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Lepton-flavor violation in light hadron decays
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The lepton-flavor-violating decays of light pseudoscalar mesons and light baryons are investigated within
extensions of theSU(2)3U(1) model. These models contain heavy Dirac or Majorana neutrinos and allow
large lepton–heavy-neutrino mixings. The free-parameter space of these models is carefully studied. Special
care is devoted to the comparison of results of different models. A large ‘‘nondecoupling’’ window is found,
and the decoupling of extremely heavy neutrinos is explicitly shown in all models except one, for which the
free-parameter space is bounded. Among the decays studied, the experimentally most interesting decays are
KL→em and p0→em. The p0→em decay is found to be equally interesting for the study of lepton-flavor
violation asKL→em decay. The constraint on the model parameters, coming from the nonobservation of the
m→eg decay, leads to the maximal decay ratesB(KL→em);5310216 and B(p0→em)&(2nR22)
310215, wherenR is number of heavy neutrinos, much smaller than the present experimental upper limits.
@S0556-2821~98!01607-5#

PACS number~s!: 13.20.2v, 11.30.Fs, 13.30.Ce, 14.60.St
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I. INTRODUCTION

Lepton-flavor violation is strictly forbidden in the stan
dard model~SM!. The confirmation of lepton-flavor viola
tion would show that the SM should be considered as a l
energy limit of a more fundamental theory. The slow
decaying particles, such as light pseudoscalar mesons
suitable to search for lepton-flavor-violating~LFV! effects.
Namely, the branching ratios of the LFV decays for su
particles are expected to be rather large.

Stringent experimental upper bounds exist for seve
LFV decays of pseudoscalar mesons,B(KL→em)
,3.3310211 @1–3#, B(p0→em),1.731028 @1,4#, B(K1

→p1em),2.1310210 @1#, andB(KL→p0em),3.231028

@5#. The new Brookhaven experiments E871 and E7
should be able to push down the branching ratiosB~p0

→em) and B(K1→p1em) below the ;10212 @2#. The
measurements of theB(p0→em) is a by-product of mea-
surements ofB(K1→p1em) @4#, and the ratioB(K1

→p1em)/B(p0→em) is restricted by the acceptance f
the decay chainK1→p1p0, p0→em, which is ;1023.
There is also an upper boundB(p0→mne),1.531023 @6#.
The LFV decays have been the subject of many studies~see,
e.g., @6#, @7#, and @8#!. In order to realize the LFV effect a
number of approaches have been developed. The sim
one is to add neutral fermions@9,10# or to extend the Higgs
sector@11#. They have been also analyzed in supersymme
models @12#, superstring models@13#, left-right symmetric
models @14,15#, technicolor models@16#, and leptoquark
models@17#.

In this paper LFV decays of light pseudoscalar mes
and light baryons are investigated using models with ad
tional heavy neutrinos. LFV decays with two charged lepto
in the final state are most likely to be observed. Therefo
we concentrate on analyses of these kinds of decays.

The paper is organized as follows. In Sec. II a short ov
570556-2821/98/57~7!/4219~17!/$15.00
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view of the extensions of the standard model with hea
neutrinos is given. In Secs. III, IV, and V the LFV lepton
and semileptonic decay amplitudes of light pseudoscalar
sons and semileptonic decay amplitudes of light baryo
respectively, are analyzed and their branching ratios are
culated. Some technical details are relegated to the App
dixes. The conclusions are given in Sec. V.

II. REMARKS ON MODELS WITH ADDITIONAL HEAVY
NEUTRINOS

There are two classes of models which contain the ad
tional heavy neutrinos with light-neutrino masses lo
enough to satisfy the experimental upper bounds@9,10#. One
of them is grand unified theory~GUT! inspired, and it is
obtained by introducing an additionalnR right-handed isos-
inglet neutrino fields into the SM. The Yukawa sector co
tains lepton-number-conserving (DL50) terms and isos-
inglet DL52 Majorana mass terms. The neutrino ma
matrix is symmetric and consists of a Dirac mass matrixmD
coming from theDL50 Yukawa terms and a Majorana ma
matrix mM containing theDL52 Majorana mass terms. Th
matrix elements of the Dirac matrix are usually taken to
of the same order as the masses of the charged parti
while the elements of the Majorana mass matrix have m
larger values. The transition from the weak to the mass b
givesnR heavy Majorana neutrinos with masses of the or
of a typical Majorana mass andnG light neutrinos, wherenG
is the number of generations in the SM. The experimen
limits on light-neutrino masses may be fulfilled in two way
One is to use the usual seesaw mechanism@18#, giving the
light-neutrino matrix scaling asmDmM

21mD . Then the typical
Majorana mass must be very large (;108 GeV!. The second
one is realized by imposing an additional constraint on
neutrino mass matrix that assures the masslessness of
neutrinos at the tree level@9#. That can be done ifnR.1. We
4219 © 1998 The American Physical Society
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will denote such models asAnR . In such models the typica
Majorana mass is constrained only by the experimental l
its on lepton–heavy-neutrino mixingsBlN , which scale as
mDmM

21 . The experimental data give the limituBlNu2

;1023–1022. Therefore, the Majorana masses may be
low as ;102 GeV. The second approach is very appeal
from the phenomenological point of view. Namely, theBlN

mixings lead to decays which are forbidden in the SM. In
model @9#, BlN mixings may be so large that the rates
these decays could be comparable in size to the presen
perimental upper bounds. Although the masses of light n
trinos are zero at the tree level, nonzero masses may b
duced radiatively@19#. They depend on the choice of th
renormalization point, and may be quite large compared w
the experimental and astrophysical upper limits on light n
trino masses. The second class of models is stable rega
the neutrino mass renormalization and renormalization
BlN mixings @19#, and, therefore, we prefer the results o
tained in these models.

The second class of models is superstring inspi
@10,21,22#. These models, referred to here asVnR models,
are obtained by introducingnR isosinglet right-handed an
nR isosinglet left-handed neutrino fields into the SM, whi
do not interact with SM fields. The Yukawa sector conta
only the lepton-number-conserving terms. The neutrino m
matrixMn @22,23# is symmetric and contains a matrixmD ,
coupling the doublet neutrinos with right-handed singlet n
trinos, and a matrixM , coupling the right-handed and lef
handed singlet neutrinos. The rank of the mass matrix
2nR . Therefore, it hasnG zero eigenvalues. As the neutrin
mass matrix is symmetric, the mass diagonalization can
performed by unitary transformations of the formUTMnU.
The diagonalization is performed in two steps@23#. First, the
elements of the mass submatrixmD are cancelled, using th
unitary transformation of the mentioned form. ThenG dou-
blet neutrino fields andnR singlet left-handed neutrino field
are combined intonG massless neutrino fields andnR fields
forming the mass matrixMD with the right-handed single
fields. Then another unitary transformation is used to dia
nalize the mass matrixMD . The final mass spectrum con
tains nG exactly massless~to all orders in perturbation
theory! left-handed neutrinos~that is, the Weyl neutrinos!
and nR massive Dirac neutrinos. The massless and mas
neutrino fields contain part of the weak eigenstate dou
fields, and, therefore, both interact with SM fields, spec
cally leptons, gauge bosons, and Higgs scalars. The co
sponding Lagrangians defining the interaction vertices
~see Refs.@20,24#!

Lint
W 52

gW

2A2
W2m(

i 51

nG

(
j 51

nG1nR

Bl inj
l̄ igm~12g5!nj1H.c.,

~1!

Lint
Z 52

gW

4cW
Zm (

i , j 51

nG1nR
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n̄igm~12g5!nj , ~2!
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Lint
G7

52
gW

2A2MW

G2(
i 51

nG

(
j 51

nG1nR

Bl inj
l̄ i@ml i

~12g5!

2mnj
~11g5!#nj1H.c., ~3!

Lint
G0

5
igW

4MW
G0 (

i , j 51

nG1nR

Cninj
mnj

n̄i~11g5!nj , ~4!

Lint
H 52

gW

4MW
H (

i , j 51

nG1nR

Cninj
mnj

n̄i~11g5!nj , ~5!

where l i are the SM leptons,ni are the~light and heavy!
neutrino fields,Z andW6 are the SM gauge bosons,H is the
Higgs scalar field, andG6 andG0 are unphysical Goldstone
bosons. Further,gW is the weak coupling constant,cW

5MW
2 /MZ

2 , andmi , i 51, . . . , nG1nR are neutrino masses
As in the case of the first class of models, a Cabibb
Kobayashi-Maskawa type of matrixBln appears in lepton-
neutrino-charged currents and mixing matricesCnn8 in neu-
tral neutrino currents. These matrices are composed
unitary matrices transforming leptons and neutrinos from
weak to the mass basis. The matrixCnn8 may be expressed in
terms ofBln matrices. TheB andC matrices satisfy a set o
relations following from the unitarity of the matrices build
ing them@9,19,20,25#:

(
k51

nG1nR

Bl 1nk
Bl 2nk

* 5d l 1l 2
, (

k51

nG1nR

Cnink
Cnjnk

* 5Cninj
,

(
k51

nG1nR

Blnk
Cnkni

5Blni
, (

k51

nG

Bl kni
* Bl knj

5Cninj
, ~6!

which assure the renormalizability of the models. In the fi
class of models, theB matrices satisfy the same set of rel
tions, and in addition they are constrained by relations wh
assure the masslessness of the light neutrinos at the
level.

