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We analyse the reversible magnetisation and heat capacity of YBa2Cu3O7−δ in the
“vortex liquid” state and find that both properties are reasonably well described by
the 3D XY critical-fluctuation model. The free-energy density in the “vortex liquid”
state has a particularly simple form over a wide range of fields (H) and tempera-
tures (T ). This leads us to a picture in which the presence of critical fluctuations
in high-Tc superconductors is directly linked to the remarkably small number of
overlapping Cooper pairs at T=0 and H=0 rather than low dimensionality or high
temperatures.
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1. Introduction

The discovery of high-Tc superconductors (HTS) in 1986 [1] generated great en-
thusiasm concerning possible large-scale applications of superconductivity at liquid-
nitrogen temperatures. Considerable progress has been made in a relatively short
time and superconducting tapes are now being produced commercially on a large
scale for use in superconducting magnets and other devices. One of the limiting
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factors for high-field applications is the irreversibility line Hirr(T ), which sepa-
rates regions of irreversible and reversible magnetisation. In many cases Hirr(T )
is fairly close to the vortex-solid melting line Hm(T ) [2, 3], at which there is a
weak first-order phase transition [4, 5] that is believed to correspond to the dis-
appearance of the vortex lattice and a transition to the “vortex liquid” phase. In
general, Hirr(T ) ≤ Hm(T ) [3, 6]. The name “vortex liquid” should not be taken
too literally, because although neutron diffraction studies [7] show that the ordered
vortex lattice disappears at Hm(T ), as yet there is no direct evidence for the pres-
ence of line vortices, i.e. a liquid, above Hm(T ). In the “vortex liquid” state the
diamagnetic response still indicates the presence of superconducting pairing, the
resistivity is finite and ohmic but considerably lower than the extrapolated normal-
state value even in very high magnetic fields. The qualitative difference between
the magnetoresistance curves of HTS, which broaden in a magnetic field, and those
of conventional superconductors, which simply shift to lower temperatures, was an
early indication of a crucial difference between the two classes of superconductors.

The details of the phase transition at Hm(T ), and the nature of the “vor-
tex liquid” state, are only partly understood. However there is evidence that
for YBa2Cu3O7−δ (YBCO(7-δ)), which for δ = 0 has the highest Hm(T/Tc) of
all HTS, both the phase transition and the properties of the “vortex liquid” are
reasonably well described within the framework of the 3D XY critical-fluctuation
model [2, 3, 8, 9]. The region in the H-T phase diagram where mean-field theory
fails and critical-fluctuation theory gives an adequate description of the experimen-
tal data is unexpectedly large. For YBCO(7-δ) it typically extends over a region
0.8 – 0.85 ≤ t ≤ 0.99, where t=T/Tc (note that in the 3D XY picture Tc is not
field-dependent), and aboveH ≈ 10 kOe (= 796 kA/m), with only slight dependence
on the doping δ [3, 8]. 3D XY scaling, but with a different scaling function, also
has been found [9, 10] in Bi2Sr2CaCu2O8+x (Bi2212) which is highly anisotropic
and has particularly low values of Hm(T/Tc). This suggests that the fluctuation
behaviour outlined above is an inherent property of HTS.

In conventional superconductors the behaviour mentioned above is hardly de-
tectable and Hirr(T ) is very close to the upper critical field Hc2(T ), which makes
any dissipative “vortex liquid” region negligibly small. Even in conventional super-
conductors with very low flux-line pinning, such as amorphous Nb3Ge thin films,
Hirr(T ) stays close to Hc2(T ) for three-dimensional samples (where the film thick-
ness is larger than the coherence length). In two-dimensional samples the values of
Hirr(T ) are lower but they are still high in comparison with those of HTS, when
measured in units of Hc2(T ) [11]. Moreover, it is not clear that critical fluctuations
of the 3D XY class could account for the disappearance of the vortex lattice at
Hirr(T ) in conventional superconductors. Probably the transition is of a different
type, e.g. melting that is governed by a classical process described by the Linde-
mann criterion [12].

Several papers (e.g. [13, 14]) have discussed why HTS are so different from
conventional superconductors, especially with respect to their high susceptibility
to critical fluctuations. The obvious reasons are that the superconducting transition
temperatures of HTS are an order of magnitude higher than those of conventional
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superconductors and that, being anisotropic, HTS have reduced dimensionality,
both of which enhance critical fluctuations. In this paper we focus on the third cause
of strong fluctuations in HTS, the small values of the in-plane coherence length
ξab(T ) [13, 14]. We give arguments that there is a fundamental difference between
HTS and conventional superconductors with regard to the number of overlapping
Cooper pairs, i.e. the number of pairs in the coherence volume. This number is
small in HTS but very large in conventional superconductors, which then causes
the build-up of the superconducting phase to be quite different in the two classes
of superconductors. In this picture the extreme susceptibility of HTS to critical
fluctuations is due to the small number of Cooper pairs in a coherence volume even
at T=0 and H=0. This makes the superconducting phase less stable at elevated
temperatures and magnetic fields.

