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Violation of the string hypothesis and the Heisenberg<XZ spin chain

Amon llakovac* Marko Kolanovig' Silvio Palluaf and Predrag Presfer
Department of Theoretical Physics, University of Zagreb, Bijemic.32, P.O. Box 162, 10001 Zagreb, Croatia
(Received 21 January 1999

In this paper we count the numbers of real and complex solutions to Bethe constraints in the two-particle
sector of theXXZ model. We find the exact number of exceptions to the string conjecture and total number of
solutions that is required for completenels30163-182609)10733-1

[. INTRODUCTION sis of Bethe equations. A recent numerical calculation, inde-
pendent of Bethe ansatz and based on the lattice
Integrable spin chains have proven to be useful in studyregularizatior?? led to the usual bound-state spectrum of the
ing various theoretical ideas in field theory and statisticalmassive Thirring model, thus suggesting that the question
physics. In the continuum limit, one can relate spin chains taaised by previously mentioned authors could be related to
the massive Thirring model, the sine-Gordon theory, theunderstanding of the string conjecture and its violations. This
Liouville theory and other$? Faddeev and Korchensky result is based on the assumption of equivalence of sine-
suggested their possible relevance for QCD. A connection t&ordon and the massive Thirring model. Another calculation
matrix models was also suggesfedd very successful for the massive Thirring model itself is in progreés.
method in solving spin chains and in general integrable mod- In this paper we shall classify all solutiofisoth complex
els both on a lattice and in the continuum is the Betheand real in the two-particle sector of th&¥XZ model. That
ansatz’® Despite the fact that a lot is known about this will allow us to find the number of exceptions to the string
method there is still one set of open questions concerning theonjecture for a given coupling constant and a given number
so-called string conjecture® of lattice sitedN. We shall, in particular, find that the number
The Bethe ansatz method leads to a set of transcendentafl exceptions to the string conjecture in thermodynamical
equations(called Bethe constraint§for momenta of quasi- limit is finite, except for the value of the coupling constant in
particles. In the usual search for solutions of these equationshich it coincides with thex XX model and what is consis-
a simplifying assumption is made, the already mentionedent with previously found resutt:*®
string conjecture. This conjecture, which we shall afterwards We shall consider th&XXZ spin chain defined with the
formulate more precisely, classifies the complex solutiongollowing Hamiltonian:
for momenta of quasiparticles. It is well known that there are
exceptions to the string conjecture near the antiferromagnetic 1 . .
ground staté** Recently, exceptions have been fotitt ~ H=—73 D (Ohoh T oo T AGRORL ), Oni=01
already in the two-particle sector of theXX spin chain. =t 1.1)
Similar results have been found for the Hubbard mdtié. '
the case of th&X(XX spin chain, the number of missing so-  1his Hamiltonian acts iN? dimensional Hilbert space
lutions (compared to thg string-conjecture predicliomas H=(2C?". In the Bethe ansatz method one introduces the
found to be\/N, whereN is the num_ber of degrees of free- 5gig statedn; - - -ny) with M spins down, where the num-
dqm. A cgrtam class of real so!ptlons not .anoﬁe.d by thepers n{,...,ny denote the lattice positions of the down
string conjecture was observed byitder and Dofel™ inthe — gping “With |0) we denote the state with all spins up. A
XXZ chain. However, a systematic investigation of compleXgeneral element of the above-defined Hilbert space, and thus

solutions and thus of exceptions to the string conjecture ig, harticular the eigenstates of the Hamiltonian, can then be

missing. _ _ written in the sector wittM spins down as
There are several reasons why it would be desirable to

understand the limits of validity of the string conjecture or

equivalently to have a clear understanding of nature and |¢y)= Z Ny Ny Ng- - -ny).
number of real and complex solutions for momenta of qua- 1=m=np=---<ny=N

siparticles. One reason is that it was used in literature as a 12
tool to obtain various results. One example, for instance, ishe Bethe method consists in searching for Hamiltonian
the completeness proofs of Bethe statés:°~?°Another ex-  gjgenstates in the form
ample is the investigations that use a lattice regularization of

field theoretical model$! In such cases the results at orders

that are lower thatN may depend on modifications of even a Ny -ny)= E ex i( E Kp ;
single root as these authors stress. As is well known, the P 1!
string conjecture was also used by Bergknoff and Thaéker
in deriving breather states of the massive Thirring model. +E 2 bp; (1.3
This was recently criticized on the basis of numerical analy- 2 PIPLI '