The degeneracy of light neutrinos inVnR models allows
one to write the light-neutrino–lepton-charged currents in
almost diagonal form, with couplings somewhat smaller th
in SM:

gW→gW3Bln l
. ~7!

This small reduction of couplings is connected with co
plings in heavy-neutrino–lepton-charged currentsBlN ,
through the orthogonality relations which theBln matrices
satisfy,

uBln l
u2'(

i 51

nG

uBln i
u25~cL

n l !2512(
i 51

nR

uBlNi
u2512~sL

n l !2.

~8!

The experimental upper limits@15,28#
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~sL
ne!2,0.0071,

~sL
nm!2,0.0014

~sL
nt!2,0.01,

~sL
ne!2~sL

nm!2,5.631028 ~9!

assure that the deviation of the light-neutrino–lepton mixin
from the SM mixings is small, and that the heavy-neutrin
lepton mixingsuBlNi

u2 are of the order&1023–1022.
Using relations~6!, all amplitudes of low-energy pro

cesses may be written in terms of

(
i 51

nR

BlNi
* Bl 8Ni

f ~Ni , . . . !, (
j 51

nG

Vujda
Vujda

* f ~uj , . . . !,

and (
j 51

nG

Vudj
* Vudj

f ~dj , . . . !, ~10!

where f (Ni , . . . ), f (uj , . . . ), and f (dj , . . . ) areexpres-
sions proportional to loop functions. The ellipses repres
the indices not written explicitly. In the first type of model
the B and C matrices satisfy additional constraints besid
those given by Eqs.~6!. These constraints reduce the numb
of free parameters determining theB and C matrices. For
nR52, the B and C matrices are completely determine
Therefore, the first of expressions~10! may be calculated
exactly. FornR.2, the number of constraints on theB and
C matrices is too small to fix them. In the second class
models, theB andC matrices satisfy only relations~6!, and
their exact form cannot be determined, too. Only the up
bounds on the absolute values of matrix elementsBlN may
be found. The upper limits of the branching ratios can
obtained using the Schwartz’s inequalities and definition
sL

n l ,

U(
i 51

nR

BlNi
* Bl 8Ni

f ~Ni , . . . !U<sL
n lsL

n l8S u^ f ~••• !&Nu

1F(
i 51

nR

„f ~Ni , . . . !

2^ f ~••• !&N…

2G1/2D ,

U(
j 51

nR

Vujda
Vujda

* f ~uj , . . . !U<(
j 51

nR

uVujda
uuVujda

uu f ~uj , . . . !u,

U(
j 51

nR

Vudj
Vudj

* f ~dj , . . . !U<(
j 51

nR

uVudj
uuVudj

uu f ~dj , . . . !u,

~11!

where^ &N represents an average over heavy neutrinos.
procedure for deriving relations~11! is given in Appendix B,
and is used for finding the upper limits on composite lo
form factors and branching ratios.
s
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s
r

f
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e
r

e

Although there are no constraints on heavy-neutr
masses from experimental limits on light-neutrino mass
they are limited by perturbative unitarity condition@29# on
decay rates of heavy neutrinos,

GNi

mNi

,
1

2
. ~12!

The total decay rate of the heavy Dirac neutrino of a m
mNi

much larger than masses ofW andZ bosons and Higgs
boson mass is@20#

GNi
5(

l j

G~Ni→ l j
2W1!1(

n j

@G~Ni→n jZ!

1G~Ni→n jH !#

'
aW

8MW
mNi

3 (
j

uBl jNi
u2, ~13!

whereaW5gW
2 /4p. From Eqs.~12! and ~13!,

mNi

2 (
j 51

nG

uBl jNi
u25mNi

2 CNiNi
<

4

aW
MW

2 , ~14!

for VnR models, and

mNi

2 (
j 51

nG

uBl jNi
u25mNi

2 CNiNi
<

2

aW
MW

2 , ~15!

for AnR models. The relative factor of 2 between the boun
~14! and ~15! comes from the different number of spin d
grees of freedom of Dirac and Majorana neutrinos. The m
trix elementsCNiNi

are known only in theA2 model, which
makes a large difference between that model and the o
models discussed here. In theA2 model, the matrix element
CNiNi

depend on the ratio of massesr25mN2
/mN1

, and not
on the masses explicitly, so that both parts of Eq.~15! are
upper bounds on the lightest massmN1

. Equation~15! for the

mN2
mass gives stronger bound onmN1

;

mN1

2 &
2MW

2

aW

r2
211r2

22

(
j 51

nG

~sl
n j !2

. ~16!

In AnR , nRÞ2, models and inVnR models, the upper bound
on the lightest mass is obtained by combining Eqs.~14! and
~8!,

mN1

2 &~mN1

0 !2S 11(
i 52

nR

r i
22D , ~17!

wherer i5mNi
/mN1

and

~mN1

0 !254bMW
2 /@aW( j 51

nG ~sl
n j !2#,

with b51 in VnR models andb51/2 in AnR , nRÞ2, mod-
els. Equation~16! permits only finite values of all heavy
neutrino masses, while the massesmNi

, iÞ1 satisfying Eq.

~17! may achieve any value ifmN1
,mN1

0 . If Eqs. ~11! were
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used for evaluating the upper bounds on the branching ra
~UBBRs! for LFV processes, the UBBRs would achieve i
finite values. Therefore, ifmN1

,mN1

0 and any of the ratiosr i

is very large, the UBBRs have to be evaluated in a differ
manner. Noticing that Eqs.~8! and ~14! give rough upper
bounds,

uBlNi
u<sL

n l[BlNi

1 ~18!

and

uBlNi
u<

2b1/2MW

aW
1/2mNi

[BlNi

0 , ~19!

one finds that if

BlNi

0 ,BlNi

1 ~20!

for any matrix elementBlNi
, the better bound on the UBBR

of LFV processes may be achieved by replacing the ma
elementsBlNi

by BlNi

0 in the amplitudes. With such a replac

ment, the terms of the amplitudes comprising the massmNi

do not tend to infinity but to zero in themNi
→` limit. That

is, the heavy neutrino decouples from the light sector of
model. As theA2 model is a special case ofAnR models, the
decoupling of the extremely heavy neutrinos is valid for
too. That property cannot be seen in theA2 model because
the domain ofmNi

masses is restricted by Eq.~16!.

III. MESON LFV LEPTONIC DECAYS

The amplitudes of LFV leptonic decays of kaons into tw
charged leptons have a very simple structure. Only a
diagram contributes to them. These box diagrams hav
very mild ~logarithmic! dependence on the heavy-neutri
masses@26,27#. They are suppressed by matrix elements
Cabibbo-Kobayashi-Maskawa~CKM! matrix elements in the
hadronic part of the matrix element. The corresponding
cay rates for flavor-neutral pseudoscalar mesons is not C
suppressed, and the matrix element has an additi
Z-boson exchange contribution with a strong~quadratic! de-
pendence on the heavy-neutrino mass~the vector mesons
have an additionalg-decay channel!. Unfortunately, flavor-
neutral pseudoscalar mesons decay at least 106 times faster
than the mesons with nonzero quantum numbers due to
electromagnetic and hadronic channels through which t
decay. To determine to what extent these two opposite
fects, concerning the magnitude of the decay rate, cancel
decay rates for the processesp0→em and h0→em have
been evaluated, too. The decayh80→em has not been con
sidered ash8 decays much faster thanp0 andh.

The invariant amplitudeT(P0→e2m1) and the decay
rate G(P0→e2m1) or branching ratioB(P0→e2m1) for
the decay of a light pseudoscalar meson into an electron
antimuon, P0→e2m1, may be obtained from the corre
sponding expressions fort2→e2P0 decays@26# using the
crossing symmetry. The expression for the invariant am
tude is
os

t
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e

,

x
a

f

-
M
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y
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i-

T~P0→e2m1!52ūega~12g5!vmpP0
a aP̄0

me , ~21!

wherepP0 is the four-momentum of the pseudoscalar mes
and P̄0 is its antiparticle. The composite form factoraP0

me is
given by

aP0
me

5
iaW

2

16MW
2

f P0FaZFZ
me1abox

uu Fbox
meuu

1 (
da ,db5d,s

abox
dadbFbox

medadbG , ~22!

where aW5gW
2 /4p, f P0 is a pseudoscalar decay co

stant, FZ
me , Fbox

meuu, Fbox
medadb are composite loop form

factors defined in Appendix A and in Refs.@26,27#,
and abox

ds (K0)521/2, abox
sd (K̄0)521/2, aZ(p0)522,

abox
uu (p0)521, abox

dd (p0)521, aZ(h0)52abox
ss (h0)

52(2cP/31/21(2/3)1/2sP), abox
uu (h0)52abox

dd (h0)52~cP/
31/22(2/3)1/2sP)
are numerical coefficients containing information about
quark content of pseudoscalars and on quark couplings
photons andZ bosons~only coefficients different from zero
are listed!. The shorthand notationsP5sinuP and cP
5cosuP is used for mixing of octet and singlet meson stat
The pseudoscalar decay constants~and the normalization of
creation operators! are defined in terms of the axial vecto
quark currents,

Am
P0

~x!5 iA2 f P0]mP0~x!1•••. ~23!

