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The semimajor axes of planetary orbits and of major satellites of the planets in
the solar system are described by a simple parabolic law, rn = const × n2, where
n is an integer. The orbital periods Tn are proportional to n3 , thus obeying the
third Kepler’s law. The radical change, compared with the previous approaches,
is that n = 1 is assigned to all terrestrial planets, n = 2 to Jupiter, etc. This is
strongly suggested by the analysis of astronomical data. Hence, terrestrial planets
are considered as a subgroup of Jovian planets, and have been formed between
the Sun and Jupiter in place of one giant planet of the Jovian group. The reason
seems to be the temperature limit of about 200 K, corresponding to a distance of
about 5 × 1011 m (3.4 a.u.), that causes similar consequences as the well-known
Roche limit for satellites of a planet. Relationships for rn, Tn and other relevant
quantities, which also depend on the integer n, are related to the discretization of
angular momentum per unit mass of orbiting body. The mass of a central body
appears as a scaling factor giving a unique approach to all systems. The mean
deviation of observed orbital radii from the parabolic law for rn is from 3.5% to
7.6% , depending on the system. On the basis of the analysis, we propose the
hypotheses on stability of gravitationally-bound many-body systems.

FIZIKA B 4 (1995) 1, 11–28 11
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1. Introduction

In the past period of over two centuries, several attempts were made to express
the distribution of the planetary orbits and other relevant quantities using integer
numbers. Titius (1772) and Bode (1776) [1] proposed the law describing the mean
distances of planets from the Sun of the general form

rn = A+BCn, (1)

where rn is a mean distance characterized by an integer number n. The constants
A, B and C have no convincing physical meaning, neither have the empirical corre-
lations with definite parameters for a given system. Therefore, this law has raised
many discussions. Nevertheless, it played a positive role not only in predicting the
unknown planets, but also in stimulating many researches to further work in this
direction.

Tomley [1] applied the law to fit the mean distances of the satellites of Jupiter,
Saturn, and Uranus. In some cases, he obtained negative values of the constant A,
which is a physically unreasonable result. Nieto [2] and also Sapp [3] argue that the
Titius-Bode law cannot be considered a ”law”, but rather a coincidence.

Blagg [4] applied a pure geometric progression

rn = ABnf(n) (n = −2,−1, 0, 1...7), (2)

where f(n) is a function oscillating about 1.

Dermott [5] considered the periods Tn of planets and found a relation Tn =
Tcj

n/2, where n is an integer, j = 6 for the solar system, and Tc a constant of
proportionality. Planetary distances may then be calculated using the Kepler’s
law.

Ovenden [6] tried to explain the Titius–Bode law by a computer simulation of
gravitational evolution of the present planetary distribution, using an appropriate
set of initial conditions. His analysis indicates that a planet of about 90 Earth
masses was located at the place of the asteroid belt and was later disrupted, and
the asteroids are assumed to be the remnants.

Using computer simulation of planetary accretion, Isaacman and Sagan [7]
showed that distances of planets from the Sun, in all generated configurations,
obeyed some sort of Titius–Bode law. Specifically, they extended Dermott’s ap-
proach using noninteger values for j and obtained somewhat better agreement with
the observed data.

In an attempt to explain the origin of asteroids, van Flandern [8] analyzed
the idea of a planetary breakup event, and the “planet explosion” hypothesis and
consequently the Titius–Bode law. However, the hypothesis of the broken-up planet
has not been generally accepted, and the asteroid belt is regarded as the remnant
of masses of a planet that failed to form [9-11].

12 FIZIKA B 4 (1995) 1, 11–28
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More recently, Llibre and Piñol [12] proposed a gravitational explanation of the
Titius–Bode law, by observing the motion of the solar system around the center
of mass of the galaxy. Using a simplified model of the solar system, they found
that the distances of planets that are far from the Sun, roughly follow a geometric
progression of ratio equal to 2.

Gulak [13] proposed that the orbital distances are given by rn = (n + 1/2)r0
or rn = nr0, where r0 is a characteristic of a given system. Here, n need not
increase by 1 in going from one satellite to another one. For example, for satellites
of Uranus, n is 7 for Miranda, 12 for Ariel, 15 for Umbriel, 25 for Titania and 34
for Oberon. Later, Gulak [14] found a theoretical support to his previous results by
constructing an equation of the Schrödinger type. In this way, he tried to introduce
the macroquantization of orbits in a gravitational field.

