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Delocalized Wigner lattice on a dielectric layer with a metallic substrate:
Dynamical properties and phase transitions
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Properties of a two-dimensional Wigner lattice are analyzed taking into account delocalization of elec-
trons on a thin dielectric layer with a metallic substrate. Electronic screening arising from the metallic
substrate enhances the image potential as compared to the semi-infinite dielectric layer, but at the same
time lowers the electron-electron interaction. As a result, the electron delocalization becomes a compli-
cated function of the dielectric thickness, dielectric constant, and the electron density. The electron
ground-state energy is calculated including the k =0 term of the lattice potential, which has a significant
efFect at high electron densities. The inliuence of electron delocalization and of the dielectric substrate
on the electron lattice dynamics (phonon spectra, sound velocities) and on the Wigner phase transition is
demonstrated. In particular, possible extension of the Kosterlitz-Thouless melting criterion to the quan-
tum regime is discussed.

I. INTRODUCTION

The existence of a two-dimensional (2D) Wigner lattice
on a dielectric substrate has been confirmed experimen-
tally more than ten years ago. ' The main problem
preventing more detailed experimental studies of this lat-
tice is the weakness of the image potential which traps
electrons above the dielectric surface on1y for low elec-
tron concentrations. A metallic substrate ' or a dielec-
tric with high dielectric constant ' placed below a thin
dielectric layer (usually liquid helium} can significantly
enhance the attractive image interaction, eventually lead-
ing to the formation of a Wigner lattice at higher electron
densities. However, strong image force can also cause
tunneling of electrons through the thin dielectric into the
metal substrate. The calculations performed for He (Ref.
6) show that the He thickness should be &35 A to
prevent appreciable tunneling effects. In that case, an
upper limit of electron concentration is estimated to be
=2X10' cm

In our previous papers, ' here denoted by I and II, re-
spectively, we have studied the Wigner lattice on a semi-
infinite dielectric substrate by taking into account (i)
finite electron size (delocalization} and (ii) the dielectric
properties of the substrate. The presence of a metallic
substrate changes the dielectric response of the system,
and the electron-electron interaction is strongly modified
due to additional screening. But it could also change
dramatically the electron delocalization, so here we want
to discuss the influence of such an effect on the dynamical
properties of the Wigner lattice, and particularly on the
criteria for the Wigner phase transition.

In the classical model, where electrons are described as
point particles localized at a distance d above the metallic
substrate, the influence of this substrate is described

by a single parameter d/p, where p is the (average) dis-
tance among the two electrons. In our approach, we
start at the density and temperature where the electrons
form a Wigner lattice on a dielectric layer of thickness d
deposited on a metallic substrate. The lattice oscillates in
the p direction (parallel to the dielectric surface) and has
a finite delocalization b,z in the (perpendicular) z direc-
tion. As a consequence, the properties of the system are
determined by three parameters: p, d, and M, and the
"scaling" with d/p is no longer valid. However, for
given p and d, the third parameter hz can be determined
by minimizing the total energy of the Wigner lattice. '

The paper is organized as follows. In Sec. II we discuss
the influence of the metallic substrate on electron-
electron interaction for various ratios of the three charac-
teristic length parameters p, d, and hz. In Sec. III we an-
alyze the dynamical properties of the system, and in Sec.
IV we calculate the Wigner phase transition diagrams,
primarily their dependence on the dielectric thickness.
The conclusions are given in Sec. V.

II. ELECTRON-ELECTRON INTERACTION:
INFLUENCE OF A METALLIC SUBSTRATE

The model Hamiltonian of electrons in a Wigner lattice
on a dielectric layer of thickness d deposited on a (semi-
infinite) metallic substrate has a form

I=g E;+ g W (z; )+—,
' g 8"'(p;1;z;,zj ) .