The composite loop form factorsFZ
me , Fbox

meuu, and Fbox
medadb

comprise the combinations ofCNN andBlN matrix elements,
which are all proportional to a factor smaller thansL

nesL
nm .

That factor strongly suppresses theT(P0→e2m1) ampli-
tudes. The branching ratio corresponding to the amplitu
~21! reads

B~P0→e2m1!5
1

4p

mP0

GP0

l1/2~mP0
2 ,mm

2 ,me
2!

mP0
2

3uaP̄0
meu2

mP0
2

~mm
2 1me

2!2~mm
2 2me

2!2

mP0
2 ,

~24!

where mP0 and GP0 are the pseudoscalar meson mass a
total decay rate, andl(x,y,z)5x21y21z222(xy1xz
1yz).

IV. MESON LFV SEMILEPTONIC DECAYS

In the case of LFVK1→p1e2m1 decay on the quark-
lepton level there are contributions coming from a box d
gram and W1W2 diagram. TheW1W2 contribution is
found to be much smaller than the box diagram contribut
@27#, and, therefore, it will be neglected. The box amplitu
may be obtained from the box amplitude for thet2

→e2p1K2 decay using crossing symmetry and replacingt
by m. It reads
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Tbox~K1→p1e2m1!52aK1p1
me ūega~12g5!vm

3^p1~pp1!u s̄~0!gm~12g5!

3d~0!uK1~pK1!&, ~25!

where

aK1p1
me

5
iaW

2

16MW
2

Fbox
mesd ~26!

is a composite form factor comprising a factor of ord
;sL

nesL
nm . The hadronic matrix element forK1→p1e2m1

decay is parametrized by two form factors

^p1~pp1!u s̄~0!gm~12g5!d~0!uK1~pK1!&

5 f 1~q2!~pK11pp1!m1 f 2~q2!~pK12pp1!m.

~27!

In this paper we use a chiral Lagrangian which includes v
tor mesons@30# in order to evaluate this matrix element. Th
approach assumes that the vector meson exchange dom
the form factors. The quark legs of the box diagram (s̄ andd
fields! create the vector meson fieldK0* , which further
couples to the pion and kaon fields. The coupling of theK0*
field to the quark fields (K0* meson decay constan
mK0*

2 /A2gK0* ) is related to the coupling ofr0 mesons
(mr0*

2 /A2gr0), assumingSU(3) hadron flavor symmetry
(gK0* 5gr0). Ther-meson coupling is determined from th
r0→e1e2 decay rate. The vector meson to pseudosc
meson couplinggrpp is defined in the chiral Lagrangian@30#
and it can be calculated from ther→pp decay rate. The
hadronic part of the amplitude reads

^p1~pp1!u s̄~0!gm~12g5!d~0!uK1~pK1!&

5
mK0*

2

A2gK0*
iSK0* ,mn~q!Tn~K1;K0* p1!,

'
grpp

2gK0*
F S 11

mp1
2

mK0*
2

q2

mp1
2 D ~pK1pp!m

1S 2
mp1

2

mK0*
2

mK1
2

2mp1
2

mp1
2 D ~pK2pp!mG , ~28!

where

SK0*
ab

~q!5
2gab1qaqb/mK0*

2

q22mK0*
2 ~29!

is theK0* -meson propagator, and

Tn~K1;K0* p1!5
2 igrpp

A2
~pK1pp!n ~30!

is theK12K0* 2p1 vertex. The details of evaluation of th
hadronic part of the amplitude may be found in@27#, where
r

-

tes

ar

they have been performed fort→e1two meson decays
This method assumesSU(3) hadron-flavor symmetry, and
therefore, it connects the amplitudes of various mesons,
cifically of decaysK0→p0e2m1 andK̄0→p0e2m1, allow-
ing one to evaluate theKL→p0e2m1 amplitude. Namely,
we determine

f 1~0!5
grpp

2gK0*
'1.2,

f 1~q2!' f 1~0!S 11
mp1

2

mK0*
2

q2

mp1
2 D ,

f 2~q2!' f 1~0!S 2
mp1

2

mK0*
2

mK1
2

2mp1
2

mp1
2 D . ~31!

From the semileptonic decaysKe3
1 andKm3

1 the hadronic ma-
trix element is

^p0~pp0!u s̄~0!gm~12g5!u~0!uK1~pK1!&

5
1

A2
@ f 1~q2!~pK11pp1!m

1 f 2~q2!~pK12pp1!m], ~32!

and the form factors are described by@31#

f 6~q2!5 f 1~0!F11l6

q2

mp
2 G , ~33!

wherel150.028660.0022 forKe3
1 and l150.03360.008

for Km3
1 . Usually, instead of the form factorf 2 , the scalar

form factor is introduced,

f 0~q2!5 f 1~q2!1
q2

MK
2 2Mp

2
f 2~q2!5 f 1~0!F11l0

q2

mp
2 G ,

~34!

with l050.00460.007 and f 1(0)50.98. Using isospin
symmetry, ^p1u s̄gm(12g5)duK1& can be related to the

^p0u s̄gm(12g5)uuK1& matrix element. Our results in Eqs
~31! @l15mp1

2 /mK0*
2

50.024, l050, f 1(0)'1.2] are in
agreement with these phenomenological results up toSU(3)
hadron flavor symmetry violation.

TheKL
0→p0e2m1 andh→p0e2m1 have vanishing am-

plitudes, as can been seen from the chiral Lagrangian~see
Appendix C!. The first decay can occur through th
CP-violating component, but the induced decay rate is v
suppressed in comparison withK1→p1e2m1.

The branching ratio for the remainingK1→p1e2m1 de-
cay is found to be
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B~K1→p1e2m1!

5
1

64p3mK1
3 GK1

uaK1p1
me u2E

~mm1me!2

~mK12mp1!2

dt@A11 f 1
2

1A12 f 1 f 21A22 f 2
2 #, ~35!

whereA11 , A12 , andA22 are kinematical functions de
fined in Appendix D.

V. BARYON LFV SEMILEPTONIC DECAYS

In the LFV baryon decays with two charged leptons, d
to kinematical reasons, the final and initial baryon states
not have the same strangeness. Therefore, on the qu
lepton level, the decay amplitudes obtain contributions fr
the box diagram only.

The matrix element for the baryonic LFV semilepton
decay is obtained from mesonic semileptonic decay ma
elements by replacing the hadronic meson-to-meson am
tude by the baryon-to-baryon amplitude. The baryon-
baryon amplitude depends on six form factors

^B8uVm~0!2Am~0!uB&5ūB8@gm f 11 ismnqn f 21qm f 3

1gmg5g11 ismng5qng2

1qmg5g3#uB . ~36!

However, all of them are not equally important. The curre
whose coefficients aref 3 and g2 do not conserveG parity
~second class currents!. Therefore, these form factors a
negligibly small. Thef 2 term includes the recoil effects, an
is of the order of (mB2mB8)/(mB1mB8) compared to thef 1
term. Since we are making an estimation of the branch
ratios, we do not take into account these terms. Theg3 term
contains a pseudoscalar meson pole, and its contributio
not negligible when the muon is in the final state@31#.

The form factorsf 1, g1, andg3 depend on baryons in th
initial and final states. Further, theq2 dependence may b
approximately described by assigning a pole dependenc
the meson having the same Lorentz transformation prope
and opposite quantum numbers than the baryon current.
SU(3)-flavor symmetry of baryons allows one to expre
sets of f 1, g1, and g3 form factors in terms ofSU(3)
Clebsch-Gordan coefficients and two functions per set,
corresponding to the symmetric octet representation and
other to the antisymmetric one. Because of the isospin
variance, the symmetric octet cannot contribute to the ve
current form factors. Next, the pairs of the functions desc
ing g1 and g3 form factors are not independent, but corr
lated through the Goldberger-Treiman relation. T
Goldberger-Treiman relation extrapolates the bary
baryon-meson (gBB8M) strong coupling constant atq25mM

2

to its q250 value. The pole dominance of theg3 form factor
of the DS51 hadronic matrix elements is carried by kaon
and, therefore, this extrapolation may lead to a;10% error
in g3 values — good enough for our purposes~in Ref. @32#
the semileptonic LFV baryon decays were evaluated incl
ing the f 2 form factor in calculations!. After applying all of
the above-mentioned approximations, the final form of
hadronic matrix elements reads
e
o
rk-

ix
li-
-

s

g

is

of
es
he
s

e
he
-

or
-

-

-

,

-

e

^B8uVm~0!2Am~0!uB&'ūB8@gm f 1
B8B1gmg5g1

B8B

1qmg5g3
B8B#uB

'ūB8F f 1
B8B~0!gm1g1

B8B~0!