Recently, Kramer nad Gorbanev [15] demonstrated that the idea of macroquan-
tization of orbits was not acceptable, i.e., not confirmed by the observed data, using
elementary numerical examples.

This Introduction is only the scanty review of diverse ideas related to the per-
manently intriguing problem of the dynamics of planetary and satellite motion.
In the present work only the planets and major satellites of Jupiter, Saturn, and
Uranus are considered. Small satellites of planets, planetary rings, asteroids, and
comets are not included in our model.

2. Semimajor axes and periods of planets and satellites

Astronomical data on semimajor axes r of orbits and periods T of revolution
for planets and major satellites of Jupiter, Saturn and Uranus are listed in Table 1
[16a,17]. Cited semimajor axes of orbits are equal to the mean orbital radii [18].

The idea of discretization of planetary and satellite orbits is to devise the func-
tions rn = fr(n) and Tn = fT (n), n being integers, for orbital radii and periods
of revolution, respectively. They must satisfy the third Kepler’s law, i.e. the ratio
r3n/T

2

n should not depend on n. One of the simplest pairs of functions is rn = k1n
2

and Tn = k2n
3. These relations are relatively well obeyed for solar planets. In Fig.

1 dependences of the form r1/2 = const× n are given, because of more convenient
presentation. The straight lines in the figure are the best fits, using equal weights.
In the Jovian group of planets we locate Jupiter in the orbit at n = 2, Saturn at
n = 3, Uranus at n = 4, Neptune at n = 5 and Pluto at n = 6.

If one associates n = 1 or n = 3 to Jupiter, then the resulting straight–lines
in Fig. 1 will be translated, giving positive or negative intercepts at n = 0. With
Jupiter at n = 2, the intercept of the straight line, obtained by the rms method, is
less than its standard deviation. Therefore, we apply the constraint r = 0 at n = 0.

All terrestrial planets collect at about n = 1, as shown in Fig. 1. Thus, we
consider the terrestrial planets to be a subgroup of the Jovian group. This is a
radical change compared with previous approaches.

FIZIKA B 4 (1995) 1, 11–28 13
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TABLE 1.
Orbital radii r and periods of revolution T of planets and major satellites in the

solar system, with the assigned integers n1

r/m T/s n
SUN
Mercury 0.579× 1011 0.760× 107 3
Venus 1.082× 1011 1.941× 107 4
Earth 1.496× 1011 3.156× 107 5
Mars 2.280× 1011 5.936× 107 6

Jupiter 7.783× 1011 0.374× 109 2
Saturn 14.27× 1011 0.930× 109 3
Uranus 28.71× 1011 2.651× 109 4
Neptune 44.97× 1011 5.200× 109 5
Pluto 59.13× 1011 7.836× 109 6

JUPITER
Metis 1.280× 108 0.251× 105 2
Andrastea 1.285× 108 0.259× 105 2
Amalthea 1.813× 108 0.432× 105 2
Thebe 2.220× 108 0.576× 105 2
Io 4.216× 108 1.529× 105 3
Europa 6.710× 108 3.069× 105 4
Ganymede 10.700× 108 6.178× 105 5
Callisto 18.830× 108 14.420× 105 6

SATURN
Prometheus 1.394× 108 0.530× 105 6
Epimetheus 1.514× 108 0.600× 105 6
Janus 1.514× 108 0.600× 105 6
Mimas 1.855× 108 0.814× 105 7
Enceladus 2.380× 108 1.184× 105 8
Tethys 2.947× 108 1.631× 105 9
Dione 3.774× 108 2.365× 105 10
Rhea 5.270× 108 3.904× 105 11
(Titan) 12.218× 108 13.774× 105 (19)

URANUS
Puck 0.860× 108 0.659× 105 3
Miranda 1.294× 108 1.222× 105 4
Ariel 1.910× 108 2.178× 105 5
Umbriel 2.663× 108 3.581× 105 6
Titania 4.359× 108 7.523× 105 7
Oberon 5.835× 108 11.632× 105 8

1In the system of Jupiter, Saturn and Uranius, many smaller satellites are present. Some largest
ones among them (between the planet and the first major satellite) are also included in the table.
Data are taken from. Refs. 16a and 17.
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Some regularities within the subgroup of terrestrial planets have also been found.
We assign n = 3 to the orbit of Mercury, n = 4 to Venus, n = 5 to Earth, ending
with the orbit of Mars at n = 6, that can be seen in Fig. 1. We assign consecutive
integers to the planets of each subgroup of the solar system, i.e. all intermediate
orbits are occupied.

