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We demonstrate the importance of the quark off-shellness on examples of the ra-
diative pseudoscalar meson decays, characterized by the simplest hadronic matrix
elements. We point out that roughly a quarter of the empirical KL → γγ am-
plitude originates in the quark off-shellness in kaon. For BS → γγ we also find
non-negligible contributions that increase the decay rate by a factor of 1.5 to 3.

1. Introduction

In attempts to account for weak hadronic decays, one faces the problem of
overbridging the quark world (where the W -induced flavour change sets in) and
the real world (in which the physical process occurs). The analyses starting from
the high-energy side evolved from the traditional Feynman diagram technique to
an implementation of the operator-product expansion (OPE) [1]. When studying
non-leptonic decays of order ∼ GF , and weak radiative decays of order eGF or
e2GF , one normally writes down an effective Lagrangian including operators that
contribute to a given process and operators that mix with these under QCD renor-
malization. Within this standard procedure, one usually omits operators containing

1Permanent adress: Dept. of Physics, University of Oslo, N-0316 Oslo, Norway.
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(iγ · D − mq), by appealing to the equations of motion (EOM) for quark fields
[2,3]:

(iγ ·D −mq) → 0 , (1)

where Dµ is the covariant derivative containing the gluon and the photon fields.
This procedure corresponds to going on-shell with external quarks in quark oper-
ators. Certainly, quarks are not exactly on-shell in hadrons, especially not in the
octet (would-be Goldstone) mesons π,K, η. We will see that the naive use of (1) is
not correct in general, and that the bound-state interactions within mesons might
be understood as a change of the equations of motion.

The purpose of this paper is to shed more light on the role of the off-shellness of
quarks in mesons. We start with two cases where the effective Lagrangian containing
the factor (iγ ·D −mq) has been studied [4]. First, we consider the circumstances
under which the renormalized s → d self-energy transition becomes potentially
relevant to the K → 2π decays. Then we turn to Lagrangians obtained from quark
diagrams for s → dγ and s → dγγ relevant to K0 → γγ, and to the similar
Lagrangians obtained from quark diagrams for b → sγ and b → sγγ relevant to the
Bs → γγ decay.

2. A quark analogue to the Lamb shift and the chiral

quark model

The proved example of an off-shell effect is the Lamb shift − the tiny difference
in the self-energy of the free electron and the self-energy of an electron bound in the
H-atom. It incorporates as the main contribution2 the Bethe low-frequency part
∆νlow = 1047 MHz (for virtual photons between the electron Compton wavelength
and the size of the atom). One might expect more significant analogous effects for
much more strongly bound quarks – especially in approaches where quark masses
are generated dynamically. Still, since one can hardly speak of the referent free-
quark self-energy, one expects that there might be a better chance of finding an
observable effect in the flavour-changing, non-diagonal s → d self-energy transition.
Because there are no direct s → d transitions in the original Lagrangian, the
renormalization is carried out so that s → d transitions are absent for on-shell s-
and d-quarks. The renormalized self-energy corresponds to an effective Lagrangian

LR
ds = −A d̄(iγ ·D −md)(iγ ·DR+MRR+MLL)(iγ ·D −ms)s , (2)

where ML,MR are constants depending on quark masses, and A(p2) is a slowly
varying (logarithmic) function. In the pure electroweak case, the CP-conserving
part of A is of order GFm

2
c/M

2
W , [6]. However, the CP-violating part of A has

no such suppression for a t-quark with a mass of the same order as the W -boson

2The experimental value is E2S1/2
− E2P1/2

= 1057.862(20) MHz, requiring a theoretical

precision at kHz level. For a recent account, see Ref. 5.
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(mt ≃ MW ). Moreover, adding perturbative QCD to lowest order, one obtains
in any case an unsuppressed contribution ∼ GFαs log (m2), where m = mc and
m ≃ mt ≃ MW in the CP-conserving and CP-violating cases, respectively [7-9].