2. Discussion

2.1. Experimental implications

The 3D XY approach to the properties of HTS in a magnetic field has been
discussed in detail by Fisher, Fisher and Huse [15] and by Schneider and Keller
[16]. In the 3D XY picture the free-energy density fs which properly describes the
thermodynamics of HTS in the fluctuation-dominated regime has the form

fs = fn − BkBT
Vc
G

(
Hξ2

Φ0

)
, (1)

where fn is the normal-state free-energy density, B a constant of order unity, Vc =
ξ2abξc the temperature-dependent coherence volume, ξ a coherence scale, Φ0 the
magnetic-flux quantum, and G an unknown scaling function. For H ‖ c, ξ = ξab,
and for H ‖ ab, ξ = (ξabξc)1/2. The temperature dependence of the coherence
lengths in the 3D XY universality class is given by ξab,c = ξ

0
ab,c(1 − t)−2/3 (the

theoretical value [17] of the exponent is ν = 0.669±0.002 while the measured value
[18] for liquid 4He is ν = 0.672± 0.001).
In our recent work on the reversible magnetisation M = −∂fs/∂H of

YBCO(7-δ) [2, 3, 8], after making small corrections for paramagnetic Curie terms
determined by fitting susceptibility data well above Tc to a Curie law, we have
indeed found excellent validation of the 3D XY scaling expected from Eq. (1) in a
large portion of the H-T plane right down to Hirr ≈ Hm. Furthermore, a similar
scaling approach to the heat capacity of YBCO [9] also supports the above form
of fs. Further analysis of our experimental M −H data [3, 8] led us to an explicit
expression for fs, namely

fs = fn − F (T ) + BkBT

ξab(T )ξc(T )
√
Φ0/H

(2)

(F (T ) is essentially field independent), which holds throughout the “vortex liq-
uid” state investigated (although for YBCO(7) there are some deviations at
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high fields, see Fig. 1). Equation (2) provides a simple physical result, namely
the field-dependent part of fs is the thermal energy kBT divided by a field-
dependent coherence volume ξab(T )ξc(T )(Φ0/H)

1/2. As shown in Fig. 1, our
reversible-magnetisation data with H ‖ c plotted in the standard 3D XY way
(i.e. M/TH1/2 vs. H/(1 − t)4/3) collapse on to a single curve for all δ values
investigated (0.03 ± 0.02 ≤ δ ≤ 0.35 ± 0.02) when we take into account the
measured values of the anisotropy parameter γ(δ) = ξab(δ)/ξc(δ) and choose
appropriate values for the parameter D(δ) = ξ0ab(δ)/ξ

0
ab(δ = 0). The value

ξ0ab(δ = 0) = 1.26 nm was known from the previous work [2, 14], this leads
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Fig. 1. 3D XY plot of the reversible magnetisation Mrev of YBCO(7-δ) for

0.03 ≤ δ ≤ 0.35, from Ref. [8], where A = 2Φ1/20 (ξ0ab(δ = 0))2/BkB = 0.07
KG−1Oe−1/2 (1 Oe = 79.58A/m). Mrev shows an H−1/2 dependence over the
whole doping range, providing evidence for the field-dependent term in Eq. (2). In
the inset we show the δ dependences of the anisotropy parameter γ determined
from other measurements [3] and the parameter D = ξ0ab(δ)/ξ

0
ab(δ = 0). The latter

is chosen so that data for samples with different values of δ collapse on to the same
curve.

to B ≈ 1.5. Note also that the values of D used are consistent with estimates of ξ0ab
obtained from measurements of the fluctuation diamagnetism well above Tc. The
results in Fig. 1 suggest that 3D XY scaling of the reversible magnetisation could be
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general in HTS; otherwise the YBCO(7-δ) samples with different oxygen contents,
i.e. different critical temperatures and anisotropies, would not behave in the same
way. Moreover, the validity of Eq. (2) over a substantial region of the fluctuation-
dominated part of the H-T plane suggests that the correct theoretical model of
the “vortex liquid” phase should give the same simple relationship between the
thermal energy and the coherence volume that is observed experimentally. However
we should emphasise that the present results have been obtained over a limited
range of γ (a factor of 2) and that highly anisotropic Bi2212 has a different scaling
function [9, 10].
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Fig. 2. f(H, T ) − f(0, T ) vs. H1/2 plots derived from the specific heat data of of
Ref. [20] (a melt-processed YBCO(7) sample with large aligned crystallites and
H ‖ c). The melting line Hm(T ) derived from these data, which agrees with our
magnetisation results, is shown by the full line. The temperatures are indicated.
These plots are linear in the “vortex liquid” state with zero intercept at H = 0, as
expected from Eq. (2).