N
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where the sum runs over elements of the permutation grouBethe numbefintegey | for each string. In addition, a part

Sw. The momentak;, i=1,...M and phase shiftsp; ; of the string conjecture was that no two strings of the same
have to be determined from the eigenvalue equation and péength can have same integérsThese assumptions together
riodicity requirement on functiongy(n;- - -ny). The well-  with inequalities derived in Ref. 7 for numbdrallow one to

known procedure gives following expressions for phase shiftount the number of string solutions of equatiqis9). In
¢;.i,» energyE, and momentunP in terms of pseudomo- this paper we shall not use equations that are a consequence
mentak;, i=1,...M of string conjecture. However, for future comparison we
. mention that in the sectawl =2 the following number of
6. =2 arctan A sinl(k;—k;)/2] solutions for strings of length 2 can be obtained:
i cog (k;+k;)/2]— A cod (k;—k;)/2]’

1
(14 Ns=2|5 - (N=4)(7=26) | +1, (1.12
NA ’
E=— 7+22 (A—cosk;), (1.5)  Where[x] denotes integer part of
=1
M Il. TWO-PARTICLE SECTOR AND COMPLEX
SOLUTIONS
P= K. 1.6
2, k (1.6

We want now to analyze Bethe equations without assum-
The periodicity requirement leads to the following con-ing the string conjecture. For simplicity we shall treat the

straints for the momenta of quasiparticles: two-particle sector. In this sector Bethe constraiit3) read
M Nk1+ ¢1’2:2’7T)\1, (21)

Nk+ >, & ;=2m\;, i=1,... M. 1.7
=1 Nk2_¢1’2:277)\2. (22)

TheM Bethe numbera,, i=1,... M are half integersin-  Here we want, in particular, to look for complex solutions.
tegers for M even (odd. Thus forM even, we can chose pye o the reality of energy and momentuk,andk, have

Nie —(N-1)/2,...,\N—1)/2 for N even and \ie {5 pe complex conjugates of each other
—N/2,... N/2—1} for N odd. Sometimes it is useful to in-
troduce a transformation from pseudomomerkg, i ki=k,+ik;, (2.3
=1,... M to rapidity variables;, i=1,... M with the fol-
lowing relation: ko=k, —ik;. (2.9
K; e X We can expresk, andk; by taking the sum and difference of
cotgzcotitanh7, A=cosé. (1.8 Egs.(2.1) and(2.2)
In thi trization Beth traint d ™
n this parametrization Bethe constraints rea kFN(MH\z)y 2.5
: h0 AN . h0 i
sin z(xk+|) 1|\_/|[ sin E(xk—x,+ ) e , t A sin(ik;)
0 . T ) N INKi=m(A1=22) arctant osk, — A cogik;) °
smhz(xk—l) smhz(xk—x,—Zl) (2.6)

Further straightforward manipulation allows us to introduce
k=1,... M. (1.9 a simple equation fok; in terms ofk,. So the final set of

The string-conjecture states that solutions of these equatioff§iuations that we shall consider is £g.9) for k; and the
form string configurations with rapidities that are forming €duations fork;,
strings of lengthn. Rapidities in string have common real

parts and equidistant imaginary parts. More precisely, a sinh ki(ﬂ—l)
string of order(length n and parity+ or — is a set ofn 2 _ cosk;
2 = , N\it+Xp 0odd, (2.7
rapidities ) N cosé
sml’( k; E)
2
x2’§=x2+(n+1—2k)i+O[exp(—6N)](mod7),
' N
(1.10 cosv{ ki<§— 1) cosk, .
. i 21 Nl cosg’ Mthz even 2.8
xa;_zxa+(n+1—2k)|+7+O[exp(—5N)] mod7 , cos kiE
(1.11

We shall distinguish solutions of E@2.7) and call thems
where =0, k=1,...n andx] is real. Insertion of these solutions(string9 from those of Eq.2.8), which we shall
assumed forms in Eq1.9) gives equations for real parts of call c solutions(stringg. In fact, these equations will give a
strings, which are similar to Eq1.7) with one common basis for a natural classification of solutions. Any solution in
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FIG. 1. Graphical description of the left-hand sides of Egs?)
and(2.8) for some values oN.