If one applies the EOM as in (1), LR
ds → 0. Then, according to the standard

procedure, there will be no contribution from LR
ds to physical amplitudes, such

as K → 2π. However, if (1) is violated for off-shell bound quarks in π and K,
physical effects could be obtained, and one should explore possible consequences
for the ∆I = 1/2 rule and for ǫ′/ǫ in K → 2π decays. Some time ago Donoghue
[10] considered possible effects of s → d transitions and concluded that some non-
zero effect might persist. Thereby one has to distinguish the possible short-distance
(SD) and long-distance (LD) effects, which deserves some more explanation:

The K → ππ amplitude proceeds in the second order in the weak coupling

S
(2)
K→2π = 〈ππ|

∫

d4xDF (x,MW )T (J(x)J+(0))|K〉 , (3)

where the currents J are dressed (to all orders in the strong QCD coupling). Equa-
tion (2) appears in the expansion of Eq. (3), whereby the contraction of the quark
field q in the current-current product

s̄(x)γµLq(x) q̄(0)γµLd(0) (4)

results in the two-quark operator at hand. This operator, involved in Shabalin’s
consideration [7] and its critique [8,9], presents the piece in the OPE for the prod-
uct of the two currents that vanishes by the EOM and that does not mix under
renormalization with the four-quark operators. Technically [2], the renormalization
matrix Z acquires a triangular form, and the matrix elements at the partonic level
involve only operators that do not vanish by EOM [11]. Thus, the short-distance

aspects of the d̄s self-energy are unimportant for the K → 2π transition amplitude
[8]. Let us note that in the case of the Lamb shift it was not possible to develop an
OPE approach3.

An explicit calculation of the contribution to K → 2π from LR
ds gives a non-

zero but negligible contribution in the CP-conserving case [4,9]. This does not mean
that contributions that resemble self-energy are unimportant for the ∆I = 1/2 rule.
It is likely that the ∆I = 1/2 enhancement comes principally from terms in Eq.
(3) where the two u-quarks in the four-fermion operators are contracted and are
festooned by myriads of soft gluons. However, these long-distance contributions
(eye diagrams) are beyond a perturbative treatment.

One possibility of including non-perturbative confining and chiral-symmetry as-
pects of QCD is to use some version the chiral quark model, an effective low-energy
QCD model advocated by many authors [12-14]. To quote Weinberg [12], such a
framework will introduce “fictitious elementary particles into the theory, in rough
correspondence with the bound states” – pseudoscalar mesons among the degrees

3I.P. thanks M. Shifman for pointing out this fact.
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of freedom of the constituent quark model. The chiral-symmetry of QCD and its
Nambu-Goldstone realization is at work: instead of the “nearby” chiral symmetry,
one observes (pseudo) Goldstone mesons. The chiral quark model starts with the
ordinary QCD Lagrangian and adds a term Lχ that takes care of chiral-symmetry
breaking,

Lχ = −M(q̄R UqL + q̄L U †qR) , (5)

where q̄ = (ū, d̄, s̄) and the 3×3 matrix U ≡ exp

(

2iΠ/f

)

contains the pseudoscalar

octet mesons Π =
∑

a π
aλa/2 (a = 1, .., 8), and f can be identified with the pion

decay constant, f = fπ = (92.4± 0.2) MeV (= fK , in the chiral limit). This term,
proportional to the constituent quark mass M ≃ 300 MeV, includes the Goldstone
meson octet in a chiral-invariant way, and provides a meson-quark coupling that
makes it possible to calculate matrix elements of quark operators as loop diagrams.
In this effective field theory it is of course no problem to handle off-shell quarks.

In our previous work [15], we found a substantial CP-violating amplitude for

K0 → γγ from irreducible diagrams for s → dγγ. Owing to the Ward identities
between s → dγγ and s → dγ transitions, there is a cancellation between 1PI
diagrams for s → dγγ and reducible diagrams for the two-photon emission (where
the 1PI transition s → dγ is a building block). However, one cannot expect this
free-quark cancellation to persist in the real world: the hadronic matrix elements of
the reducible graphs are of highly non-local character, whereas the matrix elements
of the irreducible graphs are proportional to a quark current, having a well-known
matrix element [15]. Therefore, let us take a closer look at the radiative flavour-
changing transitions within the above-mentioned chiral quark model.

