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Properties of the massive Thirring model from the XY Z spin chain

Marko Kolanovig Silvio Pallua, and Predrag Prester
Department of Theoretical Physics, University of Zagreb, Bijemic. 32, POB 162, 10001 Zagreb, Croatia
(Received 10 June 1999; published 27 June 2000

We consider here the massive Thirring model regularized wititWi& spin chain. We numerically calcu-
late the mass ratios of particles which lie in the discrete part of the spectrum and obtain results in accordance
with the DHN formula and in disagreement with recent calculations in the literature based on the numerical
Bethe ansatz and infinite momentum frame methods. We also analyze the short distance behavior of these
states and evaluate the conformal dimensions. This paper, taken together with the previous one for the sine-
Gordon model, confirms the duality relation between two models formulated by Klassen and Ntaizér
Mod. Phys. A8, 4131(1993].

PACS numbses): 11.10.Kk, 11.15.Tk, 11.25.Hf

[. INTRODUCTION the SGM. The regularization in this case was ¥6Z spin
chain in a transverse field. The results on the masses of

The massive Thirring modelMTM) and sine-Gordon breathers and conformal dimensions agree as statements on
model (SGM) are important as a testing laboratory for un- relation of two models would suggest, so it maybe consid-
derstanding ideas proposed for other more complicated fieléired also as an independent check of the SGM-MTM corre-
theories. In this paper we propose to calculate certain physspondencgl7].
cal quantities for the MTM by performing an explicit diago-
nalization of its lattice regularization with th&Y Z spin
chain. As the first task we want to calculate the masses of
breathers. The previous calculations have been based on the
semiclassical methdd ], on factorized scattering theofg], The MTM is a (1+ 1)-dimensional field theory of a Dirac
or on the Bethe ansatz methf@-9]. spinor fieldy, defined classically by the Lagrangian

The additional interest in avoiding the previously men-
tioned assumptions is due to recent criticifh®—17 [the g
author_s cla|m that therg is c_)nly one breather in the whole L= 9y ,p—Ngph— §(¢7M¢)(¢7u¢)_ (2.1
attractive region, and with different mass than the Dashen-
Hasslacher-Neve(DHN) formula predicty The same au-
thors challange also the well-known duality relation betweerHere \ is a dimensionful parameter which sets the mass
the MTM and SGM[13-17. The precise meaning and ex- scale in a theory which is conformaly invariant whan
tent of this equivalence was formulated by Klassen and=0. However, although enters Eq(2.1) as a(bare mass,
Melzer[17] (notice that the models are not equivalent whenjts mass dimension, is not equal to 1, but is determined
they have a finite size in space rom the (nontrivial) anomalous dimension of the fieltiy.

One important criticism relates to the use of the so-calleGrye gimensjonless coupling constagtis scale invariant
string conjecture. Indeed, violations of this conjecture are(vanishing beta function but it is not uniquely defined due
observed in the literaturgl8]. Despite the fact that, at least to the existence of di;‘ferent regularizations of theon-

until now, it was not known that these violations affect an — _ .
y erved currenty*y. Correspondingly, there is at least a

relevant results, it would be desirable to have a calculatior? ’ oF o .
which does not rely on the string conjecture. one-parameter family of definitions gf Our definition will

It is for this reason that we want to treat the MTM without be _th_e_ same as the one used by C0|em (Schwinger
using the above-mentioned assumptions. Our approach Wiﬂefmmon). We shall fm_d it more convenient to use the pa-
be based on direct numerical diagonalization of Mz ~'ameters related tog with
spin chain which is a lattice regularization of the MTBL6].

IIl. MTM AS A MASSIVE PERTURBATION OF THE
GAUSSIAN MODEL

This method is suited for analyses of low discrete states in A

the spectrum, but becomes less and less effective when we — =1+ pug (2.2)

go to higher states. Such an approach was used in the litera- B

ture for other problems, e.g., conformal unitary models per-

turbed by some relevant opera{di9-21. Here B is the dimensionless coupling constant from the du-

We also intend to calculate conformal dimensions of op-ally related SGM.
erators creating breather states. There are conjectured valuesin [17] it was shown that the MTM can be viewed as a
for them[17]. By explicit calculation we confirm this con- perturbed conformal field theoryCFT) when the second
jecture for the first breather but get different results for theterm in Eq.(2.1) is treated as @massive perturbation. We
second breather. will now repeat here some results of their analyses relevant
Recently{22] we have performed a similar calculation for for our discussion.
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FIG. 1. Scaling functionsG,(B,u) for the isolated gaps FIG. 2. Scaling functionsG,(B,u) for the isolated gaps
(S, B1) plus two lowest “continuum” gaps @1, C2) of the

