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Proton drip-line nuclei in relativistic Hartree-Bogoliubov theory

D. Vretenar,1 G. A. Lalazissis,2 and P. Ring2
1Physics Department, Faculty of Science, University of Zagreb, Croatia

2Physik-Department der Technischen Universita¨t München, Garching, Germany
~Received 22 December 1997!

Ground-state properties of spherical even-even nuclei 14<Z<28 andN518,20,22 are described in the
framework of relativistic Hartree-Bogoliubov~RHB! theory. The model uses the NL3 effective interaction in
the mean-field Lagrangian, and describes pairing correlations by the pairing part of the finite range Gogny
interaction D1S. Binding energies, two-proton separation energies, and proton rms radii that result from fully
self-consistent RHB solutions are compared with experimental data. The model predicts the location of the
proton drip line. The isospin dependence of the effective spin-orbit potential is discussed, as well as pairing
properties that result from the finite range interaction in thepp channel.@S0556-2813~98!05906-8#

PACS number~s!: 21.10.Dr, 21.10.Ft, 21.60.Jz, 27.30.1t
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I. RELATIVISTIC HARTREE-BOGOLIUBOV THEORY
WITH FINITE RANGE PAIRING INTERACTION

The structure of proton-rich nuclei presents many intere
ing phenomena which are very important both for nucl
physics and astrophysics. These nuclei are characterize
exotic ground-state decay properties such as direct emis
of charged particles andb decays with largeQ values. The
properties of most proton-rich nuclei should also play
important role in the process of nucleosynthesis by rap
proton capture. In addition to decay properties~particle emis-
sion, b decay!, of fundamental importance are studies
atomic masses and separation energies, and especiall
precise location of proton drip lines. On the other ha
nuclear-structure models can be compared in detailed t
retical studies of nuclei with a large proton excess. In p
ticular, for proton-rich nuclei in thesd2 f shell (10<Z
<28) predictions of the nuclear shell model can be co
pared with results of models that are based on the mean-
approach. Shell-model calculations of proton-rich nuc
with 37<A<48 have recently been reported in Ref.@1#, and
the structure of proton-drip line around48Ni has been inves-
tigated in the framework of the self-consistent mean-fi
theory in Ref.@2#. In addition to nonrelativistic Hartree-Foc
and Hartree-Fock-Bogoliubov models, in Ref.@2# also the
relativistic mean-field model has been used, with pair
properties described in the BCS approximation. While t
approximation is acceptable for nuclei close to t
b-stability line, as we move away from the valley o
b-stable nuclei the ground-state properties calculated w
the BCS scheme become unreliable. For proton-rich nu
this problem might be less critical than for nuclei at the ne
tron drip line, but nevertheless we expect a much better
scription of ground-state properties in a framework wh
provides a unified description of mean-field and pairing c
relations.

In the present study we report the application of relativ
tic Hartree-Bogoliubov~RHB! theory to the structure o
proton-rich nuclei. Models based on quantum hadrodynam
have been extensively applied in calculations of nuclear m
570556-2813/98/57~6!/3071~8!/$15.00
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ter and properties of finite nuclei throughout the period
table. In the self-consistent mean-field approximation,
tailed calculations have been performed for a variety
nuclear structure phenomena@3#. For open shell nuclei pair-
ing correlations have been included in the usual BCS
proximation scheme, but also more consistently in
Hartree-Bogoliubov framework. RHB presents a relativis
extension of the Hartree-Fock-Bogoliubov~HFB! theory. It
was derived in Ref.@4# in an attempt to develop a unifie
framework in which relativistic mean-field and pairing co
relations could be described simultaneously. As in ordin
HFB, the ground state of a nucleusuF& is described as a
vacuum with respect to independent quasiparticle operat
which are defined by a unitary Bogoliubov transformation
the single-nucleon creation and annihilation operators. T
generalized single-nucleon Hamiltonian contains two av
age potentials: the self-consistent mean-fieldĜ which en-
closes all the long-rangeph correlations, and a pairing field
D̂ which sums up thepp correlations. The expectation valu
of the nuclear Hamiltonian~nonrelativistic or Dirac!
^FuĤuF& is a function of the Hermitian density matrixr,
and the antisymmetric pairing tensork. The variation of the
energy functional with respect tor andk produces the single
quasiparticle Hartree-Fock-Bogoliubov equations@5# in the
nonrelativistic framework. In the relativistic extension@4#
the Hartree approximation is employed for the self-consist
mean field, and the resulting relativistic Hartree-Bogoliub
~RHB! equations read

S ĥD2m2l D̂

2D̂* 2ĥD1m1l
D S U~r !