Fig. 1. Correlation of the square roots of the mean radial distances of the planets
from the Sun with an integer number n. Points denoted by Me, V, E, Ma represent
terrestrial planets in order from Mercury to Mars.

Orbits at n = 1 and n = 2 are not occupied. Some physical processes, due to
the Sun have not permitted the existence of the first two planets. The planets at
n > 6 have failed to be formed due to the perturbation of Jupiter and consequently
the asteroid belt was formed [11].

FIZIKA B 4 (1995) 1, 11–28 15
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Fig. 2. Correlation of the square roots of the radial distances with an integer number
n, for satellite systems. Arrows with the letter R denote the square roots of the
Roche limits and arrows denoted by letter J, S, and U represent the square roots
of the planet radii.

The correlations r1/2 = const×n for satellite systems, are shown in Fig. 2. The
numbering for Jupiter satellites starts with n = 2 for small ones (Metis, Andrastea,
Amalthea and Thebe), as one subgroup, folowed by Io at n = 3, Europa at n = 4,
Ganymede at n = 5 and ending with Callisto at n = 6. The arrow denoted by
R indicates the square root of the Roche limit [19a], and arrow denoted by J–the
square root of Jupiter radius. Similar relations have been found for systems of
Saturn and Uranus, also shown in Fig. 2. The square roots of radii of Saturn and
Uranus are denoted by S and U, respectively. Between the surface of the planet and
the Roche limit only small satellites and rings are found. Above the Roche limit

16 FIZIKA B 4 (1995) 1, 11–28
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only major satellites build up a regular orbital spacing.

The correlations T 1/3 = const × n for planets and satellites result in similar
linear plots, as those in Figs. 1 and 2, respectively, due to the third Kepler’s law.

TABLE 2
Values of orbital radii rcal, calculated using the parabolic law for planets, with

deviations from the observed values in % , and comparison with the results of the
Titius–Bode law of selected references. The equations are given in the lower part

of the table2.

Ref.16b Ref. 5 Ref. 1
Present work Titius–Bode Dermott Tomley

(1772-76) (1968) (1979)
Planet rcal/10

11 m n % n % n % n %
Mercury 0.574 3 0.9 −∞ 3 1 19.0 (1 -33.0)
Venus 1.020 4 6.0 0 -3 2 -16.5 2 0.4
Earth 1.594 5 -6.1 1 0 2 15.3 3 -0.5
Mars 2.295 6 -0.7 2 5 3 -3.3 4 -3.5
(Ceres) – – – 3 1 4 -3.4 5 1.2
Jupiter 7.014 2 11.0 4 0 5 0.0 6 3.0
Saturn 15.78 3 -9.6 5 5 6 0.9 7 -1.8
Uranus 28.05 4 2.4 6 2 7 11.7 8 0.6
Neptune 43.84 5 2.6 7 22 8 -3.7 (9 20.7)
Pluto 63.12 6 -6.3 8 49 8 26.6 (10 -47.8)
Present work: Terrestrial planets rcal = (0.638± 0.022)× 1010n2 (m)

Jovian Planets rcal = (1.753± 0.114)× 1011n2 (m)
Ref. 16b: All planets rcal = (0.60 + 0.45× 2n)× 1011 (m)
Ref. 5: All planets rcal = 3.930× 6n/3 × 1010 (m)
Ref. 1: All planets rcal = [(0.6538 + 0.1047× (2.010)n]× 1011 (m)

We may compare our results for calculated orbital radii and the results of some
selected references [1,5,16b], with the observed radii. These results and the devia-
tions of the calculated values (in % ) are listed in Table 2 for the solar planetary
system. The equations are given at the bottom of the table. Dermott’s results were
presented for the periods of revolution. Using the third Kepler’s law we deduced
the equation and results cited under Ref. 5 in Table 2. Dermott assigned the same
number n to some planets. That introduces large deviations from the observed
data. Tomley [1] has not taken the planets Mercury, Neptune and Pluto into his
fit. That results with large errors for these three planets.

The results for the satellite systems are presented in Table 3. The values of
the Roche limit, assuming an equal density of a satellite and its parent planet, are
given at the bottom of Table 3.

2Planets with the results in parentheses were not included in the fit.
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TABLE 3
Values of orbital radii rcal, calculated using the parabolic law, for major satellites,
with deviations from the observed values in % , and comparison with the results
of the Tititus–Bode law of selected references. The equations are given in the

lower part of the table3,4.