3S gmg51qmg5

mB1mB8

mK02q2 D GuB ,

~37!

where f 1(0) andg1(0) are given in Table I.
The vector and axial-vector form factors have a ve

weak q2 dependence, determined by the vector and ax
vector meson poles and, therefore, in the following, we c
sider them as constants. Since the largest momentum tra
for all decays of our interest, (mS12mp)2, is much smaller
than any of the vector meson or axial-vector meson mas
the q2 dependence of these two form factors may also
neglected.

Hence, the expression for theB→B8e2m1 amplitudes is
given by

T~B→B8e2m1!5aBB8
me ūega~12g5!vmūB8

3F f 1
BB8~0!ga1g1

BB8~0!

3S gmg51qmg5

mB1mB8

mK0
2

2q2 D GuB , ~38!

where again the composite form factor

aBB8
me

5
iaW

2

16MW
2

Fbox
meds ~39!

contains a factor of the order ofsL
nesL

nm . The branching ratio
B(B→B8e2m1) is given by

TABLE I. The values of the form factorsf 1 and g1 at zero
momentum transfer.

Process f 1(0) g1(0)

S1→pe2m1 21 2D1F
S0→ne2m1

2
1

A2
2D

A2
1

F

A2
L→ne2m1

2
3

A6
D

A6
1

3F

A6
J0→Le2m1

3

A6 2
D

A6
1

3F

A6
J0→S0e2m1

2
1

A2 2
D

A2
1

F

A2
J2→S2e2m1 1 2D2F
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B~B→B8e2m1!5
1

4p3mB
3GB

uaBB8
me u2E

~mm1me!2

~mB2mB8!2

dt

3@A1~ f 1
21g1

2!1A2~ f 1
22g1

2!1A3~ f 1g1!

1A4~g1g3!1A5~g3
2!#. ~40!

A1–A5 are kinematical functions defined in Appendix D.

VI. NUMERICAL RESULTS

The numerical analysis of the results is performed for
extensions of the SM with two or more heavy neutrinos. T
nR52 case is treated with the special care since it allow
comparison with thenR52 version of the theory with heav
Majorana neutrinos for which theB andC matrices may be
evaluated exactly. The additional parameters of the mode~s!
introduced with heavy neutrinos are three heavy-neutrin
lepton mixingssL

n l and heavy-neutrino massesmNi
. The sL

n l

are constrained by experimental upper limits~10!, while the
upper limit on the heavy-neutrino masses is given
perturbative-unitarity relations~14! and~15!. For upper limit
of (sL

nm)2 we take the ratio of upper limits of (sL
ne)2(sL

nm)2

and (sL
ne)2.

The numerical results depend also on hadronic obs
ables and quark parameters. In the calculations, the ex
mental ~absolute! values for the CKM-matrix elements ar
used@1# and the quark-mass values@1,33,34#

mu50.005 GeV, md50.010 GeV,

ms50.199 GeV, mc51.35 GeV,

mb54.3 GeV, mt5176 GeV. ~41!

For the pseudoscalar decay constants, experimental va
are used@1#,

f p0584.1 MeV, f K65113 MeV, f h594 MeV,
~42!

and due to isospin symmetry,f K05 f K̄0' f K6.
With the input parameters defined above, one can sta

discussion of the numerical results. We are interested in
branching ratios of LFV leptonic and semileptonic decays
light pseudoscalar mesons and LFV semileptonic decay
light baryons. Numerical results are presented only for
most interesting decays, that is, for decays of particles w
small total decay widths and/or strong LFV decay chann

KL→em, p0→em, h→em,

K1→p1em,

S1→pem, S0→nem, L→pem,

and J0→Lem. ~43!

For instance,h8→em is not studied becauseh8 has a large
total decay width compared to other flavor-neutral pseu
scalar mesons. Similarly, theJ0→S0e2m1 and J2
e
e
a

–

y

v-
ri-

es

a
e
f
of
e
h
s:

-

→S2e2m1 decays are not discussed since they are stron
phase-space suppressed compared to other LFV baryon
cays.

The numerical results are shown in five figures and in o
table. If (sL

n l)2 values are not explicitly stated, the results

the figures are evaluated for maximal (sL
n l)2 mixings, (sL

ne)2

50.0071, (sL
ne)2(sL

nm)255.631028, and (sL
nt)250.01. A full

description of each figure is given in the text, together w
the interpretation of the results presented by the cur
shown in the figure. To avoid ambiguities, where they co
emerge, the curves in the figures are designated or chara
ized in two ways — with letters and by type and weight
the line.

Figure 1 shows the dependence of upper bounds
branching ratios~UBBRs! on the heavy-neutrino mass, in th
case of degenerate neutrino massesmNi

5mN , i

51, . . . ,nR . The letters a, b, c, d, e, f, and g destignate
UBBRs for KL→e2m1, p0→e2m1, h→e2m1, K1

→p1e2m1, S1→pe2m1, S0→ne2m1, and L→e2m1,
respectively. Left and right diagrams of the figure show t
results obtained in modelsVnR , nR52,4, and modelsAnR ,
nR52,4, respectively. The thick~thin! lines are results ob-
tained fornR52 (nR54). ThemN domain in theVnR model
is larger by a factor ofA2 than in theAnR model. ThemN

domain in thenR54 model is larger by a factor ofA2 than
in thenR52 model from the same class of models. Conce
ing the mN dependence, UBBRs for LFV processes stud
here may be divided into two groups, the group of proces
having only a box contribution to the amplitude, and t
group having box andZ-boson exchange contributions. Th
UBBRs within these groups have a very similarmN depen-
dence. The UBBRs in theVnR models are independent ofnR

FIG. 1. The UBBRs for the most interesting LFV hadron deca
versusmN5mNi

, i 51,nR in modelsV2, V4, A2, andA4.
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TABLE II. The values for maximal UBBRs for degenerate heavy-neutrino masses and for two s
(sL

n l)2 mixings: for maximal mixings and for (sL
ne)250.00355, (sL

nt)250.03, and (sL
ne)2(sL

nm)252.831028

~results in brackets!.

Model V2 V4 A2 A4

(mN)max ~GeV! 9500 13400 6700 9500
~6800! ~9600! ~4800! ~6800!

KL→e2m1 2.9310216 3.3310216 2.6310216 2.9310216

(1.3310216) (1.5310216) (1.1310216) (1.3310216)
p0→e2m1 3.2310216 1.4310215 2.9310218 3.2310216

(1.4310216) (6.3310216) (1.4310218) (1.4310216)
h→e2m1 7.5310218 3.2310217 7.5310220 7.5310218

(3.4310218) (1.5310217) (3.5310220) (3.4310218)
K1→p1e2m1 3.7310218 4.2310218 3.2310218 3.7310218

(1.7310218) (1.9310218) (1.4310218) (1.7310218)
S1→pe2m1 1.8310220 2.0310220 1.6310220 1.8310220

(7.8310221) (8.9310221) (6.8310221) (7.8310221)
J0→Le2m1 1.7310220 2.0310220 1.5310220 1.7310220

(7.6310221) (8.7310221) (6.7310221) (7.6310221)
S0→ne2m1 1.1310220 1.2310220 9.5310221 1.1310220

(4.8310221) (5.5310221) (4.2310221) (4.8310221)
r
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BR
~the thick and thin lines coincide!, and have a very simila
mN dependence as the UBBRs in theA4 model. The UBBRs
in the AnR models depend onnR . That dependence is wea
in processes whose amplitudes have box contribution to
amplitude only, but is very strong if the amplitude of th
process contains aZ-boson exchange contribution. Th
strong dependence is a consequence of thespecial formof B
matrices in theA2 model. For degenerate heavy-neutri
masses, the special form ofB matrices leads to the zer
contribution of theHZ(x,y) loop function to the amplitudes
In all otherAnR models and in allVnR models, theHZ(x,y)
loop function gives a maximal contribution. Namely, theB
matrix elements are unknown, and, therefore, the product
the B matrix elements have to be replaced by the larg
value they can assume. That explains the;25 times larger
UBBRs in the A4 model than in theA2 model at mN
56700 GeV.

For degenerate heavy-neutrino masses, the maximal
ues for UBBRs for the most interesting LFV leptonic mes
decays, LFV semileptonic meson decays, and semilept
baryon decays are given in Table II for two sets of (sL

n l)2

mixings. Among the decays having a box amplitude o
~box and Z-boson exchange amplitudes!, the KL→e2m1

(p0→e2m1) decay has the largest UBBR. In the followin
discussion, only these two processes will be studied. I
interesting that in modelsV2, V4 andA4, thep0→e2m1

may have larger UBBRs thanKL→e2m1, despite thep0

meson having a much larger total decay rate than theKL
meson. That makesp0→e2m1 decay interesting for experi
mental studies of lepton-flavor violation. In models with
largernR , the ratio of maximal UBBRs forp0→e2m1 and
KL→e2m1 decays is larger.