V~r !
D 5EkS U~r !

V~r !
D , ~1!

whereĥD is the single-nucleon Dirac Hamiltonian~2! andm
is the nucleon mass. The chemical potentiall has to be
determined by the particle number subsidiary condition,
order that the expectation value of the particle number
erator in the ground state equals the number of nucleons.
column vectors denote the quasiparticle wave functions,
Ek are the quasiparticle energies. The Dirac Hamiltonian
3071 © 1998 The American Physical Society
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ĥD52 i a•¹1b~m1gss!1gvv01grt3r3
01e

~12t3!

2
A0

~2!

contains the mean-field potentials of the isoscalar scalas
meson, the isoscalar vectorv meson, and the isovector vec
tor r meson.A0 is the electrostatic potential. The RHB equ
tions have to be solved self-consistently, with potentials
termined in the mean-field approximation from solutions
Klein-Gordon equations

@2D1ms
2 #s~r !52gsrs~r !2g2s2~r !2g3s3~r !, ~3!

@2D1mv
2 #v0~r !52gvrv~r !, ~4!

@2D1mr
2#r0~r !52grr3~r !, ~5!

2DA0~r !5erp~r !, ~6!

for the s meson,v meson,r meson, and photon field, re
spectively. The spatial componentsv, r3, andA vanish due
to time-reversal symmetry. The equation for thes meson
contains the nonlinears self-interaction terms@6#. Because
of charge conservation, only the three-component of the
ovectorr meson contributes. The source terms in Eqs.~3!–
~6! are sums of bilinear products of baryon amplitudes

rs~r !5 (
Ek.0

Vk
†~r !g0Vk~r !, ~7!

rv~r !5 (
Ek.0

Vk
†~r !Vk~r !, ~8!

r3~r !5 (
Ek.0

Vk
†~r !t3Vk~r !, ~9!

rem~r !5 (
Ek.0

Vk
†~r !

12t3

2
Vk~r !, ~10!

where the sums run over all positive energy states. The p
ing field D̂ in Eq. ~1! is defined

Dab~r ,r 8!5
1

2(c,d
Vabcd~r ,r 8!kcd~r ,r 8!, ~11!

where a,b,c,d denote quantum numbers that specify t
single-nucleon states.Vabcd(r ,r 8) are matrix elements of a
general two-body pairing interaction, and the pairing ten
is defined

kcd~r ,r 8!5 (
Ek.0

Uck* ~r !Vdk~r 8!. ~12!

Of course we only consider contributions fromJ50 pairs to
the pairing matrix elements, and thereforec5d for the quan-
tum numbers of single-nucleon states in the expression
the pairing tensor. The second indexk denotes thekth eigen-
vector with the spherical quantum numbersc, and the sum is
over eigenvectors with positive energy.

In the relativistic Hartree-Bogoliubov theory pairing co
relations result from the one-meson exchange (s, v, andr
-
f

s-

ir-

r

or

mesons! @4#. However, if for the pairing part of the interac
tion one uses the coupling constants from standard param
sets of the relativistic mean-field model, the resulting pair
correlations are much too strong. The repulsion produced
the exchange of vector mesons at short distances results
pairing gap at the Fermi surface that is by a factor of 3
large. This is not surprising, since in general the effect
interactions in the particle-hole and particle-particle chann
do not have to be identical. In a first-order approximatio
the effective interaction contained in the mean fieldĜ is aG
matrix, the sum over all ladder diagrams. The effective fo
in the pp channel, i.e., in the pairing potentialD̂, should be
the K matrix, the sum of all diagrams irreducible inpp di-
rection. However, very little is known about this matrix
the relativistic framework. And although the relativist
theory of pairing presents a very active area of research@7,8#,
only phenomenological effective forces have been shown
produce reliable results when applied to finite nuclei, es
cially in exotic regions. In the present work we employ
two-body finite-range interaction of the Gogny type@9# in
the pp channel of RHB:

Vpp~1,2!5 (
i 51,2

e2[ ~r12r2!/m i ]
2

3~Wi1Bi P
s2Hi P

t2Mi P
sPt!, ~13!

