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Classical and quantum chaos in the generalized parabolic lemon-shaped billiard
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(Received 4 June 1998

Two-dimensional billiards of a generalized parabolic lemonlike shape are investigated classically and quan-
tum mechanically depending on the shape param®t@uantal spectra are analyzed by means of the nearest-
neighbor spacing distribution method. Calculated results are well accounted for by the proposed new two-
parameter distribution functio®(s), which is a generalization of Brody and Berry-Robnik distributions.
Classically, Poincardiagrams are shown and interpreted in terms of the lowest periodic orbit$=Faythe
billiard has some unique characteristics resulting from the focusing property of the parabolic mirror. Compari-
son of the classical and quantal results shows an accordance with the Bohigas, Giannoni, and Schmit conjec-
ture and confirms the relevance of the new distribution for the analysis of realistic spectral data.
[S1063-651%99)00401-9

PACS numbd(s): 05.45.Mt, 03.65-w

[. INTRODUCTION #2. This enables us to follow the change of statistics de-
pending on the billiard shape.

One of the leading themes in the theory of quantum chaos Two-dimensional billiards belong among the oldest prob-
is the connection between chaotic behavior in classical sydems of quantum mechanics, but during the past two decades
tems and statistical spectral properties of the correspondin ﬁy have ne}llvl3:j reg[alrt]ﬁd dr.emarkablt(ra] |tnter[a§2,;8,1|9.
guantal systems. Founding their investigations on statisticat IS 1S primarily dué 1o the discovery that such Simple sys-

) . ems, with only a few exceptions, exhibit chaotic behavior.
properties of nuclear and atomic spedtid and on results

. ) o : . Furthermore, the experiments in resonating cavities were
for two-dimensional quantum billiards obtained preV'OUSIVperformed with microwaves and acoustic way28—23. In

by Berry and Tabof2], McDonald and Kaufman3], and  the quantal and semiclassical domain, the whole new field of
Casatiet al. [4], in 1984 Bohigas, Giannoni, and Schifif ~ mesoscopic physics developed from investigations of quan-
expressed the conjectuGS) that quantal energy level tum dots, where only few electrons move almost classically
spacings of ergodic systems whose classical counterparts e the ballistic regime within the billiardlike wells of mi-
hibit chaotic behavior obey the WigngBaussian orthogonal crometer dimensiong24,25.

ensemble(GOE)] statistics, whereas for systems which are  The organization of the paper is as follows. In Sec. Il we
classically integrable the statistics is Poissonian. Althougtflefine the billiard shape and introduce the shape pararieter
not rigorously proved, this conjecture has been confirmed b{? S€c. Il we solve the two-dimensional quantum-
a number of examples. Possible exceptions have been dié;echanlcal eigenvalue problem determined by the billiard

S . S oundary and obtain the energy level sequences. In Sec. IV,
cussed in different contex{§—11]. The typical gxceptlon 'S the calculated level densities are analyzed by means of the

i @ Frearest-neighbor spacing distribution method. In Sec. V the
lent to it[2]. At present, it is generally accepted that the BGSsame billiard is treated as a classical dynamical problem. The
conjecture expresses a generic property of quantal systemsgincareplots are shown and the role of the lowest periodic
in the sense of the definition of the wognericgiven by  orbits is briefly discussed. In Sec. VI, results from both quan-
Berry [12]: there may be exceptions, but they form a set oftum and classical analysis are reviewed, leading to conclu-
measure zero. sions on the applicability of the BGS conjecture and the

A review of measured and calculated quantal level seproposed level density distributions.
guences in different domains of physics shows that for most
systems the energy level statistics is intermediate betweer#" DESCRIPTI
the two limits. In the nearest-neighbor spacing distribution
(NNSD) method, reflecting the correlations in the quantal The generalized parabolic lemon-shaped billiard is de-
spectra, this transition is described by different distributionfined in thex-y plane by the boundary
Egc_tfﬂns characterized by one or more control parameters yO)=+(1-|x|9), xe[-11]. 1)

