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We consider the double-radiative decays of heavy-light QED and QCD atoms,
µ+e− → γγ and B̄0

s → γγ. Especially, we take under scrutiny contributions coming
from operators that vanish on the free-quark mass shell. We show that by field re-
definitions, these operators are converted into contact terms attached to the bound
state dynamics. A net off-shell contribution is suppressed with respect to the effect
of the well known flavour-changing magnetic-moment operator by the bound-state
binding factor. The negligible off-shellness of the weakly-bound QED atoms be-
comes more relevant for strongly bound QCD atoms. We analyse this off-shellness
in model-approaches to QCD, one of them enabling us to keep close contact to the
related effect in QED. We also comment on the off-shell effect in the corresponding
process B̄d → K∗γ, and discuss possible hindering of the claimed beyond-standard-
model discovery in this decay mode.

PACS numbers: 14.60.Ef, 14.40.Nd, 12.15.Mn, 12.15.-y, 13.10.+q UDC 539.126

Keywords: bound state, off-shellness, flavour-changing transition, rare decays

1. Uses of a comparative study of the off-shell effects in
QED and QCD atoms

Off-shell effects are known to be quite elusive. The most famous measured effect,
dubbed Lamb shift [1, 2], appears in atomic physics. It is represented by the atomic
level shift on account of a tiny difference in the self-energies of the free electron and
of the electron bound in the H-atom. Half a century after its discovery, investiga-
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tions of Lamb shift still provide a precision test of bound-state QED [3]. Now, an
experimental uncertainty of 3 ppm in laser experiments is essentially smaller than
the 10 ppm theoretical inaccuracy due to poor knowledge of the proton charge ra-
dius. In this situation, the study of unstable leptonic atoms becomes competitive
to the study of hydrogen.

In a study of the inter-nucleon potential, there have been some early expecta-
tions [4] to reveal the off-shell parts of the nucleon-nucleon bremsstrahlung am-
plitude. Fearing and Scherer [5, 6] excluded this possibility by subsuming such
off-shell amplitudes into redundant terms [7] that can be rotated by field redefini-
tions into so-called contact terms. The parity violating anapole terms [8] might be
one exception, deserving a separate study.

However, particle physics provides new microscopic interactions leading to po-
tentially interesting new contact terms. The most famous one is the anomalous
π0γγ coupling. As explained in some detail in Ref. [9], this coupling can be viewed
as an off-shell effect. On top of the QCD binding of the quark-antiquark atom,
the triangle quantum loop dominated by far off-shell quarks produces an anoma-
lous coupling responsible for the π0 decay. Such manifestation of the off-shellness
motivates us to study the two-photon annihilation of atoms in general.

The simplest “total disintegration” of an “atom” occurs when it consists of a
particle-antiparticle pair, like in the case of the true QED-atom, positronium1. Ac-
tually, a comparative study of QED and QCD atoms has been very fruitful in the
early days of quarkonia. A total disintegration of an atom consisting of different
fermions is more subtle. It happens on account of the flavour changing (FC) pro-
cesses familiar from weak interactions. While the transitions among charged quarks
are well known, the lepton-flavour violating (LFV) transitions among charged lep-
tons is an open urgent issue, stimulated by accumulated indication of the neutrino
oscillations. In order to benefit from the cross-fertilization of different fields, we pur-
sue here the comparative study of annihilation in the heavy-light QED and QCD
systems.

Such a comparative study throws a new light on the off-shell nonperturbative
effects of valence quarks, studied first by two of us in the case of the double decays
of the KL [12, 13] and B̄s meson [14]. Subsequently, this study has been continued
within the specific bound state models, both for KL → 2γ [15] and for B̄0

s → 2γ
[16]. In these papers, it was explicitly demonstrated that operators that vanish by
using the perturbative equations of motion gave nonzero contributions for processes
involving bound quarks. The purpose of the present paper is to elaborate to more
detail our more recent study [17] which accounts for similar effects for the bound
leptons.

1.1. The relativistic QED atom

Our starting point is the Lagrangian density for the two fermions in the ab-
sence of the FC transitions. Thus the light particle (electron e− of mass m) and a

1A revival of positronium [10] appeared after the discovery of the QCD atoms, together with
the recognition that the first proposal of the positronium (termed “electrum”) has been given as
early as in 1934 [11], immediately after the discovery of the positron by Anderson.
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heavy positively charged particle (say muon µ+ of mass M) interact only through
electromagnetic field, as given by the last term in

L = Le + Lµ − 1
4
FαβFαβ − JαAα . (1)

The Dirac Lagrangian

Li = ψ̄i

[
i
2
γα

↔
∂

∂xα
− mi

]
ψi ;

↔
∂=

→
∂ − ←

∂ , (2)

for a given particle (i = e, µ) leads to the Dirac equations for ψi and ψ̄i treated as
independent fields

ψ̄i(i
←
∂/ + mi) = 0 , (i∂/ − mi)ψi = 0 . (3)

Imposing the Coulomb (radiation) gauge, ∇·A = 0, one can solve for A0 (eliminate
it from the Lagrangian), leading to

L = Le + Lµ +
1
2
(E2

⊥ − B2) + J · A − 1
2

∫
d3r′

4π

ρ(r, t)ρ(r′, t)
|r − r′| . (4)

