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We have studied the current-voltage characteristics of the (TMTSF)2PF6 in the
spin density state (SDW), and in zero and finite external magnetic field. For the
oscillating part of the nonlinear voltage response to the applied DC electric field,
the fundamental frequency distribution (as a function of this field) and a nonlinear
relation between the frequency and the SDW current reveal the growth of parallel
conduction channels characterized by lower velocities and larger cross-sections. The
number of fundamental frequencies, their amplitude and the level of low-frequency
noise as well as the depinning behaviour provide a consistent indication of the
sample inhomogeneities and associated local field variations, and might be well
understood within the framework of the phase slippage model. The increase of
the threshold electric field with the applied magnetic filed can be explained by
the Bjeliš-Maki theory, if the imperfect nesting is taken into account. Finally, the
electric-field dependence of the Hall resistivity is consistent with the sliding mech-
anism of the SDW conduction.

PACS numbers: 74.70.Kn, 72.15.Nj, 75.30.Fv, 72.70.+m, 72.15.Gd UDC 538.945

Keywords: organic superconductors, collective modes, one-dimensional conductors, spin-

density waves, noise processes, galvanomagnetic and other magnetotransport effects

1. Introduction

The dynamics of the incommensurate spin-density waves (SDW), found in the
systems of reduced dimensionality, has been in the focus of interest in the last
ten years. Up to now, the main features which characterize collective response of
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the charge-density waves (CDW) have been also experimentally established for the
SDW [1,2]. Both types of periodically modulated densities (DW) are pinned to the
background lattice by the randomly distributed defects. The oversimplified model
considers DW as a one-degree-of-freedom object which moves in a periodic potential
V (2kFx + φ), where φ is the phase of the condensate and kF is the Fermi vector
in the chain direction. It is important to observe that in the case of 2kF SDW,
the associated modulated charge density has a 4kF periodicity. The effect of an
applied electric field, larger than the depinning threshold value, is to tilt the periodic
potential and allow the DW to roll down. Such a motion gives rise to a periodic,
but non-sinusoidal time-dependent DW current, and its frequency characteristics,
as well as its dependence on some external parameters are elaborated in this paper.
The time dependence of the DW current defines, in the Fourier space, a fundamental
‘washboard’ frequency and higher harmonics. In the Fukuyama-Lee-Rice approach
[3], the randomly-positioned defects in the real system are taken into account, which
implies the treatment of the DW as a deformable object with a broad distribution
of phase modes in the defect potential V (2kFx+ φ(x)). It has also been suggested
that the coupling of the random phase oscillations leads to their final suppression
[4]. However, the numerical calculations have succeeded to recover oscillations only
by applying an external AC field [5]. In other words, the theories, which invoke the
interaction of the sliding DW with the impurities as the source of the oscillations,
have difficulties to explain this phenomenon in the real systems. In an alternative
approach, the moving SDW condensate is suppressed at the strong defects and
converted into the normal current. At the surface, which separates the sliding and
non-sliding regions, a localized annihilation of the order parameter occurs, with a
concomitant phase slip by 2π. Several independent theories have been advanced
to explain the DW to ohmic current conversion through the formation of DW
deformations like phase vortices and dislocation lines [6–11], where their periodic
creation and annihilation generates the oscillations of the current.

The conduction noise is one of the most remarkable phenomena associated with
the DW motion. In CDW, two different types of oscillations have been observed:
(i) a well-defined narrow-band noise and (ii) a broad-band noise (with 1/f depen-
dence). A tight correlation between these oscillations has been pointed out [12–14],
but a definite understanding of their origin and their mechanism is still missing.
On the other hand, not much is known about the conduction noise that should ac-
company the SDW sliding. The observed voltage oscillations were either extremely
small in amplitude, or very broad in frequency when compared to those in the CDW
[15–19]. The only quantitative determination (done in a rather restricted frequency
range and on a quite broad Fourier structure) claimed that the narrow-band fre-
quency distribution scaled linearly with SDW current. The different results [18,19]
for the ratio between the frequency of the voltage oscillations and the SDW phase
rate leave open the question of the origin of the conduction noise in the sliding SDW
state. As for the broad-band noise, no clear evidence for its existence in SDW has
been reported until now.