The maximum values for UBBRs are not obtained
equal heavy-neutrino masses. For instance, in theV2 model,
if one of the masses is larger by the factorr2 than the other,
the maximum forp0→e2m1 is reached atr251.85, and it
e

of
st

al-

ic

y

is

r

is 7.7 times larger than the corresponding maximum va
given in Table II. Similarly, the maximum UBBR value fo
KL→e2m1 decay in theV2 model is obtained forr255.3
and it is equal 5.0310216. The maximum UBBR values for
p0→e2m1 decay inV3 and V4 models are found atr2
51.6 andr251.5, respectively, and they are equal to 4.
310215 and 6.41310215. The maximum UBBR values for
KL→e2m1 decay inV3 andV4 models are reached atr2
54.5 andr254.1 and they are equal to 5.04310216 and
5.11310216, respectively. Notice that the maximum UBB
value forKL→e2m1 decay almost does not depend on t
number of heavy neutrinos, while the maximum UBB
value forp0→e2m1 decay has an almost linear dependen
on nR . For largernR values, we expect a weakernR depen-
dence of the maximum UBBR value forp0→e2m1 decay.

Figure 2 compares themN1
dependence of UBBRs fo

KL→e2m1 and p0→e2m1 decays for differentr2 values
evaluated in modelsV2 andA2. The letters a, b, c, d, e, f, g
h, and i correspond to ther2 values 1, 3, 10, 30, 100, 300
1000, 3000, and 10000, respectively. In the right diagram
Figs. 2a and 2b the curves strongly overlap, and, theref
only curves belonging tor2 values 1, 3, 10, and 300 ar
marked at the end points of the curves. The left and ri
diagrams of the figures show the results of theV2 andA2
models, respectively. Figures 2a and 2b show the results
KL→e2m1 decay andp0→e2m1 decay, respectively. The
UBBR curves forKL→e2m1 andp0→e2m1, evaluated in
the V2 model forr2Þ1, lie above ther251 curves. As the
r2 increases, the UBBR curves first tend to separate from
r251 curves, and then, afterr2 reaches some critical value
begin to approach back to ther251 curves. As ther2 tends
to infinity the UBBR curves cannot be distinguished from t
r251 curves. This behavior is a manifestation of the dec
pling of very heavy neutrinos from the light particles. Th
second interesting effect in the UBBR curves is the appe
ance of peaks at which the UBBR curves break. The UB
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curves ofKL→e2m1 decay show one one peak, while th
UBBR curves ofp0→e2m1 decays show two peaks. Th
peaks emerge at somer2 value, and asr2 increases they
move towardsmN1

50, and disappear. These peaks occu

or above themN1
values at which some of the upper boun

on BlNi
matrix elements begin to be evaluated using Eq.~19!.

Starting fromr251, ther2 value increases and the doma
of mN1

values becomes smaller, but forr2*30, the maximal

mN1
value is almost independent ofr2. Notice that the maxi-

mal values for UBBRs are not reached at the largestmN1

value on ther251 curve, but at the peak~first peak forp0

→e2m1 decay! for r2'5. As mentioned, the maximum
UBBR value forKL→e2m1 andp0→e2m1 is ;2 and;7
times larger than the maximum UBBR at the largestmN1

value on the r251 curve. The UBBR curves forKL
→e2m1 andp0→e2m1 evaluated in theA2 model do not
have peaks, because in this model only the upper bound~16!
is imposed on the heavy-neutrino masses. Asr2 increases,
the domain of themN1

values quickly reduces, and at som

critical r2 value it disappears. That is, ther2 domain is
bounded, too. Forr2 smaller than this critical value, th
UBBR curves show similar ‘‘decoupling’’ behavior—asr2
increases, forr2&3 the curves move away from ther251
curve, and forr2*3 move toward it. Ther2 dependence o
this ‘‘decoupling’’ is much weaker than in other models—
the UBBR curves almost overlap. As the domain of ther2
values is finite one cannot truly talk about the decoupling
very heavy neutrinos.

Figure 3 compares the dependence of UBBRs forKL

FIG. 2. The UBBRs forKL→em and p0→em decays versus
mN1

for severalr2 values in modelsV2 andA2.
t

f

→e2m1 andp0→e2m1 decays onmN5mNi
for several val-

ues of the squares of mixing parameters (sL
n l)2. The less in-

clined lines correspond toKL→e2m1 decay while the
steeper lines representp0→e2m1 decay. The curves in the
left diagrams of Figs. 3a and 3b are found inV2 and A2
models, respectively. Figure 3a gives the UBBR curves
(sL

nt)250.01 and three pairs of„(sL
ne)2,(sL

ne)2(sL
nm)2

… values,
(0.0071,5.631028), (0.0071,2.831028) and (0.00355,2.8
31028), denoted bya ~solid line!, b ~solid gray line!, andc
~dashed line!, respectively. Figure 3b represents the UBB
for (sL

ne)250.0071, (sL
nm)255.631028 and three (sL

nt)2 val-

ues, (sL
nt)250.01, (sL

nt)250.02, and (sL
nt)250.03, designated

by a ~solid line!, b ~solid gray line!, and c ~dashed line!,
respectively. The figures show that the UBBRs forKL

→e2m1 depend only on the product of mixings (sL
ne)2(sL

nn)2

(b andc curves in Fig. 3a coincide, anda, b, andc curves in
Fig. 3b coincide!. The p0→e2m1 curves depend on al
(sL

n l)2 parameters. A decrease~increase! of the parameter

(sL
ne)2 or (sL

nt)2 leads to a larger~smaller! mN domain. The
maximal UBBR value forp0→e2m1 decay slightly de-
creases~slightly increases! in the V2 (A2) model as (sL

nt)2

or (sL
ne)2 increases. It is interesting that in theV2 model

KL→e2m1 and p0→e2m1 curves always cross almost a
the maximummN1

value for any particular values of th

mixing parameters. As we will see in Fig. 5, only ther2
value changes that property, that is, changes the interse
point ~or relative position! of KL→e2m1 and p0→e2m1

curves.

FIG. 3. The UBBRs forKL→em and p0→em decays versus
mN1

for several (sL
ne)2 and (sL

nt)2 values in modelsV2 andA2.
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Figure 4 presents the dependence of the UBBRs on
ratiosr i , i 52,3,4, in the modelsV2, V4, A2, andA4. Fig-
ures 4a and 4b compares ther2 dependence of UBBRs o
KL→e2m1 and p0→e2m1 decays, respectively, inVnR
models andAnR models, assuming thatmN1

5mN3
5mN4

.
The solid~dotted! lines represent the results in models w
two ~four! heavy neutrinos. The letters a, b, and c den
curves obtained formN1

52000 GeV,mN1
56700 GeV, and

FIG. 4. The UBBRs forKL→em and p0→em decays versus
ratiosr i5mNi

/mN for severalmN1
values in modelsV2, V4, A2,

andA4.
e

e

mN1
54000 GeV, respectively. The results given in the l

diagrams of Figs. 4a and 4b are obtained inVnR (V2 and
V4) models, while those on the right diagrams are obtain
in AnR (A2 and A4) models. In Fig. 4c, the behavior o
UBBRs for both KL→e2m1 and p0→e2m1 decays are
shown together, but in a much largerr i domain. The main
idea of this figure is to show thedecouplingof very heavy
neutrinos from light particles. Both the left and right di
grams of Fig. 4c present only the results formN1

52000
GeV. The left diagram of Fig. 4c is an enlarged version
the results in the left diagrams of Figs. 4a and 4b formN1

52000 GeV. The letter destinations and the meaning of
types of curves in the left diagram of Fig. 4c are the same
in Figs. 4a and 4b, and it is also assumed thatmN1

5mN3

5mN4
. The right diagram of Fig. 4c shows only the results

the V4 model, but for one, two or three neutrinos with i
creasing mass, corresponding tomN1

5mN3
5mN4

and mN2

5mN1
3r2 ~dotted line!, mN1

5mN4
and mN2

5mN3
5mN1

3r2 ~gray line!, and mN2
5mN3

5mN4
5mN1

3r2 ~dashed
line!. Having defined the notation, we can now proceed w
the discussion of the results shown in Fig. 4. The res
obtained in theA2 model differ considerably from the resul
of other models. In theA2 model, the domain ofr2 values is
finite and strongly depends onmN1

. The UBBR values in the

A2 model are smaller than in other models, slightly forKL
→e2m1 decay ~for decays depending on box amplitud
only! and considerably forp0→e2m1 decay ~for decays
with Z-boson exchange amplitude!. The UBBR curves are
smooth, increase slower than in other models, and in the
of decays with aZ-boson exchange amplitude often have
maximum @20,26#. The UBBR curves corresponding to th
larger mN1

lie above those evaluated for smallermN1
. In

other models~represented byV2, V4, andA4 models in Fig.
4!, ther2 domain extends from one to infinity. Every UBBR
curve has two peaks. One is at ther2 value at which the use
FIG. 5. The UBBRs forKL

→em andp0→em decays versus
(sL

ne)2 and (sL
nt)2 for severalmN1

values and severalr2 values in
modelsV2 andA2.
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of upper limits for the loop form factors~B9! starts to give
smaller UBBR value than the upper limits~B8!. The other is
at the point at whichBmNi

1 becomes smaller thanBmNi

0 . The

second peak is visible only in processes depending o
Z-boson exchange amplitude. Namely, in the box am
tudes, ther2 value at the second peak is so large that the p
of the amplitude depending on the massmN2

is negligible.

