screening),
and (ii) the repulsive interaction of each electron with all
other electrons and their images.

The paper is organized as follows. In Sec. II, we for-
mulate the problem and derive the appropriate Hartree
Hamiltonian. In Sec. IIT we find the wave functions and
energies of electrons in the ground state of a Wigner lat-
tice in the Hartree approximation. The results are dis-
cussed in Sec. IV. The details of calculations regarding
the lattice sums for a rather general shape of electron-
electron potential are described in the Appendix.

II. FORMULATION OF THE PROBLEM

The electrons in a Wigner lattice on a dielectric sub-
strate are localized at sites r; =(p;,z;), and their Hartree
Hamiltonian has the form

H=3H; H=K+W"™z)+3 W p;;z;,z;) . (1)
i i

Here K,=—#%A,/2m is the kinetic energy operator;
Wim(z,) is the electrostatic interaction (image potential)
of the electron i, at distance z; above the surface of the
dielectric substrate. W®“(p,;;z;,2;) is the Coulomb in-
teraction of the electron i (charge e) with all other elec-
trons at lateral distances p;;=[p; —p;|) from the electron
i, and with all their images (lattice potential).

In deriving the image potential, we assume that the
electrons cannot penetrate into the dielectric for energies
in the region of the energy gap, as for He, Ar, Ne. In k
space (k is a two-dimensional wave vector parallel to the
surface) we can write'?

W‘m(z)=—£:;fde(k,w)e_2kz, 2)
where
€, (k,0)—1
D(k,w):m
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and ¢, is the surface dielectric function,’®® to be derived
microscopically.

In the long-wavelength and low-frequency limit this
reduces to the classical result:

e—1
where f=—— (3
B e+1 )

and € is the static dielectric constant of the substrate.
The image potential (2) now becomes

D(k—)O,Cz)—»O):B,

2
im —_ e
Wim(z) [5’—42 . (4)

Screened static Coulomb interaction between two elec-
trons at points (p=0,z) and (p,z’) can be written in the
form

A )
Weep;z,z' )= dke*PW(k;zz') , (5)
p (27)? f
where A is-the dielectric surface (normalization) area and
the Fourier components are !3(®)13()
. (2m)? e® -z
we-e k; , ry— z—z
(k32,2)== =5

_D(k,w:())e‘k(z+z'))_ (6)

Here the first term is the direct and the second term is
the induced (image) interaction. With the approximation
(3) we find the well-known result in real space:

1
[(Z _Z/)2+p2]1/2

2

Wep;z,z' )=e

_ B .
[(Z +Z’)2+p2]l/2
In the limit k —0, we find from (6)

2 1

;[I—D(k,O)]

2me

Wk —0;z,z')= lim
k—0

+D(k,0)(z +z")— |z —2'|

@)

For a dielectric, with D — (3, the first term in the large
parentheses diverges, because of the imperfect screening
of electrons in the system. Only for S—1, i.e., metallic
screening, the electrons are completely screened and the
system can satisfy charge neutrality.

Generally, it is assumed that the lattice is stabilized by
an external field arising, e.g., from the positive back-
ground,'? which simulates the real experimental setup.
The electron interaction with this external (macroscopic)
field corresponds to the k =0 component of (6):

Y= 1 h . ’
Wext(z’z ):’Zfdp we e(p,Z,Z )

=W(k =0;z,2') . (8)

This energy has to be subtracted in the calculation of
the total electrostatic energy of the electron lattice.
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In the Hartree approximation we neglect the exchange
effects and treat the dynamics of the electron i in the
mean field of all other electrons ji. We shall show later
that this approximation describes electrons in the Wigner
lattice very well in their ground states, where they stay
well localized at their lattice sites even at rather high den-
sities. Moreover, the exchange energy was shown to be
negligible even in the case of “free” 2D electrons.!!

The electron wave function ¥(r;) and energy E are
given by

H(r;,)=E{(r;), 9)

and the mean field of all other electrons is described by
their effective charge densities e?[(r; )|2. The solution of
an integrodifferential Hartree equation (9) is equivalent to
finding variationally the extrema of the operator H;.
Therefore we shall search for the optimum trial wave

function ¥(r;) by minimizing the functional:
H {¢(xr)}=(K)+(W™)+E, , (10)

where

ﬁZ
m A; ]1/’(1',‘) ’

(K)= [drg*(r,) (11a)
(wimy= [dr,|pr)PWm(z,) , (11b)
and E , is the effective (electron) lattice potential:
E o ={( W) —(W*(k=0)), (11¢)

(weey=3 [ [drdr; o)) PWep,;z,2)) .