(S, B1, B2) plus lowest “continuum” gagC) of the Hamiltonian
Hamiltonian (3.1) at A=0.3 (or 82=10.13, g=0.76). For this

(3.1) atA=0.6(or B2=7.42, g=2.18). The DHN formula predicts
value of the coupling constant the DHN formula predicts the exis-now the existence of two breathers.

tence of one breather. The legend in the upper left figure applies to
all figures in this article. operator product algebi@®PA) it follows that the(properly
normalized perturbing operator in the MTM2.1) is
An unperturbed theory =0 (approached in the UV limjt

is the Thirring model which is a CFT with central charge — () — }
=1 and an operator algebra generated by Y=Vog= 2 (Vo gt V20, 2.7

Li={VmnlMme2Z,neZ or me2Z+1neZ+1/2},

which means thai has mass dimensiod,=2-d;,=2
(2.3

— B?/Amr. From the condition of relevancy of the perturba-

_ . . _ . tion, i.e., d,>0, we obtain Coleman’s boun@?<8w (g
whereV, ,(x) are primary fields with conformal dimensions > — w/2). Also, from Eqgs(2.3) and(2.7) we can see that the

— (277
(Am,n -Am,n):

MTM has a U1)XZ,XZ, internal symmetry group. The
B

2 2 2 2 ~ : ~
ﬁJrn) Z_W(%_n) ) U(1) acts asVy, ,—€'“"Vy,,, while Z, and Z, are gener-
B p*\ 8m ated byR:Vy, n—V_mn andR: Vi n— Vi o, respectively.

where we used duality relatiai2.2). From Eq.(2.4) we can lll. SPIN CHAIN REGULARIZATION OF THE MTM
read off the scaling dimensions aficorent2 spin of Vi, It was argued a while agf5,6] that the MTM on a cyl-

inder with propei(antiperiodi¢ boundary conditionéB.C.’s)
m?B%  4mn?

— possesses spin chain regularization given by XNeZ spin
dnn=AmntAmn=7—+ i chain defined by the Hamiltonian

N
Sm,n:Am,n_Km,n:mn- (2.5 HXYZ:HXXZ_hnZl (O'E(Tr)i-kl_o'r):o-x-*—l)' (3.1

A whole operator algebra is generated by a quartet of field§,are s v.2

; . are Pauli matricesN ia an even integer, and
\./11,:1,2, lvh|ch are connected to the fundamental spmorHXXZ is the Hamiltonian of theéXZ spin chain:
fields ¢, ¢ by

N

Viip — Vi1 ) 26 Hxxz= nzl (U§Uﬁ+1+0¥0¥+1+A‘TrZ1(Trzw+1)a (3.2
e V_11p N Vo1 ' @8

where —1<A<1 [we also use standard parametrizatidbn
Now one supposes that Hilbert space of the fp&rturbed

=—c0sy, so ye(0,m)]. In Egs. (3.1 and (3.2 sector-
theory is isomorphic to that of the unperturbed one. Fromdependent B.C.’s should be used:

025021-2
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FIG. 3. The same as Fig. 2 but now f&r=0.75 (or B2
=5.78, g=3.69).

oxl1= oY (- HNC, 3.3

z _ Z
ON+17 01>

where

N
c=]] ¢ (3.4)
n=1

From results of Refl23] it follows that theXXZ chain(3.2)
with B.C. (3.3) gives in the continuum limit a CFT with a
space of states equal to thatlof in Eq. (2.3), where

B=\8(m—7). (3.9

PHYSICAL REVIEW B2 025021

IV. MASS SPECTRUM

Our goal here is to calculate the mass ratios of particles in
the MTM in the L—oe limit using the connection with the
XY Z spin chain(3.1). First we must numerically calculate
the mass gaps of the spin chain for finkeandh. Then we
must make a continuum limit, i.e., také—o and h—0,

keeping . fixed. Finally we should make B—, i.e., u
—oo, limit. In practice, it is preferable to do the following
[19-21: first take N—o with h fixed and afterwards ex-
trapolateh—0. A difference is that in the latter case one

doesu— o beforeh—0. These limits are performed using
the BST extrapolation methd@4,25.

