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Landau model for uniaxial systems with complex order parameter

M. Latkovic and A. Bjelis
Department of Theoretical Physics, Faculty of Science, University of Zagreb, P.O.B. 162, 10001 Zagreb, Croatia
(Received 26 May 1998

We study the Landau model for uniaxial incommensurate-commensurate systems of class | by keeping
umklapp terms of third and fourth order in the expansion of the free energy. It applies to systems in which the
soft-mode minimum lies between the corresponding commensurate wave numbers. The minimization of the
Landau functional leads to the sine-Gordon equation with two nonlinear terms, equivalent to the equation of
motion for the well-known classical mechanical problem of two mixing resonances. We calculate the average
free energies for periodic, quasiperiodic, and chaotic solutions of this equation, and show that in the regime of
finite strengths of umklapp terms only periodic solutions are absolute minima of the free energy, so that the
phase diagram contains only commensurate configurations. The phase transitions between neighboring con-
figurations are of the first order, and the wave number of ordering goes through a harmless staircase with a
finite number of steps. These results are the basis for the interpretation of phase diagrams for some materials
from class | of incommensurate-commensurate systems, in particular of thos&,Bof, and betaine-
calciumchloride-dihydrate compounds. Also, we argue that chaotic barriers which separate metastable periodic
solutions represent an intrinsic mechanism for observed memory effects and thermal hystereses.
[S0163-18298)07738-9

I. INTRODUCTION vored by the elastic term. Minimization of the Landau func-
tional again leads, after neglecting the space variations of the
Usual treatments of uniaxial incommensurate-order-parameter amplitudeto the sine-Gordon equatiér,
commensurate (I@) phase transitions are based either oni.e., to the phase diagram equal to that of the FK model after
microscopic models with competing interactions or on phethe space continuation.
nomenological Landau theories. The relevant reviews can be The above approaches predict either a dense sequence of
found in Refs. 1 and 2. The well-known example of thesecond-order phase transitiofdevil’s staircase in the FK
former is the Frenkel-KontorovéFK) model®#in which the  mode) or an isolated transition of the same tyfleandau
wave number of ordering goes through the devil's staircas¢heory). Both possibilities are indeed close to the observa-
sequence of second-order phase transitidnghe regime of  tions of IC<C transitions in some material&!* A majority of
weak interactions the FK model can be continuated, and smaterials, however, exhibits a more complex behavior com-
reduced to the exactly solvahlee., integrablg sine-Gordon  prising one or more first-order phase transitions, memory
model? The solutions that then participate in the phase diaeffects, wide(*global” ) hystereses, finite density of solitons
gram are phase soliton lattices, i.e., commensurate regiora the very ICE transition, etc(for a review see, e.g., Ref.
separated by so called discommensuratiofise phase tran- 11). It is usually difficult to decide solely from the experi-
sition to the commensurate state is of the sec@mhtinu- mental observations, even for the most carefully prepared
ous order, and the devil's staircase variation of the wavesamples, whether such effects are of purely intrinsic or of
number is replaced by its simple continuous dependence asome extrinsic origin. From the theoretical side, they cannot
the control parameter. be explained within either of above approaches without ex-
The phenomenological Landau theory, another usual apgending the models. So far this problem was mainly consid-
proach to the IGZ transitions, started from the expansion of ered by taking primarily into account some extrinsic agents,
the thermodynamic potential in terms of the order parameteljke external fieldge.g., electric field in ferroelectric materi-
and relied on the symmetry requirement by which the ordearls), pinning centers, fixed or mobile defects, additional ex-
parameter is defined through one of the irreducible represerternal periodic potentials with periodicities different from
tations of the symmetry group of the normal phase. For exthose already present in the model, etc.
ample, for structural phase transitions the order parameter is Another, more intricate possibility is that of intrinsic
defined as a set of normal coordinates of the soft nidde. sources and mechanisms as the potential explanations for the
Generally the minimum frequency of this soft mode may beaforementioned phenomeffa.ln this respect the central
located at an arbitrary poiiie., star of wave vectoysn the  question is the following: what are the simplest intrinsic ex-
first Brillouin zone. The simplest irreducible representationtensions of the above basic approaches that lead to phase
for a uniaxial ordering is then two dimensional. The corre-diagrams with a finite sequence of first-order transitigres,
sponding basi¢“minimal” ) form of the Landau expansion harmless staircas®, and thus offer an inherent explanation
comprises, besides the leading normal terms, one, presurfer global hystereses and corresponding phenomena?
ably the strongest, umklapp term allowed by symmetry. This The attempts in this direction were more successful in the
term favors a commensurate ordering and is responsible faealm of discrete models. The examples are models that in-
the lock-in transition from the incommensurate ordering fa-clude couplings between next-nearest neighbors, like the so-
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called discrete frustrategl* (DIFFOUR) model** axial next- Q

nearest-neighbor IsingANNNI) model!®>!® as well as

various extensions, *° and models with two spinlike vari- Q, 5| s

ables per site like those of Chen and WafRemnd Jansseft. | —— |
Both types of extensions were aimed mostly towards the | 2!,[ 2|n |
interpretation of the phase diagrams observed in the family 0 4a 3a H

of A,BX, compounds. o , o

On the other hand, the attempts within Landau models FIG. 1. Brillouin zone with the soft-mc_)de minimum &, and
were based on the formal inclusion of more and more umth® commensurate wave numbers of thi@) and fourth Q,)
klapp termdi.e., stars of wave vectorinto the basic models ©rder-
for classes I(Refs. 22—-24 and Il (Refs. 25—-27 of IC-C 334 ) ]
systems. From one side, the relevance of the umklapp ternfgodels; " i.e., are there thermodynamically stable configu-
of high orders in the Landau expansion can be hardly justifations among other, quasiperiodic and chaotic, trajectories.
fied on the physical grounds. Also, the ensuing analyses took In order to analyze this additionahermodynamicaspect
into account only sinusoidal modulations, which, as theof the phase portrait, we calculate the average free energy for
present study shows, is a too crude approximation for thgeriodic, quasiperiodic, and a representative set of chaotic
determination of phase diagrams with a harmless staircassplutions of the EL equation, with the aim to find, for given
as well as for the interpretation of accompanying hysteretiozalues of control parameters, those solutions that have the
effects. lowest value of the average free energy. We show that the