3. Off-shellness in the KL → γγ amplitude and the

anomaly link

We were tempted to relate the off-shellness in the process KL → γγ to the
well-known electromagnetic π0 → γγ decay governed by the axial anomaly.

Although the π0 axial anomaly is not conventionally termed the off-shell effect,
it can in fact be viewed in this way4

– either on account of being dominated by far off-shell triangle loop momenta
(q2 ≫ m2

q)

– or as represented by the term A =
α

4π
εµναβF

µνFαβ ,

4I.P. thanks D. Klabučar for turning his attention to a lecture by P. van Nieuwenhuizen,
stressing this point.
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which cannot be reproduced by classical equations of motion in the divergence of
the axial current. This term is missing on the r.h.s. of

∂µ(q̄γµγ5q) = 2mq q̄γ5q .

This results from an inadequate application of EOM of the off-shell quark-field cir-
culating in the triangle loop. It is reassuring that the quark triangle evaluation with
the quark-meson coupling defined in Eq. (5) reproduces the required anomalous π0

decay!

Let us now recall the appearance of the off-shellness [4,16] in KL → γγ. The
essential point is in overbridging the non-perturbative QCD (<∼ 1 GeV) scale and
the electroweak (∼ MW ) scale at which the flavour change (FC) s → d takes place
in the presence of external photons. The evaluation of the loop diagrams [15,17,18],
without going to the mass shell, results in an effective Lagrangian [4]

L(s → d)γ = B ǫµνλρFµν (d̄L i
↔

Dλ γρsL) , (6)

where B ∼ eGFλKM depends on the loop integration, and quarks are interacting
fields with respect to QCD. In order to follow the fate of the off-shell contribution,
it is convenient to rewrite (6) in the form

L(s → d)γ = LF + Lσ , (7)

where

LF = BF d̄[(iγ ·D −md)σµνF
µνL+ σµνF

µνR(iγ ·D −ms)]s , (8)

and Lσ is the well-known magnetic-moment term,

Lσ = Bσ d̄ (msσµνF
µνR+mdσµνF

µνL) s . (9)

Here we anticipate that the coefficients BF and Bσ, being equal at the W -scale,
evolve differently down to the scale ≃ 1 GeV. It has been shown that LF does not
contribute to s → dγγ when the external quarks are on-shell: The irreducible s →
dγγ part, with iDµ → es(d)Aµ, is exactly cancelled by reducible diagrams [17,18],
i.e. with one photon on an external line of the s → dγ vertex, with Dµ → ∂µ. Thus,
for on-shell quarks, the remaining contribution from L(s → d)γ to s → dγγ is due
to the reducible diagrams, where the effective flavour-changing vertex corresponds
to Lσ alone. Moreover, this remaining contribution vanishes in the chiral limit
ms,d → 0, as seen from (9). In the pure electroweak case, the CP-conserving
part of the quantity B is very small, ∼ eGFm

2
c/M

2
W , owing to an effective GIM

cancellation between u- and c-quarks, while the CP-violating part is substantial
(∼ eGF ), owing to the heavy t-quark. In the CP-conserving case, a significant
amplitude ∼ eGFαs log(m

2
c) is induced by perturbative QCD [19].

There has been considerable efforts [4,16,20] devoted to the study of the direct

KL → γγ amplitude induced by the operators (6)–(9). By explicit calculation
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within the chiral quark model, we found a non-zero contribution to K0 → γγ from
LF . Although formally suppressed by M2/m2

0 , m0 = 2πfπ
√

6/Nc being the chiral
symmetry-breaking scale, its coefficient is sizeable, yielding a significant amplitude
both in the CP-conserving [16] and CP-violating case [4,15]. Thus we disagree with
some authors [18,21] who claim that this effect is unimportant.