In this paper we investigate, first quantum mechanicallyFor =2, the boundary has a typical symmetrical lemon
and then classically, a one-parameter family of two-shape, defined by two parabolas. When the paramgtsr
dimensional billiards. We start with a lemon-shaped billiardvaried, the billiard shape changes, but remains within the
defined by two parabolas, for which the shape parameter isquare defined by diagonally opposed pointsl(—1) and
6=2, and then distort it by introducing different valués (1,1) in the x-y plane(Fig. 1). We explore only the convex

ON OF THE GENERALIZED PARABOLIC
LEMON-SHAPED BILLIARD
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3=1 9=1.3 3=1.46 Proposing the parabolic billiard shape, we had several
points in mind. First, among all planar curves, only the para-
bolic mirror has the unique property of reflecting parallely all
rays passing through a certain focal point. Second, whereas
the billiards shaped with the rectilinear, circular, elliptical,
hyperbolic, and other interesting boundary segmg2its-43
have already been explored, reports on the parabolic bound-
3=1.76 8=2 8=3.1 ary shapes are practically nonexistent. Moreover, the distor-
tion of the proposed shape by varyidjeads to a gradual
transition between the two squares. It is interesting to see
how this transition reflects itself in the classical and quantal
properties.

Here we note that the transition frod® 1 to <1 intro-
duces a dramatic change in the shape of the bill{gydFor
=50 3=80000 0<6<1 the billiard boundary consists of four concave arcs,

&=5
[ \ resulting in the shape and properties similar to those of the

diamond billiard[5,27]. Therefore, this is a new class of
billiards, which deserves special attention and will be treated

\ ’ separately.

lll. THE QUANTUM-MECHANICAL BILLIARD
FIG. 1. Generalized parabolic lemonlike billiards for different PROBLEM

values of the shape paramet&r

The Schrdinger equation for a particle of mass mov-
boundaries in Eq(1), thus 1< §<w. In the limit 5=1 one ing freely within the billiard boundary in a two-dimensional
obtains the tilted square with the side=v2. In the other Dbilliard is identical to the Helmholtz equation
limit 65—, we have another square with=2. The param- )
eter § is closely related to the characteristic anglef the _ h_v2xp= EV 3)
billiard (1) (Fig. 2), since 2m '

@ wherekE is the particle energy. The usual transformation to

tanz =4. (2)  dimensionless variables is equivalent to substituting

2

The Schrdinger equation is solved to obtain the wave ﬁ_zl and E=k2, (4)
functions and discrete energy levels, which is equivalent to 2
finding stationary waves in the two-dimensional well with ]
infinitely steep walls. In this paper we concentrate on theVhich yields
energy levels, and the discussion of the calculated wave
functions will be given elsewhel&6].

The classical problem reduces to a particle of mass
within the billiard, bouncing elastically on the billiard walls
and moving freely between the bounces. At each bounce thi@ polar coordinatesFig. 2), Eq. (5) becomes
angle of incidence is equal to the reflection angle. Although
the rules of motion are deterministic, the resulting dynamics
can be regular, fully chaotic, or mixed, depending on the

(92 2
+ — +k?
ax? " ay?

¥(x,y)=0. ©)

a2+1 a+1 92 2
a2 roar rZog?

W(r,$)=0. (6)

billiard shape.
After the separation of variables, one obtains the factorized
1 wave function
F
, W (r,¢)=R(r)®(¢). )
L . . .
Yy o : 0 Solutions can be classified according to symmetry. The two-
! fold reflection symmetryon thex andy axis) of the original
billiard causes degeneracies, which we avoid in our calcula-
F tions by taking only the even-even solutions, i.e., those
which obey the conditionV (x,y)=¥(—x,y)=¥(x,—Yy).
-1 1 0 1 We are then left with the wave function in the form
X
FIG. 2. Characteristics of the generalized parabolic lemonlike W(r - B. codvad)1d.(kr 38
billiard described by the boundag=p(¢). (r.¢) =§ ,...[ v cosvd) 3, k), ®
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where the sum is over the even integer valuesvofind cations supporting the idea that the parameteeflects the
J,(kr) is the Bessel function of the first kind with index degree of the level repulsion within a spectral sequence.

