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Dynamical screening in the scanning tunneling microscope and metal-insulator-metal junctions

D. Sestovic* L. Marudé, and M. Sinjic
Department of Physics, University of Zagreb, P.O.B. 162, 1000 Zagreb, Croatia
(Received 26 April 1996; revised manuscript received 26 August)1996

We investigate electron tunneling in a system consisting of two curved metal surfaces separated by insulator
or vacuum. In particular, we calculate the modifications of the tunneling barrier due to dynamical screening,
i.e., interaction with charge fluctuations. We apply our general results to the planar metal-insulator-metal
(MIM) junction, and to the scanning tunneling microsc¢p&M), describing the tip and the sample surface in
STM by two rotational hyperboloids. We analyze the influence of the shape, dielectric properties, and work
functions of both metals on the tunneling characteristics in the MIM and STM systems. For metals with
different plasma frequencies, charge-fluctuation modes are effectively decoupled, and the electron interaction
with these modes is significantly different than in the case of like metals, causing asymmetry in the barrier and
also in the tunneling currents and conductivities. We also show that, for geometrical reasons, the tunneling
barrier in the STM is lowered near the tip apex, which leads to focusing of the tunneling current and increased
lateral resolution of STM[S0163-18286)06148-4

. INTRODUCTION surface via diagrammatic corrections of the LDA restft{
Although these results are based on a very detailed descrip-
Common applications of electron tunneling in the solidtion of the response that contains a complete spectrum of
state physics are metal-insulator-metal junctitviiM),!  excitations in a solid, they are not quite appropriate for
scanning tunneling microscop{8TM),? and other similar  studying STM, because they describe interaction of an elec-
technigues such as, e.g., ballistic electron emission microgron with a flat surface and do not take into account coupling
copy (BEEM).2 By MIM we mean a system consisting of of the charge fluctuations on curved and different surfaces
two metal electrodes with planar surfaces, separated by a thivhich is strong because the surfaces are very tlose
insulator (or vacuum layer, or any system with equivalent  In the MIM system, it is easier to study charge-fluctuation
electrical properties, such as a semiconductor heterojunctiomodes, due to translational invariance in the direction paral-
(e.g., Esaki's diod®. STM can be considered theoretically lel to the surface. Several studies of the respbhéétook
as a complicated example of MIM, where the surfaces arénto account only surface plasmoiiSP), neglecting bulk
not at all planar and they are of different materials. Thesenodes and single particle excitations. The situation is much
systems are becoming increasingly interesting due, e.g., tmore complex in the case of STM, where a three-
the development of crystal growth techniques, and for all ofdimensional(3D) problem could not be reduced to a one-
them we need a successful description of an effective poterdimensional(problem). It is practically impossible to per-
tial barrier affecting the tunneling electron. This is especiallyform a nonlocal quantum mechanical calculation, but even a
important in STM where, so far, there is no theory that suf-local limit**?°was never obtained.
ficiently well explains the high resolution obtained in the In this paper we want therefore to take into account cou-
STM images. pling of charge-fluctuation modes on two curved surfaces,
There are many studies of the electron tunneling betweeand calculate the resulting dynamical potential affecting the
the curved metallic surfaces as in STRefs. 4—-1]orinthe tunneling electron. In order to emphasize the influence of the
similar problem of TPFGtextured polysilicon floating gate curved geometry and coupling of two surfaces, we start with
EEPROM (electrically erasable programmable read-onlythe potential barrier of simple rectangular shdfemmer-
memory.*? Their authors developed interesting methods forfeld mode) and metal surfaces with different work functions,
solving the problem of electron tunneling in such cases, buand study the modification of this barrier due to charge-
they used barriers that are either simple rectangular, or pdhuctuation modes.
rametrized classical barriet3!* without any microscopic We investigate a general system consisting of two differ-
detail, or at most barriers calculated within the framework ofent, possibly curved metal surfaces. Therefore we need a 3D
the density functional theory in the local density approxima-calculation, and we adopt a local, but also a semiclassical
tion (LDA).1>1¢ limit, treating the electron as a classical point cha&t@We
Calculation of the tunneling barrier for a realistic physical describe charge fluctuations in both metals using a long-
problem is still a formidable task, arab initio calculations  wavelength limit, coupling the tunneling electron to surface
of the image potential, that would take into account both theplasmons only?’ We calculate dispersion relations of the
band structure of the metal and the dynamical effects, do natoupled SP modes, their interaction with the classical elec-
exist even for the simplest geometry. Most accurate imagéron, the total potential barrier, the tunneling currents, and
potentials are probably obtained for the semi-infinite jelliumconductivities.
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Because the theory is general and independent of the par- pﬁ 1
ticular shape of surfacéassuming only that surfaces can be H=5 U+ > hwq( bébq+§
described in the coordinate system in which the Laplace a
equation is separablewe shall first calculate the modes,
their dispersion relations, and interaction in general coordi- +2 [Tg(nbf+H.c]. @
nates, and then apply these results to some particular cases. a

