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Proton drip-line nuclei in relativistic Hartree-Bogoliubov theory

D. Vretenar G. A. Lalazissis, and P. Ring
IPhysics Department, Faculty of Science, University of Zagreb, Croatia
2physik-Department der Technischen Univéisitinchen, Garching, Germany
(Received 22 December 1997

Ground-state properties of spherical even-even nucleiZ428 andN=18,20,22 are described in the
framework of relativistic Hartree-BogoliuboRHB) theory. The model uses the NL3 effective interaction in
the mean-field Lagrangian, and describes pairing correlations by the pairing part of the finite range Gogny
interaction D1S. Binding energies, two-proton separation energies, and proton rms radii that result from fully
self-consistent RHB solutions are compared with experimental data. The model predicts the location of the
proton drip line. The isospin dependence of the effective spin-orbit potential is discussed, as well as pairing
properties that result from the finite range interaction ingipechannel [S0556-28188)05906-9

PACS numbgs): 21.10.Dr, 21.10.Ft, 21.60.Jz, 27.3Q.

I. RELATIVISTIC HARTREE-BOGOLIUBOV THEORY ter and properties of finite nuclei throughout the periodic
WITH FINITE RANGE PAIRING INTERACTION table. In the self-consistent mean-field approximation, de-

The struct f proton-rich lei ; int ttailed calculations have been performed for a variety of
€ structure ot proton-rich nuciel presents many INeresty, qjear structure phenomef@]. For open shell nuclei pair-

ing phenomena which are very important both for nucleas,; correlations have been included in the usual BCS ap-
phys_lcs and astrophysics. These pucle| are chgracterlz.ed_l&yoximaﬂon scheme, but also more consistently in the
exotic ground-state decay properties such as direct emissiqiartree-Bogoliubov framework. RHB presents a relativistic
of charged particles and decays with larg® values. The  extension of the Hartree-Fock-Bogoliub&MFB) theory. It
properties of most proton-rich nuclei should also play anyas derived in Ref[4] in an attempt to develop a unified
important role in the process of nucleosynthesis by rapidframework in which relativistic mean-field and pairing cor-
proton capture. In addition to decay properfjgarticle emis-  relations could be described simultaneously. As in ordinary
sion, B decay, of fundamental importance are studies of HFB, the ground state of a nuclel®) is described as a
atomic masses and separation energies, and especially thacuum with respect to independent quasiparticle operators,
precise location of proton drip lines. On the other handwhich are defined by a unitary Bogoliubov transformation of
nuclear-structure models can be compared in detailed thedhe single-nucleon creation and annihilation operators. The
retical studies of nuclei with a large proton excess. In pargeneralized single-nucleon Hamiltonian contains two aver-
ticular, for proton-rich nuclei in thesd—f shell (10<zZ age potentials: the self-consistent mean-fiEldvhich en-
<28) predictions of the nuclear shell model can be comcloses all the long-rangeh correlations, and a pairing field
pared with results of models that are based on the mean-fieldd which sums up th@p correlations. The expectation value
approach. Shell-model calculations of proton-rich nucleiof the nuclear Hamiltonian(nonrelativistic or Dirag
with 37<A<48 have recently been reported in Réf], and  (®|H|®) is a function of the Hermitian density matrjx,
the structure of proton-drip line arourfNi has been inves- and the antisymmetric pairing tenser The variation of the
tigated in the framework of the self-consistent mean-fieldenergy functional with respect pand« produces the single
theory in Ref[2]. In addition to nonrelativistic Hartree-Fock quasiparticle Hartree-Fock-Bogoliubov equatids$ in the
and Hartree-Fock-Bogoliubov models, in RE2] also the nonrelativistic framework. In the relativistic extensija]
relativistic mean-field model has been used, with pairingthe Hartree approximation is employed for the self-consistent
properties described in the BCS approximation. While thignean field, qnd the resulting relativistic Hartree-Bogoliubov
approximation is acceptable for nuclei close to the(RHB) equations read
u(r) U(r)
2.