In contrast to such approaches, we propose in the preseahaotic configurations are never thermodynamically stable,
work a simple, physically well justified, extension of the in agreement with results obtained for some discrete
basic Landau model for class I, which is still framed within amodels®** The quasiperiodic configurations might be
“minimal” free-energy expansion for a single star of wave present in the phase diagram only when the umklapp terms
vectors. The phase diagram that emerges from our model &e weak enough, i.e., at temperatures slightly below the
characterized by a harmless staircase and first-order trangihase transition from the disordered to the incommensurate
tions between highly nonsinusoidal configurations with dif-state. In the regime of strong umklapp ter(ts be specified
ferent periods. Furthermore, a closer examination of configulaten the phase diagram is completely covered by periodic
rations that participate in the phase diagram, and also ofonfigurations, and the wave number of ordering passes
those that are not thermodynamically favored, enable a pladhrough a finite number of values separated by the first-order
sible explanation of the memory and hysteresis effects as tHgansitions, i.e., the corresponding staircase, is harmless.
intrinsic (or at least semi-intrinsjcproperties of ICE sys- The paper is organized as follows. In Sec. Il we introduce
tems. the Landau model of uniaxial ordering with two umklapp

Our considerations are based on a sine-Gordon moddéerms and discuss its classical mechanical counterpart. The
with two umklapp term&® This type of model is physically solutions of the Euler-Lagrange equation are considered in
well grounded whenever the Landau expansion contain§ec. lll, and the corresponding thermodynamic phase dia-
terms that favor two different commensurabilities that are ofgrams are presented in Sec. IV. Finally, in Sec. V we discuss
comparable strengths. The most interesting case is realizgwssible implications to the phenomena observed in real ma-
with umklapp terms of third and fourth order, the lowestterials, and compare our results with those obtained in the
possible ones within the models with the Lifshitz invariant, previous analyses of the similar models and other theories of
appropriate for the so-called systems of clagRef. 6 (the  uniaxial IC-C ordering.
systems of class Il have lock-in transitions at the commen-

surabilities of order one and two, and are covered by an Il. MODEL
essentially different type of Landau motfei9.
The mean-fieldsaddle-pointapproximation for our Lan- We start from the assumption that the quadratic contribu-

dau functional leads to the Euler-Lagran¢fel) equation tion to the Landau expansion has minima at wave numbers
that has the form of the double sine-Gordon equation. This i$+Q,—Q), where Q;<Q<Q3, with Q,=27/4 and Q;

one of the most intensively studied nonintegrable problems=2/3. Here the unit length is taken equal to the lattice
in contemporary classical mechant¢s3The corresponding constant. The distances Qffrom Q3 andQ, are denoted by
phase portrait contains periodic, quasiperiodic, and chaotiés and 8,, respectively, withd;+ §,= /6 (Fig. 1). From
trajectories, the latter appearing only wheath nonlinear now on we shall usé, as an independent control parameter.
terms in the Landau functional are finite. As the strength ofLet us furthermore specify that the order parameter is com-
nonlinear terms increases, the chaotic trajectories occupy fex, pe'®. Limiting the further analysis to the temperature
larger and larger portion of the phase space, destroyingange well below the critical temperature for the transition
gradually quasiperiodic Kolmogorov-Arnold-MoséKAM)  from the disordered to the incommensurate phase, we also
layers, and eventually allowing only for some isolated peri-make the usual approximation of space-independent ampli-
odic trajectories. The latter are orbitally unstable and theretudep,® and keep only the phase-dependent part of the free-
fore are not realized within the scope of classical mechanicenergy density. The latter reads

However, we show that just this tiny subset of the phase

space comprises local minima of the free-energy functional, 1/de)\?

i.e., the solutiongconfigurations that participate in the ther- (¢.x)= 5( ax, B 003{3¢+ 3
modynamic phase diagram. The question that then arises is

analogous to that met in the analyses of the discrete +Ccog4p—45,X). (1)

w
5—54 X
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Here we scale the free-energy functional pi
H(py,¢.X)= 7—8co{3¢+3

ar
g - 54) X
—Ccod4dp—46,x), 5

by ggpz, whereé, is the correlation length in thedirection. wherep,=df/d¢’ = ¢'. Obviously forB=0 or C=0 Egs.

The first, gradient term in Ed1) is the elastic contribution (3) and (5) reduce to completely integrable sine-Gordon

that favors the incommensurate sinusoidal ordering with th@roblems. For bottB andC finite, one encounters the coex-

wave numberQ. The second and third terms are the um-istence of two overlapping resonance domains. This can be

klapp contributions of the third and fourth order, respec-easily seen with help of the Poincaceoss section. We in-

tively. Due to the closeness of the wave numeto both  troduce the auxiliary variable

respective commensurate wave numbers, they are presum-

ably the leading umklapp contributions, provided both are

allowed by symmetry. Their effective strengths are denoted =+

by coefficientsB and C that are proportional to the first and ]

the second power of the amplituge respectively. They are and plot the Poincareross section in the phase space

another two control paramete(isesides,) of model(1). The  (#.py), ¥=¥(Xo+3n),p,=¥'(Xo+3n). Here X, is the

temperature variation qf is expected to be the main source starting point of integration and is an integer. The reso-

of the temperature dependenceB@ndC. nance domains are situated around elliptic fixed points at
Model (1) covers a variety of possibilities that may take [#=0,p,=(27/3)m] and [¢=m/6,p,=(7/4)(2m+1)],

place in particular physical examples. Besides the competwheremis an integer. Their respective widths are/B2 7 if

tion of each umklapp term and the elastic term present alC=0 and 12/C/+ if B=0. For small values oB and C

ready in basic sine-Gordon models, the essential new propFig. 2(@)] the trajectories between two resonances conserve

erty of the present model is an additional competitiontheir topological form, while chaotic trajectories exist only

between two umklapp terms. The relative importance ofvery close to the separatrices of both resonance® &sd/or

these two terms relies on both the ratio of the strenBthad  C increasq Fig. 2(b)] the separatrices burst out into stochas-