To compute the energies of stationary states and coeffiSincew is an empirical parameter, it can be allowed to take
cients in the wave functions, we have written the progranon all the values-1<w=1, the negative values being ap-
based on the method introduced by RiddW]|. We limit our  propriate if for small spacings the calculated distribution is
calculation to a finite energy interval, which enables us tosteeper than the Poisson curve.

stop the summation in E8) at the certaiNth energy level. The other well known distribution is that of Berry and
The Dirichlet boundary condition Robnik[47]. It is characterized by the parametgand reads
Y (r)]-p=0, €)

PBR(S) — e(qfl)s

(1—q)2erfc<gqs)

2q(1—-q)+ gq35> e (T’ (15

with B=p(¢) (Fig. 2), is assured foN points on the bound-
ary curve having coordinates; andp(¢;). This results in a

system ofN linear equations, whose solution is nontrivial +
only if
. The error function is defined as
defcogi ¢;) - Ji(kp(¢)))|=0. (10)
Herei takes on the values of firtdt even integersj are the erfa(x) = i fme*tzdt_ (16)
integers between 1 arld, and ¢; areN angles chosen be- Jm Jx

tween 0 andr/2. Equation(10) gives the values ok deter-

mining the energie$4). In our calculation the values &  This distribution coincides with Wigner fog=1 and with
were limited to the intervak e[ 0,150, the step in searching Poisson forg=0. The two distributions are conspicuously
for k was 0.01 or smaller, the precision was #pand, de- different in the fact that the probability of very small spac-
pending on the value af, between 900 and 1500 states wereings vanishes in the Brody distribution for all values wf

obtained. whereas in the Berry-Robnik distribution it BBX(0)=1
—g°. Besides, the Berry-Robnik parametphas a well de-
IV. ENERGY LEVEL STATISTICS FOR THE fined physical meaning: quantitatively it is the fraction of the
GENERALIZED PARABOLIC LEMON-SHAPED BILLIARD phase space which is filled with chaotic trajectories, whereas

the remaining regular fraction of the phase space is equal to

The level sequences obtained in the quantal calculation — q. However, the Berry-Robnik distribution is exactly ap-
were unfolded following the prescription of French and plicable only in the semiclassical limit, and we are exploring
Wong [45] and then analyzed by fitting to the theoretical the complete spectrum, including the lowest-lying levels.
distribution functionsP(s). Related toP(s) are the cumula- The third theoretical distribution we apply in our analysis
tive distributionW(s) = [jP(o)do and the gap distribution is the two-parameter function introduced by Lop46] and
Z(s)=[sda(oc—s)P(0). The gap distribution is the prob- Lopac, Brant, and Padri9]. In [49], applied to nuclear
ability that no level spacing is present in the interval betweermodel spectra, it approximated the calculated histograms
s ands+ As. Relation between the level spacing distribution better than Brody or Berry-Robnik distributions. This new
P(s) and the gap distribution i®(s)=d?Z(s)/ds?>. Three distribution is a generalization of both Brody and Berry-
types of theoretical distributions were used to account foRobnik distributions, and has two parametassand g. It
transition between the two limiting cases, the Poissoniamieads
level density distribution

1
—a (1-ds(1_q)2 o+leo+l
PP(s)=e"® (11) P(s)=e """ V%(1-0)*Q| ~—7.aq" s
and the Wigner distribution +e (1-Usg[2(1—q)+ a(w+1)g®ts?]
Xeiaquﬁ-lsaﬁ-l 1
PY(s)= gse*“*"bsz. (12 17

Here, « is defined as in Eq(14) and Q denotes the incom-

First is the Brody distributiofi46], depending on the param- Pletel” function,
eterw and given as

1 ©
v ax)=—— | e 't3 dt 18
PB(s)=a(w+1)sve o (13) Q@X =1 L 18
with The derivation of Eq(17) was based on the factorized gap
o Jor1 distribution ZPX(s),
w+ @
a=T'"|—— (14 1
w+1 p _a(1-g)s wt+leot+l
Z"s)=e Q —g-aa "M, (19