The other interesting issue is the effect of the transverse magnetic field on the
parameters that characterize the SDW transport. The standard mean-field theory
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for a quasi–one-dimensional system with an open Fermi surface (FS) describes well
the SDW state [20], that is stabilized by a perfect nesting of the FS. Deviations from
the perfect nesting lead to a gradual destruction of the SDW phase. The degree of
nesting can be experimentally controlled by the application of hydrostatic pressure
and/or magnetic field. The former increases the deviation from perfect nesting while
the latter makes it better. The investigations [21] of the phase-coherence length in
the SDW state of (TMTSF)2NO3, a Bechgaard salt with the strong imperfect
nesting, have shown that the threshold field increases if a magnetic field is applied
in the plane perpendicular to the highly conducting axis (more precisely, only the
field component parallel to the lowest conductivity (c*) axis gives rise to this effect).
These results were interpreted in terms of the Bjeliš-Maki theoretical model [24],
where the reduction of the longitudinal phase-coherence length in a magnetic field
is common to the SDW state with large imperfect nesting.

In this paper we report studies of the sliding spin-density wave phase of the
organic conductor (TMTSF)2PF6. We have studied the current–voltage character-
istics and the features of the noise spectra and their dependence on the applied elec-
tric field, thermal history of the sample and sample purity. We have also compared
the noise spectra detected at different sample segments. These data are analyzed
within the framework of the two opposed theoretical models invoking DW-impurity
interactions and DW-normal current conversion (phase-slips) as a possible origin
of the conduction noise associated with the sliding of density waves. On the other
hand, the recently observed [25] variation of the SDW transition temperature and
the order parameter of (TMTSF)2PF6 as a function of pressure and magnetic field,
has revealed that the FS nesting at ambient pressure deviates slightly from a perfect
one, contrary to the previously accepted opinion. We have, therefore, examined the
degree of the perfect nesting deviation in this compound by studying the magnetic
field dependence of its threshold field at ambient pressure. We have also extended
this work to the linear and non-linear Hall effect to see the effects of the sliding
SDW on the Hall voltage.

2. Experiment

The measurements have been performed on single crystals of (TMTSF)2PF6,
grown by a standard electrochemical method. A typical sample resistance at 4.2 K
was about 7 Ω. The contact resistances at 4.2 K varied between 10% and 50% of
the sample resistance value, depending on the sample and thermal cycling treat-
ment. Annealed gold wires of 20 µm were glued with the silver paint on previously
evaporation-deposited gold contacts. We employed a very slow cooling rate (2 – 4
K/h), in order to avoid microcracking of the sample (and the corresponding jumps
in the resistance) during the cooldowns. The SDW transition temperature was
Tc = 12.5 K. Resistance ratios (rr) of the room temperature (RT) resistance to the
resistance minimum just above Tc were about 40, and varied within 10% between
two consecutive thermal cyclings. Checks for intrinsic nonlinearity did not show
any nonlinear effects in the normal high-temperature phase.

For the conduction noise experiment, eight samples have been studied and in five
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of them the conduction noise has been found. In some of them, in which the noise
pattern was observed, the increase of resistance caused by microcracks was about
10% of the sample resistance at 100 K. The sample selected for the detailed study
was 1.5 cm long (in further text denoted as a distance between outer contacts) and
had a cross-sectional area of 10−4 cm2. The distance between the voltage contacts
(in further text denoted as inner contacts) was 0.34 cm. The measurements of the
collective conductivity and the conduction noise were done at T = 4.2 K, after
different thermal cycling of the samples. The first set of data (run I) was obtained
after cooling of the virgin sample from the room temperature down to 4.2 K. The
second run (I I) was carried out after completing the thermal cycling from 4.2 K
up to the room temperature and then down again to 4.2 K. The current–voltage
characteristics were measured with the four- and two-terminal arrangements, where
the latter was used to detect the conduction noise signal in different independent
sections of the sample.

The resistivity was measured with the standard low-frequency AC and DC tech-
niques. The electric-field-dependent conductivity and the Hall effect (in magnetic
fields up to 9 T) were measured by the same DC method. To investigate the conduc-
tion noise, a battery and a variable resistance were used in series with the sample as
the DC current source. The time-dependent portion of the voltage response across
the sample was removed and amplified 100 times by a wide-band preamplifier EGG
115. A spectral analysis of the voltage output was made using a spectrum analyzer
HP 3588A with the DC current held at a number of constant values.