A natural extension of the magnetisation work is to investigate Eq. (2) with
respect to other thermodynamic properties, such as the specific heat [19] C =
−T∂2fs/∂T 2 . We have done this by comparing the predictions of Eq. (2) with
several independent studies of the heat capacity of YBCO, including single crystals
[4, 5] and melt-processed samples with large aligned crystallites [20]. We have found

FIZIKA A (Zagreb) 8 (1999) 4, 333–344 337



cooper et al.: ground state superconducting phase fluctuations . . .

that the free-energy-density data derived from these measurements do fit Eq. (2).
As an example in Fig. 2 we show the free energy density results for melt-processed
YBCO(7-δ) [20] for δ ≈ 0, plotted against H1/2. The magnitude of fs agrees with
Eq. (2) if B = 1.5 and ξ0ab = 1.39 nm. Consequently plots of C(H, T )/T−C(0, T )/T
vs. H1/2 should also be linear. This is also observed experimentally, but the slopes
of these plots do not agree with the full second derivative of Eq. (2). as shown in
Fig. 3. However, agreement can be restored if we replace the thermal energy kBT
in the numerator of the field-dependent part of Eq. (2) with a constant of order

kBTc. In this case the second derivative of fs then varies as (1−t)−2/3. As also shown
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Fig. 3. The slopes of C(H, T )/T − C(0, T )/T vs. H1/2 plots derived from data in
Ref. [20]. Full squares represent the (1− t)−2/3 dependence (left-hand scale), where
t = T/Tc, and Tc = (89.4± 0.3) K. This is expected from the second derivative of
Eq. (2) if the kBT term in the numerator is replaced by kBTc. It can be seen that
the measured slopes of C/T vs. H1/2 are consistent with a (1− t)−2/3 dependence
within the scatter of the data since they fit a straight line through the origin. On the
other hand the slopes are not proportional to the full second derivative of Eq. (2)
(including the kBT term) since the open points (right-hand scale) do not lie on a
straight line through the origin.
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in Fig. 3, within the experimental error, the slopes of C(H, T )/T − C(0, T )/T vs.
H1/2 plots are consistent with this (1− t)−2/3 dependence. This replacement does
not affect the reversible-magnetisation and free-energy-density plots due to their
weaker sensitivity on the kBT term in the numerator of the field-dependent part
of Eq. (2). One possible way of justifying the above replacement is to say that the
origin of the pronounced fluctuations in HTS is to be sought in the ground state of
the system, i.e. at T=0 andH=0. We discuss this possibility in the next section. We
cannot entirely rule out a more prosaic scenario, namely that there is a small extra
field-dependent term in fs, not included in Eq. (2), which has large temperature
derivatives and so has a strong effect on C(H, T ) with little effect on M(H, T ) and
fs(H, T ), but this seems to be a very artificial “ad hoc” interpretation.

2.2. Number of overlapping superconducting pairs at T=0 and H=0

The superconducting condensation-energy density U0 = H
2
c (0)/8π is the appro-

priate measure of the strength of superconductivity, as it equals the free-energy-
density difference between the superconducting and the normal states of a super-
conductor at T = 0. The quantity U0ξ

3
0 , where ξ0 is the BCS coherence length,

gives the number of superconducting pairs Np (each carrying energy ∆0) within
the coherence volume, i.e. Np = U0ξ

3
0/∆0 . Since at T = 0 each pair can be consid-

ered to occupy a volume ξ30 , Np is also the number of pairs that spatially overlap
a given pair. Np can be derived from experimental data for U0, ξ0 and Tc via the
parameter K = U0ξ

3
0/kBTc. Within standard, weak-coupling s-wave BCS theory

K = αNp, where α = ∆0/kBTc = 1.76. For electrons in a 3D parabolic energy
band, weak-coupling BCS theory gives K = (α/π5)(EF /∆0)

2, where EF is the
Fermi energy, and therefore Np is very large in conventional superconductors.