the two-particle sector will depend only on the sum of Bethe
numbers and its parity. A choice of different Bethe numbers

that gives the same sufe.g., ¢,—3),(3,3)] corresponds to

taking different branches of the phase shift in E@s1) and

(2.2. As we shall see later, a number of solutions will be
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s strings
¢ strings 1

different in these two classes and exceptions to the string A

conjecture will be due to the classonly. As the sum of
Bethe numbers can be taken betweeN+1 andN—1 for
N even and betweenr N andN—2 for N odd, we see th&,
can take A—1 different equidistant values betweensw
and 7. From Egs.(2.7) and (2.8) (and Fig. 2, we see that
admissible interval for cds is

2
s strings: Oscoskr<A(1—N), (2.9
¢ strings: O<cosk, <A (2.10
for A=0 (0s6<mw/2) and
i 2
s strings: A(l—N><coskr<O, (2.11
¢ strings: A<cosk,<0 (2.12

for A<O (w/2=<6<). The energy of complex solutions,

according to Eq(1.5), will be given with

E=4A -4 cosk, coshk; . (2.13

FIG. 2. Real parts of complex solutions ferl<A<1 and the
number of site?N=40. Empty squares denote solutions of Ej7)
(s stringg and full circles denote solutions of E(2.8) (¢ strings.

i(2N—1)(7‘r—219) (2.1
2

solutions in form of strings can be obtained. This is consis-
tent (up to at most two solutionswith the string conjecture
and result(1.12.

IIl. NUMBER OF BOUND STATES (COMPLEX
SOLUTIONS) AND VIOLATION OF THE STRING
HYPOTHESIS

We want to determine the number of bound states as a
function of the coupling constat and the number of sites
N. We shall first consider complex solutions for fixsdand
differentA. In Fig. 2 the cas&l =40 is presented. For each
(calculatedl A real parts of possible complex solutions are
given. We see that in the region of negative coupling con-
stant the complex solutions are present#d2< |k, |< and

Here, we measure the energy from the referent state with aih the region of positive coupling constant foQk,|< /2.
spins up. Due to relation€.8) and (2.7) one can see that As k; tends tow/2, k; increases and so the localization of

energy intervals for complex solutions are

0<E(c stringg <2A, (2.149

8A )
W< E(s stringy <2A. (2.195

Now the left side of both Eq92.7) and (2.8) are monoto-

two spins down increasésotice that the ratio of probability
amplitudes for finding spins down on lattice sitesandn,

is proportional to exp |k(n;—n,+1)|]]. As we decrease the
coupling constantA|, bound states withk,|=| 6| for A<O

and with|k,|<|6| for A=0 disappear. These are states with
the smallest localization. The bound states with high local-
ization (k; high, k,~ m/2) exist in almost all the region of
coupling constant and disappear near the free theory point

nously decreasing functions so we shall have a solutiok;for (A=0). In Fig. 3 and 4 we present numerical analysis\of
for any k, whose cog; is in the previously mentioned inter- dependence of string solutions far#1 andA=1. In the

val. For largeN we can approximate admissible interval for

A=1 case,c strings are allowed for all values of 7/2

strings with that forc strings. In that case, complex solutions <k, < /2 and so their number rises linearly withas pre-

will exist if their real parts satisfy inequality 9cosk,<A.
As we have (AN—1)/27 solutions per unik, interval, we
conclude that

dicted by Eq.(2.16 and the string conjecture. However, the
number ofs strings rises also linearly witN until the real
parts do not reach the region where- 2/N<cosk, /A<1
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50 [T T T T T T T T T complex solution and appearance of the real solution with
L A=0095 _ two same Bethe numbergepresent violations of the string
conjecture. These results are consistent with the results of
Refs. 12 and 13. Fak # 1, however, we shall find a different
result. From Fig. 3 we can see that again for certain values of
N s strings will disappear and evolve in two close real mo-
menta for which we find identical Bethe numbers. These
exceptional real solutions will disappear again after sdine
when followed by the numerical iteration method. This is in
contrast to theA=1 case. In fact, when the solutions are
described by more natural classificatidtgs.(2.7) and(2.9)
for complex solutions and Eq#4.2) and(4.3) for real solu-
tions|, one could follow their further development. However,
here we were interested specifically in the choice of equal
Bethe numbers when solving Eq2.1) and(2.2) directly.
We proceed now to give an analytical expression for the

o0l sstring  ° =, real © cstring | number of exceptions to the string conjecture. Due to the
A PR PR PR RN FEEEE SR TN N previous discussion we find that the exceptions arise only
10 20 30 40 50 60 70 due to the Eq(2.7), which has no solutions in the following
N interval for the sum of Bethe numbers