The first term is the electron kinetic energy, the second is
the image potential felt by the electron i at the distance z,
above the dielectric surface, and the third term describes
the total interaction (including images) between all the
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electrons (i,j ), at a lateral distance p;i
=

~p;
—

pj ~
(lattice

potential).
W' (z)~ ——'(e*) —,

~im(z)= '—e —fdkD(k)e zkz

and the "response" function D(k } is9

—2kd
D(k)=

1 +P —2kd

(2)

(3)

In the d —+00 limit we find the standard result for the
semi-infinite dielectric substrate, with the dielectric con-
stant e:

A.. Image potential

We describe the metallic substrate as an ideal metal
that instantaneously and completely screens the electron
charge e. Therefore, the image potential of an electron at
a distance z above the dielectric surface is given in the
two-dimensional Fourier k space as ' u(z) =2asnze —az (10)

will be an excellent approximation for the "perpendicu-
lar" Schrodinger equation, which contains the image po-
tential (2). From I and II we expect that (10) will also be
a good "perpendicular" trial wave function for the
minimization of the full Hamiltonian (1). Thus deter-
mined parameter a gi&es the electron perpendicular
width bz and the mean perpendicular position (z ) of the
electron:

b,z=&3/2a, (z) =3/2a .

e, d —+0 or z~ao
e

e v'p, d ~ ao or z ~0 .

Therefore, we expect that the ground-state wave func-
tion appropriate for the 1/z potential, ' '

D(k } =P= a+1 (4)

The image energy of an electron evaluated with the
wave function (10) is

(E™)—:(&(z))+(~™(z))
In order to study the effects of the metallic substrate on
the image potential, we can expand D(k) in powers of P
(P&1):

D(k ) g b e
—2(n+1)kd

n= —1

e 2 e D(k)aoa—
2 2 fo (1+k/a)

where ao is the Bohr radius.

B. Lattice potential

(12)

b, =P, b„=(—1)"(1—P }P" .

D(0)= g b„=1 .
n= —1

(6)

It holds for finite d and in the limit d ~ ao (the metallic
substrate is infinitely far from the lattice}. The d=ao
limit [no metallic substrate: D(0}=P& 1] is physically
different. In the former case, the metallic substrate pro-
vides the charge neutrality, while in the latter case it
should be done by an external field. '

With the help of Eq. (5), the image potential (2) can be
easily integrated to give an infinite series of electron im-
ages:

2 00 b„~im
4 „,[z+(n+1)d] (7)

Usually the parameter P is small (@&0.3) so one can
keep only the linear terms in P:

W' (z)=- e 1 1 1+p +o(p )
2

4 (z+d) z z+2d

The condition for perfect screening (or charge neutrali-
ty) due to the presence of a metallic substrate is obtained
from the sum rule:

Following Refs. 7 and 8 we can derive the in6uence of
the metallic substrate on the lattice potential in 2D k
space: we have to insert the full expression (3} for D(k)
instead of the parameter P in the term that describes the
electron-image interaction in Eq. (6) in Ref. 7. After in-
tegration, we obtain the z-averaged lateral interaction be-
tween the two electrons:

( 8'"(p) ) =f f ~
u (z ) ~

W"(p;z, z')
~
u (z')

~
dz dz'

f dx J,(x)
p o (1+ax)

X 1+—,'ax(3+ax) —
z

. (13)
(1+x)

where Jo is the Bessel function and a = 1/2ap.
In discussing the limiting cases, we have to compare

three length parameters a ', p, and d, while in the
point-electron (a~ ao ) approximation, ( W") is the
function of one parameter (p/d ) only. i

(i) Low density limit: p»-a, i.e., a «1. The elec-
trons are well separated (p & 300 A), and the influence of
the image potential due to the presence of the metallic
substrate is relatively strong. For a very thick dielectric
(d »p) the monopole interaction dominates:

Notice that in some limiting cases W™(z)takes a simple
form

2—3(1—7P)
I

(2ap) p
(14)
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but for a thin dielectric filin (d «p) the interaction takes
the dipolar form:

( Wo') = f dz~u(z)~ fdz'~u(z')~ w(k 0;z,z'),

( W"(p)), —+6 (ad )
a

2
2

+2 (ad)2
I+P (15)

+ Iz —z'I (19)

w(k ~0;z,z') = e lim [1—D(k )]—+D(k )(z+z')
S k 0 k

In the last expression the role of finite a is particularly
important.