Here the last two terms can be expressed in terms of ρ and J components of the
fermion current

Jα = e(ψ̄µγαψµ − ψ̄eγ
αψe) . (5)

The corresponding Hamiltonian, after neglecting the self-energy terms in the Cou-
lomb interaction, has the form [18]

H(x) = H(x)Atom + H(x)Rad + H(x)Coulomb−inst + H(x)int , (6)

where
HAtom = Hµ + He (7)

contains the relativistic fermion contributions

He(µ) =
∫

d3rH0
e(µ) =

∫
d3r ψ†

e(µ)(x)
[ − iα · ∇ + me(µ)β

]
ψe(µ)(x) . (8)

The electromagnetic piece splits into the radiation part,

HRad =
1
2

∫
d3r

[
E2

⊥(x) + B2(x)
]
, (9)

containing the relevant electric and magnetic fields

E⊥ = −∂A

∂t
, B = ∇× A , (10)
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and the instantaneous Coulomb term

HCoulomb−inst =
1
4π

∫
d3r d3r′

|r − r′| J
0
µ(r, t)J0

e (r′, t) . (11)

The relativistic QED atoms can be treated to all orders by solving exactly the Dirac
equation with a Coulomb interaction. This means solving the Dirac equation with
V (x) = γ0Vc(x) (Vc denotes the Coulomb potential)

[
i∂/ + V (x) − mi

]
ψi = 0 . (12)

Correspondingly, the fermion propagator in external field reads

[
i∂/ + V (x) − me

]
Se

F (x, y) = δ(4)(x − y) . (13)

Thus, in contrast to the free-particle propagator, the propagator for the bound
fermion,

iSF (x, y) = θ(x0 − y0)
∑
n,σ

ψ(+)
n,σ (x)ψ̄(+)

n,σ (y) − θ(y0 − x0)
∑
n,σ

ψ(−)
n,σ (x)ψ̄(−)

n,σ (y) , (14)

should require the sum over all possible excited states, which appear when decom-
posing the fermion field in terms of a complete set of positive and negative energy
eigenfunctions:

ψe(x) =
∑
n,σ

{
bn,σψ(+)

n,σ (x) + d†n,σψ
(−)
−n,−σ(x)

}
. (15)

The solutions of the free Hamiltonian

H0 = HAtom + HRad + HCoulomb−inst (16)

form a complete set of stationary states |a,N〉, expressed as a direct product of
atomic wave functions ψa and the photon Fock states

|a,N〉 = ψa(r)|N〉 . (17)

When the interaction is turned on, one should make a replacement

H0 → H = H0 + HI(t) , (18)

and the relevant states cease to remain stationary. Their evolution in time in prac-
tice means that the excited states decay under the influence of the QED interaction

HI(t) = −
∫

d3r
[
Jp(r, t) + Je(r, t)

]
· A(r, t) (19)
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into other states |b,N〉, where N photons are emitted.
In addition to the ordinary interaction (19), in the next subsection we shall

consider possible additional interactions (25), involving the flavour changing µ ↔ e
transition. This will enable the atom to disintegrate completely. The lowest order
disintegration requires µ and e overlap, happening when l = 0, i.e. a decay from S
states. The decay from l > 0 corresponds to a cascade down to the S state, followed
by the decay from there — a higher order process which we do not need to consider
in what follows.

1.2. Some motivation for scrutinizing muonium

There has been a considerable revival of the interest in muonium (Mu = µ+e−
system) in view of the very precise measurements in this system. At the same time,
the theoretical predictions are plagued by the nonperturbative bound-state effects.
The only known way to achieve the required precision for the bound states is by
expanding around a nonrelativistic limit. Such methods, like non-relativistic quan-
tum electrodynamics [19, 20] start from the bound state described by a Schrödinger
wave function, and build up corrections in terms of the relative velocity of the com-
ponents.

For the muonium at hand, our analysis and results bear a close analogy to
the correction to the muon lifetime due to muonium formation, reported in Ref.
[21]. In this system, electron and muon have r.m.s. velocities βe = α ≈ 1/137,
and βµ ≈ αme/mµ ≈ 3.5 × 10−5. In terms of these parameters, the bound-state
corrections acquire a form αn(me/mµ)m, where the corrections up to n + m = 4
matter in practice. The current world average for the muon lifetime measurements
[22]

τµ = 2.19703(4) × 10−6 s , (20)

has an uncertainty of only 18 ppm. In order to benefit from an improvement of
the measurement of τµ (and thereby of Gµ) by a factor of 20 (i.e. reducing its
uncertainty to only ±1 ppm), a knowledge of modification of τµ due to the formation
of muonium is required.

The reexamination of the muonium bound state effect [21] showed only a tiny
effect, the correction of about 6 × 10−10 to the lifetime

τMu = τµ

(
1 + α2

2
m2

e

m2
µ

)
.

This negligible overall shift is in contrast to the relatively large O(α me

mµ
) velocity

effects on the spectrum [21]. In the present work we are pointing out the off-shell
effects (53) in the radiative annihilation of muonium which are in between of these
two.