We have shown that the quark off-shellness (lost in the beloved parton, free-
quark picture) represents a piece of the electroweak KL → γγ amplitude, which
has rather similar properties to the well-established π0 → γγ decay amplitude.
It is suggestive that both of these processes are governed by a common effective
interaction of the form

LX = αCXǫµνρσF
µνF ρσΦX , (10)

where X = π0 or X = K2. The π0 → γγ rate is reproduced by

Cπ0 =
Nc

24πfπ
= 4.3× 10−4MeV−1 .

Similarly, the rate for K2 → γγ determines the phenomenological coupling

|CK2
| = 5.9× 10−11MeV−1 .

As already mentioned, the adopted chiral quark model accounts for the full Cπ0

amplitude, whereas the calculation in Ref. 16 shows that it accounts, combined with
LF in (8), for roughly a quarter of the |CK2

|. All this refers to the “unrotated” (U)
version of low-energy QCD [16].

The term Lχ in (5) can be transformed into a pure mass term −MQ̄Q for
rotated “constituent quark” fields QL,R:

qL → QL = ξqL ; qR → QR = ξ†qR ; ξ · ξ = U . (11)

Then the meson-quark couplings in this “rotated” (R) picture are transformed
into the kinetic (Dirac) part of the “constituent quark” Lagrangian. These in-
teractions can be described in terms of vector and axial vector fields coupled to
constituent quark fields Q. In the rotated basis, where pions have derivative Gold-
stone couplings, the compensating Wess-Zumino-Witten (WZW) term ensures the
anomaly matching. The unrotated-quark-triangle evaluation finds a counterpart
in the anomalous WZW part of the chiral Lagrangian. The explicit diagrammatic
evaluation, giving a zero result for π0 → 2γ in the rotated picture, complies with
the more general functional derivation of the WZW term [22], which is contained
in a Jacobian of the quark field rotation in Eq. (11).

An important result in [16] is that the amplitude for K0 → γγ is also zero
in the rotated basis. Thus, the results (non-zero in the U -basis, zero in the R-

basis) in evaluating the K0 → γγ amplitude from quark-level diagrams within
the chiral quark model, motivated us [16] to attribute a similar anomalous nature
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to this process. By employing the anomaly-matching principle, we argued for the
existence of the related bosonic Lagrangian term corresponding to the WZW term.
Our new anomalous term L∆S=1

WZW accounting for the transition K0 → γγ has the
form [16]

L∆S=1
WZW (4) ∼ eBF

1

fπ

M2

m2
0

ǫµνρσA
νF ρσ∂µK0 , (12)

which can easily be brought to the form (10). Thus, besides the representative of
the direct anomalous neutral kaon decay, which can be read off in Refs. 23, 24,

KL → π+π−γ ,

we offer a new candidate. Our assertion is that our new WZW-extended ∆S = 1
term adds a new process to the existing list of direct anomalous processes [23],
namely the decay

KL → γγ .

This result was recently confirmed by a bound-state calculation [20]. To eval-
uate the hadronic matrix elements in the bound-state approach, the variant of an
effective meson bilocal theory [25] was used. With the model harmonic interac-
tion, this calculation avoids both the divergences in quark-loop integrals and the
divergences in the bound-state equations themselves, so that no regularizations or
cut-offs are necessary. The price one pays are somewhat poor absolute values for the
amplitudes. However, good chiral properties allow us again to decode the anomaly
part in KL → γγ amplitude, using π0 → γγ as a “monitoring process”.

It was checked that the pion-to-two-photons coupling (Cπ0 in (10)), as extracted
from the π0 → γγ evaluation in the bilocal bound-state approach [20], exhibits
the independence from quark masses, which is characteristic of the anomaly con-
tribution. For the corresponding direct KL → γγ amplitudes, the off-shell (LF )
contributions turn out to be dominant (the model on-shell, Lσ amplitudes being
at the 10-20% level). The bound-state calculation in essence confirms the previous
chiral-quark results: Our off-shell contribution is an entirely new O(p4) direct-decay
piece, whereas the reducible pole contributions [26] are numerically uncertain, and
the non-diagonal magnetic moment term belongs to the O(p6) terms.

