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LONG VS. SHORT DISTANCE DISPERSIVE TWO-PHOTON KL → µ+µ−
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We report on the calculation of the two-loop electroweak, two-photon mediated
short-distance dispersive KL → µ+µ− decay amplitude. QCD corrections change
the sign of this contribution and reduce it by an order of magnitude. The re-
sulting amplitude enables us to provide a constraint on the otherwise uncertain
long-distance dispersive amplitude.
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The decay mode KL → µ+µ− is a classical example of the rare flavour changing
neutral process that provided valuable insights into the nature of weak interactions.
Its non-observation at a rate comparable with that of K+ → µ+νµ led to the
discovery of the GIM mechanism [1] and to the derivation of the early constraints
on the masses of the charmed [2] and top [3] quark.

Also, by studying this mode it was possible to determine the Wolfenstein ρ
parameter [4,5], to study the CP violation [6], and even to discover some new
physics [7] (e.g., through SUSY-induced FCNC enhancement). Because of this, this
decay mode has received sustained theoretical attention over the last three decades.

The lowest-order electroweak amplitude for KL → µ+µ− in a free-quark calcu-
lation [2] (Figs. 1a and 1b) is represented by one-loop (1L) W-box and Z-exchange
diagrams, respectively, and exhibits a strong GIM cancellation. Therefore, one is
addressed to consider the two-loop (2L) diagrams with photons in the intermediate
state (Fig. 1c) as a potentially important contribution.

1Presented by K. Kumerički.
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If we normalize the amplitude A to the branching ratio:

B(KL → µ+µ−) = |ReA|2 + |ImA|2 , (1)

then the absorptive (ImA) part, which is dominated by the process KL → γγ →
µ+µ− (Fig. 1c) with the real photons, is easily calculable and gives the so-called
unitarity bound [8]

B(KL → µ+µ−) ≥ |ImA|2 = (7.1 ± 0.2) × 10−9 , (2)

corresponding to |ImA| = (8.4±0.1)×10−5. If we compare this to the experimental
number [9]

B(KL → µ+µ−) = (7.2 ± 0.5) × 10−9 , (3)

we see that the absorptive part almost saturates the amplitude, leaving only the
small window for the dispersive (ReA) part

ReA = ASD + ALD , |ReA|2 < 5.6 × 10−10 . (4)

Thus, the total real part of the amplitude, being the sum of short-distance (SD)
and long-distance (LD) dispersive contributions, must be relatively small compared
with the absorptive part of the amplitude. Such a small total dispersive amplitude
can be realized either when the SD and LD parts are both small or by partial
cancellation between these two parts.�WW ��KL (a) ���+ ��+Z��KL (b) ��+ ���KL (c)
Fig. 1. Possible mechanisms for KL → µ+µ−.

The major obstacle in extracting useful short distance information out of this
decay mode is the poor knowledge of ALD. There are several calculations of this
LD part to be found in literature [4,10–13] and, later in this paper, we will try to
compare them. To this end it is necessary to have a reliable estimate of the other,
theoretically more tractable, SD part ASD.

Frequently, ASD has been identified as the weak contribution represented by
the one-loop W-box and Z-exchange diagrams of Figs. 1a and 1b. This one-loop
SD contribution A1L = AFig.1a + AFig.1b is dominated by the t-quark in the loop
(proportional to the small KM-factor λt), and the inclusion of QCD corrections
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[12,13] does not change this amplitude essentially. In this paper, we stress that
the diagrams of Fig. 1c, with virtual intermediate photons, with relatively high-
momentum, lead to the same SD operator. That is, both the 1L diagrams contained
in Figs. 1a and 1b, as well as 2L diagrams like those in Fig. 2, lead to the same SD
operator of the type

KSD (d̄γβLs)(ūγβγ5v) , (5)

where s, d̄, u, v are the spinors of the s- and d̄ quarks in the K-meson, and the µ+

and µ−, respectively. The quantity KSD is a constant which contains the result
of the SD calculations. The leading contributions from 2L diagrams are propor-
tional to α2

emGFλu and dominated by c-quarks in the loop, while the leading 1L is
proportional to G2

F m2
t λt.�s�+ W d u; c �� (a)+ photonscrossed�s�+ c; tW d W W�� (b)+ photonscrossed

Fig. 2. Typical two-loop diagrams for KL → µ+µ−.