B-stable nuclei the ground-state properties calculated with hp—m—A\ A
the BCS scheme become unreliable. For proton-rich nuclei
this problem might be less critical than for nuclei at the neu-
tron drip line, but nevertheless we expect a much better de- .
scription of ground-state properties in a framework whichwherehy is the single-nucleon Dirac Hamiltonig#) andm
provides a unified description of mean-field and pairing coris the nucleon mass. The chemical potendahas to be
relations. determined by the particle number subsidiary condition, in
In the present study we report the application of relativis-order that the expectation value of the particle number op-
tic Hartree-Bogoliubov(RHB) theory to the structure of erator in the ground state equals the number of nucleons. The
proton-rich nuclei. Models based on quantum hadrodynamiceolumn vectors denote the quasiparticle wave functions, and
have been extensively applied in calculations of nuclear matE, are the quasiparticle energies. The Dirac Hamiltonian

B-stability line, as we move away from the valley of
V(r) V(r)

—A*  —hp+m+)
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- _ o (1=13) mesons [4]. However, if for the pairing part of the interac-
hp=—ia-V+p(m+g,0)+g,0°+g,Tsp3+e > A% " tion one uses the coupling constants from standard parameter
2) sets of the relativistic mean-field model, the resulting pairing
correlations are much too strong. The repulsion produced by
contains the mean-field potentials of the isoscalar saalar the exchange of vector mesons at short distances results in a
meson, the isoscalar vectar meson, and the isovector vec- pairing gap at the Fermi surface that is by a factor of 3 too
tor p mesonA? is the electrostatic potential. The RHB equa- |arge. This is not surprising, since in general the effective
tions have to be solved self-consistently, with potentials deinteractions in the particle-hole and particle-particle channels
termined in the mean-field approximation from solutions ofgg not have to be identical. In a first-order approximation,

Klein-Gordon equations the effective interaction contained in the mean fiElis aG
[—A+m2]o(r)=—g,psr) — g0 X(r) —gsa(r), (3) matrix, the sum over all ladder diagrams. The effective force

in the pp channel, i.e., in the pairing potenti&l, should be

[—A+m2]wo(r)=—g,p,(r), (4)  theK matrix, the sum of all diagrams irreducible pp di-
rection. However, very little is known about this matrix in
[-A+ mf,]po(r) =—g,p3(r), (5) the relativistic framework. And although the relativistic
theory of pairing presents a very active area of reselat@,
—AA%(r)=epy(r), (6)  only phenomenological effective forces have been shown to

produce reliable results when applied to finite nuclei, espe-
cially in exotic regions. In the present work we employ a
two-body finite-range interaction of the Gogny typ# in

the pp channel of RHB:

for the o meson,o meson,p meson, and photon field, re-
spectively. The spatial components p3, andA vanish due
to time-reversal symmetry. The equation for themeson
contains the nonlinear self-interaction term¢$6]. Because
of charge conservation, only the three-component of the is-
ovectorp meson contributes. The source terms in E§s-

(6) are sums of bilinear products of baryon amplitudes VPP(1,2) = 2 e [(ri=ro)/u)?
i=1,
ps(r)zEZ,0 V() yOVi(1), (7) X(W;+B;P’—H;P"™—M;P’P7), (13
k
p,(r)= E Vl(r)Vk(f), (8 with the parameterg;, W;, B;, H;, andM; (i=1,2). The
Ex>0 pairing interaction is a sum of two Gaussians with finite