4. The quark-loop Bs → γγ amplitude

As before [4,16], the flavour-changing radiative vertices have to be supplemented
by the quark-meson vertex in order to perform the full quark-loop evaluation. In
contradistinction to the analogous KL → γγ decay [4,16], the heavy B-meson
cannot be treated as a Goldstone boson of the chiral quark model adopted earlier.
However, the pseudoscalar character of B-mesons allows us to parametrize this
vertex in a simple way, replacing the Lχ term in (5) by

iGB s̄γ5bBs . (13)
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This interaction may in general be non-local, i.e. GB might be momentum-
dependent [27]. Thereby, as usually done [4], we trade the meson-quark coupling
GB in favour of the meson-decay constant fB . In calculating the contributions from
LF and Lσ in (8) and (9), respectively (with the obvious replacements s → b and
d → s), we obtained [28] an amplitude of the following form

M(Bs → γγ) ≃ eD fB [A(+) FµνF
µν + iA(−) FµνF̃

µν ] , (14)

A(±) = τ
(±)
F BF +Bστ

(±)
σ , (15)

where the quantities τ
(±)
F,σ are dimensionless and depend on the bound-state dynam-

ics. Numerically, they turn out to be of order one. The coefficients BF of LF and
Bσ of Lσ, now contain the KM factors relevant to the b → s transition and are
renormalized at the scale µ = mb.

The QCD correction for Bσ is known [19,29]. Performing the same calculation,
but with zero anomalous dimension for LF , we find at the µ = mb scale that

BF

Bσ

≃
4

3
. (16)

This result, obtained within a simplified calculation (with a truncated basis) is in
agreement with the QCD corrections found in Ref. 15.

In the formal limit when the current quark masses mb,s → 0, the Fµν F̃
µν

term of (14) should reduce to the anomalous K0 → 2γ amplitude described in the
preceding section. However, in the real world Mb ≫ Ms

>∼ M ≃ 300 MeV, and

the result for Br(Bs → 2γ) will be rather different from K0 → 2γ. In order to

estimate the (model-dependent) quantities τ
(±)
F,σ , for illustrative purposes, we have

considered two examples: 1) The limit of a constant GB (local interaction), and
2) a form-factor damping of the light-quark momenta as in Ref. 27. In the case 1),
we have considered the extreme limit when Mb ≫ Ms and we have kept only the
leading terms that can be incorporated in fB . In this simplified limit we obtain

τ
(±)
σ = τ

(+)
F = − τ

(−)
F = 1 , giving a branching ratio

Br(Bs → 2γ) ≃ 2× 10−8.

It is somewhat smaller than the free-quark estimate [30], which is proportional to

the inverse of the light s-quark mass. Going beyond this simple limit, τ
(±)
σ are more

important than τ
(±)
F . For the case 2), the dominant terms τ

(±)
σ will be inversely

proportional to the momentum-damping parameter Λ, which is somewhat larger
than the constituent s-quark mass Ms. Then, qualitatively, the result is not far

from that given in [30]. We find that τ
(±)
σ ≃ 2 to 3, while the relative importance of

τ
(±)
F is slightly reduced and formally suppressed by 1/Mb with respect to τ

(±)
σ . In

the case 2), Br(Bs → 2γ) is increased with respect to 1). In general, we find that
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the genuine off-shell term LF increases the rate by a factor of 1.5 to 3. We conclude
that values of the order 10−8 to 10−7 are realistic. Our prediction is still two orders
of magnitude above the LD estimates based on the vector-meson dominance [32].

In calculating the contribution from the off-shell operator LF , we have arrived
at an important observation: The off-shellness of the light quark is characterized by
the heavy-quark mass, whereas the off-shellness of the heavy quark is characterized
by the light-quark mass. For the s- and b-quarks in play,

(γ · pb −Mb) ∼ Ms and (γ · ps −Ms) ∼ Mb , (17)

where pq and Mq are the quark-momenta and quark-masses for q = b, s. However, if
the light-quark momenta are damped as in Ref. 27, we have two competing effects,
and the total effects will be less pronounced.