For completeness, let us mention that besides the mentioned radiative annihi-
lation, there is also the W -exchange annihilation Mu→ νeν̄µ (the analog of µ−p
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capture), with the rate

Γ(Mu → νeν̄µ) = 48π
(

αme

mµ

)3

Γ(µ+ → e+νeν̄µ) . (21)

Still, it leads to a miniscule branching ratio ≈ 7×10−12, and moreover is restricted
to the orthomuonium decay, which is out of our scope here. Let us note that
some interest in radiative orthomuonium decay might come from the three-photon
analog decays: the puzzling discrepancy in orthopositronium (a brief sketch of
the recent status can be found in Ref. [23]) and the surprising suppression in the
theoretical estimate for KL → 3γ [24]. These three-photon decays provide three-
party entanglement similar to the one in quantum optics [25].

Of course, the muonium annihilation involves the LFV transition which is a
matter of the beyond the standard model (BSM) physics. Such lepton-number
violating interaction induces simultaneously a µ → eγ transition [26], so that the
unknown details will cancel in the ratio of these two processes.

For the heavy-light muonium system µ+e− (where mµ ≡ M À me ≡ m), the
bound-state calculation corresponds to that of the relativistic hydrogen. Thereby
we distinguish between the Coulomb field responsible for the binding, and the radi-
ation field [27] participating in the flavour-changing transition at the relevant high-
energy scale. In this way, the radiative disintegration of an atom becomes tractable
by implementing the two-step treatment [28]: “neglecting at first annihilation to
compute the binding and then neglecting binding to compute annihilation”. This
factorization of scales was introduced for the first time by Wheeler [29]. For the
muonium atom at hand, the binding problem is analogous to a solved problem of
the H-atom. In this way, we avoid the relativistic bound state problem, which is a
difficult subject, and we have no intention to contribute to it here.

The mentioned two-step method is known to work well for the disintegration
(annihilation) of the simplest QED atom, positronium. Generalization of this pro-
cedure to muonium means that the two-photon decay width of muonium is obtained
by using

Γ =
|ψ(0)|2 |M(µ+e− → γγ)|2

64πMm
, (22)

where |ψ(0)|2 is the square of the bound-state wave function at the origin. After this
factorization has been performed, the rest of the problem reduces to the evaluation
of the scattering-annihilation invariant amplitude M. In the case of positronium,
this expression will involve equal masses (M=m), and the invariant amplitude,
which for a positronium annihilation at rest has the textbook form [30]

M =
ie2

2m2
v̄s(p2)

{
ε/∗2ε/

∗
1k/1 + ε/∗1ε/

∗
2k/2

}
ur(p1) . (23)

Only the antisymmetric piece in the decomposition of the product of three gamma
matrices above { }

→ iεµναβγ5γβ(k1 − k2)α(ε∗1)µ(ε∗2)ν , (24)
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contributes to the spin singlet parapositronium two-photon annihilation. This se-
lects (ε∗1 × ε∗2), a CP-odd configuration of the final two-photon state. We will see
that for muonium annihilation also the CP-even ε∗1 · ε∗2 configuration contributes.

The paper is organized as follows: In Sect. 2 we consider the quantum field
treatment of the annihilation process µ+e− → γγ in arbitrary external field(s). In
Sect. 3 we relate the binding forces to the external fields of Sect. 2. In Sect. 4 we
perform the calculation of B̄s → γγ in several different QCD models. In addition
we consider the related off-shell bound-state effects in B̄d → K∗γ decay. In Sect. 5
we present our conclusions.

2. Flavour-changing operators for µ+e− → γγ

Augmenting the electroweak theory by LFV enables the one- and two-photon
radiative decays µ → eγ and µ → eγγ. Accordingly, the double-radiative transi-
tion is triggered by two classes of one-particle irreducible diagrams (Figs. 1a and
b), related by the Ward identities. After integrating out the heavy particles in the

�
	 W

...

 




�
	




W

...

 




�
	

(a)

 

W W




�
	




(b)

 

WW



W

Fig. 1. The examples of the one-particle-irreducible diagrams leading to the double-
radiative flavour-changing transitions. Only the second-row diagrams exist for the
leptonic case.

loops, these one-loop electroweak transitions can be combined into an effective
Lagrangian [13],

L(e → µ)γ = B εµνλρFµν (Ψ̄ i
↔
Dλ γρLψ) + h.c. , (25)

where muon and electron are described by quantum fields Ψ = ψµ and ψ = ψe.
Correspondingly, for B̄0

s → 2γ, the involved fields are ψs = s and ψb = b.
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In our case, we do not need to specify the physics behind the lepton-flavour-
violating transition in (25). For instance, the strength B might contain Maki-
Nakagawa-Sakata [31] parameters, analogous to the Cabibbo-Kobayashi-Maskawa
parameters λCKM in the quark sector.