3. Results

3.1. Conduction noise

In this section we report the results of experiments on the electric-field de-
pendent conductivity and the associated noise in the sliding SDW phase of
(TMTSF)2PF6. Figure 1 shows the electric-field-dependent conductivity normal-
ized to the low-field ohmic conductivity (σ0), measured in run I and run I I. A
strong nonlinearity observed above the threshold field is in agreement with the pre-
viously published result [25]. In run I the threshold field is extremely sharp and
equals ET = 1.8 mV/cm (which corresponds to the current IT = 80 µA). Note also
that the SDW conductivity increases linearly with field up to at least 5ET . After a
thermal cycling loop (from 4.2 K up to RT and again down to 4.2 K), the low-field
sample resistance at 4.2 K was 70% larger than in run I, while the rr was only 10%
smaller. The field dependence of the conductivity is smoother and its magnitude
for a particular field is smaller. Note that the linear extrapolation of the high-field
behaviour does not coincide with the beginning of the conductivity rise. These two
points define the depinning threshold region between 3 mV/cm and 6.5 mV/cm
(with the corresponding low and high threshold currents being I1T = 85 µA and
I2T = 185 µA, respectively). This is in contrast to the behaviour in run I that
gave one, well defined ET . The two-probe measurements (in which the SDW flow
was limited between the inner contacts or the outer contacts) yielded essentially
the same result as far as the sharpness of the depinning behaviour is concerned.
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The important quantitative difference in run I I is a much lower value of the critical
current I1T in the two-probe experiment in comparison with the critical current
I1T observed in the four-probe experiment, i.e., the enlargement of the depinning
region. Such a result indicates that the part of the sample that belongs to the con-
tact area experiences a much higher field than its average value through the sample
(the bulk value).
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Fig. 1. The SDW excess conductivity (σ − σ0)/σ0 vs. electric field E. Inset: the
enlarged low-field window. The arrows mark the threshold region for run I I (see
text).

The Fourier spectra recorded between the inner contacts in run I are shown
in Figs. 2 and 3, for DC currents between 50 µA and 1000 µA. As the current is
increased from zero to a value above the threshold IT (IT ≈ 80 µA, which cor-
responds to ET = 2.6 mV/cm in the two-probe I–V experiment), a well-defined
frequency and two higher harmonics appear. At higher current values, the posi-
tion of the frequency increases. Note that at the same time the voltage level is
clearly enhanced in the low-frequency side of the spectra. The frequency amplitude
increases until I ≈ 2IT is reached, and then it starts to diminish and disappears
at currents higher than 1000 µA (i.e., I > 10IT ). The fundamental frequency is
broader than the instrumental resolution (1.25 kHz for the range 20 Hz – 500 kHz)
and at I ≈ 2IT a full width at half maximum equals 6.4 kHz at 140 kHz.
The Fourier spectra of the conduction noise was also measured after the thermal

cycling loop (run I I) between the inner (frequencies denoted as I I i) and the outer
(frequencies denoted as I I o) contacts. In Fig. 4 we show the noise spectra recorded
at the outer terminals (i.e., between the ends of the sample). These data indicate
the appearance of the two distinct frequencies (labeled as I I oa and b) at the critical
current (IT = 130 µA), but also that (for higher current values) three additional
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frequencies (I I oc, d and e) emerge from the enhanced voltage level at the low-
frequency side. The broadening of the frequency I I oa occurs at I = 250 µA,
indicating the emergence of two independent oscillations very close in frequency.
The noise spectrum disappeared for I > 500 µA.
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Fig. 2. The frequency spectra detected in run I between the inner contacts for
selected values of the current. The frequency range: 0 – 500 kHz. The arrows
indicate the fundamental (I ia) and higher harmonics.

Fig. 3 (right). The frequency spectra detected in run I between the inner contacts
for selected values of current. The frequency range: 0 – 2MHz. The arrows indicate
the fundamental (I ia) and higher harmonics.