FIG. 3. This figure shows dependence of the real part of com- o z()\ )
plex solutions on numbers of sitésfor A=0.95. It clearly illus- 2 N LT A2
trates transmutation of one complex solution in real solutioro (1_ N) < T$1, (N +Np) odd.
guasimomentgfor a given criticalN. These two real quasimomenta (3.
correspond to the same Bethe numbers and are obtained by the
numerical iteration of Eqg2.1) and(2.2). Now consider inequality3.1) first for A=1. The maximal

k, for which s solutions would still not be possible can be

when sucts string is no longer a solution of Bethe equations.found by expanding cgé/N)(\1+);)] around zero. We find
So the first two strings disappear fde= 22, next for 62, 121, 5 2
VN ) , (32

etc. Simultaneously with the disappearances strings two (A+Ap)2<| =
real solutions with the sam@dd) sum of Bethe numbers ™
appear. An odd sum of Bethe numbers can be accomplish
by two equal Bethe numbegsvhich is found by numerical
calculation, which favors the choice of the principal branch
of the phase shiftand both propertie&isappearance of the

Q/ghereN is number of sites after which two complex solu-
tions (for +k, and —k;) disappear and become solutions
with two real momenta and\;=\,. For A;+X\,
=1,3,57..., we getN=3,22,62,121,... . As previously
said, this is consistent with Refs. 12 and 13.
ool TR Now we turn to generah # 1. Considek’ andk?, which
- are just on the edges of the inter8l1). They satisfy

kl4 k2
25ir< ] !

(3.3

2 Sin 2 N

_ (k}—kf)_zA

From this relation the intervabk, for which s strings are
missing is given with

il
- A
Ok, =2 arcsin ] arccosA+arcco$A(1—2/N)]) '
N sin
2
(3.9
The number of strings per unit interval ok, is
sstring  ° l,=l, real * cstring 7 12N—-1
2'0_.||‘...|....|‘...|....|‘...|.‘..|‘._ 2 om 3.9

10 20 30 40 50 60 70
Here (2N—1)/2 is due the fact that we have to count the
N ; : :
number of odd values of;+ \,. As solutions come in pairs
FIG. 4. Same as Fig. 3, but far=1. We see that exceptional (positive and negative total momentse need the last factor
real solutions with the same Bethe numbers that appear at son® 2. Finally, the number of missing strings is an integer part
critical N persist for allN= N . of
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FIG. 5. The number of missing strings is an integer part of real

numbern, which is given as a function of the coupling constant
for three different values df.
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ent values o\, +\,. But changing\;+ X\, by N is equiva-

lent with changing one quasimomentum by #hat gives the
same solution. This reduces the number of possible values
Ni+Ap tO N, e.g.,,A\;+X,=0,1,... ,N—1. The left-hand
sides of Egs(4.2) and (4.3 are periodic functions. Thus in
principle, for each ofN different fixed values of the right-
hand side one can count the number of solutions by counting
the number of intersections. For a given value of e
+\, andA we can find following numbeX of intersections

for N even

COSE L e . COSE L e N—2
R YRR
(4.4
K K

cos5 L2 (N2 cos5 .

N e VA L N R
(N-4 ,
(=), @5

for N1+ X\, even and odd, respectively. FNrodd

2N—1 csin A cosk cosk
n= A S T rccosA + arccosA (1— 2/N) ]| ° 2 1 % N—-1}| 2 1 X N-3
N sin 2 IS R 2 A A N e W
(3.6) (4.6

The function(3.6) is shown in Fig. 5 for few values &f. We Kk Kk
can see that the number of missing strings is finite Zor cosz 5 N—3 cosi 5
#1 and that there is no violation of the string hypothesis — | >1——, X:(—); — | <1-—,
below some value of coupling constaAt These strings A N 2 A N
would have energie€2.13 in the forbidden interval &E
<8A/N that is near the energy of the state with all spins up. X = ( N;S)' 4.7

IV. NUMBER OF REAL SOLUTIONS AND
COMPLETENESS PROBLEM

for {1+ X\, even and odd, respectively. When right-hand side
of Egs. (4.3 and(4.2) becomes smaller than 1 and-2/N,