Viatl

(11d)

III. DETERMINATION OF
THE ELECTRON WAVE FUNCTION

We shall assume the trial electron wave function, ap-
propriate for the ground state of the Wigner lattice, in
the form

W) =u(z,wip,—p?) , (12)
where
ulz))=2a%"e (13a)
pi—p? |

1 _
vip;—p))= Vo e 2

g

) (13b)

and p? is the regular (equilibrium) lateral position of the
ith electron in the lattice. The two parameters (a,0)
should be determined by minimizing the Hamiltonian
(10).

Here we shall briefly argue why the wave function (12)
can be factorized, and a more rigorous proof will be de-
rived in the following sections, together with the form of
these factors.

The first two terms K and W™ in the Hamiltonian (1)
depend separately on p and z coordinates. We have ana-
lyzed the third term (lattice potential), assuming a small
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displacement Ap; of the electron i from its equilibrium
position:

E‘W”(p% Bp; —pYizi,z))
J7i
=§AWe"”(p?j;z,',2j)+7/(zi,zj)(Api P, (14
J7t

and the harmonic constant ¢ can be put in the form

yZ—ZA;EiCOSZBj Sk Ty kpl Wk 24,2))
Here B; is the angle between p?j and Ap;, and J; is the
Bessel function. When we average the potential (14), and
therefore y(z;,z;), over the z coordinates, e.g., with the
functions u(z), Eq. (13a), and perform the summation
over at least four electron shells, we obtain (to within
1%) the same value for y regardless of the choice of the
parameter « in the functions u (z) and regardless of the
direction in the crystal.

In this way we have shown that the whole effective
Hamiltonian can be assumed, in the harmonic approxi-
mation (14), to depend separately on p and z. This holds
true for all realistic physical situations, i.e., for £50.3,
4aay R B, and Ap; $0.3ry [which is the condition for the
harmonic approximation (14)]. Here a is the Bohr ra-
dius and r is the lattice constant. Therefore an electron
will feel the same harmonic potential in the p direction
regardless of its perpendicular delocalization, i.e., the pa-
rameters a and o should be almost independent.

The physical meaning of the two variational parame-
ters is obvious: Parameter o gives th lateral spread of the
electron density, while the mean perpendicular position
of the electron

3
= 15
(z) 5 (15a)
and its perpendicular width
Az=((z)— (2= (15b)
2a

are determined by a.
The classical (point-electron) approximation is ob-
tained for a— w0, 0 —0:

lu(z)|? — 8(z;),

a—» o

(16a)

[v(p; —p))|? —>08(pi—p?) . (16b)

Inserting (12) and (13) into (11) we find the mean kinet-

ic energy and image potential:

2
<K>=%ao(a2+1/az) , (17a)

2
(wim) Z—ﬁ%a ) (17b)

The & =0 component of (7), summed over all electrons,
becomes

e-e(fr = =27 2y —_pL _1sy L
(We«k =0)) SengO (1 3)k+(3/3 ﬁ)a
(18)

Here S= A/3 ;1 is the average area per electron. Now
we have to determine the effective lattice potential E
(11c¢).

One can easily obtain the interaction between two elec-
trons in direct or in Fourier space, but the summation
converges extremely slowly due to the long range of the
Coulomb interaction.

An analogous summation in the case of the two-
dimensional classical (point-electron) Wigner lattice was
performed by Bonsall and Maradudin,'* who used the
fast-convergent Ewald transformation appropriate for the
1/p potential. Peeters and Platzman*? slightly modified
this method in order to include the electron screening.
We shall here adopt basically the same procedure, but for
a more general form of the potential. Our approach can
be applied to various problems and therefore we describe
the detailed calculations in the Appendix.

Although the calculations do not depend upon the
symmetry of the Wigner lattice, we shall perform (numer-
ical) calculations for the hexagonal lattice, which turns
out to be the most stable configuration.’ In that case the
relation between the direct r, and the reciprocal g, lat-
tice vectors is

go=2mry/S, S=1V3r2. (19)

A. Perpendicular delocalization of electron density

Here we shall briefly analyze the perpendicular spread
of an electron wave function u (z), neglecting the lateral
spread of the electron density (o =0).