In the standard approach, the dynamics of DW is reduced to the variations of
its phase (φ), while the amplitude fluctuations are frozen out. Its velocity is then
given by [4]

vDW =
dφ

dt
λDW = fλDW , (1)

where λDW is the DW wavelength, and the phase rate dφ/dt is denoted as the
frequency f . Taking into account that the coupling of the SDW to the impurity
potential is controlled by 4kF periodicity, we can express the SDW collective current
as

ISDW
seff

= (en ρSDW)f
λSDW
2
, (2)

where seff is the effective cross-section through which SDW current flows, en is the
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total charge per unit cell and ρSDW is the fraction of electrons belonging to the
SDW condensate. ρSDW varies between 1 and 0 (for 0 < T < Tc), and its tempera-
ture variation is given by the temperature development of the order parameter ∆.
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300 µA
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Fig. 4. The frequency spectra detected in run I I between the outer contacts for
selected values of current. The frequency range: 0 – 500 kHz. The arrows indicate
five different fundamentals (I ia-e).

From the NMR and conductivity data [26,27] for (TMTSF)2PF6, it is known that
∆ rapidly increases below Tc and attains its zero temperature value at 4.2 K,
and that the entire SDW condensate participates in the electric transport [18,19].
Therefore, we will take ρSDW = 1 in further analysis, and Eq. (2) can be written
(C = seff en λSDW/2) as

ISDW = Cf . (3)

On the other hand, the phase slip theory predicts essentially the same expression
for the collective current as a function of frequency at T = 0 K, but with a different
prefactor [28]

ISDW = ηC1f , (4)

where C1 = 2C. This is interesting to note, because in these theories the condi-
tion dφ/dt = 0 (at the conversion point) imposes the importance of simultaneous
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variations of the DW amplitude. The prefactor η is due to the diffusive process re-
sponsible for the generation of the phase slip. The constant C1 is two times larger
than in the impurity model, since each phase slip changes the phase by 2kF. We
proceed with the analysis of our data using Eq. (3), but bearing in the mind that
it is valid in both theoretical models up to the prefactor 2η.

The analysis of our experimental data leads directly to the most important re-
sult we have obtained: the observed frequency dependence of ISDW is not linear
and its slope is, even at the highest fields used, much smaller than the theoretically
predicted one. Figures 5 and 6 show the SDW current as a function of frequency
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IIoa
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Fig. 5. Excess current ISDW versus frequency f for the fundamentals Iia, I I ia and
I I oa, detected in runs I and I I. Inset: the enlarged low- field window. Solid lines:
fits by Eq. (6); dashed line: theoretical prediction (see text).

(observed in the Fourier spectra). The dashed line is the behaviour expected from
Eq. (3), and its slope (1.66 · 10−9 C) was calculated by taking seff = s = 10−4 cm2
(i.e., the whole sample cross-section), n = 1.44 · 1021 cm−3, e = 1.6 · 10−19 C and
(1/2)λSDW = (1/2)4a = 0.72 nm. The solid lines drawn through our data are the
fitting curves using a power law

ISDW = a+ bf
n . (5)

The values of the exponent n and the values of ISDW/f ratio (obtained from the
linear extrapolation of several points at the highest fields for which the Fourier
peaks can still be detected) are given in Table 1.

The observed non-linear behaviour of ISDW contrasts the predictions of both
theoretical models. It indicates that the effective cross-section increases with an
applied electric field, i.e., seff = seff(E), which is, even at the highest fields applied,
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much smaller than the sample cross-section. The exponent n might be interpreted
as a measure of the effective cross-section change with the applied field (where
larger n means faster increase of seff , and n = 1 corresponds to the case when
seff is field independent). On the other hand, the values of ISDW/f ratio reveal the

e
d

c
b

0 100 200 300 400
0

20

40

60

I S
D

W
 (

µA
)

f (kHz)

IIob−IIoe

IIia

Fig. 6. Excess current ISDW versus frequency f for the fundamentals I I ob, I I oc,
I I od and I I oe, detected in run I I. Solid lines: fits by Eq. (6); dashed line: theo-
retical prediction (see text).