This distribution is identical to Poisson fab=0 and to
Wigner for w=1. There is no exact derivation which would introduced by Prosen and Robri&0]. They applied the dis-
explain the physical meaning af, but there are strong indi- tribution (19) (named in[50] the Berry-Robnik-Brody distri-
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1.0 1.0 1.0 T 1.0
0.8 08 0.8 g T Al 0.8
06 W M\ 06 06 06
g 04 0.4 UeR 0.4 0.4
02 02 0.2 02
0.0 0.0 0.0 0.0
025 18 2 4 6 8 10 30 5002 20 18 2 4 6 8 10 s 50 0f
] ] é ) é 5
FIG. 3. Values of the Brody parameteg in Eg. (13), obtained FIG. 4. Values of the Berry-Robnik parametgiy in Eqg. (15),

in the NNSD analysis of the quantal billiard spectra, in dependencebtained in the NNSD analysis of the quantal billiard spectra, in
on the shape parametérHorizontal dotted lineglower and upper  dependence on the shape paramefeHorizontal dotted lines
denote the regular and chaotic limits, respectively. (lower and upper denote the regular and chaotic limits, respec-
tively.
bution) to the Robnik billiard[33,34 and obtained a very
gOOd agreement. Their conclusion ImplleS that the distribudisappearance of certain classical Or“'ﬁee Sec. y Fur-
tion (17) describes simultaneously the transition from thethermore, by changing, the anglea in Eq. (2) is varied.
semiclassical to the quantal regime and the transition fronfnyestigations of triangular and rhomboid billiartighich in
integrability to chaos. The two parametessandq charac-  certain features resemble our sysjemave shown that the
terize these two transitions, respectively, so thaétains its  incommensurability withr of the billiard angle is a decisive
meaning as the chaotic fraction of the phase space. In thisroperty determining the billiard dynami§36].
case, however, it is applicable also to cases far from the Results for Berry-Robnik distribution shown in Fig. 4
semiclassical limit. The parameterdescribes the degree of fylly confirm the discussion of Fig. 3, except that the values
level repulsion in the given spectral sequence and is essegf g are shifted upwards in comparison wii . Other-
tially connected with the localization of the underlying cha- wise, the positions of local maxima and minima are exactly
otic stateg51]. S the same. As in Fig. 3, for largéa slow but steady decrease
It should be stressed that the distributid) is a gener-  gf Ogr iS observed, leading to the zero values e .
alization of both Eqs(13) and(15). Itis identical with Brody  since the calculation of quantal spectra in our method be-
(13) wheng=1 and with Berry-Robnik(15) when w=1.  comes computationally very sensitive for nearly quadratic
With q=0 one obtains the Poisson distributighl) for all  shapegwhen 5— ), we show our results only fof<50.
values ofw, and if simultaneously»=1 andq=1, the result In applying the generalized distributiéh?) to the billiard
is the Wigner(GOE) distribution(12). Graphical representa- (1), we hold both parametets andq within the limits[0,1].
tion of Eq.(17) in dependence om andq is given in[49].  Results are shown in Fig.(& for » and in Fig. §b) for q.
The analysis of calculated results shows that the fittingegr mosts the value ofw oscillates arounds=0.7. For s
parameters Of a” thl’ee diStI’ibu'[ionS fO"OW the same '[I’endgz, the Osci”ations are more Conspicuous and have |arger

when the system control parameter is varied. However, aljjeviations. For larges, the values ofw become slightly
computations in which the distributiond7) or (19) were

applied so far, show that these distribution functions give a
better fit than the Brody or Berry-Robnik distributions. 1.0 |y 10
In the present paper our main interest is to explore the o8 WW 08
dependence of the values and q for the three proposed 0.6 s/«‘J‘\,.,,-\,__ 0.6
distributions on the parametércharacterizing the shape of @ o4 04
the billiard. In the following, we shall use symbaids; and 02 02
Ogr to denote the Brody and Berry-Robnik parameters, re- 00 00
spectively, andv andq for the parameters of the distribution 02,5 T 0 a3 502
(17). Results are shown in Fig. 3 for Brody distribution, in (a) é S S
Fig. 4 for Berry-Robnik distribution, and in Fig. 5 for the
generalized distributio17). 10 10
Figure 3 shows results of the fitting of the calculated level 08 al WA 08
spacing histogram to the Brody distribution. One observes a 44 06
gradual transition from slightly negative values to a sharp ¢ , 04
local maximum atd=1.46 with wg=0.876. There is also a 02 02
minimum of wg=0.513 at5§=1.58, followed by a slow and 00 00
oscillating growth, with another minimum slightly above the  _;, 02
1.0 18 2 4 6 8 10 30 50