(ii) High densi-ty limit: p«a, i.e., a »1. The elec-
trons are laterally very close in comparison with their
average distance from the substrate (z ) =1.5a ', so the
influence of the substrate is negligible. The lateral in-
teraction exhibits a characteristic logarithmic behavior:

( W"(p)) ~e 2a[ —,'ln(1/2ap)+ —,'+O(2ap)] . (16)

For a typical value a -40a0, the high-density limit is
0

achieved for p & 10 A. However, such high densities can-
not be obtained experimentally.

The total lattice potential in the Hartree approxima-
tion is obtained as a lattice sum of ( W"(p) ):

1%0
(17)

Here p1 are the regular electron lattice sites. As shown in
I, we can neglect the lateral spread of the electron wave
function (o ) and take only the z average of W"(p) (17) in
order to determine the "delocalization parameter" a. In
II we have thus derived the dynamical properties of a
delocalized lattice. A similar approach shall now be ap-
plied to the Wigner lattice on a finite dielectric layer with
a metallic substrate.

HI. DYNAMICAL PROPERTIES
OF A WIGNER LATTICE

A. Average electron-electron interaction

At this point we draw particular attention to the aver-
age electron-electron interaction, defined as

( Wo ) =—fdp( W"(p) ),
where S is the average area per electron. In k space we
find [Eq. (7), Ref. 7]

Although electron-electron interaction has a simple
form (13) in k space, this form is not convenient for
evaluating the lattice sum (17). The procedure of deriv-
ing the ground-state energy and the eigenfrequencies of
the lattice was discussed in detail in Appendixes of I and
II, respectively. In the Appendix of this paper we show
how we can include the influence of a metallic substrate
into these considerations by simply redefining the func-
tion f(x ) which enters into the definition of the
electron-electron interaction in "x". '

In the case of a semi-infinite dielectric (d= ~ ), with
D(k ) =P, ( Wo ) obviously diverges for P & 1 because of
the lack of charge neutrality in the system. For the same
reason, the lattice potential ( W") also diverges. To
prevent this divergency, the system is assumed to be em-
bedded in a uniform background of positive charge. '

This additional interaction in fact cancels the
( Wo') term, so it should be substracted from the lattice
ground-state energy, which makes that energy finite.

The situation becomes quite di6'erent in the case of a
dielectric layer on a metallic substrate. Using Eq. (5) for
D(k ), we find from (19) and (10)

( Wee) e22~
S

1 —P 331
I+P 16 a (20)

which remains finite for finite d because of the perfect
electron screening in the presence of a metallic substrate.
In the Appendix we have shown that the lattice potential
and therefore the ground-state energy also remain finite
for finite d.

The experimental setup is usually defined as a (circular)
capacitor partly filled with the liquid dielectric (He)
(Refs. 1 and 5) and the electrons are localized at a dielec-
tric surface by an image force and by an external electric
field E. Therefore, instead of substracting the ( Wo )
term from ( W"), we now have to add the interaction of
an electron with an external (pressing) field E. In the
case of a constant field applied in the z direction, it be-
comes

(W') =eF.(z) =eE 3

2a
(21)

B. Optimized electron wave functions

In order to analyze the dynamical properties of a
Wigner lattice on a dielectric with a metallic substrate,
we first have to determine the variational parameter a, by
minimizing the Hartree Hamiltonian of the whole sys-
tem for a particular electron density and thickness of the
dielectric layer. In all calculations we assume a 2D hex-

When added to the electron energy, the term ( W ) can
change, e.g., the optimized a values in the case of a free
2D electron gas. ' However, in the case of a Wigner lat-
tice, at typical electric fields F. &500 V/cm, the ( W )
term contributes much less to the total energy than the
( W") term for all relevant electron concentrations
(n & 10 cm ).' lt makes the optimized a values almost
independent of E. Besides, all physical quantities, such as
energy levels, that are measured with a finite electric field
can be nicely extrapolated to the E=0 limit. " In that
sense all our results will be given for E=0.
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agonal Wigner lattice with the lattice parameter ro and
the average surface per electron S=&3/2ro.

Following the procedure described in I, with the func-
tion f(x) defined in the Appendix and with the ( W0')
term included, we obtain the parameter u for He
(P=0.0278) and Ar (P=0.248) for three different
thicknesses d of a dielectric layer (Fig. 1).