TABLE 1. The exponent n derived from ISDW = a + bf
n and the final slope

dISDW/df estimated at Imax/IT for different fundamentals observed in runs I and
I I. l and h denote the low and high frequency branch after splitting.

n Imax/IT dISDW/df(10
−10C)

I run I ia 1.64 10 2.0

I I ia l 1.20 2.7 3.2

I I ia h 1.00 2.7 2.3

I I oa 1.67 4 1.8

I I run I I ob 1.42 2.7 1.2

I I oc 1.25 2.7 1.9

I I od 1.08 2.7 2.2

I I oe 0.97 2.7 3.4

magnitude of the effective cross-section at the highest fields applied. Our data show
that the largest transverse effective volume amounts to about 10−5 cm2 at different
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values of applied fields (i.e., Emax/Ec) in different samples. This result indicates
that the upper limit of the transverse coherence of the SDW sliding conduction in
the real samples is of the order of a few hundred micrometers. It should be noted
that this result describes the dynamical coherence length as it was first introduced
by Fisher [22]. Later, it was suggested by Ong et al. [23] that the dynamical
coherence length is limited by phase slip centres, but still expected to be much
larger than the static coherence length controlled by the density of pinning centres
[24]. Indeed, our result demonstrates that the former is at least hundred times
larger than the latter, which is estimated to be a few micrometers [24]. Moreover,
our finding then suggests that the periodicity of the voltage oscillations should
be 2kF, as predicted by the phase-slip model. We point out that a qualitatively
similar (non-linear) behaviour is observed in the CDW conduction as well, but this
has only recently been recognized to be an intrinsic behaviour [29]. These authors
have shown that even for very clean samples the slope dISDW/df becomes saturated
only at high frequencies (high fields), when seff becomes equal to the whole sample
cross-section. Bearing in mind, however, that the typical cross-sections of NbSe3
crystals (10−8− 10−7 cm2) are much smaller than those of (TMTSF)2PF6 crystals
(4.5 · 10−5− 1.5 · 10−4 cm2), it follows that the SDW coherent conduction channels
are even larger than the CDW ones. This finding indicates that a spatially restricted
coherent conduction might be an intrinsic property of the sliding density waves in
general.

The described experimental features show that the theoretically predicted be-
haviour (Eqs. (3) and (4)) account only for the high-field limit of the SDW coher-
ent conduction. The fact that the largest possible SDW conduction channels are
smaller than the cross-sectional area of the samples appears as a decisive shortcom-
ing, which does not allow to measure the pertinent SDW periodicity by the joint
conduction noise and DC electric transport method. In the discussion which follows
we shall compare the other experimental features with the theoretical predictions,
in order to try to distinguish which mechanism (phase slippage or interaction with
random impurities) might be more relevant for the SDW dynamics.

First, we address the question of the field-dependence of the voltage oscillations.
The periodicity of three fundamentals I ia, I I ia and I I oa as a function of field is
shown in Fig. 7. The data have been fitted by a power-law behaviour

1

f
∝ (E −Ec)−β . (6)

The best fits, together with the values of free parameters are shown as full lines
in Fig. 7. The obtained values for Ec correspond well to those found in the noise
measurements. The exponent β ≈ 1 agrees well with the predictions of the im-
purity model. On the other hand, we could not test the validity of the phase slip
model prediction, because it is obtained only in the limit when the size effects are
important, i.e., when the threshold defined by boundary conditions is larger than
the bulk threshold [7]. The samples used in our study were rather long and we did
not observe the difference in the threshold field for non-linearity as a function of
the length.
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Second, thermal recycling of the sample leads to smaller magnitudes of the
single fundamental frequencies I I ia and I ioa, and they may be tracked in a smaller
current window than the I ia frequency. Moreover, I I ia and I I oa peaks split as
the current increases above 300 µA. These features can be well understood in the
framework of the phase slip theory as a consequence of the local field variations
in the sample [30]. The field variations might be induced by the thermal gradient
(well-known experiments in CDW) or by the sample inhomogeneities caused by the
thermal cycling (like in our case). The first manifestation is the rounding off of I−V
characteristics, thus reflecting a gradual depinning. The other manifestations of the
weak local field variations are visible in the noise spectra. For a large enough field
variation, the frequencies of phase slips at the end contacts, i.e., fixed boundaries,
start to differ, and this is observed as a splitting of the fundamental frequency. In
order to accommodate this difference in the phase accumulation at the end contacts,
a system generates so-called bulk phase slips at the free boundaries situated in
the interior of the sample bulk. Theoretically, the new frequency is given by the
difference of two split peaks and should be, therefore, visible at low frequencies.