The first obvious application is the MIM junction in a
planar geometry, where the problem can be solved in CarteFhe first two terms are electron kinetic and potential ener-
sian coordinates. If our electrodes are made of different mefgies, respectively, the third term describes SP oscillations,
als, i.e., have appreciably different bulk plasma frequencieandq is a set of quantum numbers for a specific symmetry.
(wp), we find that SP’s on two surfaces are effectively de-The fourth term represents the interaction, &rslare matrix
coupled, which leads to an overall reduction of the tunnelingglements of the electron-SP interaCt?éﬁfs’n’SS
barrier. This difference in the,’s causes asymmetries inthe ~ The one-electron potential is given by
tunneling barriers. By calculating the tunneling current we
demonstrate that the finite contact potential is not the only
source of the asymmetries in the/ curves and offset in the
conductivity minimum.

In the STM case the tip is represented by the rotational/_. . is a standard rectangular potential barffarite barrier
hyperboloidi® and the sample surface could be either flat ormodel (FBM)], with contributions from interaction with the
slightly curved upwards or downwardalso in the shape of jons and electrons in a metéile., band structure effedts
a rotational hyperboloid in order to simulate protrusions or v r) is part of the electrostatic potential due to different
deflections on the sample surface. This model only roughlyyork functions of the metals and the external voltage.
resembles the real shape of the system, and does not take Hamiltonian (1) can be easily diagonalizéd,leading to
into account any atomic protrusion on the tip, but its impor-the effective barrier for an electron at point
tant advantage is that dynamical screening for both surfaces
can be described in a closed form. Chemical composition of
the tip due to absorbed nonmetallic atoms at the tip apex also |1“q(r)|2
has not been taken into account, but a recent $fustyows V(n=ur)-2> o 3
that there is no obvious correlation between the effective d a

barrier height and the kind of chemical species at the tip

apex. These authors conclude that the influence of the tifyere the second term represents the energy shift or the im-
shape, i.e., the tip radius is more important, in agreemerf9€ Potential. This term will be calculated only in the tun-
with our results. As shown in a preliminary paper, Ref. 30,N€ling or vacuuniinsulato) region, keeping in mind that our

the potential barrier is found to be lowered near the symme&PProximation is not valid in the metal region. For SP’s in

try axis. We show here, using quasiclassical approximationi’€ long-wavelength approximation, we have to introduce

that such a change of a potential leads to the focusing of thBUantum corrections by summing up to a cutoff wave vector
tunneling electrons and increased lateral sensitivity of STMYe Which is related to the Landau damping of collective plas-
Different curvatures of the tip and sample are additionafon modes into electron-hole pairs.