One should note that, as already pointed out in Refs. 16 and 17, the two-
loop diagrams with two intermediate virtual photons have a short-distance part
A2L (contained in AFig.1c = ALD + A2L) that could pick up a potentially sizable
contribution, leading to the total SD amplitude is ASD = A1L +A2L. By exploring
the contribution from Fig. 1c leading to the A2L amplitude, we will be able to
isolate the strongly model-dependent LD dispersive piece.

A complete treatment of the two-loop SD dispersive amplitude for KL → µ+µ−

was given by us in Ref. 16. There, we used the momenta of the intermediate photons
from the diagrams in Fig. 1c to distinguish between SD and LD contributions, SD
part being defined by diagrams with photon momenta above some infrared cut-off
of the order of some hadronic scale Λ ∼ mρ. The fact that the resulting amplitudes
depended only mildly on the precise choice of Λ assured us that the procedure was
correct.

Our SD calculation in Ref. 18 is dominated by the region mρ < q2 < m2
c (the

high energy (q2 > m2
c) region is also included). After performing QCD corrections

in the leading logarithmic approximation [18], the original electroweak amplitude
was considerably suppressed and its sign changed:

−0.38 × 10−5 ≤ A2L ≤ −0.001 × 10−5 , (6)
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where error bars stem mostly from empirical uncertainty in αs.

Effectively, the LD calculation of the diagram in Fig. 1c is reduced to the eval-
uation of the form-factor F (q2

1 , q2
2) contained in the amplitude

A(KL → γ∗(q1, ǫ1)γ
∗(q2, ǫ2)) = iεµνρσǫµ

1 ǫν
2qρ

1qσ
2 F (q2

1 , q2
2) , (7)

where q2
1 , q2

2 /= 0 measure the virtuality of the intermediate photons.

The low energy regime q2 < Λ2 ∼ m2
ρ is explorable by chiral techniques

determining F (0, 0). In the standard SU(3)L ⊗ SU(3)R ChPT, where η′ is ab-
sent, one recovers the cancellation owing to the Gell-Mann-Okubo mass relation,
∼ (3M2

η + M2
π − 4M2

K) → 0. Keeping the η′ pole contribution in the enlarged
U(3)L ⊗ U(3)R symmetric theory [13], there is a destructive interference between
the η and η′ contributions, so that the final amplitude is dominated by the pion
pole.

If going beyond the ChPT, one faces model calculations, and in particular the
calculations based on vector meson dominance (e.g., Refs. 10 and 4). The chiral-
quark model may also be used for the LD regime. Some preliminary analysis within
the chiral quark model indicates that the dispersive LD amplitude is of the same
order of magnitude as the SD.

Combining Eqs. (4) and (6), and A1L [15,19], enables us to find the following
allowed range for ALD:

−0.1 × 10−5 ≤ ALD ≤ 6.5 × 10−5 . (8)

Thus, having a dispersive LD part ALD of the size comparable with the absorptive
part [20] is still not ruled out completely.

The two vector-meson dominance calculations for the LD amplitude considered
as the referent calculations in Ref. 19 have basically opposite signs,

−2.9 × 10−5 ≤ ALD ≤ 0.5 × 10−5 [10] ,

0.27 × 10−5 ≤ ALD ≤ 4.7 × 10−5 [4] ,

and the result of [4] seems to be more in agreement with the bound (8). There
are also some other, more recent, attempts to calculate the ALD 11–13]. The most
stringent bound obtained is [12]

|ReALD| < 2.9 × 10−5 , (9)

also well inside the allowed range (8).
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USPOREDBA DUGO- I KRATKODOSEŽNE DISPERZIVNE DVOFOTONSKE
AMPLITUDE RASPADA KL → µ+µ−

Izlaže se o račun kratkodosežne elektroslabe amplitude raspada KL → µ+µ− na
razini dvije petlje, putem dvofotonske izmjene. Uključenje QCD popravki mijenja
predznak tog doprinosa i smanjuje ga za red veličine. Dobiven rezultat dozvol-
java uvod–enje ograničenja na dugodosežnu disperzivnu amplitudu, koja je inače
neodred–ena.
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