range and properly chosen spin and isospin dependence. The
pa(n)= > V(D) 73Vi(1), (9) Gogny force has been_very Carefu_lly adjusted to reproduce
E>0 selected global properties of spherical nuclei and of nuclear
matter. In the pairing channel its basic advantage is the finite
1-7; range, which automatically guarantees a proper cutoff in mo-
Pem(f)ZEZO Vi) —5—= VD), (10 mentum space. This interaction was employed in the RHB
“ calculations of Ref[10]. For the D1S[9] parameter set of
where the sums run over all positive energy states. The paithe interaction in the pairing channel, the model was applied
ing field A in Eq. (1) is defined in the study of several isotope chains of spherical Pb, Sn, and
Zr nuclei. In Refs[11-13 we have used RHB in coordinate
1 , , space with the D1S Gogny interaction to describe properties
Aap(r,r')= E; Vaped T.1") Ked(T,17), (1D of light nuclear systeméC, N, O, F, Ne, Na, Mgwith large
' neutron excess, as well as ground states of Ni(RI8<50)
where a,b,c,d denote quantum numbers that specify theand Sn (56<N<82) isotopes.
single-nucleon state$/ ,.(r,r') are matrix elements of a The eigensolutions of Eq1) form a set of orthogonal and
general two-body pairing interaction, and the pairing tensonormalized single quasiparticle states. The corresponding ei-
is defined genvalues are the single quasiparticle energies. The self-
consistent iteration procedure is performed in the basis of
, * , quasiparticle states. The resulting quasiparticle eigenspec-
Kog(.1 ):EEO UeNVai(r). (12 4rum is then transformed into the canonical basis of single-
particle states, in which the RHB ground state takes the BCS
Of course we only consider contributions fraha 0 pairs to  form. The transformation determines the energies and occu-
the pairing matrix elements, and therefared for the quan-  pation probabilities of the canonical states.
tum numbers of single-nucleon states in the expression for For nuclear systems with spherical symmetry the fields
the pairing tensor. The second indexlenotes th&th eigen- o (r), «°(r), p°(r), and A°(r) depend only on the radial
vector with the spherical guantum numbersand the sumis coordinater. The nucleon spinor8), (V) in Eq. (1) are
over eigenvectors with positive energy. characterized by the angular momentyyits z projectionm,
In the relativistic Hartree-Bogoliubov theory pairing cor- parity 7, and the isospiti;= =+ 3 for the neutron and proton.
relations result from the one-meson exchange ¢, andp The two Dirac spinordJ(r) andV,(r) are defined
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spherical even-even nuclei #¥<28 and N=18,20,22.
X+(t3). While for these neutron numbers the nuclei with<4
(14) <20 are not really very proton rich, nevertheless they will be
useful for a comparison of the model calculations with ex-
g(r) andf(r) are radial amplitudesy is the isospin func- perimental data. We are particularly interested in the predic-
tion, and(};, is the tensor product of the orbital and spin tions of the model for the proton-rich nuclei in the ;%

Juv)(NQ; i m(0,0,8)
ifuv)(NQ;7m(0,9,5)

Uk(Vk)(r1Sat3):(

functions region. These nuclei have recently been extensively investi-
1 gated in experiments involving fragmentation ¥Ni [19—
— i 22]. The principal motivation of many experimental studies
Qi m(0,0,8)= =mgm|jm ) L Yim (6, 9). cal ] .
(0. .) msz,m| <2 S "J >X2 myYim (6,¢) in this region is the possible occurrence of the two-proton

(15 ground-state radioactivity. In particular, the region around
“8Ni is expected to contain nuclei which are two-proton
emitters. On the other hand, because of the Coulomb barrier
at the proton drip line, the emission of a pair of protons may

)’ (16) be strongly delayed for nuclei with small negative two-
proton separation energies.