C and the position of the wave numb@ i.e., the ratio of§;  tic layers that grow and eventually merge between resonance

and §,, so that various regimes are possible. Regarding exdomains. One gradually arrives at the threshold of the sto-

pansion (1) it is reasonable to expect that the relative chasticity[Fig. 2(c)], given by the Chirikov criteriott

strength of two terms varies from the dominance of the third-

order term B>C) at temperatures not far below the transi- 12 JB+C)~

tion from the disordered phase to the comparable valugs of F( B+VC)~1,

and C at lower temperatures. However, even whgs C, ) ] )

the relative weakness of the fourth-order umklapp term caft Which the last KAM torus is destroyed, i.e., there are no

F=f dxf(¢,x) 2

g—&;)x. ®)

@)

be compensated by a small value &f with respect tos;, ~ More quasiperiodic solutions between two resonances. Cha-
i.e., by its much slower space dependence. In this case it Rtic trajectories are now free to diffuse throug_h all phase
necessary to keep both umklapp terms in expangipnAl- ~ SPace between two resonances. Let us mention here two

though similar arguments may be invoked in favor of retain-Points relevant for further discussion. First, the widths of the
ing some other pair of commensurate wave numbers, or evef12otic layers grow exponentiafiyas parameters and C

more than two of them, exampld) seems to be the most Increase. Thus, the area between two resonances will be rap-
interesting one, due to the lowest possible powerspof idly covered with chaotic layers. Second, KAM tori repre-
present in coefficients and C. sent the main obstacles to diffusion of chaotic trajectories

The configurations that take part in the thermodynamidhrough phase spad&ef. 33, and references thergin
phase diagram of modél) are the solutions of the Euler-

Lagrange(EL) equation, Ill. SOLUTIONS OF THE EULER-LAGRANGE EQUATION
o Beside the classical mechanical context, our problem has
¢"+3Bsin3¢+3 5 S4|X|+4Csin(4¢p—45,x)=0, an additional aspect, namely, we are looking for the thermo-

3) dynamically stable solutions, i.e., the trajectories in the phase
space from Figs. (@), 2(b), and Zc), which are local minima
which for given values of the control parameters have theof the functional(2). Since we have to compare average free
lowest value of the free energy averaged over the macroenergieg4) of the trajectories present in the phase space, our
scopic length of the systein, first task is to specify numerical methods appropriate for the
calculation of particular types of solutions.
1 The orbitally unstable periodic solutions obviously cannot
(F)= Ef dXf[ p(x).X]. (4) be determined by a direct integration of the EL equa){i(di)s
commonly used for calculation of orbitally stable solutions.
Before developing the appropriate method for the deterit is therefore necessary to calculate them by using a suitable
mination of such configurations, let us make a few remarkdoundary value method for nonlinear equations. The most
about Eq.(3). From the classical mechanical side it repre-natural choice is the finite difference method, which is, how-
sents the nonintegrable double resonatiee, double sine- ever, rather demanding regarding computer memory and
Gordon model®*?with the corresponding Hamiltonian ~ time. It is therefore important to reduce the search for peri-
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FIG. 3. Farey tree for wave numbegglefined by Eq(12).

d(X+P)=d(X)+ ¢p, ®

which holds for any periodic solution. Hefe is its period
and ¢p is the phase increment per perigibte that the pe-
riodic solutions with finitep belong to the rotational part of
the phase spagelnserting Eq.(8) into the EL equation(3)
taken atx+ P one gets

&'+ 3B sir{3¢+3 g—54 x+3¢p+3(%— 54) P}

+4Csin4¢p—48,x+4dpp—48,P)=0, 9

where ¢= ¢(x). Sufficient conditions on the values of pa-
rameterd? and ¢p follow from the requirement that Eq€)
and (3) have the same form, i.e., that

o
3¢p+3 6_64 P:2’7Tk, 4¢p_464P:_27T|,
T T T T T (10)
wherek and| are integers. Thus we get
r
P=4k+3l, ¢p=564P—1I 5 (17

Obviously, each periodic solution satisfying the requirement
(10) is uniquely defined by a pair of integets, () that do not
have a common integer factBtNote that the above proce-
dure, in particular the step from E¢9) to the conditions
(10), in principle does not forbid the existence of periodic
solutions that do not belong to the set defined by Etj$).
However, our attempts to locate numerically such solutions,
although based on two independent algorithms, the present
. and the alternative on¥, always led to a negative result.
This is an indication that the solutions with the peridi$)

are very probably the only possible periodic solutions, i.e.,
that relationg10) are also the necessary conditions for their