The UBBR curves inVnR models are almost independent
nR , but they depend onmN1

. Namely, the position of both

peaks strongly depends onmN1
. Generally, the UBBR curves

corresponding to the largermN1
values lie above those evalu

ated for smallermN1
. In the models withnR.2 the UBBRs

depend significantly on the number of very heavy neutrin
in the ranges 10&r2&150 and 5*r2*20 000 for decays
depending on a box amplitude only and on box andZ-boson
exchange amplitudes, respectively. For any process,
UBBR for r2→` and the UBBR atr251 are equal. As the
upper bound on the UBBR terms depending on masses
isfying mNi

'mN1
is constructed using Schwartz’s inequali

~B4!, these UBBR terms are equal atr251 and forr2→`,
showing that UBBR term depending onmN2

becomes equa

to zero in ther2→` limit. This is a manifestation of decou
pling of heavy particles from the light sector of the model.
processes depending on box amplitudes only, the heavy
trinos decouple faster than in processes depending on
andZ-boson exchange amplitudes. For example, for the
rameters of Fig. 4c, UBBRs ofKL→e2m1 and p0

→e2m1 decays reach 10% larger value than UBBRs atr2
51 at r25200 andr2533 000, respectively. The slow de
coupling of heavy neutrinos in processes depending
Z-boson exchange amplitudes is a consequence of mi
amplitude terms, containing heavy (mN2

) and light (mNi
,i

Þ2) heavy neutrinos. The processes depending onZ-boson
exchange amplitudes illustrate that thenondecoupling win-
dow, that is, the region of mass parameters where la
heavy-neutrino masses have a considerable effect on the
plitude, heavily depends on the structure of the amplitude
the process, and that it may extend over several order
magnitude of heavy-neutrino masses. The UBBR curve
AnR , nRÞ2, models have the same properties as the UB
curves inVnR models.

Figures 5a and 5b give the dependence of UBBRs
squares of the mixing parameters (sL

ne)2 and (sL
nt)2, respec-

tively. The thinner lines represent the results forKL
→e2m1 decay, and the thick ones the results forp0

→e2m1 decay. The left two diagrams in Fig. 5a and Fig.
were evaluated in the modelV2, while the right ones were
obtained in the modelA2. The upper two diagrams of Fig. 5
and Fig. 5b show the (sL

ne)2 and (sL
nt)2 dependence of UB-

BRs, respectively, formN5mN1
5mN2

values 2000 GeV~a,
solid lines!, 6000 GeV~d, dotted lines!, 8000 GeV~b, dotted
lines!, and 9000 GeV~c, dashed lines!. The lower two dia-
grams of Fig. 5a and Fig. 5b compare the (sL

ne)2 and (sL
nt)2

dependence of UBBRs, respectively, forr251 ~a, solid
lines!, r253 ~b, dotted lines!, andr25100 ~c, dashed lines!.
As expected from the structure of the amplitudes, the res
show that the UBBRs comprising the box diagram amplitu
a
i-
rt

s

he

at-

u-
ox
a-

n
g

e
m-
f
of
in
R

n

lts
e

only do not depend on (sL
nt)2, and have a linear (sL

ne)2 de-
pendence for almost allmN1

andr2 values. The slight devia-

tion from the linear (sL
ne)2 dependence is found only in th

curve evaluated forr25100. The UBBRs havingZ-boson
exchange amplitudes show something between linear and
bic (sL

ne)2 dependence, and between (sL
nt)2 independence and

quadratic (sL
nt)2 dependence. This behavior is expected fro

the structure of the amplitudes. The deviations from
smooth (sL

nt)2 and (sL
ne)2 behavior~peaks! of curves evalu-

ated forr2Þ1 is a consequence of passing through the (sL
n l)2

values, at which the the matrix elementBlNi
of the heavier of

two heavy neutrinos begins to satisfy thesL
n l-independent

upper bound~19!. For the same reason, a departure from
linear (sL

ne)2 dependence in theKL→e2m1 curve appears.
The upper four diagrams of Figs. 5a and 5b show how
(sL

ne)2 and (sL
nt)2 domains reduce asmN enlarges. Beyond

the maximalmN values, defined in Eqs.~17! and ~16!, the
curves do not exist. The lower four diagrams of Figs. 5a a
5b manifest the difference betweenA2 andV2 models~all
other models! concerning ther2 dependence. In theA2
model, ther2 domain depends onr2 considerably. Forr2
not satisfying Eq.~16! the curves do not exist. In theV2
model~all other models!, the (sL

ne)2 and (sL
nt)2 UBBR curves

exist for anyr2 value, if mN1
<mN1

0 . In the left two of the

lower diagrams one can follow how ther2Þ1 curves, for
ascendingr2, depart from ther251 curve for smallr2 val-
ues, and approach it back asr2→`. These results, togethe
with the similar behavior ofmN1

curves, shown in Figs. 2a
and 2b, show that the decoupling of very heavy neutrin
occurs for all allowed values of the remaining free-parame
space.

VII. SUMMARY AND CONCLUSION

LFV decays of light hadrons have been studied and ev
ated in extensions of the standard model with heavy Di
(VnR models! and Majorana (AnR models! neutrinos. The
expressions for perturbative unitarity bounds on heavy n
trino masses were found to have the same form inVnR mod-
els andAnR , nRÞ2, models, but are different from the pe
turbative unitarity bound in theA2 model. The difference
comes from thedifferent number of free parametersdefining
theB andC matrices. The perturbative unitarity bounds le
to the bounded space of heavy-mass values inA2 models,
while in other models all heavy-neutrino masses, except
lightest one, may assume any value. More precisely, the
turbative unitarity bounds on all masses, except the ligh
one, do not constrain a heavy-neutrino mass, but the pro
of the heavy-neutrino massmNi

and absolute value of aBlNi

matrix element. So the enlargement of a specific hea
neutrino mass to infinity leads to a zero value for theBlNi

matrix elements. The minimal value of the lightest heav
neutrino mass is bounded in all models. InAnR , nRÞ2,
models andVnR models, the maximal value of the lighte
heavy-neutrino mass depends considerably on the numb
heavy neutrinosnR .

The infinite domain of heavy-neutrino masses inVnR and
AnR , nRÞ2, models gives the possibility of explicit study o
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the decouplingof very heavy-neutrinos from the lighter pa
ticles @35# in the model, looking for the mass dependence
the branching ratios in the limit of very large heavy neutri
mass values. For such a study, explicit expressions for
branching ratios for processes depending on heavy neutr
or at least the upper bounds on the branching ratios, mus
found. In fact, only the upper bounds on the branching ra
of such decays may be found, because theB matrices are not
explicitly known in models with an infinite heavy-neutrin
mass domain. The upper bounds of branching ra
~UBBRs! for LFV decays of light hadrons were found in th
paper. This was done using a combination of Schwar
inequalities for sums containing eitherBlN matix elements or
matrix elements of the Kobayashi-Maskawa matrix. Spec
cally, if the matrix elements in a sum were unknown, a
their absolute values were expected to be of the same o
of magnitude, the usual Schwartz’s inequality was used
any of the matrix elements was known to have a sma
absolute value than others in the sum, the term containin
was extracted, replaced by its absolute value, and the re
the sum evaluated using Schwartz’s inequality. If any of
parameters which influence the absolute value of any ma
element appearing in the sum changes continuously, su
procedure leads to discontinuous UBBR curves at po
where the matrix element becomes ‘‘small.’’ For that reas
at the parameter points at which the discontinuity would
cur the UBBR values were evaluated with and without e
traction of the term containing a ‘‘small’’ matrix elemen
and the smaller of the two values was taken as the UBBR
that point. In such a way the discontinuities were remov
but the UBBR curves gain peaks. The peaks are artifact
our ‘‘upper bound’’ procedure. Nevertheless, they are he
ful in discussions, because each peak tags one point on
UBBR curves, and, therefore, one can follow the mapping
points in the UBBR curves as any of the free parame
changes. Using the UBBRs obtained in such a way,
found that the very heavy neutrinos decouple in the infin
mass limit, and that is valid for all values of the remaini
free-parameter space, when one or more masses tend
finity. There is one more interesting property of UBB
curves concerning decoupling and ‘‘nondecoupling’’
heavy neutrinos. The region of heavy-neutrino masses
which the heavy neutrinos have a large effect on the de
rate, the so-callednodecoupling window, may be very large,
and it strongly depends on thestructureof the amplitude of
the process. In processes with aZ-boson exchange amplitud
it extends over four to five orders of magnitude in heav
neutrino mass~es!, while in processes depending on a b
amplitude only, the dependence extends over two order
magnitude of heavy-neutrino mass~es!. So large ‘‘nondecou-
pling’’ windows may make the decoupling of heavy particl
ineffective in the experimentally interesting regions of p
rameter space.