sources of asymmetries in the tunneling barriers causing
asymmetricall-V curves® as has been already observed
experimentally’* Asymmetry in tunneling is also shown as o _
offset in the conductivity minimum similar to those caused e calculate SP modes and their dispersion for a system
by the finite contact potentid? consisting of two curved metal surfacédenoted by sub-

scripts 1 and 2) separated by vacugdenoted by 0). We
restrict ourselves to surfaces coinciding with the coordinate
surfaces of orthogonal coordinate systems in which the
Laplace equation is separaB8feTherefore we introduce the
generalized coordinates ,u,,u; where the coordinate, is
Il EORMULATION OFE THE PROBLEM perpendicular to both surfaces, gnd the otrl1er two arezparallel
to them. Metal surfaces are defined by=u; andu,=uj.
We describe interaction of the tunneling electron with the  Surface polarization modes are solutions of the Laplace
SP in the local semiclassical approximation, since full non-equatior®
local quantum mechanical treatment is, so far, possible only
for a single planar surface. As we are mainly interested in the
situation when the electron is in the barrier region, we ne- AD=0. (4)
glect bulk plasmons and electron-hole pairs, reducing charge
fluctuations in a metal to surface plasmons. These approxi- If we separatg4), and denote byA,(u,,u3) the solution
mations are certainly not valid for the electron in the metalin the direction parallel to the surfaces, andBjy,(u;) and
and very close to the surface, but they are necessary due By,(u;) solutions in the direction perpendicular to the sur-
the complicated geometry of our system. Therefore oufaces and regular in the regions 1 and 2, respectively, we can
Hamiltonian i’ write a general solution as

U(r)=Vegm(r)+Ve(r). 2

Ill. SURFACE PLASMON MODES
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C1B1q(u1)Ag(uz,U3) in metal 1
o (r)=4 [C3Biq(u1)+CyByq(us)JAq(uz,u3)  invacuum (5)
C,Bog(Ug)Ag(Uz,U3) in metal 2.

We apply standard boundary conditions for the fieldsWe can expand fi—r’| in terms of solutions of the Laplace

E=—V® andD= ¢E on both surfaces: equation>
- (E-in)t:(E-out)t:- (Din)n=(Doun- - (6) 1 S / ?11, E p(uz'U3)A;(ué,ué)
Metal dielectric functions in the long-wavelength limit are Ir=r’| 922033 My
€1=1— W12 (7) X Aqg(Uz u@i[ B1q(U1)Baq(th) _'f U=t
1.2 w’ "’ a W Byg(ug)Byg(uy) if u<ug,
and we assume that in the barrier region1. (13

~Using (5) and (6) we get the relation between the dielec- whereg;; are the metric coefficients of the generalized coor-
tric function and the wave vector, which usiig) leads to  ginate system,

the dispersion relationw(q) of the SP. If we choose

C,=1, the other coefficients are given by ax\2 [ay\? [az\?
%=\au) *\aw) o) - 19
BlZ
C2:CBB_22+C4’ @3 while p(Uz,uz) andM, are determined from the condition
Co=1- (e1-1)ByByy 8b) f f d(uz)d(uz)Ag (uz,uz)Ag:(Uz,Uz)p(Uz,Us)
W 1
= Mqé\q‘q/. (15)

(61_1)511511 . . . .
C4=T, (8¢ Using relationg10)—(15) we can get the coupling matrix
elementdqper surface are8) as will be shown later for some
whereB;; denotes the value of the functi@, at the surface specific cases.
u}, a prime denotes derivative with respectutg andW is
the Wronskian: V. APPLICATION TO THE PLANAR MIM JUNCTIONS

W=B,B},—B,B/,. (9) We can easily apply these general results to the case of
21 1 electron tunneling between planar metal surfaces as in MIM
The analytical expression for the dispersion relation igunctions. We use Cartesian coordinate system(p,z),
rather lengthy, so we shall not write it in the general form,With the z axis perpendicular to the metal surfaces deter-

but rather discuss it for specific geometries. mined byz, andz,, andq is a wave vectok parallel to the
surface.