3n/2

FIG. 2. The Poincareross sections for the Euler-Lagrange
equation(18) and the choice of parameterg;= 1.5, ¢4(xo)=0, B existence.
=C=0.002(a), B=0.008C=0.006(b), B=C=0.02(c). The pe- The solutiong(x) with the period(11) has the total wave
riod that defines the section is equal to 3. Symbols for the periodiumber(that measured from the origin of Brillouin zone
solutions k,l) are®, (0,1); W, (1,0); ¢, (1,1); A, (1,2; «, (1,3);
v, @1,%9;», (2,); +, (2,3; X, (3,; *, (3,2.
(12)
odic solutions by establishing in an analytic way sufficient
conditions for the possible values of periods. To this end wéhe values ofq allowed by conditiong10) form a Farey
start from the relation tree, shown in Fig. 3 for the wave numbers betwgenl/3
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(k=0, I=1, and P=3) andq=1/4 (k=1, 1=0, and P TABLE I. The set of possible values &f, and ¢(x,) needed for
=4). Thus, already at this introductory stage of the analysi$pecifying boundary conditions of EL equatit8).
we conclude that mode(l) has the phase diagram with
branchings between neighboring commensurate configur& | P Xo #(Xo)
tions equivalent to those of ANNNI model&*®

The periodic solutiongg=1/3 (k=0, =1, and P=3)
andq=1/4 (k=1,1=0, andP=4) in the Farey tree of Fig.
3 are the basic commensurate configurations, belonging
the umklapp terms of third and fourth order, respectively.
The wave numbers at lower levels of the Farey tree from Fig,
3 represent higher-order commensurate solutions that corré)—dcI Even Even 0 0
spond to all positive values df and|. They are situated 12 Sat
between two main resonances in the Poincamss section
shown in Fig. 2. Note that for small values Bfand C their
positions in the phase spaffeig. 2(a)] perfectly match po- -
sitions in the Farey tre€Fig. 3). As parameter8 and C P (Xg)= 84X~ ZN' (17)
further increase, the positions of periodic solutions that are
embedded in chaotic layers become slightly intermixed sinc&hese relations would allow for P values ofx, and an
there are no more KAM tori between two resonances thajnfinite number of values for(x,) (for a general value of
restrict their positions in phase spgédg. 2c)]. We do not 5,y The further analysis of symmetry properties of problem
include the parts of the Farey tree belonging to negative vale) s well as the numerical insight, however indicate that
ues ofk and/orl since, as it will become clear later, they are o, any choice of period® and ¢p this enumerable set is
not thermodynamically stable.for<054< 76 andS,_C>0. highly degenerate and reduces to only two distimznde-

In the next step we specify boundary conditions for ageneratgsolutions. The convenient choicessef and ¢(xo)
particular periodic solutiorby(x). Since every periodic S0-  characterizing these solutions for various combinations of

lution possesses at least two inflection points, we chose ongyqg andjor even values of integérand| are listed in Table
of them,x, to be the initial point of integration, i.e., the left |

Odd Odd Odd 0 0

ven Odd Odd 0 0

end point of one period. Thugy,(x=Xx,)=0. The boundary The above analysis simplifies drastically the numerical
conditions now read procedure, since after specifying the paramekets x,, and
$(Xo), the determination of a given periodic solution fol-
ba(x=Xo+ P)=dra(X=%o) + ¢p, lows from the variation of the single remaining parameter
(13) ¢’ (xg). In accomplishing this procedure it appears conve-
Pra(X=Xo+ P) = dy(X=Xo). nient to eliminate, by transforming the variabgx), the

explicit x dependence from one of the umklapp terms in the
EL equation(3), and to keep this dependence in the term
with a weaker amplitude. Thus f& larger tharC we use the
variabley(x) [Eq. (6)] instead of¢(x), so that the EL equa-

Since the values oP and ¢p follow from the choice of
integers k,l) [Egs.(11)], it remains to establish the connec-
tion between the other three paramet&gs, ¢, (x=X,), and
dr(X=Xg), which figure in conditiong13). As it follows

from the EL equatior(3) with x=Xxg, tion
2
s " H H _ —
3Bsin 3¢:(Xo) +3| 5 —~ 84 |%o ¥ +3BSIn(3¢/)+4Csm(4<// 3 x) 0, (19
+4C siN4¢(Xg) —45,X0] =0, (14) and its solutionsy(x), do not depend ors,. The corre-

sponding free energy then acquiresadependent term in
Xo and ¢(X,) are not independent. Even more, the numericathe form of Lifshitz invariant,
experience suggests that for a given periodic solution kgth

and ¢(Xq) do not vary as we chandg# and/orC, i.e., that S 1 (w 5 2
Eq. (14) in fact decomposes into two conditions, - X 2 ¥ - 6 %
T 2
3p(Xg)+3 5—54)x0:|\/|77, +Bcog3y)+Ccos 4¢— ?x , (19

(15 which simplifies the calculation of th&, dependence of the

averaged free energy for any particular periodic solution of
whereM andN are integers_ This means th)qi and ¢(XO) the EL equation. As is visible in Flg 4, the form of periOdiC
may have values solutions resembles that of multisoliton solutions of the
simple sine-Gordon modéktill, note the slight modulation
1 of commensurate regions, i.e., between discommensura-
Xo=7(4M+3N) (16)  tions). WhenC is larger tharB, it is appropriate to introduce
an analogous variable that makes théerm x independent,
and namely, x(X) = ¢(x) — d4x. Again, the corresponding EL

4¢(X0) _454)(02 - N’7T,
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' ' ' ' ' 0.08 . . . . .
10 (1) (1.2 3 (1.4 (19 @
2n b
0.06 | .
5m/3 .
Xq=0
43| 8 0.04 (10 .
X A
> [
v
x b i
0.02 =172 i
2m3 ]
™ T | or ———————
% 10 20 30 20 50 60 ' ' ' ' .
« 0 0.01 0.02 0.03 0.04
c
FIG. 4. The periodic solutiong(x) from the class (1). The
parameters ardB=0.02,C=0.02,x,= 1.5, ¢(Xy) =0. 0.01 )
equation does not depend @. The boundary conditions (1.6)
have to be modified correspondingly for both transforma- (1,5)
tions. 0.005 r 1'4 |
Although the steps described above greatly simplify the a4
numerical procedure, the finite difference method poses the (1,3)
limitations on the computer memory and time that do not'y
allow us to calculate solutions with periods well above 100. or g;; ]
Note in this respect that the nonlinearity of EL equati¢@)s '
or (18) forces us to use about 1000 mesh points per period ir
order to get solutions that are reliable enough. 0.005
Periodic solutions of EL equatiof8) show several inter- T i
esting properties that are important for analysis of phase dia

grams. We notice that for some valu@s ranges of valugs 5 oo e oo oo
of parameter8 andC one of the two periodic solutions with ' c ) )
the same values d&f and| from Table | ceases to exissee