The UBBR curves, obtained with the above procedu
have a few more nice properties. In the case of degene
neutrinos, the UBBRs as functions ofmN are independent o
nR , although the maximummN values depend onnR . If one
mass increases and the others are kept constant, the UB
are almost independent ofnR . Further, the curves fo
UBBRs for decays containing a box diagram amplitude o
are slightly larger than the corresponding curves obtaine
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theA2 model. That shows that the upper bounds obtaine
VnR and AnR , nRÞ2, models approximate the expressio
obtained in a model with exact expressions forB matrices
very well. The UBBRs dependent on theZ-boson exchange
amplitudes differ considerably from the correspondi
curves in theA2 model, but that can be explained by th
specific phase structure ofB matrices which makes the con
tribution of the largest loop function in theZ-boson ampli-
tude equal to zero. The unknown phase structure ofBlN ma-
trix elements inVnR and AnR , nRÞ2, models makes the
largest loop function contribution in theZ-boson amplitude
the dominant one. This makes the processes having
Z-boson contribution more interesting than in theA2 model,
from the experimental point of view. Next, all UBBR curve
obtained inVnR andAnR , nRÞ2, models lie above the cor
responding curves in theA2 models. In fact, the UBBRs we
obtained give the upper bounds for the branching ratios
any extension of standard model with heavy neutrinos, with
B andC matrices satisfying relations~6!.

Concerning the hadron part of the LFV amplitudes
hadron decays, they were evaluated in standard ways. Fo
pseudoscalar meson to vacuum matrix element, parti
conserved axial-vector current~PCAC! was used. The
pseudoscalar-to-pseudoscalar matrix elements were ev
ated in two ways. The first evaluation is based on the ch
Lagrangian extended by vector mesons, while the other
uses the form factor decomposition of the pseudoscalar
pseudoscalar matrix element. The first approach give
somewhat too large a value for the form factorf 1 at the zero
momentum transfer, but allows one to show that the ma
element KL→p0 is equal to zero. In the second on
the f 1(0) is extracted from the experiment, but theKL
→p0 matrix element cannot be evaluated. After renorma
ing the f 1(0) to the value obtained in the second approa
the first one gives almost the same values forK1

→p1e2m1 UBBRs as the second one. The baryon-
baryon matrix elements were evaluated using the form fa
decomposition of generic matrix elements,SU(3)-flavor
symmetry to connect chargef 1 and axial chargeg1 form
factors, and Goldberger-Treiman relation for finding effe
tive pseudoscalar form factorsg3 from g1 form factors. The
effective scalar form factorf 3 and weak electricity form fac-
tor g2 were neglected since corresponding terms violateG
parity, and the weak magnetism form factorf 2 was estimated
to give a negligible contribution to the hadron amplitud
These baryon-to-baryon matrix elements may be found
standard books and, in the context of LFV in baryon deca
were evaluated before, includingf 2 form factors@32#.

From the experimental point of view, the leptonic LF
decays of mesons are most interesting, specifically the
cays KL→e2m1 and p0→e2m1. Namely, the maximal
UBBRs for semileptonic LFV decays of mesons and baryo
are smaller than;10217 and ;10220, respectively. The
maximal UBBRs for decaysKL→e2m1 and p0→e2m1

may reach values as large as;5310216 and &(2nR22)
310215, respectively. These results are still several orders
magnitude below the present experimental upper limits. T
maximal results depend on the type of the model. They
larger in the models with more heavy neutrinos. They
larger in VnR models than inAnR models. As far as we
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know, only KL→e2m1 decay was extensively studied. W
would like to stress that the ‘‘nondecoupling’’ effects, a
pearing in processes comprising theZ-boson exchange am
plitude, could make thep0→e2m1 decayequally interest-
ing for experimental study of lepton-flavor violation asKL
→e2m1 decay. The UBBR forp0→e2m1 may be an order
of magnitude larger than the UBBR forKL→e2m1 decay.
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APPENDIX A: FORM FACTORS AND LOOP FUNCTIONS

The composite form factorsaP
me , aK1p1

me , andaBB8
me , given

in Eqs.~22!, ~26!, and~39!, respectively, are defined in term

of composite form factorsFZ
me , Fbox

t l 8dadb , andFbox
t l 8dadb which

are listed here for the convenience of the reader:

FZ
me5 (

i , j 51

nR

BmNi
* BeNi

@dNiNj
„FZ~lNi

!12GZ~0,lNi
!…

1CNiNj
* „GZ~lNi

,lNj
!2GZ~0,lNi

!2GZ~0,lNj
!…

1CNiNj
HZ~lNi

,lNj
!#,

Fbox
meuu5(

i 51

nR

(
j 51

nG

BmNi
* BeNi

Vudj
* Vudj

@Hbox~lNi
,ldj

!

2Hbox~lNi
,0!2Hbox~0,ldj

!1Hbox~0,0!#

1(
i 51

nR

BtNi
* Bl 8Ni

@Hbox~lNi
,0!2Hbox~0,0!#,

Fbox
medadb5(

i 51

nR

(
j 51

nG

BmNi
* BeNi

Vujda
Vujdb

* @Fbox~lNi
,luj

!

2Fbox~lNi
,0!2Fbox~0,luj

!1Fbox~0,0!#

1ddadb(i 51

nR

BtNi
* Bl 8Ni

@Fbox~lNi
,0!2Fbox~0,0!#,

~A1!

where lX5mX
2/MW

2 . The composite loop form factors ar
expressed in terms of the loop functionsFZ , GZ , HZ , Fbox
andHbox given by

FZ~x!52
5x

2~12x!
2

5x2

2~12x!2
lnx,

GZ~x,y!52
1

2~x2y!Fx2~12y!

12x
lnx2

y2~12x!

12y
lnyG ,
t
-

HZ~x,y!5
Axy

4~x2y!Fx224x

12x
lnx2

y224y

12y
lnyG ,

Fbox~x,y!5
1

x2yF S 11
xy

4 D S 1

12x
1

x2lnx

~12x!2
2

1

12y

2
y2lny

~12y!2D 22xyS 1

12x
1

xlnx

~12x!2
2

1

12y

2
ylny

~12y!2D G ,

Hbox~x,y!5
1

x2yF S 41
xy

4 D S 1

12x
1

x2lnx

~12x!2
2

1

12y

2
y2lny

~12y!2D 22xyS 1

12x
1

xlnx

~12x!2
2

1

12y

2
ylny

~12y!2D G . ~A2!

More details how these expressions can be derived ma
found in Refs.@20,26#.

APPENDIX B: SCHWARTZ’S INEQUALITIES AND
UPPER BOUNDS ON FORM FACTORS

Let a5(a1 , . . . ,an), b5(b1 , . . . ,bn), c
5(c1 , . . . ,cn), . . . be the vectors of ann-dimensional vec-
tor space. From Schwartz’s inequality for any pair of the
vectors,

ua•bu[U(
i 51

n

aibiU<S (
i 51

n

uai u2D 1/2S (
j 51

n

ubj u2D 1/2

[uauubu,

~B1!

one can derive the folowing inequalities:

ua1bu<uau1ubu, ~B2!

U(
i 51

n

aibiciU<S (
i 51

n

uai u2D 1/2S (
j 51

n

ubj u2D 1/2S (
k51

n

ucku2D 1/2

[uauubuucu, ~B3!

U(
i 51

n

aibiciU<uauubu^c&1uauubuS (
i 51

n

uci2^c&u2D 1/2

,

~B4!

where^c&5( i 51
nci /n. The obvious inequality

U(
i 51

n

aibiU<(
i 51

n

uai uubi u ~B5!

may be understood as a special form of the inequality~B2!.
Using the above-derived inequalities, one can write down
upper limits on absolute values of composite form fact
defined in Eqs.~22!, ~26!, and ~39!. The absolute values o
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composite form factors may be written in terms of absol
values of composite loop form factors,

uaP0
meu<

aW
2

16MW
2

f P0F uaZuuFZ
meu1uabox

uu uuFbox
meuuu

1 (
da ,db5d,s

uabox
dadbuuFbox

medadbuG ,
uaK1p1

me u5
aW

2

16MW
2

uFbox
mesdu,

uaBB8
medsu5

aW
2

16MW
2

uFbox
medsu. ~B6!