In the case of a single electron interacting with the sub-
strate via the image potential (4), the Schrodinger equa-
tion with the boundary condition »'™(0)=0 leads to the
hydrogen-like series of image states.? Exact solution for
the ground state is

uiM(z)=2a3"%ze (20)
. o2
Ef=—F 32a, ° @D
where
ap=B/4aq . 22)

Now we include the Coulomb repulsion between elec-
trons in the lattice and (in the o =0 limit) calculate its
influence on the electron wave function and energy.

We shall assume that the ground-state wave function
still has the same analytic dependence

u(z)=2a"%ze %, z>0 (23)

as in the noninteracting case, but the parameter a has to
be determined by minimizing the functional:

e? e?
*?‘—aoaz—ﬁ—a—l-Epot(a,o=0) . (24)

E(a)= 4
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The lattice potential energy E,(a,0) is derived in the
Appendix. The =0 limit is obtained, e.g., by substitut-
ing the operator "V with unity.

In Fig. 1 we show optimized values of « for various lat-
tice parameters r,. At low densities in the argon case a
reaches the asymptotic value (g already above
ro~ 300 A, but for helium it happens at much larger dis-
tances, because the electrostatic attraction is very weak.

B. Lateral spread of the lattice electrons

Here we shall study the electrons confined at lattice
sites in the potential wells of finite size and strength, and
therefore with some lateral spread, but now neglecting
their perpendicular size (¢— ).

In the harmonic approximation (14), which is expected
to be correct at low temperatures,15 the ground-state elec-
tron wave function takes the form

volp)= 1 (—1/2)p/07 , 25)
Vo
where the lateral spread o of the wave function is related
to the harmonic frequency w:

o=(f/mw)’? . (26)

As an approximation we shall take a characteristic
value o= w, close to the Brillouin zone boundary, as was
defined by Bonsall and Maradudin:'*

e22V2

R @7
0

ficwy=
0 ao(ro/a

From (26) the corresponding parameter o, becomes

0.6

0.51

0.4+

ba,of

0.34

0.2

FIG. 1. Optimized values of a (in units 4a,) with =0, for
helium and argon, as functions of lattice parameter r,. The
dashed lines represent the « values, obtained when neglecting
the electron-electron interaction: 4aqua,=p takes the value
0.027 for He and 0.248 for Ar.
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From Egs. (25) and (28) we can conclude that the wave
function overlap is negligible for 0,=<0.2r,, i.e., for
ro =40 A, which is practically always the case. In this
way we have verified our starting (Hartree) approxima-
tion.

With the harmonic wave function (25) we have to mini-
mize the functional

eZ

1
E(o’)=—§~a0~07+Ep0t(a4+oo,o) (29)

in order to obtain the parameter 0. The lattice potential
energy E(a,o0), derived in the Appendix, is much easier
to calculate in the a— oo limit, because the function f(x)
now becomes a simple constant (1—/3), Eq. (A9).

Figure 2 shows the r, dependence of the optimized
electron wave function spread o. We also show o(r,)
given by Eq. (28), based on a simple harmonic approxi-
mation. It turns out that o depends weakly on the prop-
erties of the substrate, so o, becomes an excellent ap-
proximation for both He and Ar substrates.

The condition ry > 5¢ is fulfilled already for rq =40 A,
which again confirms the validity of our model even in
the region of high electron densities.

IV. RESULTS AND DISCUSSION

In order to find both the perpendicular and the lateral
spread of the electron wave function we have to minimize
the functional

E(a,0)=(K)+{(W™)+E_(a,0), (30)

180

150+

1201

E° Ar

b

90
He

60

304

0 ———— —

0 200 400 , 600 800 1000
ro (A)

FIG. 2. Optimized values of o (in units 1/a,) with a= o,
for helium and argon, as functions of lattice parameter »,. The
dashed line represents the approximative o, values, which al-
most correspond with o values for argon.
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varying simultaneously both parameters a and o.

The results for a(ry) and o(r() are practically identical
(to within 1%) to those obtained with ¢ —0 (Fig. 1) and
a— (Fig. 2) approximations, respectively, for r, >40
A. The fact that the optimum values of ¢ and o practi-
cally do not depend on each other proves a posteriori the
assumed factorization of the wave function (12), as point-
ed out in Sec. III.

In Fig. 3 we compare o /ry and Az /r, the ratios of the
lateral and perpendicular spread parameters and r,.
Both curves have the same functional dependence: With
increasing r, both o and Az increase, but their relative
sizes decrease, so that for ;> 103 A the electrons behave
as point particles at an average distance (z)=3/2a
above the dielectric surface.