The input for our calculations are the coupling constants
and masses for the effective mean-field Lagrangian, and the
- effective interaction in the pairing channel. In the analysis of
[ﬁo(f)—m—?\]@u(f”f dr'r’2A(r,r")®y(r') light neutron-rich nuclei in Ref§11,12,14, as well as in the

0 study of ground-state properties of Ni and Sn isotoies,
we have used the NL3 parameter set for the effective mean-

The two-component functions

gu(r) gv(r)
ify(r) ify(r)

are solutions of the Dirac-Hartree-Bogoliubov equations

@U(r):z( ) and d)v(r):=(

=Edy(r), field Lagrangian in thggh channel. The effective interaction
. " NL3 has been derivefR3] by adjusting model calculations
[—hD(r)+m+)\]cDV(r)+f dr'r"2A(r,r")dy(r") to bulk properties of a large number of spherical nuclei.
0 Properties calculated with the NL3 effective interaction are
_ found to be in very good agreement with experimental data
=EDy(r). 17

for nuclei at and away from the line @ stability. In Ref.

The self-consistent solution of the Dirac-Hartree-Bogoliubovl24] it has been shown that constrained relativistic mean-
integrodifferential eigenvalue equations and Klein-Gordorfield (RMF) calculations with the NL3 effective force repro-
equations for the meson fields determines the nuclear grourféfice the excitation energies of superdeformed minima rela-
state. In Refs[11,12,14,15 we have used finite element {ive to the ground state if*Hg and**Pb. In the same work
methods in the coordinate space discretization of the coupled® NL3 interaction was also used for calculations of binding
system of equations. Coordinate space solutions of the RHBNergies and deformation parameters of rare-earth nuclei. In
equations are essential for a correct description of nucledhe present study we employ the NL3 effective force on the
structure phenomena that originate from large spatial exterroton-rich side of theg-stability line. In view of the fact
sions of nucleon densities. These include, for example, nejhat all the results obtained so far indicate that NL3 is prob-
tron skins and halos in very neutron-rich nuclei. In less ex-2bly the best effective RMF interaction, the main purpose of
otic nuclei on the neutron-rich side, or for proton-rich nuclei, the analysis is to study how well the properties predicted by
an expansion in a large oscillator basis should provide suffithe NL3 force compare with experimental data for proton-
ciently accurate solutionl6,17). In particular, proton-rich fich nuclei. However, in order to be more specific in our
nuclei are stabilized by the Coulomb barrier which tends toPredictions for the exact location of the proton drip line, we
localize the proton density in the nuclear interior and thué’_\”” also use two additional standard RMF (_effectlve interac-
prevents the formation of objects with extreme spatial extentions: NL1[25] and NL-SH[26]. These effective forces have
sion. In the present work we employ the procedure of Refsbeen used in many analyses to calculate properties of nuclear
[10,13, and solve the Dirac-Hartree-Bogoliubov equationsmatter and of finite nuclei, and generally produce very good
and the equations for the meson fields by expanding théesults for_ nu<_:|ei clos_e to thg-stability line. In particular,
nucleon spinordJ,(r) andV,(r), and the meson fields in a the effective interaction NL1 was also used in the RHB
basis of spherical harmonic oscillators fide=20 oscillator ~ TGogny calculations of Ref10] . _
shells[18]. However, in order to verify that our final conclu- !N most applications of relativistic mean-field theory pair-
sions do not depend on the method of solution, for nuclei afg correlations have been included in the form of a simple
the proton drip line we have also performed RHB calcula-BCS approximation, with a monopole pairing force adjusted
tions in coordinate spadd5]. In particular, coordinate space 10 the experimental odd-even mass differende. For nu-

solutions have confirmed our predictions for the location ofclei far from the valley of8 stability this approach becomes
the proton drip line. unreliable, especially in the calculation of properties that cru-