value of §=2. The maximal value iswg=0.928 at b) 5 : s 5

=5.56. In the interval &6<7, wg is greater than 0.7,

which, in BGS and Brody terms, means a high degree of F|G. 5. values of the parametets (a) andq (b) of the two-
chaoticity. The oscillations are sharp and very sensitive tgarameter distributiot17), obtained in the NNSD analysis of the
the shape variation. A minimal change in shape can inducguantal billiard spectra, in dependence on the shape paradeter
dramatic changes in the degree of chaotic behavior. The reatorizontal dotted lineglower and upperdenote the regular and
son for this is clearer when one explores the occurrence anchaotic limits, respectively.
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=104

FIG. 6. (a) Brody distribution(13), (b) Berry-Robnik distribu-
tion (15), and (c) the two-parameter distributiofl7) (full line)
fitted to the calculatedP(s) (histogram for §=1.04. Values ob-
tained in the fitting procedure arez=0.081, qgr=0.450, w
=0.948, andy=0.460.
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08 | @ 1 1 ) | | © -
06
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0.4 H

0.2

0.0

0 2 PR 2 s 0 2 n
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FIG. 8. (a) Brody distribution(13), (b) Berry-Robnik distribu-
tion (15), and (c) the two-parameter distributiofil7) (full line)
fitted to the calculated®(s) (histogram for §=5. Values obtained
in the fitting procedure aregz=0.775,0gg=0.938, w=0.791, and
g=1.000.

smaller. The results reflecting the degree of chaoticity in the

sense of the BGS conjecture are given by the valug @find
are shown in Fig. ). The total interval ofs can be divided

bution (17) is the key result of the statistical level density
investigation, suitable for discussions in the context of the

into several regions. First is one withbetween 1 and 1.46, BGS conjecture.

whereq grows from 0 to 1 and depicts the transformation of
the quadratic shape into more complicated lemonlike form

Approximately in the intervals 1.466<4 and /&= §<30,

the value ofg oscillates around 0.9, whereas it is equal to

practically everywhere in the central interval betwe®n4

S.

At this point it should be said that our analysis of the
obtained level sequences included also the statistical
method[5,49, revealing the long-range correlations within

1the quantal spectrum. To compare the results of the two

methods, we choose the valuedf(5) as a convenient mea-
sure of the degree of chaoticity, and plot it in dependence on

and 5=7. For very larges, results of our calculations indi-
cate the slow decrease towards the limiting requitO.

From results obtained and shown in Figs. 3, 4, and 5, w
conclude that the transition of the shape from the square wit
the side equal t®? via different lemonlike shapes to another
square(with the side equal to)Ads accompanied by the tran-

the shape parametér The results are shown in Fig. 9. The
é:omparison of Fig. 9 with Figs. 3—5 shows that the re-
ﬁults, both globally and locally, reproduce the behavior ob-
tained with the nearest-neighbor spacing distribution method.
A more detailedA 5 analysis is now being performed in con-

sition from the Poisson to the Wigné&OB) statistics and nection with the billiard wave functions and will be reported
again to the Poisson. In the central region there is a highlF'SeWherd26].

developed chaos, and in the neighboring intervals the mea-
sures of chaos show an oscillatory transitional behavior.

To illustrate the applicability of the intermediate distribu-
tions(13), (15), and(17) for quantifying these transitions, we ) . . .
show the histograms and the fitted theoretical distributions '" @nalyzing properties of classical billiards, we concen-
for 5=1.04 (Fig. 6), =2 (Fig. 7), and =5 (Fig. 8. Fig- trate our attention on the Poincasections 'for g|ven§ and
ures 6-8 enable us to compare the three theoretical curvédentify the contributing periodic trajectories. We limit our
and their ability to describe realistic histograms. The cruciaf@/culations to the first quadrant, i.e., to the quarter of the
criterion should be the agreement at small spacing and tqt:_:ll billiard area. The p_ro.c.edure is as foI.I(_)ws: for a given
applicability to the complete spectrum. The distributia) b|II|arq we choose some initial data for positionandy and _
satisfies all these conditions. The inspection of the corre?€loCity components, andv, . We then calculate the posi-
sponding cumulative transition distributiofi49,50, which tion and velocity components at each of the successive col-

are valuable because they do not depend on the bin widthisions with the billiard wall. Typical calculations include
further confirms that the value of of the generalized distri- 2x10* to 2x10° successive impacts. The results obtained