The a values start to deviate from the d —+ ao limit for
rather thin films d & 100 A, a consequence of the screen-
ing effect. For thinner dielectric layers, the inhuence of
the metallic substrate and therefore the inQuence of im-

age potential on the total electron energy obviously be-
comes more important, which increases the localization
of the electron wave function (10}. However, at the same
time [see Eqs. (14) and (15)], the screened electron-
electron interaction becomes less repulsive, which in turn
weakens the lattice potential. In the high-density region,
the second effect overcomes the first, so in that region the
electrons on a thin dielectric layer become more delocal-
ized as compared to the d ~ 00 limit.

C. Dispersion relations

C3

LU

C$

LL

0
0.2 04 J 02 X

(WAVE VECTOR)/9,

FIG. 2. The frequencies of the two phonon modes for the 2D
hexagonal electron lattice. We take r0=300 A and d=100 A.
The frequencies are shown in units coo=(e /m ro)' and the
wave vectors in units of the reciprocal-lattice vector

go =4m. /&3ro.

Determination of the parameter a(r0, d) enables us to
discuss the dynamical properties of electronic Wigner lat-
tices (II, Appendix A). Figure 2 shows the vibrational
modes co+(k) of a Wigner lattice on He and Ar layers as
compared to the classical results (a—+DO, @~1). The
classical curve is between the He and Ar curves. It means
that the classical electrons are screened more elciently
than the "delocalized" electrons on the He substrate, but
still less than the electrons on the Ar substrate. As point-
ed out earlier, the presence of a metallic substrate leads
to the complicated localization-delocalization effect,
which depends on both the electron density and the
dielectric layer thickness, and one cannot expect a simple
behavior, like the "frequency lowering in the He-Ar or-
der, "as in the classical d ~ 00 case.

0.4

03-.

0

D. Ground-state energy

The total ground-state energy of the Wigner lattice
(per one electron), '

(22)

contains two "static" contributions (E™)and ( W"),
which we have already discussed, and the dynamical con-
tribution from the two phonon modes p =(+,—}. Here
(~~ ) is the frequency of the p mode averaged over the
first Brillouin zone and this contribution to Eg is calculat-
ed following II and the Appendix.

When calculating the ground-state energy, we shall
still first substract the ( W0') term from it, for two
reasons:

(i) The numerical calculation of (W")—(W0') is
much easier than the ( W") term alone, as shown in the
Appendix.

(ii) The ( Wo ) term can than be added in the explicit
form (20). Moreover, this form enables us to add only the
second part of (20), which contains the parameter a:

0.2-
( Wee )

277 Q 33 1

S 16 0.

The first term in (20)

(23a)

0.1- (Wee )
2lr 2 1 p 2d
S 1+P

(23b}

0
0 200 /00 600

r, ( }
800 1000

FIG. 1. Optimized values of a (in units 4ao) for He and Ar
layers as functions of the lattice parameter ro. The straight
dashed lines represent the asymptotic ( ro ~ cc ) values.

remains fixed for a given system, so we can take it as a
level from which we shall measure Eg. Defined as such,
the ground-state energy remains finite even at the d ~~
limit. In the point-electron approximation (a~~ ), the
term ( Woo) is zero, so the usual substraction of the
( Wo') term from the total electron energy ' means that
the energy is measured from the same level as in our case.
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This will enable us to compare the results.
Figure ~a s ows3( ) h E for three different thicknesses d

of He and Ar layers. At low densities E is mainly deter-
mined by the image potential and therefore depends
strongly upon the dielectric thickness d. However, at
high densities ro( ~ 100 A) the influence of the lattice po-
tential increases an d E becomes almost independent of
d. The classical values for E are close to the He and Ar
va ues a ow1 t 1 densities and differ drastically from them at
h' h d nsities as the classical curve for d = i u-

~ ~ / ee ) termtrates. This difference is mainly due to the ~
&Woo ~

whose repulsive influence becomes impo
~ ~

rtant at r &40000

The ( W" ) term depends upon re, so we have to tn-

clude it to obtain the true dependence Eg,'ro,', as s
Od

as shown
in Fi . 3(b). However, here we divide E by d in order to
obtain all curves on the same scale. In that

d ~~ limit means the case d &&re, t.e., on y t e
term remains.