with the parametersm i , Wi , Bi , Hi , andMi ( i 51,2). The
pairing interaction is a sum of two Gaussians with fin
range and properly chosen spin and isospin dependence
Gogny force has been very carefully adjusted to reprod
selected global properties of spherical nuclei and of nuc
matter. In the pairing channel its basic advantage is the fi
range, which automatically guarantees a proper cutoff in m
mentum space. This interaction was employed in the R
calculations of Ref.@10#. For the D1S@9# parameter set of
the interaction in the pairing channel, the model was app
in the study of several isotope chains of spherical Pb, Sn,
Zr nuclei. In Refs.@11–13# we have used RHB in coordinat
space with the D1S Gogny interaction to describe proper
of light nuclear systems~C, N, O, F, Ne, Na, Mg! with large
neutron excess, as well as ground states of Ni (28<N<50)
and Sn (50<N<82) isotopes.

The eigensolutions of Eq.~1! form a set of orthogonal and
normalized single quasiparticle states. The corresponding
genvalues are the single quasiparticle energies. The
consistent iteration procedure is performed in the basis
quasiparticle states. The resulting quasiparticle eigens
trum is then transformed into the canonical basis of sing
particle states, in which the RHB ground state takes the B
form. The transformation determines the energies and oc
pation probabilities of the canonical states.

For nuclear systems with spherical symmetry the fie
s(r ), v0(r ), r0(r ), and A0(r ) depend only on the radia
coordinater . The nucleon spinorsUk (Vk) in Eq. ~1! are
characterized by the angular momentumj , its z projectionm,
parity p, and the isospint356 1

2 for the neutron and proton
The two Dirac spinorsUk(r ) andVk(r ) are defined
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Uk~Vk!~r ,s,t3!5S gU~V!~r !V j ,l ,m~u,w,s!

i f U~V!~r !V j , l̃ ,m~u,w,s!
D xt~ t3!.

~14!

g(r ) and f (r ) are radial amplitudes,xt is the isospin func-
tion, andV j lm is the tensor product of the orbital and sp
functions

V j ,l ,m~u,w,s!5 (
ms ,ml

K 1

2
mslmlU jmL x1

2 ms
Ylml

~u,w!.

~15!

The two-component functions

FU~r !:5S gU~r !

i f U~r !
D and FV~r !:5S gV~r !

i f V~r !
D , ~16!

are solutions of the Dirac-Hartree-Bogoliubov equations

@ ĥD~r !2m2l#FU~r !1E
0

`

dr8r 82D~r ,r 8!FV~r 8!

5EFU~r !,

@2ĥD~r !1m1l#FV~r !1E
0

`

dr8r 82D~r ,r 8!FU~r 8!

5EFV~r ! . ~17!

The self-consistent solution of the Dirac-Hartree-Bogoliub
integrodifferential eigenvalue equations and Klein-Gord
equations for the meson fields determines the nuclear gro
state. In Refs.@11,12,14,15# we have used finite elemen
methods in the coordinate space discretization of the cou
system of equations. Coordinate space solutions of the R
equations are essential for a correct description of nuc
structure phenomena that originate from large spatial ex
sions of nucleon densities. These include, for example, n
tron skins and halos in very neutron-rich nuclei. In less
otic nuclei on the neutron-rich side, or for proton-rich nucl
an expansion in a large oscillator basis should provide su
ciently accurate solutions@16,17#. In particular, proton-rich
nuclei are stabilized by the Coulomb barrier which tends
localize the proton density in the nuclear interior and th
prevents the formation of objects with extreme spatial ext
sion. In the present work we employ the procedure of R
@10,13#, and solve the Dirac-Hartree-Bogoliubov equatio
and the equations for the meson fields by expanding
nucleon spinorsUk(r ) andVk(r ), and the meson fields in
basis of spherical harmonic oscillators forN520 oscillator
shells@18#. However, in order to verify that our final conclu
sions do not depend on the method of solution, for nucle
the proton drip line we have also performed RHB calcu
tions in coordinate space@15#. In particular, coordinate spac
solutions have confirmed our predictions for the location
the proton drip line.