V. PROPERTIES OF THE CLASSICAL GENERALIZED
PARABOLIC LEMON-SHAPED BILLIARD

8=2
' ' ) T 0.35
o8 | @ 1 r ® ©
.06 :‘1’
)
%04 0.25
0.2
0.0 . . . " ) .
0 2 4 0 2 4 (] 2 4 0.15
s s s 1.0 1.5 2 3 4 5 6 7 8 9 10 20 30 40 50
8 8 )

FIG. 7. (a) Brody distribution(13), (b) Berry-Robnik distribu-

tion (15), and (c) the two-parameter distributiofil7) (full line)
fitted to the calculated®(s) (histogram for §=2. Values obtained
in the fitting procedure areg=0.638,0gg=0.863, w=0.796, and
q=0.916.

FIG. 9. Values ofA;(5), obtained in the spectral rigidity cal-
culation for the quantal billiard spectra, in dependence on the shape
parameters. Horizontal dotted lineglower and upperdenote the
chaotic and regular limits, respectively.
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(a) =2 (b)
‘ : 1.0
y H 105 Y
Vt
-1 i 0.0
-1 0 X{ 1 00 0.5 1.0

X X

FIG. 11. The periodic orbit of period 2 for the whole billiata)
and its surrounding KAM orbits for the quarter of the parabolic
billiard for =2 (b), calculated with the initial conditionx,

’ 0.6 0.2 - 0.4 ,6 0.8 =0.2,y0=0, andvy /v, o=0.7. This orbit is responsible for the
X large regular region in Fig. 18).
(b) 52 whose origin is in the trajectory of period 14, shown in Fig.
10 T ' ' 12, and whose rich structure is revealed when a part of Fig.

10(a) is enlarged(Fig. 13. The KAM trajectories corre-
sponding to it are also shown in Fig. 12. After exhibiting
05 - . more and more complicated fractal structure, a small varia-
tion of the initial conditions is sufficient for the diffusion to
take place. The motion becomes chaotic, and the trajectory
Ve 00} 1 fills almost the entire phase plane.

As there exists another trajectory of period 2, that which
is spanned between the two opposite points on the vertical
05| axis, one would expect another regular area. However, this is
an isolated orbit, extremely unstable with respect to small
variations of initial conditions, and in Fig. 14 it is reduced

10 , ‘ . ‘ to two points completely immersed in the chaotic sea.
0.0 0.2 0.4 0.6 0.8 In Fig. 10(a@), however, another regular area is observed,
X having the shape of two narrow arcs. The origin of this nar-

FIG. 10. () Poincafeplot for the parabolic billiard §=2), ~ 'OW region of regularity is the special focusing property of
obtained with conveniently selected sets of initial valuesPoin-  the parabolic mirror, namely that all rays, passing through
care plot for the parabolic billiard §=2), obtained with initial  the focal point, after reflection are parallel to each other. In

valuesxo=0, yo=0.75002, and, /v, o=0.74999. Practically the ~the present case, the focal points axe<0, yr=* %) (Fig.

same picture is obtained by plotting all invariant poinisu¢= 2). There is an infinite number of such trajectories of period
=+ 2x/\1+4x%) with 0.25<x<1. 4, and they have the quadrangular, trapeze sliBjge 14).