in the re ion ofThe extremely large increase of Eg in the region o
small lattice parameters (re & 200 A) shows that one can-

'1 b 1 the signer lattice at electron concen-
trations greater than n,„=3X10"cm, regar ess o
t e ieecrh d' 1 tric layer thickness, so we tentatively interpret
n,„as a maximum electron concentration to w ic

th dielectric surface can be charged. It agrees with
the present experimental situation in t e sense

~ ~

e have not taken intorepresents an upper limit, because we
account other effects (surface roughness, tunnel effeect
etc.) that can also destabilize a charged surface. e

the ( W") term,large increase in E is mainly caused y e
which explains why this effect was not obtained in the
d = 00 case ' or in the classical limit.

0-
0.6-

-0.05-
He

-0.10-

-0.15-

0
CP

CP

0.4-

0.2-

-Q20-

0.004-

200 f00 600
r. ( )

800 1000 0
0 200 400, 600

r, (A)
800 1000

0.002-

C)

0-
UJ iooi(

3-

-0.002- 20A

-0.004---
0 200 400 600

20A

sb0 e60

FIG. 3. The ground-state energy per one electron,tron for 2D
hexagonal lattices on He and Ar layers, as a function of the lat-
tice parameter rp. (a) Without the z Wpd ~" & term. The dashed
ine represen sts the classical point-electron values , , With the

1=100 A He($VO'd) term, and divided by D=d/a TOh d= e
curve (not shown) lies slightly below the d = 00 He curve.

0-,
0 200 400 , 600

r.(A)
800 1000

FIG. 4. The transverse (a) and longitudinal (b) sound veloci-
ties, for the 2D hexagonal lattices on He and Ar layers, as func-
tions of the lattice parameter rp, in units cp coprp

=(e /m rp)'
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K. Sound velocities

Of particular interest is the behavior of the sound ve-
locities of the Wigner lattice, defined as

Bco Bco+
c, = lirn, cI= lim

o Bk k~o
\

(24)

Figures 4(a) and 4(b) show strong dependence of the
transverse c, and longitudinal c& sound velocities on the
lattice parameter ro for finite thicknesses of a dielectric
layer. Notice that c& becomes infinite in both the d ~~
and ro~O limits. In these two cases, the lattice behaves
as a 2D Coulomb system, with co+-k' in the long-
wavelength (k ~0) limit. In particular, for d ~~,
c, —1/ro~ in the ra~ ao limit, so c, /co remains finite. '

However, for finite d, in the ro~ oo (i.e., ro&&d) limit,
(c„ci)-1/ro, so both c, /co and ct/co tend to zero as
1/ro Le.t us also mention that the classical values (not
shown) again fall between the He and Ar values.

cussed in Ref. 8, and here we shall be particularly in-
terested in their thickness dependence for lou densities
and temperatures.

(i) For thick dielectric layers (d & 100 A) the melting
curves at low n and T lie in the classical regime. In fact,
at higher temperature (T&0.3TO) they approach the
T= TF line, and in that case the replacement (28) leads to
the bending of the curves upwards, but they reach the
T=0 line ' at very high electron concentrations
(n n—o), which are outside the experimental possibilities
and our considerations. (ii) In the case of thin dielectric
layers (d & 100 A) the whole melting curve can lie in the
quantum regime, and now the choice of the expression
for the kinetic energy becomes crucial.

Figure 5 clearly shows the decrease of the crystalline
region for a lower dielectric thickness and higher dielec-
tric constant. The reason for such behavior is a strong
image force acting on electrons above a thin dielectric
layer with a metallic substrate, or above a layer with a

IV. THE WIGNKR PHASE TRANSITION

The existence of a (2D) Wigner lattice was experimen-
tally first confirmed by Grimes and Adams, ' who detect-
ed the phase transition. Following the same procedure as
in II, we use the theories of Kosterlitz and Thouless' and
Halperin and Nelson' and Young' (KTHNY) define the
melting temperature T

kaT F
v, r, (25,

'

Here Vo is the bare Coulomb potential, and for the pa-
rameter I we take the renormalized value I o=137.'0 .8The d dependence enters only through the function F:

F=(1—c, /ct )c, /c, o, (26)

where c,o=0.513co is the transverse sound velocity in the
classical limit.