IV. COUPLING MATRIX ELEMENTS Solutions of the Laplace equation are
. . . — aik- — otk
The matrix element of the interaction of an electrorr at A(p)=€"P, By=e""% (16)
with chargee with the surface polarization modes is given This |eads to the dispersion relation
by?®

7 2 wpl\/ 24 \[1 414 r2 2k(z,-2)
rn=S he wpiJ Pq(ri)d 10 0= 1+rexN1+r%=ro(2—4e 2" %), (17)
a(N)= i 87wqS)g|r—ril S
] ) where
where indexi denotes the metal electrodé or 2), andP,
are surface polarization eigenmodes, given by ®p2
r=—-. (18
(,L)pl
, V(1)
Pq(r) = wp N (1D The coupling matrix elementén the barrier regionare
q
N, is the normalization constant determined by whe” 1
T(N=-V5——
Zwk \/N—k

fVPqqudV= sa-qa'). (12 X (Crpy @™ot Couppe™ 2219, - (19)



1744 D. SESTOVIC, L. MARUSIC, AND M. SUNJIC 55

metal 1 insulator metal 2 0

-2t

4 | \

V(eV)

r=1

r=1.5

-10

-0.3
-5.0 0.0 5.0 10.0

. z(A)
z(A)

FIG. 3. Tunneling barriers in planar MIM case for the cases
=1,r=1.5,r=2, where distance between the metal surfaces is

:e_sin; the case=wp,/wp, =1 and solid curves represent the case y_ 1 4 The dashed line represents the classical image potential.

FIG. 1. SP modes in the planar MIM case. Dashed curves rep;

IP modes dominates, so the lowering of the barrier is bigger
near the surface at which the coupling to the IP mode is
located, causing asymmetries in effective tunneling barriers.
Asymmetries in current-voltage curves seen in planar metal-
o ) _insulator-metal junctiord are caused partly by this effect
SP modes are shown in Fig. 1. One mode oscillates iRng partly by the contact potential due to different work

phase(IP modg on both surfaces, and the second oscillategynctions. In order to demonstrate it we calculated the tun-
out of phas¢OP modg. Forr =1 IP modes are symmetrical peling current density by Straton’s formd&where the tun-

and OP modes are antisymmetrical, but fe¥ 1 this sym-  neling probability was given in the WKB approximation:
metry is broken. In that case IP/OP modes are located mainly

at the surface of metal with larger/smallex,, and their

frequencies approach asymptotically SP frequencies of these (V) 32

metals @s,i:wp,i/\/z): causing a gap in the dispersion re- €1

lation, as shown in Fig. 2, where the upper curves represent

IP modes and the lower represent OP modes. where

The total tunneling barrier can be obtained frég). We

can see in Fig. 3 how effective decoupling of SP fetl 8m (zor —

leads to the reduction and asymmetries in effective tunneling by(V)= FJ; V(z)~Edz (22

barriers. Total reduction of the barrier is caused by the fact "

that the electron weakly interacts with the antisymmetrical

mode. Therefore for=1 the main contribution comes from _[2m [z 1

interaction with the IP mode, while the interaction with the cu(V)= FJ — dz. 23
. . 21t m

OP mode is almost negligible. On the other hand, rférl

interaction with both modes is stronger, so the total effect is

larger than in the =1 case. Obviously the interaction with

where

N = 472K(Clwy %4+ Clwpe” %%). (20)

A M e eVl (2D

Results are shown in Fig. 4, where we can see that for
increasingr, the I-V curve is more asymmetrical and the

o, (149" 1.0
('os
Dy e 1 05 |
s | TTme——l )
Mgy //,,—"—_———_:::::: g 0.0 -
L £
Y r=1.5 =
/7 r=1 -05 ¢ ///
/
. . /
0.0 1.0 2.0 3.0 10 ‘ , ‘
kd -50 -25 00 25 5.0

\
FIG. 2. SP dispersion curves in the planar MIM case. As in Fig.