II. GROUND-STATE PROPERTIES OF PROTON-RICH
NUCLEI

In the present application of the relativistic Hartre
Bogoliubov theory we describe the ground-state propertie
v
n
nd

ed
B
ar
n-
u-
-
,
-

o
s
-

s.
s
e

t
-

f

of

spherical even-even nuclei 14<Z<28 and N518,20,22.
While for these neutron numbers the nuclei with 14<Z
<20 are not really very proton rich, nevertheless they will
useful for a comparison of the model calculations with e
perimental data. We are particularly interested in the pred
tions of the model for the proton-rich nuclei in the 1f 7/2
region. These nuclei have recently been extensively inve
gated in experiments involving fragmentation of58Ni @19–
22#. The principal motivation of many experimental studi
in this region is the possible occurrence of the two-pro
ground-state radioactivity. In particular, the region arou
48Ni is expected to contain nuclei which are two-proto
emitters. On the other hand, because of the Coulomb ba
at the proton drip line, the emission of a pair of protons m
be strongly delayed for nuclei with small negative tw
proton separation energies.

The input for our calculations are the coupling consta
and masses for the effective mean-field Lagrangian, and
effective interaction in the pairing channel. In the analysis
light neutron-rich nuclei in Refs.@11,12,14#, as well as in the
study of ground-state properties of Ni and Sn isotopes@13#,
we have used the NL3 parameter set for the effective me
field Lagrangian in theph channel. The effective interactio
NL3 has been derived@23# by adjusting model calculation
to bulk properties of a large number of spherical nucl
Properties calculated with the NL3 effective interaction a
found to be in very good agreement with experimental d
for nuclei at and away from the line ofb stability. In Ref.
@24# it has been shown that constrained relativistic me
field ~RMF! calculations with the NL3 effective force repro
duce the excitation energies of superdeformed minima r
tive to the ground state in194Hg and194Pb. In the same work
the NL3 interaction was also used for calculations of bind
energies and deformation parameters of rare-earth nucle
the present study we employ the NL3 effective force on
proton-rich side of theb-stability line. In view of the fact
that all the results obtained so far indicate that NL3 is pro
ably the best effective RMF interaction, the main purpose
the analysis is to study how well the properties predicted
the NL3 force compare with experimental data for proto
rich nuclei. However, in order to be more specific in o
predictions for the exact location of the proton drip line, w
will also use two additional standard RMF effective intera
tions: NL1@25# and NL-SH@26#. These effective forces hav
been used in many analyses to calculate properties of nuc
matter and of finite nuclei, and generally produce very go
results for nuclei close to theb-stability line. In particular,
the effective interaction NL1 was also used in the RH
1Gogny calculations of Ref.@10#

In most applications of relativistic mean-field theory pa
ing correlations have been included in the form of a sim
BCS approximation, with a monopole pairing force adjust
to the experimental odd-even mass differences@18#. For nu-
clei far from the valley ofb stability this approach become
unreliable, especially in the calculation of properties that c
cially depend on the spatial extensions of nucleon densit
The BCS description of the scattering of nucleonic pa
from bound states to the positive energy particle continu
produces an unphysical component in the nucleon den
with the wrong asymptotic behavior@16,17#. This effect is
more pronounced for neutron-rich nuclei, for which the co
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pling to the particle continuum is particularly important. F
proton-rich nuclei the Coulomb barrier confines the proto
in the interior of the nucleus, and therefore the effect of
coupling to the continuum is weaker. However, if pairin
correlations are described in the unified framework of
RHB scheme~or HFB in the nonrelativistic approach!, the
nucleon densities display a correct asymptotic behavior.
effective interactions that have been used in the pairing ch
nel of RHB are the pairing part of the Gogny force and t
density-dependentd force. The finite-range interaction pro
vides an automatic cutoff of high momentum componen
while an artificial energy cutoff has to be included in t
calculation with zero-range forces. On the other hand,
density-dependent interaction can be adjusted to produce
face peaked pairing fields, which can be important for a c
rect description of spatial distribution of densities. A ful
self-consistent RHB model in coordinate space, with
density-dependent interaction of zero-range (d force!, has
been used to describe the two-neutron halo in11Li @27#. In
the present study we employ the pairing part of the Gog
interaction in thepp channel, with the parameter set D1
@9#.

In Fig. 1 we display the two-proton separation energie

S2p~Z,N!5Bp~Z,N!2Bp~Z22,N! ~18!