Figures 5(a) and 5(b) show the phase diagrams of the
Wigner lattice on He and Ar layers of different
thicknesses, respectively. The line that defines the Fermi
temperature TF for a given electron concentration n

divides the classical ( T & TF ) from the quantum ( T & TF )

region. The parameters no and To, ' defined by

0.05

G04-

0-03-
O

C

0.02-

0.01-

0.05

0.04

He

G02

C)

C

(M4
y(y

0.06
0

0.08 0.10

4 e 2no=
2

kgTo=
a, ro)' '

ao 10
(27)

0.03-

C:

take the values no=2. 42X10' cm, To=33.6 K for
I o= 137.

Notice that the kinetic energy Ek of a "free 2D elec-
tron" can be approximated by Ek ( T ) =ktt T in the classi-
cal regime and by Ek(T)= ,'kttT~ in the quan—tum re-
gime. Therefore, if one tries to generalize the melting cri-
terion (25) by substituting

0.02-

0.01-

0.02 0.04 0.06
0

0.08 o.io

ktt T ~E„(T ), (28)

the effect mill be evident mainly in the quantum regime.
The influence of the dielectric constant on the phase dia-
grams without the metallic substrate was extensively dis-

FIG. 5. Phase diagrams for the Wigner crystallization on (a)
He and (b) Ar layers. The straight dotted line represents the
TF(n ) curve, and the dashed lines are obtained with the replace-
ment (28).
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0
representative thicknesses of a dielectric film: d =20 A
as an extremely thin dielectric film, in order to clarify the
influence of a metallic substrate; d~00 as a limiting
case, in which the dielectric plays a dominant role; and
d = 100 A as an intermediate case, in which the dielectric
properties of the layer and the influence of the metallic
substrate are of comparable importance.

The influence of electron delocalization on the proper-
ties of the Wigner lattice was discussed earlier in the
d= 00 case. ' Here we have shown that this influence
becomes particularly important for thin dielectric layers
on a metallic substrate, where delocalized electrons feel
much lower image force than the point electrons on a
dielectric surface. The influence of the dielectric sub-
strate was analyzed by calculating and comparing all the
Wigner lattice properties for He and Ar. Notice that
both of them produce a strong repulsive potential at the
surface due to the excitation gap in the rare-gas layer. As
a consequence of complicated efFects of electron delocali-
zation and the thin-film dielectric constant on the Wigner
lattice, the results obtained in the classical model
(M~0, e~ 1 } usually lie between the results for He and
Ar.

Particular attention was paid to the boundary condi-
tions satisfied by the 2D electron lattice in a realistic ex-
perimental situation. It was shown that the k =0 com-
ponent of the lattice potential should be taken into ac-
count even in the d ~ oo limit, in order to obtain correct
behavior of the system at higher electron densities. This
term was omitted in the d=~ (no metallic substrate}
case, ' where difFerent boundary conditions should be
applied in order to make the whole system neutral. We
have outlined how different results arise in these two
physical situations.

We also derived melting curves of a Wigner lattice us-
ing the KTHNY theory and its "extension" into the
quantum regime. Without trying to give a definite
answer, we suggest some critical experiments that could
provide more information about this intriguing system.