Keeping in mind that the fermions in the bound states are not on-shell, we
are not simplifying the result of the electroweak loop calculation by using the per-
turbative equation of motion. Thus the effective Lagrangian (25) obtained within
perturbation theory splits into the on-shell magnetic transition operator Lσ

Lσ(1γ) = BσΨ̄ (Mσ · FL + mσ · FR)ψ + h.c. , (26)

and an off-shell piece LF [13]

LF = BF Ψ̄[(i
←
D/ − M)σ · FL + σ · FR(iD/ − m)]ψ + h.c. , (27)

where σ · F denotes σµνFµν , while L = (1− γ5)/2 and R = (1 + γ5)/2 denote left-
hand and right-hand projectors. To lowest order in QED (or QCD), BF = Bσ = B,
but in general they are different due to different anomalous dimensions of the
operators in (26) and (27). Let us note that the off-shell part LF has zero anomalous
dimension [14].

By decomposing the covariant derivative, iD/ = i∂/− eA/, in the off-shell operator
(27), we separate the one-photon piece,

LF (1γ) = BF Ψ̄[(i
←
∂/ −M)σ · FL + σ · FR(i∂/ − m)]ψ + h.c. , (28)

from the two-photon piece

LF (2γ) = BF Ψ̄[−eA/σ · FL + σ · FR(−eA/)]ψ + h.c. (29)

The amplitude for the two-photon diagram (Fig. 2) is given by

Aa = i
∫

d4xLF (2γ) = AL
a + AR

a , (30)

�
	

 


2


1

Fig. 2. The two-photon contact (seagull) diagram that can be rotated away by a
field redefinition.
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in an obvious notation. The single-photon off-shell Lagrangian LF (1γ) leads to the
amplitude with the heavy particle in the propagator

Ab = iBF

∫ ∫
d4xd4y Ψ̄(y)

[
− ieA/2(y)

]
iS(µ)

F (y, x)

×
[
(i

←
∂/x −M)σ · F1(x)L + σ · F1(x)R(i∂/x − m)

]
ψ(x) , (31)

and a similar amplitude with the light particle in the propagator

Ac = iBF

∫ ∫
d4xd4y Ψ̄(x)

[
(i

←
∂/x −M)σ · F1(x)L +

σ · F1(x)R(i∂/x − m)
]
× iS(e)

F (x, y)
[
− ieA/2(y)

]
ψ(y) . (32)

The subscripts 1 and 2 distinguish between the two photons. It is understood that
a term with the 1 ↔ 2 subscript interchange should be added in order to make our
result symmetric in the two photons.

Within the quantum field formalism, the sum of the equations (30), (31) and
(32) describes the processes µ+e− → γγ, or µ → eγγ.

Let us now be very general and assume that both particles (e and µ) feel some
kind of external field(s) represented by V(e) and V(µ), and obey one-body Dirac
equations [

i∂/ − V(i)(x) − m(i)

]
ψ(i) = 0 , (33)

for i = e or µ (in general V(i) = γα V α
(i)), and accordingly the particle propagators

S
(i)
F satisfy: [

i∂/ − V(i)(x) − mi

]
S

(i)
F (x, y) = δ(4)(x − y) . (34)

Our photon fields enter via perturbative QED, switched on by the replacement
∂µ → Dµ = ∂µ + ieAµ in (12). It should be emphasized that Aµ(x) represents the
radiation field and does not include binding forces, which will in the next section
be related to the external fields V(i).

Now, using relations (12) and (13), we obtain

Ab = −AL
a + ∆Ab , Ac = −AR

a + ∆Ac , (35)

resulting in a partial cancellation when the amplitudes are summed

Aa + Ab + Ac = ∆Ab + ∆Ac . (36)

This shows that the local off-diagonal fermion seagull transition of Fig. 2 cancels,
even if the external fermions are off-shell. The left-over quantities ∆Ab and ∆Ac
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involve the integrals over the Coulomb potential and represent the net off-shell
effect.

There are also amplitudes Ad and Ae which are counterparts of Ab and Ac

when LF (1γ) is replaced by Lσ. The total contribution from our flavour-changing
Lagrangian (LF and Lσ parts) is then given by

Ad + ∆Ab = i
∫ ∫

d4xd4y Ψ̄(y)
[
− ieA/2(y)

]
× iS(µ)

F (y, x)Q(x)ψ(x) , (37)

represented by Fig. 3, and a similar one

Ae + ∆Ac = i
∫ ∫

d4xd4y Ψ̄(x)Q(x) iS(e)
F (x, y)

×
[
− ieA/2(y)

]
ψ(y) , (38)

corresponding to Fig. 3b.

�
(a)

	

 


2


1x

y
�

(b)

	

 


2


1y

x

Fig. 3. The shaded boxes indicate the combination of the unrotated off-shell tran-
sition (proportional to BF ) and the on-shell magnetic moment transition (propor-
tional to Bσ), giving the effective vertex in Eq. (47).