1 dashed curves represent the aasev, / wp; =1 and solid curves FIG. 4. 1-V curves for the casas=1,r=1.2,r=1.4, where the
represent the cage=1.5. distance between the metal surfacedis5 A.
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and the general solutions are

(I)K,m( 7]15! @)OC PT1/2+iK( * 77) PT1/2+iK( g)eimtp’ (26)

where the plus sign refers to the solution in the tip and the
0.0 D minus sign to the solution in the sample, @, ; () is
-4.5 0.0 4.5 the conical function of the first kind.
\ Electrostatic potential due to an applied external voltage
V¢(r) can also be calculated by solving the Laplace equation
FIG. 5. Tunneling conductivity for the cases=1, r=1.2,  jth homogeneous boundary conditions, which leads to
r=1.4, and for the distancg=5 A.
| : [(1+72)(1—7)]

[(1—7)(1+7)]

+ =0, (25)

05

G(arb. units)

currents are larger. Asymmetries in tunneling are also shown

in Fig. 5 where we present the calculated conductivity Vo(n)=Vy — . (27)
G=0j/V. . | il [T 72) (1 771)]]
It is important to emphasize that generally there is no [(1=72)(1+71)]

obvious correlation between the work function and SP fre- Int . trix el ¢ Id b luated using th
guency, i.e., the sign of the contact potential is not directly nteraction matrix efements could be evaluated using the

related to the ratio of SP frequencies. Therefore asymmetrie@ethocI shown in Sec. IV and in the vacuum they are

due to these origins could sometimes add, but sometimes el
could also cancel. Cyom(r)=—1 /—PTlmiK(f)e'm‘p

SwK,mNK,m
VI. APPLICATION TO THE STM X[ @3 am (71,72 P" 1041, (— 1)
In the STM the system consists of two curved surfaces of - = wgzﬁm,x( 71, 172) P 1 osi(m)], (28)

different metals. We describe them by two rotational hyper-
boloids — one very narrowtip), and the other much wider Where

samplg. The sample surface could be curved upwards or
( ple P P 27727m,x( N1,72)

downwards (simulating deflection or protrusion, respec- N, = i — . (29
tively), or just flat. For simplicity the center of this deflection “Mksh(mi)I'(112=m+ik)I'(1/2—=m—ik)
(protrusion will be placed directly below the center of the
tip, so that their surfaces coincide with coordinate surfaces of ~ Ym.«(71,72)=—aCi(1— 7))
the prolate spheroidal systeéfhCoordinates of this system m
areé, n, and ¢, whereo is polar coordinateé defines sur- X[P™ s (1) ] IP " 12+i )
faces in the shape of confocal ellipsoids, apdefines sur- e an —
faces in the shape of rotational hyperboloidg=(7,; and
7= 17,). The associated quantum numbers are the continuous +aC2 (1= 73)[ Py or 1 (— 12) 1*
“wave vector” « and discrete angular quantum numier m

Since tunneling probability decays exponentially with dis- % IPZ 1= 1) | (30)
tance, only the region near the tip apex is interesting, so an KNS
important parameters of our problem are the curvatures of
the tip (1R;) and the sample (R;) at thez axis, and the C: AP osi(m)
distance ¢) between the tip and the sample. They are related @m,«( 71, 72) = (7~ P=as i) — :

; . W(7,) an -
to the spheroidal coordinates by n=m
(31
1- 7]%,2
Riz=a M2 (249 B, (171,72) = W:}z) P asin(—72)
P™ ori (—
and Xa%;;(n) , (32)
d=a(71-72), (24b) T

andW(#;) are the Wronskiang9).
wherea is the focal length of ellipsoids and hyperboloids. Dispersion relations of SP are shown in Ref. 30, where we
The Laplace equation in the spheroidal coordinate systernan see the IP and OP modes, as in the planar case. Different
is curvatures and different,’s break their symmetry as shown
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sample vacuum ti 1.0
) p n, n, p
i 7
r=1
—— =2 0.8
----- r=0.5

0.6

in/i)

0.4

0.2

0.0 : : ‘ :
00 20 40 60 80 100

-1.0 -0.5 0.0 0.5 1.0 FIG. 8. Lateral distribution of the current density for different
n curvatures at the tip apex. Distance between the tip and the sample

) ] is d=5 a.u. and plasmon frequencies are the same as in Fig. 7.
FIG. 6. SP modes in the STM case along #heoordinate, for

different « and w, . The tip surface is determined by, and the In order to investigate focussing effect, we calculate the
sample byz, . lateral distribution of the tunneling current on the sample
in Fig. 6. In the case=1 coupling to IP modes dominates Surface. We use the quasiclassical approximation of the

near the electrode with smaller curvatgsample and cou- Schrainger equation, applied to the problem of tunneling
pling to OP modes at the other sicip). through the potential barrier, the equipotential surfaces of