Here only in the first relation is the inequality~B2! used.
Introducing abbreviations for the combinations of the lo
functions appearing in the composite loop form factors,
e f Z~x!5FZ~x!12G~0,x!,

gZ~x,y!5GZ~x,y!2GZ~0,x!2GZ~0,y!,

hZ~x,y!5HZ~x,y!,

f box~x,y!5Fbox~x,y!2Fbox~x,0!2Fbox~0,y!1Fbox~0,0!,

f̃ box~x!5Fbox~x,0!2Fbox~0,0!,

hbox~x,y!5Hbox~x,y!2Hbox~x,0!

2Hbox~0,y!1Hbox~0,0!,

h̃box~x!5Hbox~x,0!2Hbox~0,0!, ~B7!

and using the unequalities~B1!, ~B2!, ~B4!, ~B5! and defini-
tion ~8! for sL

n l , one can derive the following upper limits o
the absolute values of the composite loop form factors:
es
he best

y
o

ms over
y

uFZ
meu<sL

nmsL
neF u^ f Z&u1H (

i 51

nR

@ f Z~lNi
!2^ f Z&#2J 1/2G1sL

nmsL
ne(

l
~sL

n l !2F u^gZ&u12H (
i 51

nR

@^gZ~lNi
!&N2^gZ&#2J 1/2

1H (
i , j 51

nR

@gZ~lNi
,lNj

!2^gZ~lNi
!&N2^gZ~lNj

!&N1^gZ&N#2J 1/2

u^hZ&u12H (
i 51

nR

@^hZ~lNi
!&N2^hZ&#2J 1/2

1H (
i , j 51

nR

@hZ~lNi
,lNj

!2^hZ~lNi
!&N2^hZ~lNj

!&N1^hZ&N#2J 1/2G ,

uFbox
medadbu<sL

nmsL
neS ddadbF u^ f̃ box&u1H (

i 51

nR

@ f̃ box~lNi
!2^ f̃ box&#2J 1/2G1(

j 51

nG

uVujda
uVujda

uF H (
i 51

nR

@ f box~lNi
,luj

!

2^ f box~luj
!&N#2J 1/2

1u^ f box~luj
!&NuG D ,

uFbox
meuuu<sL

nmsL
neF S u^ h̃box&u1H (

i 51

nR

@ h̃box~lNi
!2^ h̃box&#2J 1/2D 1(

j 51

nG

uVudj
uuVudj

uS H (
i 51

nR

@hbox~lNi
,ldj

!2^hbox~ldj
!&N#2J 1/2

1u^hbox~ldj
!&Nu D G . ~B8!

In the above inequalities,^ & denotes the average over all indices on which the loop function depends, while^ &N denotes the
average over heavy-neutrino indices only (^ f (•••)&N5( i 51

nR f (lNi
, . . . )/nR). Here a comment is in order. The absolute valu

of the elements of CKM matrix elements are quite well known, and they differ in magnitude considerably. Therefore, t
inequality to use is~B5!. Using relation~B4! and the unitarity of the CKM matrix instead of relation~B5! one can obtain a
;107 times larger result. On the other hand, the absolute values of the matrix elements ofB matrices are crudely bounded b
Eqs.~18! and~19!. If all B matrix elements satisfy Eq.~18!, the best inequality to use is~B4!, and the best approximation t
the loop form factors is~B8!. If someBlNi

matrix elements satisfy Eq.~19! and if the~19! bound is much smaller than the~18!

bound, for theseBlNi
matrix elements it is much better to use inequality~B5!. The inequality~B4! and approximation~B8!

would lead to divergent results for absolute values of composite loop form factors in the limitmNi
→` for any ofmNi

masses.
Therefore, we have constructed the upper bounds of absolute values of composite loop form factors in which the su
heavy neutrinos are divided into two groups, depending on which inequalityBlNi

satisfy. The part of a sum over heav
neutrinos satisfying the bound~18! is approximated using the inequality~B4!, while for the rest of the sum the inequality~B5!
is used. The upper bounds on composite loop form factors read
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uFZ
meu<sL

nmsL
neF u^ f Z&su1H(

i s
@ f Z~lNi s

!2^ f Z&s#
2J 1/2G1(

i b
BmNi b

0 BeNi b

0 u f̃ Z~lNi b
!u1sL

nmsL
ne(

l
~sL

n l !2F u^gZ&su

12H(
i s

@^gZ~lNi s
!&N,s2^gZ&s#

2J 1/2

1H (
i s , j s

@gZ~lNi s
,lNj s

!2^gZ~lNi s
!&N,s2^gZ~lNj s

!&N,s1^gZ&N,s#
2J 1/2

1u^hZ&su12H(
i s

@^hZ~lNi s
!&N,s2^hZ&s#

2J 1/2

1H (
i s , j s

@hZ~lNi s
,lNj s

!2^hZ~lNi s
!&N,s2^hZ~lNj s

!&N,s

1^hZ&N,s#
2J 1/2G1sL

nm(
j b

(
l 51

nG

sL
n lBlN j b

0 BeNj b

0
„^gZ~lNj b

!&N,s1^hZ~lNj b
!&N,s1$@gZ~lNi s

,lNj b
!2^gZ~lNj b

!&N,s#
2%1/2

1$@hZ~lNi s
,lNj b

!2^hZ~lNj b
!&N,s#

2%1/2
…1sL

ne(
i b

(
l 51

nG

sL
n lBlNi b

0 BeNi b

0
„^gZ~lNi b

!&N,s1^hZ~lNi b
!&N,s1$@gZ~lNi b

,lNj s
!

2^gZ~lNi b
!&N,s#
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The subscriptss andb denote heavy neutrinos satisfying E
~18! and Eq.~19!, respectively. Thê & is the average ove
two s heavy neutrinos and̂ &N,s is the average over ones
heavy neutrino. Expressions~B8! and ~B9! are used for
evaluation of UBBRs of LFV decays for any set of values
parameters. For any process the results are compared
the smallest one is kept as a UBBR of the process.

APPENDIX C: THE CHIRAL LAGRANGIAN

The gauged chiralU(3)L3U(3)R /U(3)V Lagrangian ex-
tended by hiddenU(3)local symmetry and the mass for th
pseudoscalar mesons comprises four terms,

L5LA1aLV1Lmass1Lkin . ~C1!
f
nd

Here only the second term is of interest or, more specifica
only the interactions ofK0* and K̄0* mesons with pseudo
scalar mesons@27#,

aLV5
2 iga

4
$K0* ,m~2A2p1 ]JmK21p0]JmK̄0

1A3cPK̄0]Jmh1A3sPK̄0]Jmh8!

1K̄0* ,m~A2p2 ]JmK12p0]JmK02A3cPK0]Jmh

2A3sPK0]Jmh8!12r0* ,mp1 ]Jmp2%1•••. ~C2!

The parametera is a free parameter, equal to 2 if the vect
meson dominance is satisfied,g is the coupling of~hidden-
symmetry-induced! vector mesons to the chiral fields~pseu-
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doscalar meson fields in the unitary gauge@30#!. The
r0p1p2 interaction term is included because it defines
perimentally knowngrpp coupling (grpp5ga/2). The other
vector-meson–pseudoscalar-meson couplings are fixed w
grpp is known.

Notice that the sum ofK0* p0K̄0 andK̄0* p0K0 couplings
is zero,

gK0* p0K̄01gK̄0* p0K050. ~C3!

For that reason theKL→p0m1e2 amplitude has a zero
value. Equation~C3! remains valid even if theU(3)L
3U(3)R /U(3)V symmetry is broken in the way of Bando
Kugo, and Yamawaki@30#.

APPENDIX D: PHASE-SPACE FUNCTIONS

The absolute squares of the LFV semileptonic hadro
amplitudesH→H8e2m1 may be expressed in terms of th
Mandelstam variablest5(pH2pH8)

2 and s15(pH2pm)2.
The corresponding decay rates read

G~H→H8e2m1!5
1

256p3mH
3 E

~me1mm!2

~mH2mH8!2

dt

3E
s1

2

s1
1

ds1^uT~H→H8e2m1!u2&, ~D1!

where^uT(H→H8e2m1)u2& is the square of the amplitud
averaged over initial and summed over final leptons. T
boundarys1 valuess1

6(t) are

s1
6~ t !5mH

2 1mm
2 1

B~ t !

A~ t !
6

AB~ t !224A~ t !C~ t !

A~ t !
, ~D2!

where

A~ t !54t, B~ t !522~mH
2 2mH8

2
1t !~ t1mm

2 2me
2!,

C~ t !5mH
2 ~ t1mm

2 2me
2!21mm

2 l~mH
2 ,mH8

2 ,t !,
~D3!

and l(x,y,z)5x21y21z222xy22xz22yz. The integra-
tion over one of the Mandelstam variables, say,s1, is easily
performed. The remainingt integration has to be done nu
merically. The decay rateG(K1→p1e2m1) comprisest
integralsA11 , A12 , andA22 given by
e
2

-

en

ic

e

A11524S1
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where

S1
n5E

s2

s1

ds1s1
n . ~D5!

The decay ratesG(B→B8e2m1) containt integralsA1, A2,
A3, A4, andA5:
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