Finally, we point out that in this paper we continued
the systematical approach to the Wigner lattice,
developed in I and II for the semi-infinite dielectric sub-
strate, and, within the same formalism, were able to
derive the properties of the Wigner lattice on a thin
dielectric layer placed above a metallic substrate.
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APPENDIX: LATTICE SUMMATION
AND DEl INI'i'1ON OF THE FUNt. l1ON f(x )

In Sec. II we discussed the influence of the metallic
substrate placed below the finite dielectric layer on the
electron-electron interaction ( W"(p}). We pointed out
that this influence is taken into account if one simply
changes P~D(k } in W"(k;z,z'), given by Eq. (6}of Ref.
7. Following the Appendix I and using the expansion (5)
for D(k ), we can again perform the transformation [Eq.
(A6), Ref. 7] from the "k space" to the "x space. " It

V. CONCLUSION

We have analyzed the influence of a metallic substrate
placed below a dielectric film on the electronic Wigner
lattice above this film. We evaluated results for three

relatively high dielectric constant. As shown in Sec. II, it
leads to a weak (dipolar) electron-electron interaction at
low electron concentrations, where the lattice becomes
unstable. However, the melting curves obtained from the
standard melting criterion (25) always start from the
(T=0, n =0) point and therefore predict the existence of
the Wigner lattice at low electron concentrations for all
thicknesses of a dielectric layer. On the other hand, with
the replacement (28), the kinetic energy in the quantum
regime becomes finite at the T—+0 limit, so it can dom-
inate over the weak potential energy, which further
reduces the crystalline phase. As a consequence, a
Wigner lattice cannot exist on a dielectric layer that is
thinner than some critical thickness d, . We find d, =22
A for He and d, =39 A for Ar. For each d & d, we can
then determine a critical density n, (d) below which a
Wigner lattice is not possible even at T=O. This is
demonstrated in the inset of Fig. 5(a), where we put
d=24 A, i.e., slightly above d, for He, and obtain
n, =0.07n0=1.7X10"cm . Notice that with increas-
ing d, the critical density n, decreases and we find n, +0-
for d —+~.

A similar discussion was performed in Refs. 2 and 3
within the classical model. Again, the melting curves ob-
tained from this model fall between the corresponding He
and Ar curves. Particularly, with the replacement (28),
the Wigner crystal cannot exist below d, =31 A in the
classical model, while it exists in our model on the He
substrate. This is due to large delocalization of electrons
in the Wigner lattice. On the other hand, the fact that d,
is higher in the case of the Ar substrate than in the classi-
cal model is caused mainly by the influence of the Ar
dielectric constant (@=1.66), which cannot be ignored as
in the classical case (a= 1). The difference between the
Ar and classical melting curves is illustrated in the inset
of Fig. 5(b) for d = 100 A.

Bearing in mind that thin dielectric layers on a metallic
substrate can support higher electron concentrations, we
expect that experiments in this configuration could pro-
vide answers to the questions of whether the KTHNY
theory is correct, whether the replacement (28) is valid,
and whether the influence of the substrate dielectric con-
stant and the electron delocalization is properly described
in our model.

Finally, we want to comment on the agreement be-
tween the experiment and the theory we have derived in
Ref. 19, where we have used the replacement (28) and
taken into account only the influence of the image poten-
tial in the calculation of a. In this specific experiment,
the dielectric thickness was d ~240 A, and we see from
the present calculation that the replacement (28) had no
influence on T . Also, the lattice parameter was r0&940
A and the influence of the image potential was dominant.
Therefore, the present theory, which improves upon the
calculation, ' would also be in very good agreement with
these experimental data.
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gives the interaction between two electrons at their la-
teral sites (po,pi ) in the form

—( — ) x
( W"(poi)) =e —f dx e ' ' f(x), (Al)Ol

appropriate for the Ewald transformation and the lattice
summation. The function f(x ) [Eq. (A7), Ref. 7] is now
defined as

f(x)=fdzf dz'iu(z)i iu(z')i

—(z —z') ~ g
—[z+z'+2(n+1)d] x

ne
n= —1

(A2)

one electron with all images of the other electron:

f '(x ) = g b„f„'(x ),
n= —1

gi
( )

l d 5 —y —(x/2a) (y+4a(n+ 1)d]
&2O

(ASa)

(A5b)

For small p (p&0.3), following Eq. (8), one has to take
into account only the first three terms in (Asa).