cially depend on the spatial extensions of nucleon densities.
Il. GROUND-STATE PROPERTIES OF PROTON-RICH The BCS description of the._f,cattering of ngcleonic_pairs
NUCLEI from bound states to the positive energy particle continuum
produces an unphysical component in the nucleon density
In the present application of the relativistic Hartree-with the wrong asymptotic behavi¢i6,17. This effect is
Bogoliubov theory we describe the ground-state properties ainore pronounced for neutron-rich nuclei, for which the cou-
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7 7 ' T T ' 7 for the even-even nuclei ¥7<28 andN=18,20,22. The
values that correspond to the self-consistent RHB ground
states are compared with experimental data and extrapolated
. values from Ref[28]. We notice that the theoretical values
reproduce in detail the experimental separation energies, ex-
cept for *®Ca and *Ti. In order to understand better this
result, in Table | we compare the calculated total binding
energies for thé&=18,20,22 isotones with empirical values.
. We find that our model results are in very good agreement
with experimental data when one of the shdlsoton or
neutron is closed, or when valence protons and neutrons
occupy different major shellg.e., below and abovid and/or
Z=20). The absolute differences between the calculated and
op——————————— g ¥ experimental masses are less than 2 MeV. The differences
are larger when both proton and neutron valence particles
(holes occupy the same major shell, and especially for the
14 16 18 20 22 24 26 28 30 N=Z nuclei **Ar and **Ti. This seems to be a clear indica-

z tion that for these nuclei additional correlations should be
taken into account. In particular, proton-neutron pairing

rolt:g(r?é i‘ ;Z{;‘:}a‘;ﬁgr it;it‘%e:rl]sR;)Bg'i‘soanndesxggﬁzn?:)gﬁo'could have a strong influence on the masses. Proton-neutron
P P g e : y short-range correlations are not included in our model.

denote empirical values; lines connect symbols which correspond to .
P y P The results should be also compared with recently re-

calculated values. ported self-consistent mean-field calculations of R&f.and

. . . . . . with properties of proton-rich nuclei calculated within the
pling to the particle continuum is particularly important. For framework of the nuclear shell moddl]. The calculations of
proton-rich nuclei the Coulomb barrier confines the protonsy ¢ [2] have been performed for several mean-field models
in the interior of the nucleus, and therefore the effect of the(Hartree—Fock, Hartree-Fock-Bogoliubov, and relativistic
coupling to the continuum is weaker. However, if pairing mean-field, and for a number of effective interactions. The

correlations are descrjbed in the un!fi.ed' framework of theresults systematically predict the two-proton drip line to lie
RHB scheme(or HFB in the nonrelativistic approaghthe between?2Cr and %4Cr. Fe and*Fe. and*Ni and 5°Nii.

nucleon densities display a correct asymptotic behavior. Th?/ery recent studies of proton drip-line nuclei in this region

effective interactions that have been used in the pairing chan: ; ; . i
nel of RHB are the pairing part of the Gogny force and therhave been performed in experiments basedt i fragmen

) e X X tation on a beryllium targdi21,22. In Ref.[21] in particu-
density-dependend force. The finite-range interaction pro- |, “o\igence has been reported for particle stability®fi.
vides an automatic cutoff of high momentum components,

hil ificial toff has to be included in th In the shell-model calculations of Rdfl] absolute binding
while an artiicial energy cutoft has to be included in eenergies were evaluated by computing the Coulomb energy
calculation with zero-range forces. On the other hand, th

. . . . hifts between mirror nuclei, and adding this shift to the
density-dependent interaction can be adjusted to produce SUéS(perimentally determined binding energy of the neutron-

face peake_:d pairing f|elc_js, Wh'c.h can be important fora COMich isotope. The calculated two-proton separation energies
rect description of spatial distribution of densities. A fully predicted a proton drip line in agreement with experimental
self—qonsistent RHB modgl in_coordinate space, With &j,i5 and with the mean-field resu[8]. Compared to the
density-dependent |_nteract|on of zero-rang%f()_rce), has results of the present study, the shell-model total binding
been used to describe the two-neutron hald“ii [27]. In energies are in somewhat better agreement with experimental
Fhe present study we employ th_e pairing part of the Gogn3(:iata. However, the two models give almost identical values
interaction in thepp channel, with the parameter set D1S ¢ ye extracted two-proton separation energies of the drip-
(91 . . . . line nuclei. The self-consistent RHB NED1S two-proton

In Fig. 1 we display the two-proton separation energies genaration energies at the drip line are also very close to the

values that result from nonrelativistic HRESogny (D1S)
Sop(Z,N)=By(Z,N)—B,(Z—2N) (18 calculation of Ref[2].