FIG. 1. Comparison between RHB/NL3 and experimental tw
proton separation energies forN518,20,22 isotones. Black symbo
denote empirical values; lines connect symbols which correspon
calculated values.
s
e

e

e
n-

,

e
ur-
r-

a

y

for the even-even nuclei 14<Z<28 andN518,20,22. The
values that correspond to the self-consistent RHB gro
states are compared with experimental data and extrapo
values from Ref.@28#. We notice that the theoretical value
reproduce in detail the experimental separation energies
cept for 38Ca and 44Ti. In order to understand better thi
result, in Table I we compare the calculated total bindi
energies for theN518,20,22 isotones with empirical value
We find that our model results are in very good agreem
with experimental data when one of the shells~proton or
neutron! is closed, or when valence protons and neutro
occupy different major shells~i.e., below and aboveN and/or
Z520). The absolute differences between the calculated
experimental masses are less than 2 MeV. The differen
are larger when both proton and neutron valence parti
~holes! occupy the same major shell, and especially for
N5Z nuclei 36Ar and 44Ti. This seems to be a clear indica
tion that for these nuclei additional correlations should
taken into account. In particular, proton-neutron pairi
could have a strong influence on the masses. Proton-neu
short-range correlations are not included in our model.

The results should be also compared with recently
ported self-consistent mean-field calculations of Ref.@2#, and
with properties of proton-rich nuclei calculated within th
framework of the nuclear shell model@1#. The calculations of
Ref. @2# have been performed for several mean-field mod
~Hartree-Fock, Hartree-Fock-Bogoliubov, and relativis
mean-field!, and for a number of effective interactions. Th
results systematically predict the two-proton drip line to
between42Cr and 44Cr, 44Fe and46Fe, and48Ni and 50Ni.
Very recent studies of proton drip-line nuclei in this regio
have been performed in experiments based on58Ni fragmen-
tation on a beryllium target@21,22#. In Ref. @21# in particu-
lar, evidence has been reported for particle stability of50Ni.
In the shell-model calculations of Ref.@1# absolute binding
energies were evaluated by computing the Coulomb ene
shifts between mirror nuclei, and adding this shift to t
experimentally determined binding energy of the neutro
rich isotope. The calculated two-proton separation energ
predicted a proton drip line in agreement with experimen
data and with the mean-field results@2#. Compared to the
results of the present study, the shell-model total bind
energies are in somewhat better agreement with experime
data. However, the two models give almost identical valu
for the extracted two-proton separation energies of the d
line nuclei. The self-consistent RHB NL31D1S two-proton
separation energies at the drip line are also very close to
values that result from nonrelativistic HFB1Gogny ~D1S!
calculation of Ref.@2#.

-

to
its of
TABLE I. Comparison between calculated and empirical binding energies. All values are in un
MeV; empirical values are displayed in parentheses.

32Si 269.02~271.41! 40Ar 343.97~343.81! 44Cr 351.65~349.99!
34Si 284.42~283.43! 38Ca 313.11~313.04! 46Cr 380.19~381.98!
36Si 293.08~292.02! 40Ca 341.99~342.05! 44Fe 312.07~-!
34S 288.10~291.84! 42Ca 362.95~361.90! 46Fe 352.25~350.20!
36S 307.98~308.71! 40Ti 315.39~314.49! 48Fe 384.42~385.19!
38S 320.77~321.05! 42Ti 348.35~346.91! 46Ni 306.72~-!
36Ar 302.52~306.71! 44Ti 373.15~375.47! 48Ni 349.92~-!
38Ar 327.34~327.06! 42Cr 314.94~314.20! 50Ni 385.52~385.50!
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By using a fully microscopic and self-consistent mod
for the calculation of binding energies, we have the possi
ity to analyze in detail the single-proton levels. In Figs. 2,
and 4 we display the proton single-particle energies in
canonical basis as functions of proton number for theN
518,20,22 isotones, respectively. The thick solid lines
note the corresponding Fermi levels. The proton energies
not single-particle energies~i.e., the eigenvalues of thep-h
HamiltonianhD) but the diagonal matrix elements ofhD in
the canonical basis. Therefore the phase space that c
sponds to positive-energy states should not be confused
the continuum of scattering states which asymptotically
have as plane waves. The RHB ground-state wave func
can be written either in the quasiparticle basis as a produc
independent quasiparticle states, or in thecanonical basisas
a highly correlated BCS state. In thecanonical basisnucle-
ons occupy single-particle states. The canonical states

FIG. 2. The proton single-particle levels for theN518 isotones.
Solid lines denote the neutron Fermi level. The energies in
canonical basis correspond to ground-state solutions calculated
the NL3 effective force of the mean-field Lagrangian. The para
eter set D1S is used for the finite-range Gogny-type interactio
the pairing channel.