In this section we shall search for real solutions of Bethd'€spectively, corresponding the real solutiom fact a pair

equations. We start again from Ed&.1) and (2.2). After

with =Kk) disappears and we get a pair of complex solutions

manipulating their difference and sum we obtain following With positive and negative real parts. Now we can proceed to

equations fok=Kk;+k, andk;—Kks:

k
7= Nt 4.1
[ (kg—kz) [N 1 k
Sl T E _COSE y i
[(ky—ky) N = cosg’ M2 odd, 4.2
SIHTE
(ky—ka) [N 1 k
Cco T 5_ COSE

Nit+N, even. (4.3

COSs

(k;—ks) N ~ cosd’
2 2

From condition(4.1) we can find number of different mo-
mentak. As was already mentioned, there afd-21 differ-

obtain the full number of solutions. Fa¥ even we have
N/2 (N/2) possible values fax;+ X\, even(odd. ForN odd
there are N—1)/2 [(N+1)/2] possible values fok;+ X\,
even(odd). Together with the results from the previous sec-
tion on complex solutions one can count the total number of
real and complex solutions. It is important to realize that the
disappearance of pair of real solutions results in the forma-
tion of a two complex solution and vice versa. Let us count
number of solutions in two extreme casAs—0 and A
=N/(N—2). ForA—0 there are no complex solutions and
the number of real solutions N,e,=N?/2— N/2=(§). For
A=N/(N—2) the number of complex solutions il
(cosk, /A=<1—2/N) and from Eqs(4.4) and(4.6) number of
real solutions isN,¢,=N?/2—3N/2=(5)—(}). Again total
number of solutions isY). We conclude that we findy}
solutions of Bethe Eq€2.1) and(2.2) for every value ofA.

We stress that this result is obtained without assuming string
conjecture, which is usually assumed in completeness proofs.
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FIG. 6. All real solutions(triplets of quasimomenjan the M

FIG. 7. Same as Fig. 6, but far=0.95.

=3 sector with at least two identical Bethe numbers are given for
different numbers of sites and=1. They are obtained by the same as in thdl =2 case(Fig. 3). Finally this preliminary
numerical iteration of Bethe Eqsl.7). investigation for largeM raises hope that a simple pattern

for the exception to string conjecture could arise.
In fact, as we discussed in this paper, string conjecture has

exceptions. However, they do not affect completeness proofs
because the disappearance of complex solutonnd statg
results in the appearance of real solution and vice versa, so In this paper we count all complex and real solutions of
that the total number is unchanged. Bethe equations in the two-particle sector. The complex so-
As we have explained already, analysis was done for simlutions are classified in two classes. For one of therol§sg
plicity reasons in the two-patrticle sector. Of course a systemthe sum of Bethe numbers is odd and for the otleecléss
atic analysis for higher sectors may be desirable but it ist is even. We are able to count the number of solutions in
much more complicated. However, we will mention someeach class for a given coupling constanand the numbeN
preliminary results for th&1 =3 sector. By numerical analy- of lattice sites. In such a way we are able to check the va-
sis we search for exceptions to string conjecture among redidity of usual string conjecture. We find that there are ex-
solutions with coinciding two or all Bethe numbers. They areceptions to string conjecture and that they are entirely due to
exhibited in Fig. 6 and Fig. 7 foA=1 andA=0.95. They thes class of solutions. In particular, in the thermodynamic
show similar regularities as thM1=2 case. In particular, limit we show that number of these exceptions is finite for
with the appearance of real solutions violating string conjecA#1 contrary to theA=1 case, where it was previously
ture in the two-patrticle sector in the three-particle sector sucknown that it is infinite. Finally, we also show independently
exceptions arise in the form of perturbed pair of near mo-of the string conjecture that the number of all solutionﬁ'bs(
menta(of identical Bethe numbers iM=2 sectoy and a and that is required for completeness. The usual proofs of
third almost independent momenta with a distinct Bethecompleteness rely on string hypothesis. Some preliminary
number. For instance, Fig. 6 far=1 shows that the appear- numerical results have been presented also for the three-
ance of such solutions arouitd= 22 similar to the Fig. 4 for  particle sector. These results suggest that a similar pattern
M=2 andA=1. On Fig. 7 forA=0.95 we see that such observed in the two-particle sector persists also for larger
solutions are found in finite intervals ®f. This is again the sectors.

V. CONCLUSION
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