Fig. 5. In general, the solutions with the lower value of FIG. 5. Average free energies of the periodic solutions from
averaged free energy are more robust with this disappea#lass (1) as the function o€ for B=0.02 ands,= 7/12.(b) is the
ance. We do not go into a closer analysis of this effect, bugnlarged detail ofa) with (_energies lower than 0.01. Solutions_with
only indicate that it seems to be closely connected with thdower average free energies are those from the second rows in Table
destruction of KAM tori as8 and C increase. I. Note from(b) that, e.g., the upper solutidf,6) does not exist for

Another interesting property of periodic solutions is the few supranges of the value§ of parameZerand that both solutions
splitting in averaged free energies of two solutions with the™™ this class cease to exist fa=0.03,

same values ofk,|) (see Fig. 5. As parametetC gradually . . - L
increases from zero, while keepir@ fixed, values of the random (the probability of picking a periodic solution in-

difference between these two energies increase, thus makir?éead of quasiperiodic or chaotic ones is equal t_o)zemd _
one periodic solution more and more thermodynamically faSa&Y out the integration as long as the accuracy is satisfying.

vorable with respect to the other. This splitting is larger for | '€ fact that the averaged free energy of quasiperiodic and

the solutions with smaller periods. The qualitative consechaotic solutions can be determined only to a limited accu-

quence is that such solutions participate over greater anf@Ccy Was already pointed out by Fradienal,™ who esti-
greater parts of the phase diagram as param&easd C mated the _degree of accuracy for a given type of solution.
increase. The estimation of the common averaged free energy of

For the calculation of quasiperiodic and chaotic trajecto-cN2otic_solutions within a given layer can be done as

ries we use standard, Adams or Runge-Kutta-Merson, metH{ollows *" The average value of umklapp terms in expression
ods for an initial value problem. Quasiperiodic trajectories, (L9 IS Zero since these terms contain trigonometric functions

as building objects of KAM tori, are orbitally stab& Cha- with an argument that chaoticallyandomly varies withx.
otic orbits, although certainly orbitally unstable, are diffusive FO the fourth-order umklapp term ddg—(27/3)x] we
through all the corresponding chaotic layer in the phasd'@ve

space, so that by picking one of them we get practically the ) )

averaged free energy for all chaotic solutions in that layer. £ e T _

Thus, in order to calculate the averaged free energies of qua- <COS( 3 X) C0$4¢)> B < sm( 3 X)Slm4w)> =0,
siperiodic and chaotic solutions we chose initial values by (20
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while for the third-order umklapp term we have an average
of cos 3/ that is also zero. The averaged free energy is thu:
given by the integral of the gradient terd[y’' — (/6
—8,)]%. The latter depends on the position and the width of
the chaotic layer in the phase space, i.e., only on the depel
dence ofy’ on x along the trajectory in this layer.

In order to determine a solution with the lowest average
free energy we follow solution@periodic, quasiperiodic, and
chaotig with initial conditions that belong to the line "
[#(Xg) =0, (Xg)] in the phase space/(') (Fig. 2), and
compute their average free energies. For small valueB of
andC, periodic and quasiperiodic solutions are regularly ar-
ranged in the phase spa€Eig. 2(@)], with hardly distin-
guishable average free energi€sg. 6(@)]. In order to show
that the solution with the lowest free energy is periodic, we
follow downwards the branch of the Farey trgég. 3) that
starts at the point with the averaged free energy lower tha
those for neighboring points above and below this point. It is
numerical evidence that the average free energies increa:
(and tend to some finite valuas we go down through suc-
cessive branch points, i.e., through the solution with large!
and larger periods. Quasiperiodic solutions can be regarde
as asymptotic limits of series of periodic solutions defined by
successive branchings in the Farey tree in which the perio
and the phase increment tend to infinityut with a finite,
irrational, value ofg). The averaged free energies of quasi-
periodic solutions thus should be equal to the limiting values
of averaged free energies at a given branch, which are, as
argued above, higher than the averaged free energy of tr
starting periodic solution. Since this argument is based or
numerical calculations, it cannot be extended to very smal
values ofB andC for which the solution with the lowest free
energy, as well as the solutions at the accompanying branc
in the Farey tree, have too large periods.

In the range of intermediate valuesB®fandC [Fig. 6(b)]
there are intervals of initial conditions in which quasiperi-
odic solutions disappear, and only chaotic and periodic solu
tions are present. The chaotic layers can be easily recognize
in the Poincarecross sectiorfFig. 2(b)]. The average free
energies of periodic solutions then look as needlelike minime
immersed in the average free energy of chaotic layers, ref
resented by plateaus in Fig(®. Finally, for large values of
B and C [Fig. 6(c)] for which the Chirikov criterion(7) is
fulfilled, there remains a single chaotic layer between tWOLQ
resonance domain§ig. 2(c)], while the number of existing
periodic solutions gradually decreasesBaand C increase.
Since there remains a finite number of corresponding well-
defined needlelike minima, it is sufficient to limit the nu-
merical calculations to the search for existing periodic solu-
tions, and to find out among them the solution that has the
lowest average free energy.