FIG. 3. Same as in Fig. 2, but for theN520 isotones.
l
l-
,
e

-
re

re-
ith
-
n

of

re

eigenstates of the RHB density matrix. The eigenvalues
the corresponding occupation numbers. Since the den
matrices in RHB are always localized, all canonical-ba
single-particle wave functions vanish at large distances.

Although the proton levels do not change much withZ,
we observe a consistent decrease in the energy splitting
tween the spin-orbit partners 1d5/2-1d3/2 and 2p3/2-2p1/2
with increasing proton number. We will show that this d
crease results from the reduction of the spin-orbit term of
effective potential@14#. The 1f 7/2 orbital is unbound for all
N518 isotones, and is very slightly bound forN520. The
Fermi level displays a sharp increase withZ for all three
isotone chains. In principle, a positive value ofl should
indicate which nuclei are beyond the proton drip line, i.
which nuclei are ground-state proton emitters. In particu
for 42Cr, 46Fe, and 50Ni we find l.0. This is somewhat
surprising, since for46Fe and50Ni the calculated two-proton
separation energies are positive. We have performed R
calculations with the effective interactions NL1 and NLS
but also for these forces the Fermi level is positive for42Cr,
46Fe, and50Ni. For these three nuclei we have also verifi
the results by performing coordinate space RHB calcu
tions. The results are practically identical to those obtain
with the oscillator expansion method; the Fermi levels
these three nuclei have positive values. Therefore it app
that there are cases at the drip line for which the definition
the two-particle separation energy~18! does not correspond
to the physical interpretation of the chemical potential.

In Fig. 5 we show the self-consistent ground-state pro
densities for theN520 isotones. The density profiles displa
shell effects in the bulk and a gradual increase of pro
radii. In the inset of Fig. 5 we include the correspondi
values for the surface thickness and diffuseness param
The surface thicknesss is defined to be the change in radiu
required to reducer(r )/r0 from 0.9 to 0.1 (r0 is the maxi-
mal value of the neutron density; because of shell effects
could not use forr0 the density in the center of the nucleus!.
The diffuseness parametera is determined by fitting the neu
tron density profiles to the Fermi distribution

r~r !5r0F11expS r 2R0

a D G21

, ~19!
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FIG. 4. Same as in Fig. 2, but for theN522 isotones.
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whereR0 is the half-density radius. In going away from th
valley of b-stable nuclei, generally the proton surface thic
ness increases and the surface becomes more diffuse. H
ever, whiles increases from Si to Ni, the diffuseness para
etera has a maximum atZ520. It appears that, as proton
fill the 1 f 7/2 orbital, the proton surface becomes slightly le
diffuse. This could be due to the stronger influence of
Coulomb barrier. In Fig. 6 we display the self-consiste
proton potentials for theN520 isotones, and in the inset th
details of the potentials in the region of the Coulomb barr
We notice how the Coulomb barrier increases from 3 M
for 34Si, to 6 MeV in 48Ni. We include also48Ni in our
figures for theN520 isotones, although this nucleus is n
particle stable in our calculations.

In Fig. 7 we display the proton rms radii forN
518,20,22 isotones, respectively. The calculated values
compared with experimental data for proton radii from R
@29#. Except for 32Si, we find an excellent agreement b
tween experimental data and values calculated with the N
effective force with the D1S Gogny interaction in the pairi

FIG. 5. Self-consistent RHB single-proton density distributio
for the N520 isotones, calculated with the NL3 effective intera
tion.

FIG. 6. Self-consistent proton potentials for theN520 isotones.
In the inset the details of the Coulomb barriers are shown.
-
w-

-

s
e
t

r.

t

re
.

3

channel. The model predicts a uniform increase of rms ra
with the number of protons.