The operator Q(x) in these expressions reads

Q(x) =
[
BσM + BF V(µ)(x)

]
σ · F1(x)L

+ σ · F1(x)R
[
Bσm + BF V(e)(x)

]
. (39)

The result given by Eqs. (37)–(39) can also be understood in terms of the following
field redefinition. Equation (12) can be obtained from the Lagrangian

LD(Ψ, ψ) = Ψ̄
[
iD/ − V(µ) − M

]
Ψ + ψ̄

[
iD/ − V(e) − m

]
ψ . (40)

Now, by defining new fields

Ψ′ = Ψ + BF σ · F Lψ , ψ′ = ψ + B∗
F σ · FLΨ , (41)
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we obtain

LD(ψ,Ψ) + LF = LD(ψ′,Ψ′) + ∆LB , (42)

which shows that LF can be transformed away from the perturbative terms, but a
relic of it,

∆LB = BF Ψ̄
[
V(µ)σ · FL + σ · FR V(e)

]
ψ + h.c. , (43)

remains in the bound-state dynamics as a contact term. Thus, the off-shell effects
are non-zero for bound external fermions. Combining ∆LB and Lσ, we obtain

∆LB + Lσ = Ψ̄Qψ + h.c. , (44)

where Q is given by (39). This shows how the upper field redefinition rotates away
the contact term shown in Fig. 2, leaving us with the result given by Eqs. (37)–(39).

3. Off-shellness in the muonium annihilation amplitude

The preceding section shows how far we can push the problem within quantum
field theory. Up till now we have made no approximations except for standard
perturbation theory. Now we apply the obtained results to the double radiative
annihilation of muonium. Naively, the product Ψ̄ ψ corresponds to the bound state
of µ+ and e−, which might be true only for the asymptotic free fields. However, re-
lativistic bound state physics is a difficult subject, which we circumvent by sticking
to the two-step procedure [28] as explained in Sect. 1. We perform the calculations
in the muonium rest frame (CM frame of µ+ and e−) where we put the external
field(s) equal to a mutual Coulomb field, V(i) → γ0 VC (where VC = −e2/4πr). In
calculating the µ+e− → γγ amplitude in the momentum space, we take for VC

the average over solutions in the Coulomb potential, which is 〈VC〉 = −(mα2/2).
In this way, the muonium-decay invariant amplitude acquires the form which is a
straightforward generalization of the positronium-decay invariant amplitude (23)
in momentum space.

The amplitudes Ad + ∆Ab from Eq. (37), together with Ae + ∆Ac from (38),
transformed to the momentum space, take the form

M =
2eBσ

m
v̄µ(p2)

{ m

M
k/2ε/

∗
2P − Pε/∗2k/2 + (1 ↔ 2)

}
ue(p1), (45)

where vµ and ue are muon and electron spinors, and ε∗1,2 are photon polarization
vectors. The factor, incorporating the binding in the form of a four-vector Uα =
(ρ,0),

P ≡ (1 − xU/)k/1ε/
∗
1L + xk/1ε/

∗
1R(1 − U/) , (46)
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accounts for the aforementioned factorization of a binding and a decay, and is
represented by the shaded box of Fig. 3:

[
M(1 − xργ0)σ · F1L + mσ · F1R(1 − ργ0)

]
. (47)

Here we introduced abbreviations for two small constant parameters,

x ≡ m

M
, ρ ≡ − BF 〈VC〉

mBσ
, (48)

in terms of which the sought off-shell effect will be expressed. Note that in the
effective interaction (47), the left-handed part corresponding to V(µ) has gotten an
extra suppression factor x = m/M in front of the binding factor ρ, in agreement
with the expectation that the heavy particle (µ+) is approximately free, and the
light particle (e−) is approximately the reduced particle, in analogy with the H-
atom.

The annihilation amplitude (45) can now be evaluated explicitly. The usual
procedure of squaring the amplitude and using the Casimir trick for converting
spinors into Dirac matrices would give us expressions with traces of up to twelve
Dirac matrices, making the calculation unnecessarily extensive. It is much easier to
proceed by going into the frame in which the muonium is at rest and photons are
emitted along the z-axis, i. e.

k1 =




ω
0
0
ω


 , k2 =




ω
0
0

−ω


 , ε± =

1√
2




0
1

±i
0


 , (49)

where ω = (m + M)/2 ≈ M/2 is the photon energy. In this frame k/i and ε∗/j

(i, j = 1, 2) formally anticommute

k/iε
∗/j = ω(γ0 ± γ3)

1√
2
(γ1 ± iγ2) = −ε∗/jk/i , (50)

so we can group them together and calculate

k/1k/2ε
∗/1ε

∗/2 =−2ω2


 ε∗2 · ε∗1 − (ε∗2 × ε∗1) · k̂1 σ3 ε∗2 · ε∗1 σ3 − (ε∗2 × ε∗1) · k̂1

ε∗2 · ε∗1 σ3 − (ε∗2 × ε∗1) · k̂1 ε∗2 · ε∗1 − (ε∗2 × ε∗1) · k̂1 σ3


 . (51)

It is now easy to multiply this by the appropriate chiral projectors L and R, ργ0

terms, and v̄µ(p2) and ue(p1) spinors. Now, taking into account that muonium
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leading to the two-photon final state is in the spin singlet, we get the result

M = −2eBσM2

√
2M

m

[
(1 − x2 + xρ + x2ρ)ε∗2 · ε∗1

+ i(1 + 2x + x2 + xρ − x2ρ)(ε∗2 × ε∗1) · k̂1

]
. (52)

In comparison to the expressions (23) and (24) for parapositronium, we notice that
in addition to ε∗2×ε∗1, there appears also ε∗2 ·ε∗1, a CP-even two-photon configuration.