It is even more significant that the lattice compresses at
higher densities; i.e., the effective potentials confining
electrons at lattice sites become more repulsive, though
still harmonic. In this way the overlap of electron wave
functions stays negligible even at rather higher densities,
which justifies our use of the Hartree approximation in
the treatment of the electrons in a Wigner lattice.

Notice that Az is much greater than the substrate lat-
tice constant. Therefore we believe that the microscopic
effects (e.g., dispersion and decay of screening charge
fluctuations, substrate lattice structure, etc.) do not play
an important role in describing the electron
lattice—dielectric substrate interaction.

Various energy terms and the total energy of a Wigner
lattice are shown in Figs. 4(a) and 4(b). For helium, Fig.
4(a), the image term is obviously very weak and the total
energy is dominated by the electron-electron interaction.
For argon, Fig. 4(b), the situation is qualitatively
different: The lattice potential reaches its asymptotlc
value rather quickly, and for ry>450 A it is already
smaller than the image potential for this particular densi-

ty.

0.25

020

0.151

010

0.051

0 200 400 . 600 800 1000
o (A)

FIG. 3. Optimized values of Az and o, divided by r,, as func-
tions of lattice parameter r,, for helium and argon.
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0=
CWimy
-¢K)
..1_
-2 He
-3.
E
Epof
-l,.__________._________
(a)
0 200 400 600 800 1000

-7 . . . . . . . — .
0 200 400 600 800 1000

o (A)

FIG. 4. Various contributions to the optimized total electron
energy E(a,o0) for (a) helium and (b) argon, as functions of the
lattice parameter r, and in units of E,=e?/r,. The kinetic en-
ergy term is shown with opposite sign. The dashed line
represents the point-electron approximation of the electron lat-
tice energy E, (= 0,0 =0).

It turns out that the lattice potential energies are close
to those calculated with o =0. However, kinetic energy
depends both on a and o, so the total energy thus calcu-
lated is appreciably different from the point-electron ap-
proximation E,, (a— ,0—0) even when the image
contribution is small (e.g., for helium). This means that
the influence of finite o on the total energy becomes
negligible only after 7y > 103 A i.e., in the region where
the W™ term (except for small 8<0.1) dominates over
the lattice potential energy. However, as the point-
electron model does not (and cannot) include this W'™
term, the validity of this model becomes doubtful for the
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whole range of densities.

Of course, the situation might be saved by an ad hoc
shift of the electrons away from the dielectric surface.
However, this shift is the consequence of exactly those
finite-size effects we are addressing in this paper.

In conclusion, in this paper we have reported calcula-
tions of the ground-state energies and wave functions of
electrons in a two-dimensional Wigner lattice on a dielec-
tric substrate in the Hartree approximation. We include
the effects of final electron density spread parallel and

( Wg;e>=(—24~);fdkfdzfdz'lu(z>|2|u(z'>|2W<k;z,z')fdpfdp'e"R'V"P"Iu(p—po)lzlu(p'—p,>P .
aw

the integration over (p,p’) gives

[ dp [dp'e™ PP [u(p—py)2lvip'—p, 2= K Po P

where

v, (k)= fdpe“"P[u(p)|2=e(~1/4)(ak>2 ]
Expanding

o, (R)P=1—1(ck)*+ - -

v, (k)|?,
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perpendicular to the surface. Such a treatment can serve
as a simple model for further investigations of two-
dimensional Wigner lattices.!®

APPENDIX: LATTICE SUM FOR THE
EFFECTIVE ELECTRON-ELECTRON INTERACTION

From (11) and (12) the effective interaction among two
electrons at their regular lateral sites (pg,p;) can be writ-
ten in the Fourier space as

(A1)

(A2)

(A3)

we obtain the multipole expansion of the potential { W§;°) in terms of even powers of o /|p,—p;|. Particularly, in the

a— o limit we find

e? 1 o?

(W) ——(1—B) T |1+ T+ -
e lpo—pl 2 |po—pil?