E (mV/cm)

1
/f 

(s
)

0 10 20 30

10-6

10-5

Ec (mV/cm)
2.68

7.8
11.6

β 

0.80
1.09

1.09IIoa
IIia
Iia

Fig. 7. The phase slippage period 1/f vs. electric field E for the highest fundamen-
tals (I ia, I I ia and I I oa). Full lines: fits by Eq. (6) (see text).

Further, as the DC current increases, new fundamentals emerge between outer
terminals from the strongly enhanced voltage level in the low-frequency side. These
frequencies might be associated with the opening of the new SDW conduction
channels characterized by smaller velocities, but larger effective cross-sections. The
existence of five independent fundamentals (cf. Fig. 4) indicates the presence of the
phase-slip centres (inside the bulk of the sample) which act as fixed boundaries.
Note also that the I I od fundamental might be identified with the higher branch
of the I I ia one, indicating the opening of the same conduction channel (Fig. 6).
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Therefore, the phase-slip centres, at which all other frequencies (I I oa, b, c, e) are
generated, are located at the outer and inner terminals, and in the sample volume in
between. The strongly enhanced voltage level of the low-frequency side (higher than
the one observed between the inner terminals) might be also associated with these
sample inhomogeneities, and interpreted as the growth of low velocity contributions
when the electric field is increased. In addition to the new fixed boundaries that
become active, the process of multiple splitting (due to the growing difference in
the phase slip periodicities at different centres) creates new free boundaries. Note
that this low-frequency noise does not obey the 1/f dependence, a common feature
of the broad-band noise in CDW systems.

Finally, we present data which indicate that the phase slip process might indeed
be the origin of the SDW conduction noise. Figure 8 shows ISDW versus applied
DC current for two different samples (A and B) and in two configurations. In the
standard four-probe N configuration, the current flows between the outer, and the

sample A

T

N

I S
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W
 (

µΑ
)

I (µΑ)
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N
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−+

−+
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N

Fig. 8. The SDW current ISDW vs. applied current I, for samples A (coherent
noise observed) and B (no coherent noise observed). Measurements were done in
two different four-probe configurations N and T (current: arrows, voltage probes:
+ and -).

voltage is measured between the inner terminals, whereas in the T configuration
the current flows between the inner and the voltage is measured between the outer
terminals. For the CDW systems Gill [31] has recently argued that the difference
ISDW(N) − ISDW(T ), for a given I, gives the excess voltage Vexc which might be
correlated to the phase slip process. Following the same arguments, we emphasize
that Vexc has a finite positive value in the sample A (where a coherent noise was
observed), whereas in the sample B, Vexc is close to zero (and no coherent Fourier
peaks were found).
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3.2. The magnetic field dependence of the threshold field

We have already mentioned that the transverse magnetic field influences the
threshold field and that these results can be the measure of the deviation from
the perfect nesting of the SDW state. In extension of the previous investigations
[21,25], we have studied the magnetic field dependence of the threshold field ET for
(TMTSF)2PF6 at 4.2 K, at ambient pressure and in magnetic fields up to 6 T.

Figure 9 presents the dependence of the threshold field ET (normalized to its
B = 0 value) as a function of the transverse magnetic field (which was parallel to the
least-conductivity direction c*). Also shown are the previously obtained results [21]
for (TMTSF)2NO3, which were interpreted in terms of the Bjeliš-Maki model with
the imperfect nesting within the mean field theory [24]. Bjeliš and Maki have shown
that a magnetic field perpendicular to the conducting plane strongly reduces the
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Fig. 9. The magnetic field dependence of the threshold electric field ET normalized
to B = 0 value at 4.2 K for (TMTSF)2PF6. The crosses are data for (TMTSF)2NO3
[21].

elastic constant, i.e., the energy associated with a spatial distortion of the phase is
reduced. This results in an increase of the fluctuation contribution to the transport
properties in a magnetic field. In the SDW with imperfect nesting, the decrease of
the elastic constant increases the threshold electric field. Consequently, both the
longitudinal and transverse coherence lengths are reduced in an applied magnetic
field. Our results (cf. Fig. 9) show that the threshold field ET of (TMTSF)2PF6
increases in the applied magnetic field, which indicates the existence of some degree
of imperfect nesting in this system as well. The parameter ε0 that characterizes
the imperfect nesting effect is associated with the quasi-one dimensionality of the
system. It is defined as ε0 = t

2
b/2ta, where ta and tb are the tight binding transfer
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integrals for the a and b axis. The deviation from the perfect nesting is described
by ε0/∆0, where ∆0 is the order parameter of the hypotetical SDW with perfect
nesting (ε0 = 0) at T = 0 K.