<F>
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We have argued in the previous section that the configu- g 6. Average free energy ug, of periodic (A), quasiperi-
rations with minimal average free energy are among periodiggic (O), and chaotic # ) solutions, forB=0.002,C=0.002(a),
solutions of EL equatior(3). Before presenting results of g—0.008,c=0.006(b), B=0.02,C=0.02(c), and 8,= /12, X,
numerical calculations that confirm this expectation, we=15. The k,1) indices for the periodic solution with the lowest

briefly discuss the parameters present in madgl

most usually on temperature and pressure. As it was merenergy minima.

average free energyA() are(3,4) in (a) and(b), and(1,) in (c).
The parameter8 and C depend on external conditions, The insets in(@ and (b) are enlarged neighborhoods of the free-
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tioned in Sec. I, they depend on the amplitude of the order 0.8
parameter linearly and quadratically, respectively. At tem-
peratures closely beloW, , the temperature of phase transi-
tion from the disordered to the incommensurate phase, the
ratio B/C is proportional to T,—T) 2. A more complete
insight into the temperature dependence of the order param-
eter, and of the rati®/C as well, in the wider temperature
range belowT,, can be obtained from the neutron scattering, }} 0.4
NMR, and similar experimental data for particular materials
(e.g., Refs. 38 and 39As for the pressure dependenceBof

and C, it can be specified only after the insight into the
microscopic model for a particular material on which the 0.2
Landau theory is based. The parameggralso might be 4/15
temperature and/or pressure dependent. Usually, in a con-
crete physical situation certain dependences may be regardec ‘ , , ,
as dominant. For example, when temperature varies and 0 0.01 0.02 0.03 0.04

pressure is constani, can be often regarded as constant, c

while B and C are temperature dependent. Having this in g 7. phase diagram in the(s,) plane forB=0.02. The
mind we simplify the further discussion by keeping one of , mpers in the figure are periods of some stable commensurate

the parameters fixed and concentrating on phase diagrams jRases. The dashed line @t0.0145 represents the Chirikov cri-
the remaining two-dimensional parameter subspaces. terion (7).

The role of the paramete},, the position of the instabil-

ity with respect to the wave number of the fourth-order com-,q5 ofk and| participates in the phase diagram in Fig. 7, i.e.,
mensurability, is expressed through the Lifshitz invarianty,a¢ characterized by the initial conditions from the second
@z//(x) in Eq. (19 yvh|ch favors the incommensurate order- ;os (depending on evenness and oddness of integarsl

ing. On the other side, two umklapp terms favor commensury i, Taple I. Still, we find out numerically that the average
rate orderings with their respective wave numbers. Or  freq energies for two different solutions with the sarke X
—0, and fixed values of parameteBsandC, the umklapp  mgay change order, i.e., that the solutions from the first rows
te_rm of the fourth order domlnates' with respect to 'tha_t of the&, Taple | may have lower average free energy than those
thlrd_order, and the thermodynamically stable periodic solut,om the second rows provided they are of rather high com-
tion is expected to have the wave numiogr=1/4. On the  mensyrability. Thus, it is somewhat surprising that in the
same footing, ford, nearw/6 (i.e., for 3—0) the stabiliza-  yhase diagram in Fig. 7 the periodic solutions with only one

tion of the modulation witlgo=1/3 is preferred. For €46,  type of boundary condition prevail. We shall come back to
< /6 we expect that some other higher-order wave numberg;s point later in Sec. V.

of modulation become thermodynamically stable and that |, aqdition to the phase diagram, we plot in Fig. 8 the
they follow the order specified by the Farey tree from Fig. 3.corresponding staircase, i.e., the wave number of the stable
Let us now fix parameteB and allow for the variation of configuration vs paramete@ and 8,. As long asC is not

the parameterg, andC. For a particular value of we find  yery small there is a finite number of steps, i.e., we obtain
periodic solutions of the EL equatiogii8) by following the

steps from Sec. Ill, and calculate their average free energy 035
(19 for a relevant range of values of the parameigr Then ' —
we determine a solution that is the absolute minimum of the '
average free energy for a given value&f, and in particular
the isolated values af, at which first-order phase transitions
take place since twgor more configurations are simulta- b
neously absolute minima of the free energy. Varying also
systematically paramet&® we obtain the phase diagram, as
shown in Fig. 7 foB=0.02. All lines in this diagram repre-
sent the phase transitions of the first order between the peri i
odic configurations with different wave numbeushich are i "”"”"“HVHW .
denoted only for few dominant phases in the diagraxote m;,f;l”"llll ' “““HHH
that the Chirikov line(7) is at C~0.0145, and that below m "m

—I

0.3

|IIII|I||III|I|II ‘
""m"II||||.|.|.I||||“!||II||--., L
C~0.01 there is a proliferation of configurations with com- 0 mﬁ“‘l|||[|f||||||H|||“m|“’ll"””H“““
mensurabilities of higher and higher orders. The absence o --||||||||||||HH”|H ’
these configurations at larger valuesis mostly due to the ,
fact that, although they exist as solutions of the EL equation, I

; : D . 0.04 1/4 0.5
their average free energies are too high in comparison tc 0 654m
those of the solutions with lower commensurabilities. In ad-
dition, some periodic solutions simply cease to existdsr FIG. 8. The wave number of modulatiag vs C and 8, for B

B) increase, as shown in Fig. 5. Note also that only one 0£0.02. The dotted cross section represents the Chirikov criterion
two different classes of periodic solutions with the same val{7).
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0.05

. phase diagram. Furthermore, all phase transitions between
successive commensurate phases are of the first order, so that
the wave number of ordering follows a harmless staircase

0.04 I with a finite number of steps. The examples of such a phase
L diagram, namely, a series of successive lock-in
0.03 s commensurate-commensurate transitions with accompanying
effects that characterize first-order transitidhare often en-
o ~ countered in particular materials. Here we focus our attention

on a few well-known examples.