Vertical segments of such a trajectory intersect the horizontal
are plotted in the form of Poincadiagrams. The horizontal axis in pointsx; andx,, obeying the condition
axis shows the positioxx of the impact point, since the
length of the arc variablg29] is much less suitable here than 4x X+ 1=0. (20)
in the billiards having circular walls. On the vertical axis we
plot the tangential component of the velocity with respect
to the billiard boundary, with the absolute value of the ve-

locity |v|=1. @) 5=2 (b)

1 — T 1.0

The tangential velocity components corresponding to
the positionx,; obey the equation

A. Classical dynamics of the parabolic lemon-shaped billiard
(6=2)

Poincarediagrams for the parabolic lemon-shaped billiard y {05 Y
6=2 are shown in Fig. 10. In Fig. 18 the main regular
area is observed, centered around the invariant point which
originates in the trajectory of period 2, shown in Fig(a1
This trajectory passes through the origin and hits the bound- -1 5 1 0o o5 1020
ary at the point Xx=1#2, y=1/2). For slight deviations of X x
these initial conditions, the KAM theorem is valid, corre- - : . -
sponding to trajectories shown in Fig. (bL The elliptical FIG..12. The pe.I’IOdIC orbit O.f period 14 for the whole b|II|arq
island resulting from this motion is surrounded by a bound-(a) and its surrounding KAM orbits for the quarter of the parabolic

. I . illi f =2 Icul ith the initial iti
ary layer of great complexit{s2]. Within this boundary the billiard for 5=2 {b), calculated with the initial conditions

; . . . =0.5,y0=0, andv, o/v, ¢=0.9. This orbit is responsible for seven
most conspicuous Is the structure containing seven |sland§ma” regular islands in’ Fig. 18
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=2 (@ 8=2 (b)
0.08 R — T T RN 1 1.0
0.04 .0
. Y o - 405 Y
Ve 0.0
» : 0.0
R - 0 X 100 05 1.0
-0.04 | = X X
: FIG. 15. (@) The ray-splitting limit of the quadrangular orbit
008 b . L - shown in Fig. 14{b) The corresponding KAM orbits obtained with
0.940 0.950 0.960 0.970 the initial conditionsx,=0, y,=0.750 001 and o/v(=0.75.

X

FIG. 13. Enlarged picture of one of the seven small islands in 1€ Poincareplots and the analysis of trajectories of low-
Fig. 10(a), having their origin in the periodic orbit shown in Fig. 12. €St periods lead to the conclusion that the classical dynamics
of the billiard (1) with 6=2 is mixed and that the situation is
> close to the chaotic limit.

2X;*v\1+4x7=0, (21

B. Classical dynamics in the billiards with 6+ 2

so that the two continuous lines, consisting of invariant
points (x;,v,), extend between the end points (1#4/\/5)
and (1;2/\/5). The =+ signs are for positive and negative
branch, respectively, corresponding to two possible direc- @ Lo y  &=10027 © 8=1.3
tions of motion on each trajectory. Among all these trajecto- e
ries we point out two which are of special interest: first, the
rectangular one for;= —x,=1/2, and second, the limi;
=1/4 defining a ray-splitting situation, which asymptotically
tends to a trajectory of period&ig. 15. This limiting case,
however, is never realized, because of the sharp billiard
angle (Fig. 2). On the Poincaraliagram points defined by
Egs. (20) and (21) describe a continuous curve. However,
virtually the same picture, a flight of points, is obtained for a
single choice of initial parameters, if some of the initial con-
ditions leading to regular behavior are slightly distorfEd). Y
10(b)].

The described trajectories of period 4 are rather unstable.
They are not surrounded by elliptic invariant curves, and
therefore do not introduce much regularity into the problem.
A closer inspection, requesting an extremely fine parameter
regulation, would reveal the starlike structures in the small
area surrounding each of the points, such as those describec
in [52].

Here we investigate the effects of the shape variation on
the Poincarelots for 5+ 2. In order to compare classical and

A
1

{b)