30

24

S,, (MeV)

6 - RHB/NL3

TABLE |. Comparison between calculated and empirical binding energies. All values are in units of
MeV; empirical values are displayed in parentheses.

825 269.02(271.41) 4OAr 343.97(343.8)) 44cr 351.65(349.99
345 284.42(283.43 %8Ca 313.11(313.09 46Cr 380.19(381.99
365 293.08(292.02 4°Cca 341.99342.05 “re 312.07-)
343 288.10(291.89 4Ca 362.95(361.90 “bre 352.25(350.20
363 307.98(308.72) 40T 315.39(314.49 “Bre 384.42(385.19
383 320.77(321.05 42T 348.35(346.9) 4ONj 306.72(-)
SeAr 302.52(306.71 44T 373.15(375.47 48Nj 349.92(-)

38Ar 327.34(327.06 42cr 314.94(314.20 SONi 385.52(385.50
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“ ./‘/./O—_.’W 1d5/2 ] 1052
-18 L ' L ' ' ' ) ' ) ' -20 1 1 1 L 1 1 1 1 N
14 16 18 20 22 24 26 28 30 32 14 16 18 20 22 24 26 28 30 32
z z
FIG. 2. The proton single-patrticle levels for the= 18 isotones. FIG. 4. Same as in Fig. 2, but for tié=22 isotones.

Solid lines denote the neutron Fermi level. The energies in the | ) . .
canonical basis correspond to ground-state solutions calculated wifigenstates of the RHB density matrix. The eigenvalues are
the NL3 effective force of the mean-field Lagrangian. The paramthe corresponding occupation numbers. Since the density
eter set D1S is used for the finite-range Gogny-type interaction idnatrices in RHB are always localized, all canonical-basis
the pairing channel. single-particle wave functions vanish at large distances.
Although the proton levels do not change much with
By using a fully microscopic and self-consistent modelwe observe a consistent decrease in the energy splitting be-
for the calculation of binding energies, we have the possibiltween the spin-orbit partnersdd;»-1ds, and 203,-2p4,
ity to analyze in detail the single-proton levels. In Figs. 2, 3,with increasing proton number. We will show that this de-
and 4 we display the proton single-particle energies in therease results from the reduction of the spin-orbit term of the
canonical basis as functions of proton number for Mie effective potentia[14]. The 1f,, orbital is unbound for all
=18,20,22 isotones, respectively. The thick solid lines delN=18 isotones, and is very slightly bound fi=20. The
note the corresponding Fermi levels. The proton energies aféermi level displays a sharp increase wihfor all three
not single-particle energigs.e., the eigenvalues of the-h isotone chains. In principle, a positive value »fshould
Hamiltonianhp) but the diagonal matrix elements bf in  indicate which nuclei are beyond the proton drip line, i.e.,
the canonical basis. Therefore the phase space that corngthich nuclei are ground-state proton emitters. In particular,
sponds to positive-energy states should not be confused wiflor “’Cr, *éFe, and®Ni we find A>0. This is somewhat
the continuum of scattering states which asymptotically besurprising, since fof®Fe and®>Ni the calculated two-proton
have as plane waves. The RHB ground-state wave functiogeparation energies are positive. We have performed RHB
can be written either in the quasiparticle basis as a product afalculations with the effective interactions NL1 and NLSH,
independent quasiparticle states, or in ta@onical basisas  but also for these forces the Fermi level is positive f6r,
a highly correlated BCS state. In tlianonical basiswucle-  “%Fe, and®Ni. For these three nuclei we have also verified
ons occupy single-particle states. The canonical states athe results by performing coordinate space RHB calcula-
tions. The results are practically identical to those obtained
12 y y y - - y y y y with the oscillator expansion method; the Fermi levels for
these three nuclei have positive values. Therefore it appears
that there are cases at the drip line for which the definition of
2p1/2 ] the two-particle separation ener¢}8) does not correspond
2p3/2 to the physical interpretation of the chemical potential.
1710 In Fig. 5 we show the self-consistent ground-state proton
------------------------------- densities for thé\ =20 isotones. The density profiles display
shell effects in the bulk and a gradual increase of proton
radii. In the inset of Fig. 5 we include the corresponding
1d3/2 ] values for the surface thickness and diffuseness parameter.
2172 The surface thicknessis defined to be the change in radius
required to reduce(r)/py from 0.9 to 0.1 pg is the maxi-