Using relations(3) we calculate the total 3D tunneling Which coincide with 7 coordinate surfaces of the prolate
barriers in the vacuum region for several specific geometriespheroidal coordinate system. Tunneling distribution on sur-
as shown in Fig. 7. This demonstrates that the effective turface », is given b)}z
neling barrier is significantly lowered in the region close to

the tip apex, especially for smaller distances, which should . _ H(&7m1,0)
. . H _ l(grn!(P)_KO—
be an additional source of focusing of the tunneling elec H(& 75,0)
trons.
\V8m (m - ,
Xex _J' V|E_V(§l77 l(P)| h7]d77 ’
h 72
(33
0 where
H(gi7]1§D):h§(§!7]!¢)h¢>(§rﬂ’¢)r (34)
Viev)
andhg, h,, andh, are metric coefficients of the prolate

spheroidal coordinate systeig is constant with the dimen-
sion of the electric current density.In Fig. 8 we show the

@ ) current density on the flat sample surface calculated as a
function of radial distance. It is obvious that such focusing
improves lateral resolution in the STM.

2.7
25 ]
)
€ 23
S
£
8 241 ]
(©) Q) ©
1.9
FIG. 7. Three-dimensional tunneling barriers in the plane
calculated for the case of the tungsten tig,(=9.9 eV) with radius . ‘ : ‘ - -
R;=3 A, above the aluminum samplen{=15.3 e\}. The tip is -20 -15 -1.0 -05 00 05 1.0
above a flat sample ita) where distance isl=5 A and in (b) U(v)
where distance id=3 A. The tip is above a protrusion {@) where
d=5 A and sample radius of curvature R=3 A, and above a FIG. 9. Conductivities in the STM for the distance of the tip

depression inld) whereR,=—10 A and distance is the same. above the sampld=5 A.
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As was already showit;* electron tunneling is easier ing barrier enables us to analyze how it is influenced by
from the tip to the sample than in the opposite direction; thisgeometrical parametergurvatures of metal electrodes and
effect is caused by the different curvatures of the tip and theheir distancg and other parameters such as different bulk
sample. Shapes of the tunneling characteristics, &:., plasma frequenciesu(,) and contact potential due to differ-
curves or conductivities, depend on the curvatures of thent work functions. We have explained the physical origin of
electrodesw,'s, and the contact potential as shown in Fig. Sthe reduction of the tunneling barrier when the parameters of
of Ref. 30. Similar conclusions follow from the calculation g|ectrodes @,'s, curvatures are different, caused by effec-

of conductivity as shown in Fig. 9. We can see that thejjye decoupling of SP’s. These differences also cause asym-
minimum of the paraboloidal-like curves shifts away from

the zero bias similarly to the effect caused by the finite cong

tact potentiaf?

VIl. CONCLUSION

metry in the tunneling barried,-V curves, and conductivi-
ies, i.e., (i) tunneling is easier from the electrode with
smallerw, to the electrode with largen,; (i) tunneling is
easier from the electrode with smaller radius of curvature
(tip) to the electrode with the larger radius of curvature

We have calculated the image potential reduction of thésamplg. We also found the offset in the conductivity mini-
barrier due to the interaction of the tunneling electron withmum, caused by the differences in these parameters, simi-
charge fluctuations — surface plasmons in a general systefarly to the offset which was usually attributed only to the
consisting of two metal surfaces separated by vacuum dinite contact potential? Also, we showed that the 3D tun-
insulator. The results can be used to study systems with theeling barrier in STM is lowered near the tip apex which
curved surfaces and here we have applied them to the plankads to focusing of electrons and to improvement of the

MIM junctions and STM. The calculation of the total tunnel-

lateral resolution in the STM images.

*Present address: Departamento dsida Téoica de la Materia
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