X X X

FIG. 14. Periodic orbit of period 4 for the whole billiate) and
its surrounding KAM orbits for the quarter of the parabolic billiard FIG. 16. Poincarelots for generalized parabolic lemonlike bil-
for 6=2 (b), calculated with the initial condition,=0, Yy, liards with (a) 6=1.0001; (b) 6=1.0027; (c) 6=1.3; (d) &
=0.75005, and), /v o=0.2. These orbits are responsible for the =1.46; (¢) 6=1.76; (f) 6=1.9; (g) 6=2; (h) 6=2.1; (i) 6=3.1;
two narrow arcs in Fig. 1@ and two continuous curves on Fig. (j) 6=5; (k) =50, and(l) =80 000, obtained with the initial
10(b). conditionsxy=0.6,yo=0, andv o/v, n=0.925.
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(b) 3=80000
' 0.8 |
' 06 |
n,ﬁ X1
0.794 —,_;‘ 1 04
02t
0.0
0 2 4 6 8 10 12 14 16 18 20 22
0.0 : : 0.792 ; 3
02 04 06 08 0.3 0.5
X X FIG. 18. Values ok, for periodic orbits of period 2, of the type
FIG. 17. Enlarged parts of the Poincaiets shown in Fig. 16 ls.hoc;/vn_ll_r;] F'g', 11, lfor the gerrl]eragiefd El;rig()“bc Itetr;:on-shapted bil-
for (a) 6=1.0027 andb) 5= 80 000. iards. There is only one such orbit for , but there are two

of them for 2< §<<o. Both values ofx, approach 1 whed— .

quantum results, we show Poincatiagrams for a single set
of initial conditions and for some chosen values&f€Fig.
16). We first point out the Poincarglots for & close to the In this work we have explored the classical and quantal
two limiting squares. The motion is nearly regular, and thedynamics of the generalized parabolic lemon-shaped bil-
straight lines obtained would degenerate into a web of pointards. First we calculated the energy level sequences for a
in the extreme limits of§=1 and 6—c«. The apparently |arge set of possible shape parameter valiéEhen we per-
simple picture, however, on closer inspection reveals a ricformed statistical analysis of the spectral densities using
fractal structure before the integrability is established, ashree different distribution functionB(s). Finally we exam-
shown in Fig. 17 by enlarging parts of Fig. 16 f@& ined the possible periodic trajectories of the lowest order in

VI. DISCUSSION AND CONCLUSIONS

=1.0027 ands= 80 000. corresponding classical billiards and presented the Poincare
In the general case, besides the isolated orbit along thg@iagrams for some chosen valuesf
vertical diameter of the billiard, trajectories of periodFg. In conclusion, we state that the parabolic billiard has
11) exist for all 5. The values of corresponding are ob-  some interesting features, due to the reflection properties of
tained by solving the equation the parabolic mirror, shown in the corresponding Poincare
S(1—xP)x°-2—1=0, (22) diagrams. In spite of a large number of periodic trajectories,

only a few of them are of ellipticalkAM ) type, and there-
fore the dynamics is closer to the chaotic limit. The billiards

For 1< =<2 there is only one solution, and fér>2 there . i L ; :
are two solutions. Figure 18 shows the corresponding pos?f‘”th 6# 2 exhibit a transition from quasiregular behavior

tions x, in dependence on, illustrating the creation of new N€ard=1 and whens—c, and are chaotic in the central
periodic orbits when the billiard shape changes. region betweerd=4 andd=7. In other regions the behavior
As for trajectories of higher degrees, it is easy to show® rgxed. . ¢ classical | d th | ¢ th
that there is no triangular trajectory, regardless of the value omparison Of classical resu t_s and the results of the
of &. For 6+ 2 the picture obtained fof=2 is changed. Of nearest-nelghbqr. spacing d|str|but|_on_ methoq f_or quantal en-
the trapezoidal trajectories of period 4 only the rectangula?rgy. level densmgs shows that, within the. limits set _by the
one survives. Figure 16 shows how a new elliptical regula@PPli€d computational method, the classical behavior and

region emerges from the point whérthanges from 2 to 2.1. quantal results are in agreement, and that the present ex-
For an arbitrarys, the value ofx, in Fig. 14 is found by ample gives another confirmation of the BGS conjecture. We

solving the equation have_ also shown that the distripution functidrY) presents a
physically correct way to describe quantum chaos. The value

Sx% 1-1=0. (23)  of wis connected with the localization properties of the wave

functions. The key variable, however, is the parameter
It is possible that for some values &f certain special which quantitatively describes the chaotic fraction of the

higher-order regular trajectories occur, but these are sensitiyghase space in the sensg47], even for cases far from the

to the small shape variations. The result is the so-calledemiclassical approximation.

“breathing chaos” already observed in other billiard types
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