(A4)

For |py—p,| = 50 this expression converges very fast and o does not influence { W**) appreciably.
In order to obtain simple 1/p behavior appropriate for the Ewald transformation, we must take the o dependence in
front of the integral (A1). This can be done with the following identity:

_ 2 ik-(p,—p;) (V) ik-(py—p;)
fdke (172)(ak)?, KPP Ofdke Po— P ,

where

__ 0 d
S(V0)=%(UV0)2’ VO:ECI+3;(,—CZ' (AS)
Now we make the transformation from the Fourier space to the x space:
k(o — o (o —p 2x2
(2:)2 fdkelk o pl)fdzfdZ'lu(z)[2|u(z')|2W(k;z,z')=e2—\/21—T fo dxe PP r(x) (A6)

Obviously, in (A6) we transform the effective electron-electron interaction in the o =0 limit. The function f (x) is given

by
f= [dz [dz'lu(2)*|u(z)}e "%

2

Inserting (13a) for u (z) in f (x), after coordinate transfor-
mation we find

F)=1 [ Tdy[(p?+3y +3) =By le e 2V

(A8)
In the classical limit f(x) becomes a constant:
lim f(x)=1—p4. (A9)

2 — 2.2
x _Be (z+z)x).

(A7)

Finally we can put { W§) in a convenient form:

o e —p )52
<W8f>=ez%7rew°)f0 dxe PP px) . (A10)

Total electrostatic energy of an electron at p,=0 can
be written as

(Wee)= lim [E (W5 —(wWes) (A11)
!

Po—0
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Now we can use the Ewald transformation to transform
the direct lattice sum over p; into a sum over reciprocal
lattice vectors G:

2e_(Po"PI)Z"ZZT;_.TZZ_zeiG'Poe—Gz/4x2 (A12)

1
In a standard way we divide the potential energy in
two parts: the long-range (x <7) contribution ( W&*)

where the summation will be performed in G space, and
the short-range (x > 1) contribution { Wg*):

(wee)=( W§“3>+(Wf,~“">
(wgy=e>-L- 3 ("

Vi 150

(A13)

—1/2[77 (po— ) ]}p0=0 >

(A13a)
(WE)=(WE<y)

Vi s o —(1/2)6G) 9,
N G+o

_ 2 2 n, s(Vq) ~p(2)x2
e e fo(e e )p0=0f(x)

fS— LG /4n?)

(A13b)

$(Vo), —(py—p;)2x?

(e )

pp=0

which leads to

{ s(V0 ¢__1/2[

n (VJ
Jdxe )pg=of (X)=

The convergence is achieved for (o1)? <<1.
From (19) and (A15) we find for the hexagonal lattice

27 | |9
V73

(om)*= , (A17)

so that the condition ry =
gence (01 =0.4).

The divergent character of the repulsive potential ener-
gy (A13) is evident in the uniform G =0 term:

2 —
(WEgeo) = %ZVﬁfondxf(—);) .

X

So again gives very fast conver-

(A18)

Namely, for x —0, f(x)~1—/3, so that the integral in
(A18) diverges at the lower boundary.

This divergency has to be removed by subtracting the
k=0 component of the total potential energy.
{(Wek =0)) was already given in (18), but it is here
convenient to rewrite it in terms of f(x) as

e-e — __ 1 - 1 — f(x)
(Wl =0)=3 T Japwipr=geavm [axt 3=

(A19)

P )2]}p0=0=¢51/2(772P%)_2(U77)2¢§1/2(7729%)"'2(077)2[(/)177) +2(on)? 185D+ -,

fo"dx[1~2(o—x P +4(ox )+
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We have introduced the functions
¢R(z)= flwdt the ~Af (VT ) (Al4a)
$rz)= fl""dz t"e Af(n/VT), (A14b)

which both reduce to the standard Misra functions if f is
a constant (as in the @— oo limit).

Obviously { W*¢*¢) should not depend on the choice of
the parameter 17 and we choose it to be

n=(g0/2r)""?, (A15)

so that direct and lattice sums converge equally fast. In
this way it is enough to take only the first two terms in
the sums (A13a) and (A13b).

The operator v gives simply the factor e
when operating on G terms. To evaluate the expressions
in curly brackets in (A 13) we use the expression

—(1/2)(0G)?

=1—2(0x)*+2(ox ) p;x P +4ax)* -,

(A16)

- 1f(x) .

in order to show explicitly that { W**(k =0)) cancels the
divergency in the G =0 term of ( W§*):

e-e e-e — — e2 — [ *® f(X)
(WELy)—(W (k"o”__—sz‘/”fn axd-3= .
(A20)

In this way the lattice potential energy

E o (a,0)=( W) —( Wk =0)) (A21)

becomes finite and attractive, which stabilizes the elec-
tron lattice.
Let us notice that for localized electrons we find

Eppla— 0,0 —>0)=—(1—f)4.2134e2/ry .  (A22)

This point-electron result was already obtained, for =0,
by Bonsall and Maradudin.!'*
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