In a recent paper [31], it has been reported that there are off-shell bound state
effects in the process B → K∗γ. However, only the off-shellness of the b-quark
was taken into account, whereas we find that for Bs → 2γ the off-shellness of the
s-quark cannot be neglected. In our recent study of Bs → 2γ [28], we have shown
that the contribution from the two-photon piece of LF is exactly cancelled by parts
of its contribution from the one-photon piece. The remaining contribution from the
off-shell operator LF corresponds to loop diagrams containing the effective Bs b̄bγ
and Bs s̄sγ vertices. This result is equivalent to that presented in Ref. 4: LF may
be transformed into the wave function, but then it reappears in the bound-state
dynamics.

5. Conclusions

We have demonstrated the quark off-shell effects in flavour-changing two-photon
decays, such as s → dγγ (b → sγγ) and its hadronic K̄0 → γγ (Bs → γγ)
counterparts. Thus, the same basic off-shell effect seems to take place in processes
belonging to such different environments as the chiral perturbation theory and
heavy-light bound-state calculation.

We have demonstrated that the naive use of the (perturbative) EOM (1) is not
applicable in general. This should be no surprise because the low energy interac-
tions, represented by (5) and (13), and the photon field appearing in the covariant
derivative, might be interpreted as external fields. Thus the (perturbative) equa-
tions of motion (1) are changed.

The genuine off-shell effects are formally suppressed in a certain limit by 1/Mb

for B → γγ and by (M/m0)2 for K → γγ. Numerically, the suppression is not
equally pronounced in these two cases. For K → γγ, the effect of LF is even
stronger than that of Lσ. Indeed, the latter effect is chirally suppressed and of
order O(p6).

The quark off-shellness represents a link that brings close the electroweak KL →
γγ decays and the electromagnetic π0 → γγ decay. However, the direct amplitude
originating in the quark off-shellness in the kaon is only a fraction of the total KL →
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γγ amplitude. The various LD aspects, including the reducible pole contributions,
seem to play a dominant role in this case.

For Bs → γγ, we have also found a non-zero genuine off-shell contribution.
Although the hadronic matrix element is model dependent, there are substantial
off-shell contributions that increase the rate by a factor of ≃ 1.5 to 3. It is hoped
that some of the uncertainties in calculating the effects of LF could be resolved
within some variant of a QCD sum rule [33] calculation.
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J.O. Eeg, B. Nižić and I. Picek, in Proceedings of the 25th International Conference on
High Energy Physics, page 1259, Ed. K.K. Phua and Y. Yamaguchi, World Scientific,
Singapore, 1991;
I. Picek, Nucl. Phys. B (Proc. Suppl.) 24A (1991) 101;

16) J.O. Eeg and I. Picek, Phys.Lett.B323(1994) 193;

144 FIZIKA B 3 (1994) 2, 135–146



eeg and picek: quark off-shellness in . . .

17) G.J. Lin, J. Liu and Y.-P. Yao, Phys. Rev. Lett. 61 (1990) 1498; H. Simma and D.
Wyler, Nucl. Phys. B344 (1990) 283;

18) S. Herrlich and J. Kalinowski, Nucl. Phys. B381 (1992) 501;

19) M.A. Shifman, A.I. Vainshtein, and V.I. Zakharov, Phys. Rev. D18 (1978) 2583; Ya.I.
Kogan and M.A. Shifman, Yad. Fiz. 38 (1983) 1454 [Sov. J. Nucl. Phys. 38 (1983)
628;
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DOPRINOSI KVARKOVA IZVAN MASENE LJUSKE RASPADIMA K, B → γγ
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PACS 12.15.Lk

Pokazana je važnost efekta kvarkova izvan masene ljuske na primjerima radijaci-
jskih raspada pseudoskalarnih mezona, karakteriziranih najjednostavnijim hadron-
skim matričnim elementima. Istaknuto je da otprilike četvrtina opažene amplitude
KL → γγ raspada ima izvorǐste u odstupanju od masene ljuske kvarkova u kaonu.
Analogan efekt povećava vjerojatnost BS → γγ raspada za faktor 1.5 do 3.
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