The explicit expression for ρ depends on some assumptions. As explained pre-
viously, we use 〈VC〉 = −mα2/2 which gives ρ = α2/2 for Bσ = BF = B, which is
a good approximation in the leptonic case.

Equation (22) finally gives

Γ =
2αM4

m2
|ψ(0)|2|Bσ|2 (1 + 2xρ) , (53)

where we have kept only the leading term in ρ and x. Since the wave function
at the origin appears as a prefactor, it is not necessary to know the precise value
of |ψ(0)|2 ≈ (mα)3/π, in order to know the relative off-shell contribution. Thus,
for muonium, the sought off-shell contribution is only a tiny correction, 2xρ =
α2m/M ≈ 2.6 × 10−7, to the magnetic moment dominated rate.

We may note in passing that we have checked our results also by the direct
calculation of the squared Feynman amplitude (45) on the computer using the
FeynCalc Mathematica package for algebraic manipulation of expressions invol-
ving Dirac matrices and spinors [32, 33]. Here the explicit Lorentz covariance was
preserved at all steps of the calculation and the final result was in agreement with
the one obtained by calculation made by hand.

4. Off-shellness in B̄0
s → γγ

In comparison to a tiny effect in the preceding section, we expect the corre-
sponding off-shellness in a strongly bound QCD system to be significantly larger.
We also take into account the BF /Bσ correction in (53), when considering the
B̄0

s → γγ decay.
The expressions (25) to (29) apply to the b → sγγ induced B̄0

s → 2γ decay
amplitude by simple replacements µ → s and e → b. Then one has to scale the
operators LF,σ defined at the MW scale, down to the B-meson scale. The coefficients
BF of LF , and Bσ of Lσ, in Eqs. (27) and (26), both being equal to B at the W
scale, may evolve differently down to the µ = mb scale. This difference between
BF and Bσ is due to different anomalous dimensions of the respective operators.
Within the standard model (SM) one can write

Bσ,F =
4GF√

2
λCKM

e

16π2
Cσ,F

7 . (54)
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The coefficient Cσ
7 has been studied by various authors [34–38]. The coefficient CF

7

was considered in [14], where at the b-quark scale we obtained

CF
7

Cσ
7

≈ 4/3 (µ = mb) . (55)

Although the off-shell effect for B̄ → 2γ is expected to be suppressed by the ratio
binding energy to mb, it could still be numerically interesting.

The conventional procedure when evaluating the pseudoscalar meson decay am-
plitudes is to express them in terms of the meson decay constants, by using the
PCAC relations

〈0|s̄γµγ5b|B̄0
s (P )〉 = −ifBPµ , (56)

〈0|s̄γ5b|B̄0
s (P )〉 = ifBMB . (57)

These relations will be useful after reducing our general expression (45) containing
the terms with products of up to five Dirac matrices. After some calculation, we
arrive at the expression for the B̄s meson decay at rest, which is analogous to, and
in fact confirms our previous relation (52) obtained in a different way,

MB = −i
e

3
BσfBM2 (1 + x)2

x

[
(1 − x2 + xτ + x2τ) ε∗2 · ε∗1 +

+ i(1 + 2x + x2 + xτ − x2τ)(ε∗2 × ε∗1) · k̂1

]
. (58)

Here, the parameter τ represents the off-shell effect in the QCD problem at hand,
and will be more model dependent than its QED counterpart ρ. With the amplitude
(58), keeping only the leading terms in τ and x, we arrive at the total decay width

Γ =
αM5

18m2
f2

B |Bσ|2 (1 + 2xτ) , (59)

where by switching off τ we reproduce the result of Ref. [39].

4.1. Coulomb-type QCD model

In order to estimate the value of the off-shell contribution τ , in this subsection we
assume a QED-like QCD model with the Coulombic wave function [40, 41] ψ(r) ∼
exp(−mrαeff). Thus we rely again on an exact solution corresponding to effective
potential V (r) = −4αeff/(3r), with effective coupling αeff(r)=−(4πb0 ln(rΛpot))−1.
Here b0 = (1/8π2)(11 − (2/3)Nf ). The mass scale Λpot, appropriate to the heavy-
light quark Q̄q potential, is related to the more familiar QCD scale parameter, e.g.
Λpot = 2.23ΛMS (for Nf = 3). Within this model, we obtain

τ =
2
3
α2

eff

CF
7

Cσ
7

. (60)
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By matching the meson decay constant fB and the wave function at the origin

Nc
|ψB(0)|2

M
=

(
fB

2

)2

; |ψB(0)|2 =
(mαeff)3

π
, (61)

we obtain the value for the strong interaction fine structure strength αeff ≈1. Then,
including (55) for the QCD case, the correction factor

xτ ≈ 0.1 (62)

is much larger than xρ in the corresponding QED case. Correspondingly, one ex-
pects even more significant off-shell effects in light-quark systems, in compliance
with our previous results [13, 12, 15].