One of the most studied type of materials a&eBX,
compounds, among which we take fZbBr, as a prominent
representative. Early neutron-diffraction measurend&rits
of the temperature variation of modulation wave numbers
revealed the existence of several higher-order commensurate
phases. The more complete pressure-temperature phase dia-
gram followed from various subsequent data, in particular
again from the neutron-diffraction measurements of Parlinski

FIG. 9. Phase diagram in th&(C) plane for8,=m/12. The et al****It resembles to a great extent our phase diagrams
numbers in the figure are periods of some stable commensuraféom Figs. 7 and 9. Note also that the phenomenological
phases. The dashed curve represents the Chirikov critéfjon formula for wave numbers of observed commensurate phases

introduced by Parlinsket al*® coincides to our expression
the so-called harmless staircase, introduced by Villain andor the Farey treg12), which is, as is shown in Sec. Ill,
Gordon®® We stress that the most interesting property of thenherent to the mode{1). Harmless staircases are clearly
phase diagram from Figs. 7 and 8, the presence of a finiteeen in, e.g., pressure variation of the wave vector for a fixed
(smal) number of stable commensurate configurations, is entemperaturé? with steps going as 1/3, 7/24, 2/7, and 1/4 by
countered in the regime of rather high values of param&ers increasing pressure. They are accompanied by hysteresis in
and C. The phase portrait of the EL equati@B) is then  pressure and temperature runs, which are particularly strong
almost everywhere chaotj€ig. 2(c)] and there are no more when only a few steps appear in the phase diagram. This
quasiperiodic solutions between two resonances. By increasorresponds to the regime of rather high values of parameters
ing further the values of parameteBsandC one eventually B andC, in which the phase diagram contains only a few
comes to the phase diagram in which only two main com-commensurate phases and the average free energy of the cha-

0.02

0.01

=

1 1
0 0.01 0.02 0.03
B

mensurate phases€ 1/3 andg=1/4) take place. otic plateau is well above the average free energies of peri-
Another possible presentation of the phase diagram is thadic solutiong Fig. 6(c)].
with a fixed value of the parametet, and with varying Existing theoretical approaches to ttie)commensurate

parameter® andC. It is presumably closer to usual physical orderings inA,BX, compounds, in particular to the appear-
situations in which only weak temperature and pressure deance of a series of commensurate phases, are mostly phe-
pendences of, are expected. The construction of thg C) nomenological, based either on Landau expan&tooss on
phase diagram is however computationally more demandinghe discrete models of competing local interactibn@.?!
since one has to look for the solution with the lowest averagd he justification for the continuous Landau models, which
free energy within a set of solutions for given valuesBof are generally appropriate to weak-coupling systems, comes
and C, i.e., one has to calculate the whole set of periodicfrom many experimental indications, starting from the early
solutions of the EL equatiofEq. (3) or (18)] for each point neutron-scattering dafd;*? showing a well-defined disper-
in the two-dimensional phase diagram. To this end we use aion curve for collective modes with distinct soft-mode
mesh of points that is dense enough in tBeQ) plane, and minima. However, the previous analyses of Landau models
determine the solution with the lowest average free energy avere restricted to purely sinusoidal modulation, and, as such
each point. The phase diagram obtained in this waysfpr Were not able to explain the appearance of phases with com-
= /12 is shown in Fig. 9. Note that again only configura- mensurabilities of orders higher than three or four. It was
tions with rather low orders of commensurability, i.e., with therefore proposed that such phases appear due to the pres-
small values of parameterk,(), are present above the Chir- ence of umklapp terms of higher orders in the free-energy
ikov line [Eq. (7)], while below this line the diagram is more €xpansiorf*~** This explanation, which is based on the as-
complex since a great number of first-order transitions takéumption that distinct commensurate stars of wave vectors
place within a small part of the phase diagram. are necessary for the stabilization of, presumably sinusoidal,
phases with corresponding wave vectdigis not convinc-
ing since the umklapp terms of order higher than four are
expected to be negligible in weakly coupled systems with a
The most important conclusions of the above analysis foldisplacive order.
low from the thermodynamic phase diagram obtained in the For these reasons the more recent attempts turned again
regime of comparable strengths of two umklapp terms intowards another type of approach, that which assumes strong
cluded into the Landau expansi¢h). At first we emphasize couplings, so that the lattice discreteness has to be taken
that only one type of solution of the corresponding EL equainto account. Originally the sequences of €C-and
tion, namely, periodic configurations, participates in thecommensurate-commensurate phase transitions were within