We numerically diagonalized HamiltonidB.1) for up to
16 sites using the Lanczos algorithm. We are interested in
the masses, so we only need the zero-momentum sector. We
should note here that in Rg6] it was shown that true space
translations are generated not by an ordinary translation op-
erator on the spin chain, but by its square. From this and the
fact that Hamiltonian(3.1) commutes with the operatdt,
Eq. (3.4), it follows that we can break the Hamiltonian in the
momentum-zero sector into four sectors named 6r™,
where O7r is macroscopic momentum and denotes eigen-
value of (—1)N2C (which can only be+x1 becauseC?
=1). We considered a number of values of coupling con-
stant in the attractive regimeg&0, i.e.,A>0). The struc-
ture of the spectrum is in agreement with the DHN predic-
tion; i.e., we obtain vacuum, first breatheBX), second
breather B2) (when it exist$, and “continuum” in 0*;
fermion (F) and “continuum” in 0~; antifermion ) and
“continuum” in 7r~; “continuum” starting with FF and
FF in m*. Names for the particle states aRé, FF con-
tinuum will be confirmed by results for the mass ratios. But
even we could not make an extrapolatidmecause of the
poor scaling in thez— o limit) for the lowest “continuum”
state in 0 for values ofg where the DHN formula predicts

That leads us to the conjecture that, aside from irrelevanthat it should be ofB1B1 type; its scaling law in thew

corrections,

U§Uﬁ+1_0%0¥+1mv(2,+0) (3.6
in the continuum limit.

Now, the continuum limit is obtained lettinj— o< and

—0 limit clearly shows that its scaling dimension is the one
we expect for theB1 B1 lowest continuum state, i.ed, o.

We should mention also that spectra in @nd 7~ are ex-
actly degenerated which means that Ehand F mass gaps
are equal even on the lattice, which was not the case in
similar analyses of the SGM if22].

h—0, but at the same time keeping fixed the scaling param- In Figs 1-3 we present numerical results for the scaled

eteru:

Z=hNh=hN2~B%47 = hN2V/ 7 (3.7)

In this limit, the mass gaps of theY Z chain are expected to
satisfy a scaling law

m=h"hG;(y, 1) =h">G(y, ). (3.8

The scaling parametgr is connected td. (space extension
of continuum theory, i.e., MTM For our purposes it is
enough to know thatp—o (u—0) corresponds toL
—w (L—0), respectively.

gaps G, for four states: fermion ), first breather B1),
second breatherB2), and lowest state in tHeF continuum
(C). This is of course a check of the scaling relati@ng).
Finally, partially extrapolated mass ratios

~ . my . G,
I’a(A,h)= Iim =—= Ilim =—, aE{Bl,BZ,C},
N—co m|: N—o
h fixed h fixed
4.

and fully extrapolated mass ratios of the first breather

Tei(A)=limT,(A,h),
h—0

(4.2

025021-3
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TABLE |. Estimates for the mass gap ratibs as a function oh at A=0.3 (8%°=10.13, g=0.76). In this regularization soliton and
antisoliton gaps are exactly degenerated. We also added the DHN predaztlgrone breather for this value of the coupling constamid

the prediction of Fujitaet al. (only one breather for aj>0). The numbers in parentheses give the estimated uncertainty in the last given
digit.