Ref. 5 Ref. 1
Present work Dermott Tomley

(1968) (1979)
System rcal/10

8 (m) n % n % n %
JUPITER

Amalthea 1.834 2 -1.0 (0 -31.9) (1 -38.4)
Io 4.126 3 2.3 1 -0.4 2 -0.3
Europa 7.334 4 -8.4 2 -0.1 3 2.1
Ganymede 11.46 5 -6.6 3 0.3 4 -1.6
Callisto 16.50 6 14.2 4 11.2 5 0.4
SATURN

Mimas 1.916 7 -3.2 1 -0.9 2 -0.1
Enceladus 2.502 8 -4.9 2 1.0 3 -0.3
Tethys 3.167 9 -6.9 3 -0.8 4 -3.6
Dione 3.980 10 -5.2 4 0.9 5 -4.7
Rhea 4.731 11 11.2 5 11.8 6 2.2
Titan (13.898) (19 -0.9) 9 2.8 9 5.3
Hyperion 10 -2.9
URANUS

Miranda 1.317 4 -1.7 1 -2.1 1 3.4
Ariel 2.057 5 -7.1 2 0.2 2 0.2
Umbriel 2.963 6 -10.1 3 -3.8 3 -7.0
Titania 4.033 7 8.1 4 8.4 4 5.5
Oberon 5.267 8 10.8 5 -0.1 5 -2.1
Present work: Jupiter rcal = (4.580± 0.300)× 107n2 (m)

Saturn rcal = (0.391± 0.024)× 107n2 (m)
Uranus rcal = (0.823± 0.062)× 107n2 (m)

Ref. 5: Jupiter rcal = 2.666× 22n/3
× 108 (m)

Saturn rcal = 1.485× 2n/3
× 108 (m)

Uranus rcal = 0.9039× (1.75)2n/3
× 108 (m)

Ref. 1: Jupiter rcal = [(1.4100 + 0.8383× (1.833)n]× 108 (m)
Saturn rcal = [(0.2505 + 0.9190× (1.322)n]× 108 (m)
Saturn rcal = [(−0.6320 + 1.6410× (1.227)n]× 108 (m)

if Titan n = 10 and Hyperion n = 11
Uranus rcal = [(−0.3570 + 1.1420× (1.408)n]× 108 (m)

Present work: Roche limit nR

Jupiter R = 1.75× 108 (m) 2
Saturn R = 1.48× 108 (m) 6
Uranus R = 0.62× 108 (m) 3

3Only Amalthea, the largest one of small satellites of Jupiter, is included. The Roche limits R

(calculated by assuming an equal density for a given planet and its satellites) and corresponding
approximate integers nR are given at the bottom of the table.

4Satellites with the results in parentheses were not included in the fit.
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3. Lower bounds on integers n

The starting numbers n > 1 in the planetary and satellite systems may be due to
different causes: the Roche limit, temperature of the central body, the “rotational
limit” and possibly other causes. From the Roche limits, using equations in Table
3, one can calculate the integer lower bounds nR. They are equal 2, 6, and 3 for
Jupiter, Saturn, and Uranus, respectively. Thus, a stable systems of major satellites
can exist only for n > nR, as is indicated in Fig. 2.

However, the Roche limit of the Sun is approximately equal to 2×109 m, whereas
the orbital radius for missing Jovian planet at n = 1 (according to our equation
in Table 2) is 1.75 × 1011 m (1.17 a.u.). There must be a “limit”, caused by some
other physical conditions, below which the Jovian type of planet was not allowed.
Due to the high temperature of the Sun, icy components of the solar nebula have
been dispersed and rocky terrestrial planets were formed as a consequence of the
chemical condensation sequence [20]. This ”temperature limit” is about 200 K. It
corresponds roughly to 5 × 1011 m (3.4 a.u.) and coincides with the upper bound
of the main part of the asteroid belt.