s.p. energy (MeV)

- 1ds/2 ] mal value of the neutron density; because of shell effects we
could not use fop, the density in the center of the nucleus
The diffuseness parameteris determined by fitting the neu-
-18 14 16 18 20 22 24 26 28 30 a2 tron density profiles to the Fermi distribution
z

FIG. 3. Same as in Fig. 2, but for thé= 20 isotones. P(r)=po

1+ex : (19
o
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0.10 T T T T
36| RHB/NL3 | 1 o
£ e
T34 T T /
0.08 5 A
8 r'e
L s I 1 1 4
£ : g 3.2 . }A
g 0.06 o E—EIN=18 GmnlSN=20 A p-pNe22
B sopd® o+t
8 14 18 22 26 14 18 22 26 14 18 22 26
c 004 z z z
9 I
g % FIG. 7. Calculated proton rms radii fod=18,20,22 isotones
0.02 compared with experimental data.
channel. The model predicts a uniform increase of rms radii
0.0 - . with the number of protons.

In an analysis of ground-state properties of light neutron-
rich nuclei[14], we have shown that the relativistic mean-

FIG. 5. Self-consistent RHB single-proton density distributionsfield model predicts a strong isospin dependence of the ef-
for the N= 20 isotones, calculated with the NL3 effective interac- fective spin-orbit potential. With the increase of the number
tion. of neutrons the effective spin-orbit interaction becomes

weaker and the magnitude of the spin-orbit term in the single

whereR, is the half-density radius. In going away from the nucleon potential is significantly reduced. This results in a
valley of B-stable nuclei, generally the proton surface thick-reduction of the energy splittings for spin-orbit partners. The
ness increases and the surface becomes more diffuse. Hoveduction in the surface region was found to be as large as
ever, whiles increases from Si to Ni, the diffuseness param-~40% for Ne isotopes at the drip line. In R¢L3] similar
eter@ has a maximum aZ=20. It appears that, as protons results were found for the Ni and Sn isotopes. The spin-orbit
fill the 1, orbital, the proton surface becomes slightly lesspotential originates from the addition of two large fields: the
diffuse. This could be due to the stronger influence of thefield of the vector mesoné&short-range repulsionand the
Coulomb barrier. In Fig. 6 we display the self-consistentscalar field of theo meson(intermediate attractionIn the
proton potentials for th&l= 20 isotones, and in the inset the first-order approximation, and assuming spherical symmetry,
details of the potentials in the region of the Coulomb barrierthe spin-orbit term can be written as
We notice how the Coulomb barrier increases from 3 MeV
for 3Si, to 6 MeV in “®Ni. We include also*Ni in our 19
figures for theN=20 isotones, although this nucleus is not Vso
particle stable in our calculations.