The magnitude of the threshold field is given by the energy for which the static
electric field overcomes the pinning energy and thus dislodges the SDW from the
background lattice. The change of the threshold field in an applied magnetic field
(in the strong pinning limit) is given by [32]:

ET (B)

ET (0)
≈ 1 + 4

3
x2y2(3 − 5y2) , (7)

where x = ωC/∆0 (ωC = vbeB is the cyclotron frequency, v is the Fermi velocity, b
is the lattice parameter in the b direction, B is the magnetic field in the c direction)
and y = ε0/∆0 is the deviation from the perfect nesting.

Using the same parameters as for (TMTSF)2NO3 (i.e., v ' 3·107 cm/s, ∆0 ' 20
K), we have fitted our data by Eq. (7) (shown as a dashed line in Fig. 9). The
final result for (TMTSF)2PF6 obtained in this way is ε0/∆0 ≈ 0.94. Bearing in
mind our previous result for (TMTSF)2NO3 (ε0/∆0 ≈ 0.97) [21], as well as the
results for the pressure and magnetic dependence of the order parameter and SDW
transition temperature [25], we can conclude that (TMTSF)2PF6 is imperfectly
nested at ambient pressure. The deviation from the perfect nesting is, as expected,
less pronounced than in (TMTSF)2NO3.

3.3. The nonlinear Hall effect

It was often assumed that the transport coefficients of the thermally excited
normal electrons should be the same in the pinned and depinned SDW state. From
this point of view, no SDW contribution is expected to the Hall effect, because
of the strictly 1D nature of the density wave transport. On the other hand, the
experimental results clearly show that the Hall resistivity becomes non-linear when
the SDW is depinned [33,34]. Our results for (TMTSF)2PF6 demonstrate also a
similar behaviour. In Fig. 10, the longitudinal resistance RL and the Hall resistance
Rxy are shown as a function of the total current I at 4.2 K for several magnetic field
values. It can be seen that above critical current the resistance RL decreases, thus
defining the threshold field. In addition, as soon asRL decreases, the Hall resistance
Rxy decreases as well and shows a slightly steeper nonlinearity. It is apparent that
VH/I falls faster than VL/I above the threshold, i.e., VH/VL is reduced. Such an
effect was considered as an indication that the SDW does give a contribution to
the Hall effect [35].

When the applied electric fields are below the threshold value, the Hall resis-
tivity is linear with the magnetic field. The negative sign of the Hall coefficient
indicates that the charge carriers are electrons. Using the simple relation for the
Hall coefficient RH = ρxy/B = 1/nec, we get RH = −25 cm3/C and the corre-
sponding carrier concentration n ≈ 1017 cm−3, which is in a good agreement with
the data for some other Bechgaard salts [36].
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The existence of a well-defined threshold field (for higher electric fields applied)
indicates that the sliding SDW contributes to the Hall effect. In their theoretical
model [35], Artemenko and Kruglov propose that this contribution is indirect, be-
cause the motion of the SDW alters the current carried by the normal electrons.
Namely, the defect scattering modifies the quasiparticle distribution and leads to a
change in the transport coefficients. In the simplest terms of this theory, this means
that there is a decrease of the normal (quasiparticle) current IN which is propor-
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Fig. 10. The current dependence of the resistance RL and the Hall resistance Rxy
for different values of the magnetic field.

tional to the sliding velocity of the SDW, i.e., the motion of the SDW induces an
additional and reversed normal current. The total current IT can then be written
as