In the subgroup of the terrestrial planets the numbering of orbits starts with
Mercury at n = 3, for which several reasons may be responsible. We introduce “the
rotational limit” which can be estimated by considering the periods of revolution of
satellites and rotational period of the central body. In the primordial nebula, from
which the Sun, the planets and their satellites formed, some rotational motion
of gasses and dust were taking place. A large fraction of mass was captured by
the central body (Sun versus the planets, planets versus their satellites). Angular
velocity of the central body is related to the angular velocity of the farthest masses
that were not captured. Therefore, one can expect no satellites with a shorter period
of revolution Tr than is the rotational period Trot of the central body, i.e Tr > Trot.
Thus, the minimum orbital radius for major satellite is approximately given by

rmin = [(GMT 2

rot/4π
2)]1/3. (3)

For Jupiter, Saturn, and Uranus rmin is equal to 1.59 × 108 m, 1.09 × 108 m,
and 0.83× 108 m, respectively.

Above rmin the major satellites may exist, but not within that limit. Of course,
later on the planet could have captured some asteroids, remnants of comets, or
the parts of broken satellites, making thus the planetary rings and small satellites
within that limit and with periods shorter than the period of rotation of the planet.
Also, planetary rotational periods could have varied in the subsequent evolution.
The limit rmin may be called “rotational cut–off” for the major satellites. In the
planetary satellite systems these cut–offs are unimportant because they are near the
respective Roche limits. However, for the terrestrial planets the “rotational limit”
seems to be of major importance. The Roche limit for the Sun is R = 1.7 × 109

m, while rmin = 2.51× 1010 m. Orbital radii for two missing terrestrial planets at
n = 1 and n = 2, according to our parabolic law (see Table 2), should have had
the values r1 = 0.638 × 1010 m and r2 = 2.55 × 1010 m, i.e. below the limit rmin.

FIZIKA B 4 (1995) 1, 11–28 19
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Therefore, the planets at n = 1 and n = 2 did not form. Indeed, the present period
of rotation of the Sun is 25 days, whereas the periods of revolution of the first two
planets would have been 3.2±0.2 and 25.5±1.3 days, respectively. It was supposed
that the small planet Vulcan exists between the Sun and Mercury, but it has not
been observed [16c]. Our present analysis makes its existence unlikely, unless solar
rotational period had changed considerably after solar formation. Mercury escapes
the cut–off with its period of 88 days. This explains why the enumeration of orbits
for terrestrial planets starts at n = 3. Some other effects could have been of equal
importance, like the high temperature and tidal forces due to the Sun.

4. Angular momenta

From Newton’s law of gravity, assuming a circular orbit, one can obtain orbital
radius in the form

r =
1

GM
(vr)2 (4)

where G is the gravitational constant, M is the mass of a central body and the
quantity vr is the angular momentum per unit mass of orbiting body, v being the
speed of revolution.

If r is proportional to n2, and T to n3, as introduced in Sec. 2, then the angular
momentum per unit mass J/m is proportional to n. A constant of proportionality
between vr = 2πr2/T and n does not depend on the mass m. The ratio 2πr2/Tn =
C is nearly the same for a particular system. The mean value of the constant C
for the each subsystem is given in Table 4. Therefore, straight lines defined by
J/m = vr = Cn for planets and satellites will principally correspond to those in
Figs.1 and 2, respectively. The values of the ratio C/M are roughly independent
of the system. They are of the same order of magnitude, as can be seen in Table
4. Therefore, we define C/M = fA, expecting that A could be determined by
some fundamental constants, while the variations of C/M will be described by the
dimensionless factor f . Therefore, we may write angular momentum per unit mass
for a planet or satellite in orbit n as

Jn
m

=
2πr2n
Tn

= Cn = (fA)Mn. (5)

From Eqs. (4) and (5), a discrete set of radii is given by

rn =
1

G
(fA)2Mn2, (6)

while periods are given by

20 FIZIKA B 4 (1995) 1, 11–28
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Tn =
2π

G2
(fA)3Mn3. (7)

In Eqs. (5) to (7), the mass M of central body appears as the scaling factor,
while the factor f becomes an adjusting parameter.

According to Eq. (5), the constant A which has the dimension of angular mo-
mentum per squared mass (Js kg−2), might be understood as the fundamental
constant characterizing the discretization in the gravitational field. Dimensionally,
the most natural ”gravitational” guess may be connected with receptor factor G/c
[21], i.e.