In Fig. 7 we display the proton rms radii foN . ) . .
=18,20,22 isotones, respectively. The calculated values at¥hereVis is the spin-orbit potentigl30]
compared with experimental data for proton radii from Ref.
[29]. Except for 3°Si, we find an excellent agreement be- om
tween experimental data and values calculated with the NL3 V'S_m_eﬁ(v_ S). (21)
effective force with the D1S Gogny interaction in the pairing

=7 EVb(f), (20)
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FIG. 8. Radial dependence of the spin-orbit term of the proton
potential in self-consistent solutions for ground-states of khe
=20 isotones.

FIG. 6. Self-consistent proton potentials for tHe= 20 isotones.
In the inset the details of the Coulomb barriers are shown.
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FIG. 9. Average values of the proton canonical pairing gaps as
functions of canonical single-particle energies for states that corre- FIG. 10. Average proton pairing gagd ) of the N=22 iso-
spond to the self-consistent ground state*{gr. The NL3 param-  tones.
etrization has been used for the mean-field Lagrangian, and t

h . .
parameter set D1S for the pairing interaction the pairing channel. The average value at the Fermi surface

is between 1.5 and 2 MeV, anll,,; slowly decrease for
canonical states in the single-proton continuum. In Fig. 10

V andS denote the repulsive vector and the attractive scalal'® display 'the averages of the proton pairing gaps for occu-
pied canonical states

potentials, respectivelsee the Dirac HamiltoniafR)]. mg
is the effective mass

meﬁ=m—;(v—5). (22) <Ap>:—21 (23

Using the vector and scalar potentials from the NL3 self-
consistent ground-state solutions, we have computed frorwhereuﬁ“- are the occupation probabilities. The values of
Egs. (20-(22) the spin-orbit terms of the effective proton (A,) for the N=22 isotones are plotted as function of the
potentials for theN= 20 isotones. They are shown in Fig. 8 proton number. The average proton gap increases to almost 3
as function of the radial distance from the center of theMeV for 3Ar, then the pairing correlations disappear at shell
nucleus. The magnitude of the spin-orbit te¥fy, decreases closure Z=20. For the ;, orbital the value of(A,) is
as we add more protons, i.e., as we move away fegtable ~2.5 MeV.
nuclei. From *Si to “®Ni, the reduction is~20% in the In conclusion, this study presents the first application of
surface region. The minimum &fg, is also shifted outwards, the relativistic Hartree-Bogoliubov theory to the description
and this reflects the larger spatial extension of the protomf ground-state properties of proton-rich nuclei. A detailed
densities. However, we note that the reductionVgf for  analysis of spherical even-even nuclei with<14<28 and
protons is considerably smaller than the one calculated foN=18,20,22 has been performed. The NL3 parameter set
neutrons in Refg14,13 (~35—40 %). has been used for the effective mean-field Lagrangian in the
The properties of the finite-range and density-independensh channel, and pairing correlations have been described by
pairing interaction are illustrated in Figs. 9 and 10. In Fig. 9the finite-range Gogny interaction D1S. In a comparison with
we plot the average values of the proton canonical pairingvailable experimental data it has been shown that the NL3
gapsA,; as functions of canonical single-particle energies.+ Gogny D1S effective interaction provides a very good
The gaps are displayed for canonical states that corresponmtscription of binding energies, two-proton separation ener-
to the self-consistent ground state YCr. Anj are the diag-  gies and proton rms radii. Model predictions for the proton
onal matrix elements of the pairing part of the RHB single-drip line agree with recently reported calculations in the
nucleon Hamiltonian in the canonical basis. Although notframework of the nuclear shell model and with results of
completely equivalentd ,; corresponds to the pairing gap in nonrelativistic HF and HFB studies. For isotone chains we
BCS theory. A very detailed discussion of HFB equations inhave also discussed the predicted reduction of the effective
the canonical basis can be found in Rgf7]. The pairing spin-orbit potential with the increase of the number of pro-
gaps have relatively large values for deep-hole states. This tens, as well as the resulting energy splittings between spin-
related to the volume character of the Gogny interaction irorbit partners and modifications of surface properties.
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