Before we proceed with further analysis of the findings of Sect. 2.1, let us
discuss the importance of Np in a qualitative way. Superconductivity is a many-
body quantum-mechanical state, determined both by the amplitude of the order
parameter, i.e. ∆0, and also the phase ϕ which describes the coherence of the
many-body state formed by individual Cooper pairs. Both ∆0 and ϕ are many-
body properties, but ∆0 is more closely connected with the individual properties
of one superconducting pair, whereas ϕ is connected with the quantum-mechanical
coherence of the many-body system. The phase ϕ is very sensitive to Np because if
there are not enough overlapping pairs to build up coherence, ϕ will show significant
deviations from its mean value, giving temperature-independent fluctuations δϕ.
Tinkham [21] pointed out a useful analogy for this process, as follows. A coherent
electromagnetic field in lasers can be built up only if there are enough photons.
Each photon has an energy h̄ω (a single-photon property) but a fully coherent
state described by a single, macroscopic phase can be established only if a large
number of them contribute to a beam of light. This property of needing many
particles in superposing individual states to form a macroscopically coherent state
is a general property of many-body coherent systems.

The above discussion is essential for understanding our analysis from Sect. 2.1.
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Namely, by combining our magnetisation data with values of U0 from the specific-
heat data of Loram et al. [22] we were able to calculate the parameter K for
YBCO(7-δ) [3]. The coherence volume depends on the model used, e.g. for the
anisotropic effective mass model it is (ξ0ab)

2ξ0c and for a layered 2D model (ξ
0
ab)
2d,

where d is the c-axis lattice parameter. Disregarding the details of the model K
is always found to be very small (0.2 in the former [3] and 0.8 in the latter case)
and basically independent of δ. There are two main implications of this result.
The first is that the universal behaviour of the fluctuation-dominated reversible
magnetisation shown in Fig. 1 is not just a coincidence but must be linked to the
fundamental parameter K, implying that we are dealing with the same physical
mechanism for YBCO(7-δ) over a large doping range. The second is that the number
Np is remarkably small in HTS. This is in a great contrast with the value of Np
in conventional superconductors, where this number is very large since EF >>
∆0. This might shed more light on the observed differences between HTS and
conventional superconductors, which in the present picture arise from different
properties of their ground states at T=0 andH=0. In conventional superconductors
the superconducting phase peaks sharply around its mean value and there are only
appreciable phase fluctuation when external perturbations, such as temperature or
a magnetic field, are very strong. The consequence of this is that critical fluctuations
can occur only over a very restricted region of the H-T plane. In HTS, on the other
hand, the temperature-independent phase uncertainty δϕ is considerable even at
T = 0 andH = 0, which results in an intrinsic instability of the phase. Furthermore,
in this picture the thermal energy plays a second-order role, compared with the
number of pairs within a coherence volume, in defining a macroscopic phase. Thus,
the replacement of kBT in Eq. (2) with a constant of order kBTc which was required
to explain the specific-heat data (Sect. 2.1) now becomes more meaningful. It
means that the field-dependent part of Eq. (2) represents the increase in δϕ as the
correlation volume ξabξc(Φ0/H)

1/2 shrinks with increasing magnetic field, without
a significant contribution from the thermal energy which thus does not appear in
the numerator of the field-dependent part of Eq. (2).

The above discussion does not take into account the probable d-wave symmetry
of the order parameter in HTS, which may well have some important effects on
our qualitative model. For d-wave superconductivity there are nodes of zero gap at
certain points of the Fermi surface. As pointed out by Kosztin and Leggett [23],
Cooper pairs near these nodes have large values of ξ0. Because ξ0 = h̄vF /π∆0 (vF
is the Fermi velocity), there will be a complicated mixture of two types of pairs:

“short” ones made up of ~k↑ and −~k↓ states well away from the nodes, and “long”
ones near the nodes. The overlap of these pairs is then more complicated than
in the simple analysis presented here, and could result in somewhat larger values
of Np and, consequently, smaller phase fluctuations δϕ. This might be another
possible reason for the unusual increase ofHirr at low temperatures [24]. We believe,
however, that Np calculated within a d-wave approach would never reach the value
obtained in conventional superconductors, and that our main conclusions still hold
reasonably well.
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2.3. Some other evidence for phase fluctuations in high-Tc
superconductors