A = KG/c (8)

c being the speed of light. A dimensionless constant K cannot be determined, of
course, unambigously. However, one may speculate by considering the similarity
between the gravitational force Fg and the electrostatic force Fe between two iden-
tical particles of mass m0 and charge e, respectively. The absolute ratio of the forces
is Fg/Fe = Gm2

0
/(e2/4πǫ0), where ǫ0 is the permitivity of vacuum. By introduc-

ing the well–known fine–structure constant defined by α = e2/(4πǫ0h̄c [22] (where
h̄ = h/2π and h is the Planck constant), the ratio may be expressed by

Fg

Fe
=

1

α

(

Gm2

0

h̄c

)

=
αg

α
(9)

where αg is dimensionless gravitational fine–structure constant [21]. Now,
(2π/α)(G/c) = (αg/α)(h/m

2

0
) appears, dimensionally, again as an angular momen-

tum per square unit mass. Thus, in Eq. (8) one may choose the constant K = 2π/α
as possible one among many other dimensionless constants, including the purely
gravitational ones.

Therefore, we introduce

A =
2πG

αc
= 1.9157× 10−16 (Js kg−2) (10)

which may be considered as the “gravitational Planck constant per square unit
mass”, without an exact explanation. Resulting values of the factor f are given in
Table 4. Of course, one can adapt factor f to be equal to 1.00, specially for Jovian
planets, by choosing K = 8π2/α. Some other choices are also possible.

FIZIKA B 4 (1995) 1, 11–28 21
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TABLE 4
Mean values of constant C and C/M , and the factor f = C/MA for planetary

and satellite systems.

SYSTEM C/ m2s−1 (C/M)/ m2s−1kg−1 f

Terrest. (0.920± 0.016)× 1015 (0.460± 0.008)× 10−15 (2.40± 0.04)
planets

Jovian (4.824± 0.155)× 1015 (2.412± 0.078)× 10−15 (12.59± 0.41)
planets

Jupiter (2.407± 0.078)× 1012 (1.268± 0.041)× 10−15 (6.62 + 0.21)

Saturn (3.852± 0.120)× 1011 (0.678± 0.021)× 10−15 (3.54± 0.11)

Uranus (2.207± 0.090)× 1011 (2.540± 0.104)× 10−15 (13.26± 0.54)

By introducing A from Eq. (8) into Eqs. (5) to (7), the general relations follow:

Jn
m

=

(

Kf

c

)

GMn, (11)

rn =

(

Kf

c

)2

GMn2, (12)

Tn = 2π

(

Kf

c

)3

GMn3. (13)

For K = 2π/α, the associated values of f are given in Table 4.

From Eqs. (12) and (13), one can deduce the speed of revolution and energy
per unit mass of an orbiting body. They are proportional to n−1 and n−2, respec-
tively, but independent on the mass M . For example, the satellites of Uranus have
approximately the same value of f as Jovain planets, and consequently the orbital
speed of Miranda (n = 4) and of Uranus (also n = 4) are closely equal.

The factor f , as a characteristic of the particular system, probably depends on
the conditions under which the system was formed, i.e. f may be a consequence of
the mass density distribution at the time of accretion, and of later perturbations
that caused changes in the inclination of the orbital plane of satellites to the orbital
plane of the central body. However, it is not easy to find sound physical arguments
capable to explain the values of f cited in Table 4.

Eq. (12) may be written in the form

22 FIZIKA B 4 (1995) 1, 11–28
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rn =
(Kf)2

2

2GM

c2
n2

in which one recognizes the Schwartzschild’s radius RS = 2GM/c2 [16d]. With
KS = (Kf)2/2, one can write preceding equation as

rn = KSRSn
2. (14)

For K = 2π/α and f = 1, the value of the constant KS is 3.7× 105. This might
be interesting in future comparison with other planetary systems.

5. Discussion on the stability of planetary and satellite

systems

The relations rn = k1n
2 and Tn = k2n

3 for orbital radii and periods of revo-
lutions, respectively, are found in each of the five sybsystems of the solar system,
which consist of a massive central body and four to six major bodies in orbits. The
actual distances and periods show deviations from the laws that we attribute to the
perturbations of the solar system since its formation. Close–by passage of celestial
bodies and their impacts have certainly shifted the system away from the secular
equilibrium.

It is important to note that in each subsystem we find a sequence of four to
six consecutive integers corresponding to the orbits in the subsystem, starting from
an initial value nmin. In each of the five subsystems one can find a cause for
nmin. In our opinion three causes limit the existence of planets and/or satellites in
orbits close to the central body: the Roche limit, the temperature limit and the
”rotational” limit. The temperature limit seems to have prevented the formation of
the Jovian planet at n = 1. Instead, the terrestrial group of planets were formed.
In the terrestrial subsystem the starting number n is 3 (Mercury), because of the
“rotational” limit, as discussed in Sec. 3.