V. CONCLUSION



11 282 M. LATKOVIC AND A. BJELIS PRB 58

this scheme interpreted in terms of the FK model as devil’sharmless staircase and first-order phase transitions, accompa-
staircase dependences of the wave number of ordering, i.eied by the coexistence of several phases in the relatively
as dense sequences of second-order phase trandititms:  wide range of temperatures. A series of @C-and
ever, observed staircases rarely resemble, even within exommensurate-commensurate phase transitions are also ob-
perimental limitations, the dense devil's staircase. Besideserved in BaZnGe@Qin x-ray diffraction measurements by
phase transitions between successive commensurate phaSakashitaet al>* and in electron-diffraction measurements
are usually of the first order. The phase diagrams that arby Yamamotoet al>° that also provide dark field images of
closer to experimental findings may be, however, obtainediscommensurations appearing in the vicinity ofja 1/3
by various extensions of the basic FK model, e.g., by includphase. An example of a particularly sharp transition frgm
ing an additional harmonic potentf*’ Also, the more  =1/3 to q=1/4, with a very wide temperature range of the
complex models of competing interactions, e.g., DIFFOURcoexistence of these two commensurate phases, was found
(Ref. 14 and ANNNI (Refs. 15-18models, as well as mod- by Broda® in (NH,),CoCl,, the material that also belongs
els that assume two critical modes per lattice &t are o A,BX, family.
particularly successful in describing the phase transitions in  The free energy1) is similar to that of Fradkiret al,>*
A,BX, compounds. Within some of these mod@g., Refs.  who also studied continuum systems with competing period-
20 and 2} one also obtains the first-order phase transitionscities. The only difference between the two expressions is
between configurations having the same wave numbers bifie absence of the factors 3 and 4 in front of the variable
different symmetries. As was already stated in Sec. 1V, thisp(x) in the cosine terms of the mod¥ However, in con-
is not the case within modél), i.e., although the EL equa- trast to ours, the analysis carried out in Ref. 34 is limited to
tion (3) may possess two types of solutions with the samehe close vicinity of the separatricéand hyperbolic points
periods, only one type of solution participates in the phasgn the phase space,i.e., to the dilute soliton lattices. Then
diagram. the continuum model can be converted into a discrete map-
The present analysis again starts from the minimal Lanping of the FK type, analyzed in detail previously by AuBry.
dau expansiorwith terms up to the fourth ordgrbut takes  Our analysis covers the whole phase space, i.e., all solutions
into consideration all solutions of the corresponding ELof the EL equation3), and in particular the whole class of
equation. In particular it indicates that the theoreticalperiodic configurations. In particular, our thermodynamic
approact? proposed together with the first neutron- phase diagranfFigs. 7 and Bincludes, in contrast to that of
scattering measurements onj®hBr,, might be essentially Ref. 34, the most interesting part of the phase space, namely,
sufficient for the understanding of complex phase diagramshat between two resonancé=., sets of hyperbolic points
in A,BX, materials. The more detailed analysis that takes The model* was the starting point in the investigatidn
into account some additional aspects, like the couplings tef the memory effects in systems with IC modulations, based
the homogeneous polarization and strain that appear in sonh the earlier propositiof that mobile defects might be re-
materials as secondary order parameters, will be done elsgponsible, by forming defect density waves, for the sensitiv-
where. ity of the IC ordering on the thermal history of crystal, ob-
Betaine-calciumchloride-dihydrat8CCD), together with  served, e.g., in thioured. Errandone¥ argued that the
its deuterated version D-BCCD, belong to the second type ofiouble sine-Gordon model, with two lock-in potentials origi-
intensely studied materials with the commensurate lock-insnating from the lattice defect density wave, is an appropriate
It shows an exceptionally rich staircase going frgm1/3  description of this phenomena.
down tog=0, with numerous intermediate steps of higher Model (1) provides the explanation of memory effects
orders*®-CA closer insight into the region of the phase dia- (together with thermal hysteresewithout referring, in con-
gram with the wave number betweer=1/3 andq=1/4 trast to the models in Refs. 57 and 58, to defects as an in-
shows that only the upper right triangle of the Farey treetrinsic ingredient of the theory. At first, we note that the
from Fig. 3 is realized, i.e., the phase diagram is mostlycrossings of lines of first-order phase transitions in Figs. 7, 8,
covered by wave vectors close ¢g=1/4, and not by those and 9 are accompanied by hystereses. Our preliminary
close toq=1/3. This sequence of IC-transitions was suc- analysis® indicates that these hystereses may be rather wide
cessfully interpreted within various discrete models withon, e.g., temperature scale. Furthermore, the present analysis
competing interactions, e.g., in Refs. 51 and 52. Withinof the EL equation3) shows that periodic solutions, which
model(1) such a phase diagram corresponds to the regime inonstitute the phase diagram, are immersed as isolated points
which the fourth-order umklapp term dominates with respecinto the environment of chaotic configurations. This environ-
to that of the third order. Also, two types of extensions of ourment prevents both the continuous variation of the wave
model may lead to the stabilization of commensurate phasasumber of ordering and the continuous phase transitions of
with q<1/4. Namely, one may allow for negative values of the second and higher orders. The average free energy of
the parametes,, or start with other umklapp terms, e.g., chaotic solutions from Fig. (6) is the measure of the ener-
with those of the fourth and fifth order, and pursue the analygetic barrier which the system has to overcome in order to
sis analogous to that of Secs. Il and V. pass from some periodigmetastable configuration to an-
We also mention some other materials that exhibit a seether one with lower free energy. This is expected to be a
quence of ICE and commensurate-commensurate phaseommon property of models that are nonintegrafileside
transitions betweeq=1/3 andq=1/4, but are not so exten- being nonlineg; and have thermodynamically stable peri-
sively studied as the previous two examples. For exampleydic configurations isolated in the chaotic phase space.
Dénoyeret al>® investigated NHHSeQ, and its deuterated The memory effects are also observed in class Il of IC
version NODSeQ, by neutron diffraction, and found the systems The detailed analysis of phase diagram for this
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class® led to the conclusion that the corresponding phenomtion for “autonomous” functionalsthose for which the free-
ena seen in particular materials may be interpreted as well isnergy density does not depend explicitly>gnfollow from
terms similar to those presented above. However, it was alsihe recently derived general critéfidased on the additional
stressetf that defects may have a secondary role as triggersxtremalizationglike, e.g., those involving boundary condi-
that favor the stabilization of some domain patterns. Thigions). However, these criteria cannot be directly applied to
interpretation invokes neither the mobility of defects nor thethe present model since the expligiiependence in Eq1)

formation of defect density waves. The analogous secondaryntroduces fundamental

singularities in the additional

influence of defects on memory phenomena is expected alsextremalization§® Thus, the most important property of the

in presently investigated systems of class I.

phase diagrams from Figs. 7 and 9, their complete coverage

Finally, let us mention a common problem that arises inby a finite number of periodic configurations, still awaits a
the analysis of continuous nonintegrable Landau models fodeeper understanding.

uniaxial systems of classes(Ref. 28 and Il (Ref. 30 in

which periodic solutions have an essential role in the extre-
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