In the limit d = oo only the n = —1 term remains, with
b l =p, in agreement with the expression (A7), (Ref. 7)
for f(x). The integration in (A4) and (AS) can be per-
formed analytically in the point-electron (a~~ ) ap-
proximation:

Inserting u (z ), Eq. (10), in (A2) we obtain —[2d(n+1)] x
ne (A6)

f(x ) =f '(x ) +f '(x ), (A3)

where the first term f '(x ) is the direct electron-electron
interaction

f'(x) =—' dy(y +3y+3)e ye (A4)
8

while the second term f '(x ) represents the interaction of
I

2

n= —1

With the function f(x ) defined by Eqs. (A3) —(A5) we
can continue the same procedure as in the Appendix of I,
to obtain the lattice potential ( W") [Eq. (A13), Ref. 7]
in the Hartree model.

One aspect of the inhuence of the metallic substrate on
( W") can be understood by analyzing the x ~0 limit:

X 1—6+ 4ad, x/a «1, d «(1x~O ~ 2a

(1—p)+6(7p —1)(x/2a), x/a«1, d ) 1/x .

/x, I /a)
(A7)

(A9)

For P= 1 (i.e., e= —~ ) the dielectric layer becomes
the same as the substrate (i.e., an ideal metal), so the
thickness d has no infiuence on f(x ), and particularly
f(x —+0)~36(x/2a) . For P & 1, f(x ~0) depends
strongly on the dielectric thickness d. If we put d= ~
before taking the x ~0 limit, f(x —+0)=(1—p) remains
finite. In that case, the lattice potential ( W"), which
contains the term [Eq. (A18), Ref. 7]

f( ) (A8)
p ~2

becomes infinite. It remains finite only in the presence of
the metallic substrate, in which case f(x~0)-x . This
statement is obviously equivalent to the charge-neutrality
requirement (6), here transformed into "x space. "

If we transform ( Wo ) (18) in the "x space"
2

( W") = 2&7r f dx

e &
— ~ f(x)

2 'IT dx (A 10)

This term is a smooth function of a, p, and d, and it
remains finite in the d ~~ limit.

In Appendix A of II we have calculated the vibrational
frequencies of the Wigner lattice using the dynamical ma-
trix approach. The dynamical matrix (A2) (Ref. 8) is ob-
tained by taking the derivatives of ( W"(poi ) ) along the
electron lateral coordinates, which leaves the function

f(x ) unchanged. Therefore, the theory developed in Ap-
pendix A, paper II, can be applied in the case of a finite
dielectric layer on a metallic substrate, provided that one
takes the function f(x ) as defined by Eqs. (A2) —(A&) in-
stead of its d ~ oo limit (A7) (Ref. 7) or (A3b) (Ref. 8).

and substract it from the ( W") term, instead of (A8) the
lattice sum will contain the term

'C. C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979).
2F. M. Peeters and P. M. Platzman, Phys. Rev. Lett. 50, 2021

(1983).
F. M. Peeters, Phys. Rev. B 40, 159 (1984).

4M. Saitoh, Phys. Rev. B 40, 810 (1989).
~H. W. Jiang, M. A. Stan, and A. J. Dahm, Surf. Sci. 196, 1

(1988).
X. L. Hu and A. J. Dahm, Phys. Rev. B 42, 2010 (1990).

7Z. Lenac and M. Sunjic, Phys. Rev. B 43, 6049 (1991).
Z. Lenac and M. Sunjic, Phys. Rev. B 44, 11 465 (1991).
M. W. Cole, Phys. Rev. B 3, 4418 (1971).
L. Bonsai and A. A. Maradudin, Phys. Rev. B 15, 1959 (1977)~

G. Meissner, H. Namaizawa, and M. Voss, Phys. Rev. B 13,
1370 (1976).

M. Saitoh, J. Phys. Soc. Jpn. 42, 201 (1977).
' B. Trninic-Radja, M. Sunjic, and Z. Lenac, Phys. Rev. B 40,

9600 (1989).
C. C. Grimes, T. R. Brown, M. L. Burns, and C. L. Zipfel,
Phys. Rev. B 13, 140 (1976).
J. M. Kosterlitz and D. J. Thouless, J.Phys. C 6, 1181 (1973).
D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).
P. Young, Phys. Rev. B 19, 1855 (1979).
M. A. Stan and A. J. Dahm, Phys. Rev. B 40, 8995 (1989).
M. Sunjic and Z. Lenac, Europhys. Lett. 11,431 (1990).