Lower limits of the values of n in the satellite systems of the planets are due to
the Roche limit. For example, the first three orbits in Saturnian system are inside
the planet; the orbit at n = 4 is near surface of the planet and the rings C, B, and
A [19a] are up to n = 6. The ring G is between n = 6 and n = 7. The Roche limit
is near n = 6 and the orbit of the first major satellite Mimas is at n = 7.

In Sec. 3 we considered the temperature limit of about 200 K for the existence
of Jovian type of planets as consequence of the chemical condensation sequence,
which is responsible for the difference between rocky terrestrial planets and icy
Jovian ones [20,23a]. As the temperature falls down with the distance from the
Sun, one may expect a similar behaviour of the mass density. Indeed, in Fig. 3,
the density of planets and the largest asteroids Ceres, Pallas, and Vesta [16a,24] is
shown versus distance from the Sun. Two densities are given for the Sun: one is 1.4
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gcm−3 for the standard radius of the Sun rs = 7×107 m and the other is 6.5 gcm−3

for the effective radius reff = 0.6rs [23b]. As shown in Fig. 3, by an extrapolation,
the density decreases to that of Jupiter at a distance rT = (5.5± 0.9)× 1011 m, in
agreement with the limit of 200 K in the Lewis temperature–to–distance diagram
[19c].

Fig. 3. Density of planets and of the largest asteroids versus the distance from
the Sun. The intersection of the two straight lines at the distance 5.5 × 1011 m
corresponds to the temperature limit of about 200 K. (Density of the Sun for the
standard radius rs and for the effective radius reff = 0.6rs is also indicated.)

The mean deviation of the calculated orbital radii from the observed ones is
somewhat higher (7.6% ) for Uranian satellites, than for the other systems. It
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seems that Titania and Oberon at orbits n = 7 and n = 8, respectively, in Fig. 2,
could be translated to n = 8 and n = 9 in order to have a better fit. Indeed, the
deviation decreases to 4.7% . However, such a refinement is not convincing since it
would introduce an empty orbit between the occupied ones.

Saturnian satellites from Mimas to Rhea are distributed between n = 7 and n =
11. However, the largest satellite Titan appears in the orbit at n = 19, thus allowing
seven empty orbits. Such a large discontinuity suggests a division of the complete
system of satellites to subsystems, with a distinct enumeration of orbits. One may
suppose that Titan was captured by Saturn in order to justify its peculiarity. There
are, however, some arguments against that hypothesis [19d]. We assume that Titan
is not the member of the system with discrete orbits and this massive satellite does
not fit into our scheme. It is a single exception.

Major satellites have generally been accreted at the time of the formation of
the planetary system [16e], whereas small satellites, rings, asteroids and comets
evolved later on. Therefore, due to various origin of small bodies, their motion
and distribution of orbits escape a definite rule, and may rather be considered as
random events. This supposition is based on the broad span of eccentricities and
orbital inclinations [16a]. Obviously, it is not possible to treat them within the
scheme of major satellites.

A distribution of planetary orbits is, according to Table 2, better described by
introduced parabolic law, than by the laws of Titius-Bode type (Eq.1). However,
from the results on satellites orbits one may conclude contrary (c.f. Table 3). Par-
ticularly, the last satellite in all three systems deviate considerably from our law,
as can be seen in Fig. 2. In our oppinion, these deviations may be the outcome of
the various events in the history of a system. For example, Callisto in the Jupiter
system has a larger orbit than expected. Impact of an asteroid on Callisto could be
responsible for such a deviation (very probably the Valhalla region appeared after
such an event [23c]). Saturnian satellite Rhea has also an enlarged orbit, which
may be due to perturbation of Titan. In the case of Uranian satellites, deviations
from the parabolic law could be a consequence of the tilting of the rotation axis of
Uranus and of all its satellites for 98◦ to the ecliptic [16a].