Besides the work on the thermodynamics of HTS described in previous sections
of this paper there is other evidence for strong dephasing phenomena in HTS. More
specifically, there were several reports [25–30] of unusual ohmic magnetoresistance
of Bi2212 and YBa2Cu3O7 / PrBa2Cu3O7 multilayers deep in the “vortex liquid”
state. Here we concentrate on the results obtained in the group of Boran Leontić
at the University of Zagreb, Croatia [28–30]. This work has been done using the
group’s own Bi2212 single crystals as a further investigation of the important finding
of Raffy et al. [25], who as early as in 1991 showed that the magnetoresistance
of Bi2212 has a remarkable functional form suggesting that phase decoherence is
induced in the “vortex liquid” state by a magnetic field . Namely, at a constant
temperature the magnetoresistance shows no flux-flow-like behaviour, characteristic
of conventional superconductors, but agrees extremely well with the dependence
R(H, T ) ∝ Ψ(1/2+ H̃(T )/H) + ln(H/H̃(T )), where Ψ(x) is the digamma function
and H̃(T ) the decoherence field. The above dependence is actually well known,
it describes the Maki-Thompson [31] magnetic-field-induced de-phasing of non-
dissipative, coherent quasi-particle pairs above Tc in 2D systems (and Bi2212 is the
most 2D of all HTS). Early reports on this behaviour [25–29] did not focus on the
fact that originally the formalism was developed for fluctuations at temperatures
T > Tc. More recently Leontić et al. have given [30] a semi-quantitative model
which to some extent reconciles the original theory developed for T > Tc with its
applicability to the “vortex liquid” .

For the present paper it is important to note that because of the remarkably
small number of overlapping pairs the phase of the superconducting order parameter
is intrinsically weak in the “vortex liquid” state of HTS, and that dissipation occurs
by its further weakening in higher magnetic fields. Although it is difficult to compare
the thermodynamic and transport phenomena directly, the approach presented here
is conceptually compatible with that of Leontić et al. Namely, it is the presence of
large phase fluctuations that makes HTS so remarkably different from conventional
superconductors.

3. Summary and conclusions

Many properties of high-Tc superconductors are different from those of con-
ventional superconductors. The existence of a large fluctuation-dominated state
called the “vortex liquid” is specific to high-Tc superconductors and is only par-
tially understood. We have presented evidence that the thermodynamics of high-Tc
superconductors in the “vortex liquid” state is successfully described in terms of
3D XY critical fluctuations. More detailed analysis of experimental data for the
reversible magnetisation of YBCO(7-δ) and heat capacity of YBCO(7), which we
took as a representative of high-Tc materials, lead us to an intriguing picture re-
garding the origin of the large critical fluctuations observed in these materials. In
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this picture the high transition temperatures and decreased dimensionality of high-
Tc compounds are not the primary cause of the observed fluctuation behaviour,
although they could still be important in specific cases. On comparing the number
of overlapping pairs Np which build up the coherent superconducting state at T=0
and H=0 we have found a remarkable difference between conventional and high-Tc
superconductors. In conventional superconductors the large value of Np results in a
superconducting phase which is strongly peaked around its mean value, and hence
mean-field theory is applicable over most of theH-T phase diagram. In contrast, the
small value of Np in high-Tc materials causes an appreciable spread of the supercon-
ducting phase from its average even in the ground state. At elevated temperatures
and magnetic fields this leads to strong fluctuations. The d-wave symmetry of the
superconducting pairing in high-Tc materials could increase Np significantly, but
we believe that even in this case Np still does not reach the value characteristic of
conventional superconductors. Finally, we found similarities between our approach
to the thermodynamics of high-Tc compounds and the description of the unusual
magnetoresistance of high-Tc materials by Leontić et al. Both models suggest that
there are fluctuations of the superconducting phase in its ground state, which are
then manifested fully in the “vortex liquid” state.
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FLUKTUACIJE FAZE SUPRAVODLJIVOG URED– ENJA U OSNOVNOM
STANJU KAO PREDUVJET JAKIH KRITIČNIH FLUKTUACIJA U

VISOKOTEMPERATURNIM SUPRAVODIČIMA

Analiziramo reverzibilnu magnetizaciju i toplinski kapacitet YBa2Cu3O7−δ u stanju
“tekućine vrtloga”, i nalazimo da su oba svojstva razumno dobro opisana 3D XY
modelom kritičnih fluktuacija. U velikom području polja (H) i temperatura (T ),
gustoća slobodne energije u stanju “tekućine vrtloga” ima osobito jednostavan ob-
lik. To nas vodi do slike u kojoj je prisustvo kritičnih fluktuacija u visokotempe-
raturnim supravodičima neposredno povezano s vrlo malim brojem prekrivajućih
Cooperovih parova pri T = 0 i H = 0, prije nego s niskom dimenzionalnošću ili
visokim temperaturama.
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