In an analysis of ground-state properties of light neutro
rich nuclei @14#, we have shown that the relativistic mea
field model predicts a strong isospin dependence of the
fective spin-orbit potential. With the increase of the numb
of neutrons the effective spin-orbit interaction becom
weaker and the magnitude of the spin-orbit term in the sin
nucleon potential is significantly reduced. This results in
reduction of the energy splittings for spin-orbit partners. T
reduction in the surface region was found to be as large
'40% for Ne isotopes at the drip line. In Ref.@13# similar
results were found for the Ni and Sn isotopes. The spin-o
potential originates from the addition of two large fields: t
field of the vector mesons~short-range repulsion!, and the
scalar field of thes meson~intermediate attraction!. In the
first-order approximation, and assuming spherical symme
the spin-orbit term can be written as

Vso5
1

r

]

]r
Vls~r !, ~20!

whereVls is the spin-orbit potential@30#

Vls5
m

meff
~V2S!. ~21!

FIG. 8. Radial dependence of the spin-orbit term of the pro
potential in self-consistent solutions for ground-states of theN
520 isotones.

FIG. 7. Calculated proton rms radii forN518,20,22 isotones
compared with experimental data.
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V andS denote the repulsive vector and the attractive sc
potentials, respectively@see the Dirac Hamiltonian~2!#. meff
is the effective mass

meff5m2
1

2
~V2S!. ~22!

Using the vector and scalar potentials from the NL3 se
consistent ground-state solutions, we have computed f
Eqs. ~20!–~22! the spin-orbit terms of the effective proto
potentials for theN520 isotones. They are shown in Fig.
as function of the radial distance from the center of
nucleus. The magnitude of the spin-orbit termVso decreases
as we add more protons, i.e., as we move away fromb-stable
nuclei. From 34Si to 48Ni, the reduction is'20% in the
surface region. The minimum ofVso is also shifted outwards
and this reflects the larger spatial extension of the pro
densities. However, we note that the reduction ofVso for
protons is considerably smaller than the one calculated
neutrons in Refs.@14,13# ('35240 %).

The properties of the finite-range and density-independ
pairing interaction are illustrated in Figs. 9 and 10. In Fig
we plot the average values of the proton canonical pair
gapsDnl j as functions of canonical single-particle energi
The gaps are displayed for canonical states that corresp
to the self-consistent ground state of44Cr. Dnl j are the diag-
onal matrix elements of the pairing part of the RHB sing
nucleon Hamiltonian in the canonical basis. Although n
completely equivalent,Dnl j corresponds to the pairing gap
BCS theory. A very detailed discussion of HFB equations
the canonical basis can be found in Ref.@17#. The pairing
gaps have relatively large values for deep-hole states. Th
related to the volume character of the Gogny interaction

FIG. 9. Average values of the proton canonical pairing gaps
functions of canonical single-particle energies for states that co
spond to the self-consistent ground state of44Cr. The NL3 param-
etrization has been used for the mean-field Lagrangian, and
parameter set D1S for the pairing interaction.
r

-
m

e

n

or

nt

g
.
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-
t

n

is
n

the pairing channel. The average value at the Fermi sur
is between 1.5 and 2 MeV, andDnl j slowly decrease for
canonical states in the single-proton continuum. In Fig.
we display the averages of the proton pairing gaps for oc
pied canonical states

^Dp&5

(
nl j

Dnl jvnl j
2

(
nl j

vnl j
2

, ~23!

where vnl j
2 are the occupation probabilities. The values

^Dp& for the N522 isotones are plotted as function of th
proton number. The average proton gap increases to alm
MeV for 38Ar, then the pairing correlations disappear at sh
closure Z520. For the 1f 7/2 orbital the value of^Dp& is
'2.5 MeV.

In conclusion, this study presents the first application
the relativistic Hartree-Bogoliubov theory to the descripti
of ground-state properties of proton-rich nuclei. A detail
analysis of spherical even-even nuclei with 14<Z<28 and
N518,20,22 has been performed. The NL3 parameter
has been used for the effective mean-field Lagrangian in
ph channel, and pairing correlations have been described
the finite-range Gogny interaction D1S. In a comparison w
available experimental data it has been shown that the N
1 Gogny D1S effective interaction provides a very go
description of binding energies, two-proton separation en
gies and proton rms radii. Model predictions for the prot
drip line agree with recently reported calculations in t
framework of the nuclear shell model and with results
nonrelativistic HF and HFB studies. For isotone chains
have also discussed the predicted reduction of the effec
spin-orbit potential with the increase of the number of p
tons, as well as the resulting energy splittings between s
orbit partners and modifications of surface properties.

s
e-

he

FIG. 10. Average proton pairing gaps^Dp& of the N522 iso-
tones.
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