h
T, 0.8 0.6 0.5 0.4 0.3 0.2 0.1 h—0 DHN Fujitaet al.
B1 1.6341(3) 1.7007(4) 1.718(1) 1.730(3)  1.734(8) 1.74(2) 1.67(6) 1.747(6) 1.745 1.777
C1 1.786(7) 2.0013(5) 2.000(2)  2.001(3) 1.98(1) 2.002) 2.07(5 2.000 2.000
c2 1.797(2) 2.0011(8) 1.999(2)  2.001(6) 2.00(1) 2.00(3) 1.93(8) 2.000 2.000
TABLE Il. The same as Table | but now f&x=0.6 (8°=7.42, g=2.18).
h
Ta 0.8 0.6 0.5 0.4 0.3 0.2 0.1 h—0 DHN  Fujitaet al.
Bl 1.187(6) 1.2443(6) 1.2587(3) 1.2649110%3) 1.2638(5) 1.254(2) 1.240(9) 1.24(2) 1.223 1.337
B2 1.2(1) - 1.694(2) 1.8070208) 1.8753(8) 1.913(4) 1.89(2) 1.935 2.000
C 1.29(1) 1.536(4) 1.734(2) 1.999982) 2.003(2) 2.00(1) 1.99(4) 2.000 2.000
TABLE lIl. The same as Table | but now fax=0.75 (82=5.78, g=3.69).
h
Ta 0.8 0.6 0.5 0.4 0.3 0.2 0.1 h—0 DHN Fujitaet al.
B1 - 1.027(4) 1.030(2) 1.0255(4) 1.0112(2) 0.9870(4) 0.948(2) 0.91(2)  0.905 1.052
B2 1.0(4) 1.21(8) 1.35(2) 1.485(6) 1.5716(3)  1.62199)  1.641(7) 1.614 2.000
C 1.528(3) 1.25(1) 1.360(4) 1.553(4) 1.803(2) 2.005(4) 1.97(2) 2.000 2.000
TABLE IV. The same as Table | but now f&x=0.9 (82=3.61, g=7.79).
h
Ta 0.6 0.5 0.4 0.35 0.3 0.25 0.2 0.15 0.1 h—0 DHN Fujitaet al.
B1 0.82(1) 0.821(8) 0.795(2) 0.779(2) 0.758(1) 0.7356(5) 0.7083(4) 0.6763(4) 0.63250(7) 0.52(4) 0.521 0.668
B2 0922 1.0(2 1.13(6) 1.18(4) 1.18(1) 1.202(8) 1.1964(9) 1.187(2) 1.163(2) 1.005 1.336
C 0.99(1) 1.010(8) 1.166(8) 1.218(8) 1.285(8) 1.366(6) 1.487(8) 1.70(1) 1.987(8) 2.000 2.000

025021-4
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TABLE V. Scaling dimensions of particle states in the MTM as

conjectured from our numerical results.
State Operator Scaling dimension
2
Fermion Viip i +1
' 16w g2
. . e
Antifermion Vi_1p L
’ 16w g2
. B
First breather iy Ll
’ A7
BZ
Second breather Vi) Ll
' 41
1, continuum Vo1 4_77
: 7

are given in Tables -1V, together with the DHN predictions

[1] and predictions of Fujitaet al. [10,11]. Finally, the ex-
cause scaling of the second breather is worse and asks folyghered, is the scaling dimension of the staeand{ is a

trapolationh— 0 was possible only for the first breather be-
larger N (probably N=24). One can see that our results ywell-known normalization factor,
2msiny

strongly confirm DHN and reject Fujitat al.

V. UV (CONFORMAL ) LIMIT OF PARTICLE STATES
Let us now turn our attention to the opposite, i.e., UV, From Eq.(5.1) we can obtain the scaling dimensions of the
particle states, B1, andB2 from the condition thaH,

limit of our results for theX'Y Zspin chain. We mentioned in
Sec. Il that it obtained whep— 0. From conformal pertur-

bation theory we expect the scaling relation

PHYSICAL REVIEW B2 025021
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Y

should be less singular tha®,. Our results are given in
Table V. They differ from those conjectured[ih7] only for
the second breather, which has scaling dimension equal to
that of the first breather. These results are in agreement with
those in[22] for the SGM. In Figs. 4—6 we show the numeric
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results for reduced scaling functions, where we used valuewithin the Bethe ansatz methdd1] or using the infinite
from Table V for the scaling dimensions. momentum frame techniqyé0], different results have been
claimed. Our calculation confirms the conventional spec-
trum. In addition we calculate the anomalous dimensions of
VI. CONCLUSION operators creating breather states. It agrees with conjecture in
[17] for the first breather but disagrees for the second
We have calculated in this paper the masses of breathgjreather. This result is consistent with the previous calcula-
states and the anomalous dimensions of related operators fgon for the sine-Gordon model, i.e., consistent with equiva-
the MTM using spin chain regularization. This is a directlence relation between the two modgls].
numerical calculation independent of assumptions such as Note added in proofln recent work Fevaratet al. [26]
the semiclassical approximatiofl], factorized scattering analytically confirmed our result for the scaling dimension of
theory [2], or Bethe ansatz method,4,6]. On the other the second breather using an extension of the nonlinear inte-
hand, in a series of papers based on numerical calculatiogral equation(NLIE) method.
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