IT = IN − αISDW + ISDW , (8)

where ISDW is the current carried by the SDW and αISDW = Ib is the backward
normal current flow with an adjustable parameter α called the ‘backflow’ coefficient.
Figure 11 presents the total current and the normal current as a function of the
longitudinal voltage VL of the sample in a magnetic field of 9 T, and we shall use
these data to calculate the backflow coefficient α. The threshold field ET ≈ 15
mV/cm corresponds to VL ≈ 0.6 mV. The total current IT is measured directly on
the longitudinal voltage contacts. Taking the linear extrapolation of the low-field
current as ILIN, and deducing the normal current IN from the measured Hall voltage
VH (IN = VH/Rxy) as IN = ILIN−Ib, enables one to determine the backflow current
Ib and the value for the backflow coefficient α. We have found α = 0.92 ± 0.05,
which is a very high value (several orders of magnitude higher than in the theoretical
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model), but only two times higher than in the case of (TMTSF)2AsF6 [33]. The
theoretical model [35] does not take into account the Coulomb interaction between
the SDW and the normal electrons, and it was proposed [33] that the Coulomb
effects might enhance the backflow coefficient. Since the high values of α were also
found in some CDW systems [34], we suggest that the large backflow of normal
carriers is an intrinsic property of quasi-1D systems, and a consequence of the
interaction between the normal carriers and the moving SDW. On the other hand,
the widely studied theory of the nonlinear Hall effect in the field induced SDW by
Yakovenko et al. [37] is restricted to the extreme quantum limit and not applicable
to our ambient pressure data.
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Fig. 11. The total current density IT , normal current density IN and SDW current
density ISDW as a function of longitudinal voltage VL at 4.2 K and in the magnetic
field of 9 T. Also shown is a sketch of the sample geometry (the distance between
the voltage contacts was 0.04 cm).

4. Summary

We have presented a detailed experimental study of the oscillation phenomena
and the influence of the magnetic field in spin-density wave transport. For the
first time we have clearly shown that the Fourier spectra consist of sharp discrete
frequencies and an enhanced voltage level at the low-frequency side. In very pure
samples with a sharp threshold field, the SDW motion is characterized by nearly
perfect spatial coherence of velocity. The space in which the SDW slides increases
gradually in size until the maximum possible channel’s cross-section of about 10−5
cm2 is achieved. The latter indicates that the transverse dynamical coherence length
is about 100 times larger than the static one. Concomitantly, for fields above twice
the threshold, the spatial coherence starts to diminish. Such a process indicates the
crucial role of inhomogeneities in the real samples. In the presence of an increased
defect content, novel channels open, which are characterized by smaller velocities
and larger cross-sections. The observed decrease of the Fourier peak amplitude with
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the associated broadening and multiple splitting support the phase slip model de-
veloped for CDW. This phenomenon might also be responsible for the simultaneous
development of the low-frequency noise.

As for the effect of the magnetic field, we have interpreted the increase of the
threshold field in the transverse magnetic field as a confirmation that the Fermi
surface is imperfectly nested. The Hall-effect measurements at low electric field
yield the electrons as the charge carriers, and their concentration at 4.2 K is ≈ 1017
cm−3. For higher electric fields, the SDW is depinned, and the Hall resistivity
becomes nonlinear. The calculated high value of the backflow coefficient α might
be ascribed to the Coulomb interactions.
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(1991) 1922;

[18] E. Barthel, G. Kriza, G. Quiron, P. Wzietek, D. Jérome, J. B. Christensen, M.
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KLIZNI VALOVI SPINSKE GUSTOĆE: PROUČAVANJE STRUJNOG ŠUMA,
OVISNOSTI O MAGNETSKOM POLJU I HALLOVOG OTPORA

Proučavali smo karakteristike napon – struja materijala (TMTSF)2PF6 u stanju
valova spinske gustoće (SDW). Za oscilatorni dio nelinearnog naponskog odziva
na istosmjerno električno polje, osnovna frekventna raspodjela (kao funkcija tog
polja) i nelinearan odnos frekvencije i SDW struje pokazuju rast usporednih
kanala vod–enja označenih manjim brzinama i većim udarnim presjecima. Broj
osnovnih frekvencija, njihove amplitude i razina niskofrekventnog šuma, kao i
otkočno ponašanje sustavno pokazuju na nehomogenosti uzorka i pridružene var-
ijacije lokalnog polja, i mogu se shvatiti u okviru modela klizne faze. Rast praga
električnog polja s magnetskim poljem može se protumačiti Bjeliš-Makijevom teori-
jom, ako se uzme u obzir ugniježdenje. Konačno, nalazimo da je ovisnost Hallovog
otpora o električnom polju u skladu s kliznim mehanizmom SDW vod–enja struje.
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