Furthermore, the ratio of orbital radius to the radius of a central body is between
3 and 5 for the nearest major satellites, and about 25 for the most remote ones.
However, in the solar planetary system, this ratio is 83 for Mercury, 1110 for Jupiter
and even 8430 for Pluto. From these numbers one may conclude that the Sun is a
point–like center of the force for Jovian planets and partially for terrestrial ones.
For all satellite systems, the central body is not a point-like center, which may have
a strong influence to the nearest satellites through the tidal forces, thus changing
the dynamics of the whole system. It could be a reason of the slight deviation from
the parabolic law [Eq. (12)] to the Titius–Bode type one [Eq. (1)]. Therefore it
is not surprising that the accuracy of the parabolic law is a few per cent less for
satellite system compared with planetary one. With all these comments in mind,
one can accept the parabolic law as adequate for the distribution of orbital radii in
the solar system. This law seems to be the consequence of formation rather than
of the later evolution, what might be of a significant cosmogonic importance.
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6. Conclusions

On the basis of the above considerations we state the following hypotheses:

1) Orbital radii of planets and major satellites, for each of the five subgroups in the
solar system, the Jovian and terrestrial group of planets and the satellite systems
of Jupiter, Saturn and Uranus, are given by the parabolic law rn = const×n2. The
values of n are consecutive integer numbers.

2) Actual state of the system does not exactly agree with the law stated in 1)
because the system is not in the state of secular equilibrium.

3) The planets of the Jovian group, Jupiter, Saturn, Uranus, Neptune and Pluto,
are in orbits corresponding to n = 2, 3, 4, 5 and 6, respectively. The Jovian planet
at n = 1 did not form because of the high temperature of the Sun.

4) The terrestrial planets are a separate subgroup that was formed between the
Sun and Jupiter instead of one large Jovian planet at n = 1.

5) The terrestrial planets, Mercury, Venus, Earth and Mars, are in orbits corre-
sponding to n = 3, 4, 5 and 6, respectively. The planets at n = 1 and 2 did not form
because of the “rotational” limit.

6) The orbits of major satellites of Jupiter, Saturn and Uranus also follow the law
rn = const × n2, where values of n are consecutive integers. The initial values of
n are 3, 7 and 4, respectively. They are due to the Roche limit that prevented
formation of satellites for lower values of n.

7) The angular momentum per unit mass of the orbiting body can be expressed
by the relation Jn/m = (fA)Mn, where f is a dimensionless adjusting pa-
rameter between 2.4 and 13.3, associated to the selected fundamental constant
A = 2πG/αc = 1.9157 × 10−16 Js kg−2, where G, α and c are the gravitational
constant, the fine–structure constant and the speed of light, respectively, and M
is the mass of central body. M is the scaling factor for orbital radii, periods and
angular momenta per unit mass of the orbiting bodies. However, according to our
model, the speed of revolution and energy per unit mass of the orbiting body are
not dependent on the mass M .

In conclusion our analysis indicates that the proposed model can be accepted as
a first approximation. Although very simple, the model is consistent and provides
some new aspects and a phenomenological basis for further research on stability of
gravitationally–bound many–body systems.
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STABILNOST GRAVITACIJSKI–VEZANIH SISTEMA VIŠE TIJELA

ANTUN RUBČIĆ i JASNA RUBČIĆ

Fizički zavod, Prirodoslovno–matematički fakultet, Sveučilǐsta u Zagrebu, p.p. 162,
41 001 Zagreb, Hrvatska

UDK 523.2, 531.35

PACS 95.10.Ce, 95.10.Fh, 96.30.-t

Velike poluosi putanja planeta i glavnih satelita planetnih sistema u Sunčevom sus-
tavu dane su kvadratičnim zakonom rn = const×n2, gdje je n cijeli broj. Ophodni
periodi Tn proporcionalni su s n3 u skladu s trećim Keplerovim zakonom. Bitna
promjena u usporedbi s prijašnjim pristupima je da se terestrički planeti izdvajaju
od jovijanskih kao zasebna podgrupa, te im je pridružen n = 1, a slijedi Jupiter s
n = 2, i posljednji Pluton s n = 6. Ovaj zaključak je izveden na osnovi astronom-
skih podataka. Granica izmedu terestričkih i jovijanskih planeta je oko 200 K, što
odgovara udaljenosti od Sunca približno 5 × 1011 m (3.4 a.u.). Unutar temper-
aturne granice, slično s Roche–ovom granicom, ne mogu opstati relativno velika
tijela za dani sistem. Relacija za rn i Tn, kao i sve druge relevantne relacije, ovisne
o n, povezane su s diskretizacijom momenta impulsa po jedinici mase tijela na
putanji. Masa centralnog tijela je faktor skaliranja i odreduje veličinu sistema. Sred-
nja odstupanja opaženih poluosi prema izračunatim radijusima kružnih putanja su
od 3.5% do 7.5% zavisno o sistemu. Na osnovi ove analize predložene su hipoteze
o stabilnosti gravitacijskih sistema s vǐse tijela.
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