4.2. A constituent quark calculation

As an alternative to the Coulomb-type QCD model described above, now we
adopt a variant of the approach in Refs. [14, 16]. One might use the PCAC rela-
tions (56)–(57) together with a kinematical assumption for the s̄-quark momentum,
similar to those in Refs. [39, 42]. We assume the bound s̄ and b quarks in B̄0

s to
be on their respective effective mass-shells. Note that even if one is using (56) and
(57), the amplitude will still explicitly depend on the s̄-quark momentum ps̄. This
is put on the effective mass-shell by using the relation pµ

s̄ = −Ms(k1 + k2)µ/Mb,
where Mq = mq + m0 (for q = b, s) are the effective (total) masses, mq are the
current masses, and m0 the constituent mass of the order of a few hundred MeV.
The structure of the amplitude now comes out essentially as in (58) with a relative
off-shell contribution

x τ̃ =
2m0

mb
≈ 0.1 , (63)

of the same order as in (62). However, unlike (58), the off-shell effect is now only
in the CP-odd term (ε∗1 × ε∗2), the square bracket in (58) being replaced by

[
ε∗2 · ε∗1 + i(1 + 2x + xτ̃)(ε∗2 × ε∗1)

]
. (64)

This may be different in other approaches [12], showing the model dependence of
the off-shell effect. For instance, potential-QCD models in general, besides a vector
Coulomb potential, also contain a scalar potential.

4.3. A bound state quark model

In our previous accounts [14, 16], we applied a bound state model for B̄0
s → 2γ.

Then the potentials Vi in (12) are replaced by a quark-meson interaction Lagrangian

LΦ(s, b) = GB b̄ γ5 sΦ + h.c. , (65)
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where Φ is the B-meson field. In this case, the term LF can be transformed away
by means of the field redefinitions:

s′ = s + BF σ · F L b , b′ = b + B∗
F σ · FLs . (66)

However, its effect reappears in a new bound-state interaction ∆LΦ,

LΦ(s, b) + LF = LΦ(s′, b′) + ∆LΦ , (67)

where, after using Rγ5 = R and Lγ5 = −L,

∆LΦ = BF GB

[
b̄′σ · FL b′ − s̄′ σ · FR s′

]
Φ + h.c. . (68)

The two terms in this equation correspond to two contact amplitudes displayed in
Fig. 4. Also in this case, net off-shell effects are found [14, 16]. Further calculations
of B → 2γ within bound state models of the type in (65) will be presented elsewhere.

b

b







Bs

s

s







Bs

Fig. 4. The two-photon transition amplitude from a contact term (68) left over
after the field redefinitions.

Note that in bound-state models based on heavy-quark effective theory, the
expression (65) is slightly modified such that the b quark field will be replaced by
the product of the reduced heavy-quark field and its projector P+(v) = (1+γ ·v)/2,
where v is the velocity of the heavy quark [43–46].

4.4. Link to B̄d → K∗γ

Although we focused till now only to the two-photon processes, the interaction
in (27) contributes to the one-photon couplings as well.

Actually, we observe that off-diagonal one-photon couplings contained in the
Lagrangian given by (39) and (44) can be used to calculate the amplitude for
muonic hydrogen decaying to a photon and ordinary hydrogen, that is, the process
µ− → e− + γ for both leptons bound to a proton. This is a leptonic version of the
celebrated B-meson decay B̄d → K∗γ.

As a toy model, one might consider a process “µ” → “e” γ in an external
Coulomb field, with “µ” and “e” rather close in mass such that the non-relativistic
descriptions of the “leptons” might be used. The effective “µ” → “e” γ interaction
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is given in (44). If we assume that (M−m) is of order α m, we obtain off-shell effects
of the order of α2 due to LF , relative to the standard magnetic moment term Lσ.
Bigger mass differences give bigger effects, until the non-relativistic approximation
breaks down.

Returning to the off-shell bound-state effects in the important Bd → K∗γ decay,
they can be addressed in the framework of models [43–48], combining heavy-quark
effective theories with the ideas of Nambu-Jona-Lasinio models and chiral quark
models.

The ordinary, on-shell transition magnetic moment Lσ-induced amplitude for
the B̄d → K∗γ is shown in Fig. 5a.

Now, transforming away the term LF by the field redefinitions produces the
new contact term

∆L′
Φ = −BF GB s̄′σ · F R P+(v)γ5 d′ Φ , (69)

giving the amplitude displayed in Fig. 5b.

(a)

b

s




d
K�

Bd

(b)

s0

d0

K�




Bd

Fig. 5. Diagrams for B̄d → γK∗: (a) The magnetic moment transition amplitude.
(b) The contact term (69) left over after field redefinitions.

The ratio of the off-shell and the on-shell amplitudes in the soft K∗ limit can
now be calculated to be

A(B̄d → K∗γ)off−shell

A(B̄d → K∗γ)on−shell
≈ BF

Bσ

m0

2mQ
, (70)

where m0 is the constituent mass of order of 200–300 MeV, and mQ is the heavy (b
quark) mass. Going away from the soft K∗ limit, the amplitudes will change, but
the result (70) will persist in the leading order.

A refined calculation would be desirable in view of the importance of this result.
An earlier attempt (the preprint version of Ref. [49]) reported on large off-shell effect
in the amplitude which happened to be reduced below 10% effect in the rate.

5. Discussion and conclusion

The present “atomic” approach enables us to see in a new light the off-shell
effects studied first for the KL → γγ amplitude in the chiral quark model [13, 12],
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and subsequently in the bound-state model [15]. The observation that off-shell
effects can be clearly isolated from the rest in the heavy-light quark atoms [14]
was still plagued by the uncertainty in the QCD binding calculation [16]. Here, in
the Coulomb-type QCD model, we are able to subsume the effect into an universal
binding factor, in the same way as for the two-photon decay of muonium in the
exactly solvable QED framework. It is a quite significant 10 percent effect in the
B̄0

s → γγ case, whereas in the two-photon decay of muonium it is very small (of
the order of 10−7), but clearly identifiable.

As a byproduct, we obtain here also the on-shell amplitude already considered
in the literature. There is an extensive list of calculations [39, 42, 50] relevant to the
short-distance electroweak loop contributions to b → sγγ which trigger B̄s → γγ.
Comparing our results with the expression (22) of Ref. [39], we can express Cσ

7 in
our Eq. (54) in terms of their coefficient C,

Cσ
7 =

1
4
√

6

(
C +

23
3

)
, (71)

or, numerically, Cσ
7 = 0.4 at the B meson scale. Still, there is another class of

contributions, belonging to the LD regime. For example, Refs. [51, 52] present
magnetic moment, O7-type LD effects in B̄s → γγ decays in the vector-meson
dominance approach, whereas the other authors [53–55], though with controversial
results, estimate the contribution of the charmed-meson intermediate states. These
seem to be a natural representation for our short-distance loops when the loop
momenta are below the b quark mass scale.

Our message is that such small SM effects might obscure possible new physics
(BSM) signals that are of a comparable size. Without pretending on the complete-
ness, we give some examples that the off-shell effects considered in the present paper
might hinder possible BSM discovery.

Let us start with the famous magnetism of the muon, an ideal of the preci-
sion measurement. At some level, the binding effects might become relevant. Such
(gBound − 2) effect due to the diagonal one-photon coupling would correspond to
the (gBound − 2) calculated already for a bound electron [56]. This effect might be
interesting in the light of a deviation from the SM expectation of the order of 10−9

recently measured for (g−2) of the positively charged muon [57]. Actually, this mea-
surement triggered various speculations ascribing this discrepancy to various BSM
effects, the lepton compositeness [58] being one possibility. However, there are more
direct ways to set a bound on the compositeness scale from the flavour-conserving
processes. For example, there are flavour-diagonal e+e−γγ contact terms [59]

Lcontact = iψeγµ(Dνψe)

(√
4π

Λ2
6

Fµν +
√

4π

Λ̃2
6

F̃µν

)
, (72)

which would lead to a (1+δDEV) correction factor to the photon angular distribution
dσ/dΩ in e+e− collisions. From

δDEV = s2/(2α)(1/Λ4
6 + 1/Λ̃4

6)(1 − cos2 θ) , (73)
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LEP200 sets a bound Λ > 1687 GeV (for Λ6 = Λ̃6 = Λ) at the 95% CL. Thus,
eventual non-standard BSM physics contribution at LEP energies are highly sup-
pressed.

More promising route to reveal BSM contributions could be provided by flavour
non-diagonal transitions. Recent evidence for neutrino oscillations has renewed
interest in charged LFV searches. Among variety of probes reviewed in Ref. [60],
µ → eγ and µ − e conversion (invoking new high energy scale M12) seem to be
the most promising. Since the effects of new physics are expected to enter at the
one-loop level, these transitions may be parameterized by

L12 = e
g2

16π2

mµ

M2
12

µ̄σαβe Fαβ , (74)

in order to estimate the sensitivity of the current experimental facilities [61].
Although the BSM effects might be more pronounced for the flavour-changing

quark transitions, their discovery might be hindered by the relatively more pro-
nounced bound-state effects treated in the present paper. The off-shell contribution
may affect the discovery potential in the radiative B meson decays (see, e.g., Refs.
[62–64]). In particular, our result (70) indicates a hindrance of the BSM discovery
potential in the otherwise promising B̄d → K∗γ decay.
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PONIŠTENJE TEŠKO-LAKIH FERMIONSKIH VEZANIH STANJA
DVOFOTONSKIM RASPADOM

Razmatramo dvofotonske raspade teško-lakih atoma kvantne elektrodinamike i kro-
modinamike (QED i QCD), µ+e− → γγ i B̄0

s → γγ. Posebice, istražujemo dopri-
nose operatora koji trnu na ljusci mase slobodnih kvarkova. Pokazujemo da se
redefinicijom polja ovi operatori pretvaraju u kontaktne članove povezane s di-
namikom vezanih stanja. Ukupan doprinos izvan ljuske mase je potisnut u odnosu
na učinak dobro poznatog operatora magnetskog momenta zbog faktora vezanja
vezanog stanja. Učinci izvan ljuske u slabo vezanim QED atomima su zanemarivi,
med–utim, oni postaju znatni u jako vezanim QCD atomima. Analiziramo te učinke
izvan ljuske u modelskim pristupima QCD, od kojih nam jedan omogućuje blisku
usporedbu s odnosnim učinkom u QED. Takod–er navodimo učinak izvan ljuske u
srodnom procesu B̄d → K∗γ, kao prepreku za razotkrivanje najavljenih mogućih
učinaka fizike izvan standardnog modela.
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