
The line shape of sodium n^2S_1/2 -3^2 P_1/2;3/2
transitions in Na-Cd high pressure discharge

Mioković, Željka; Veža, Damir

Source / Izvornik: Fizika A, 2001, 10, 129 - 140

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:950269

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-09-26

Repository / Repozitorij:

Repository of the Faculty of Science - University of 
Zagreb

https://urn.nsk.hr/urn:nbn:hr:217:950269
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://repozitorij.unizg.hr/islandora/object/pmf:6727
https://dabar.srce.hr/islandora/object/pmf:6727


ISSN1330–0008
CODENFIZAE4

THE LINE SHAPE OF SODIUM n2S1/2–32P1/2;3/2 TRANSITIONS IN Na-Cd
HIGH PRESSURE DISCHARGE
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We measured sodium atomic lines belonging to the n2S1/2–32P1/2;3/2 (n = 5, 6, 7)
series, originating from a high-pressure sodium-cadmium plasma. The observed line
shapes are compared with the calculations of the line shapes made within the Bar-
tels’ method. The electron density is estimated by Vidal approach (a refined Inglis-
Teller method), and the density of sodium and cadmium has been determined using
the relationships between the interaction constants of the sodium-sodium (sodium-
cadmium) quasimolecule and the shift of the self-absorbed peaks of the sodium
resonance line. We assume that the main line-broadening mechanisms of n2S1/2–
32P1/2;3/2 spectral lines are Stark broadening (by electrons), self-broadening (by
neutral sodium atoms) and van der Waals broadening (by cadmium atoms). The
electron temperatures are determined by Bartels’ method, fitting the calculated
to the experimentally measured n2S1/2–32P1/2;3/2 line profiles. All three measured
lines possess a red asymmetry that can not be attributed to the electron broaden-
ing, self-broadening or foreign gas broadening. We suggest that this red asymmetry
could be caused by interaction of the radiating sodium atom with sodium and cad-
mium ions.

PACS numbers: 32.70.-n, 52.25.Rv UDC 537.525

Keywords: high-pressure Na-Cd plasma, atomic lines, n2S1/2–32P1/2;3/2 (n = 5, 6, 7)

series, line shapes, Stark broadening by electrons, self-broadening, van der Waals broad-

ening, red asymmetry
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1. Introduction

The high-pressure sodium-mercury vapour discharge lamp was invented for
lighting purposes almost 40 years ago [1], and further developed and refined dur-
ing last few decades [2]. From the plasma spectroscopist point of view, it is a
wall-stabilized electric discharge burning at normal or elevated pressures, enabling
studies of fundamental atomic processes in mixed-vapour plasmas. The lamp burner
is made of high-density polycrystalline translucent alumina ceramics (PCA tube)
with electrodes cemented to the tube ends. The PCA is highly resistant to corrosive
sodium vapour at elevated temperatures up to 1800 K, and it has also a high trans-
mission coefficient (better than 90%) for visible radiation. However, a disadvantage
is that PCA is not transparent but translucent, so that standard conventional
plasma diagnostic techniques for determination of various plasma parameters are
not easily applicable to this radiation source.

The standard high-pressure sodium lamp, based on the sodium-mercury-xenon
filling (xenon is used as the starting gas) has been widely investigated during last
few decades [2]. The sodium-cadmium-xenon discharge, a similar high-pressure
discharge, has been already investigated in order to confirm similarities in the ra-
diation spectra of NaHg, KHg [3] and NaCd [4] molecules (satellite continua), but
has been rarely investigated by conventional plasma diagnostic techniques for the
determination of its plasma parameters [5]. In this paper we report preliminary
measurements of line-shape of the nS–3P (n = 5, 6, 7) sodium atomic lines, ra-
diated by the high-pressure sodium-cadmium plasma generated in a translucent
sapphire burner. The line-shapes are measured and analyzed using the spectro-
scopic procedure developed by H. Bartels [6]. We undertook this study in order to
find out mechanisms leading to the formation of nS–3P (n = 5, 6, 7) line-profiles and
to test or determine the corresponding broadening mechanisms and the interaction
constants. Surprisingly, the shift and the broadening of higher members of nD–3P
(n > 4) series and especially nS–3P (n = 5, 6, 7) series are much less investigated,
compared to the large number of experiments studying the broadening and the shift
of 3D–3P (818/819 nm) and 4D–3P (568/569 nm) transitions, which are suitable
for high pressure lamp diagnostics. However, the data on the broadening and the
shift of the nS–3P (n = 5, 6, 7) transitions are important for a better and more
complete understanding of the physics and chemistry of high-pressure discharges
(sodium-mercury (cadmium) and metal-halide discharges).

2. Experiment

A block diagram of the experimental arrangement is shown in Fig. 1. The mea-
surements have been performed using a 400 W “Tungsram” Na-Cd high-pressure
lamp (with translucent sapphire burner) in series with a 400 W inductive choke.
The inner diameter, the outer diameter and the length of the sapphire burner are
7.6 mm, 9 mm and 110 mm, respectively. The tips of the electrodes are separated
95 mm. The discharge tube was operated vertically. The discharge was driven by a
standard 50 Hz AC line source, with the rms value of the discharge current between
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2.4 A and 4.2 A. The burner contains a sodium-cadmium amalgam with approx-
imately 75 molar per cent of sodium (sodium rich amalgam [7]). Xenon is also
present as a starting gas at a cold gas pressure of 1.3 kPa. The partial pressure of
sodium and cadmium during lamp operation is determined by the temperature of
the coldest spot of the burner (usually the space behind electrodes). The spectral
lines taken in this way represent an average over many periods of the driving volt-
age, and their shape is mostly determined by the discharge current [7]. The light
from the discharge has been analyzed by a medium-resolution monochromator (”K.
Zeiss”, model SPM-2, 10 µm entrance slit). A photomultiplier (EMI 9558QB) sen-
sitive in the blue-green spectral region has been used for the detection. A linear
amplifier with a low-pass electronic filter for the suppression of the high-frequency
noise has been used for the signal amplification. The data have been converted by
an A/D converter, and stored in a computer for further analysis.

X

LP

FM

X

M

PC

A/DA

FL

PMT

HP

Fig. 1. Experimental arrangement. LP-low pressure lamp; HP-high pressure
lamp; FM-folding mirror; L-lens; F-cut off filter; M-monochromator; PMT-
photomultiplier; A-amplifier and electronic filtering; A/D-analog-to-digital con-
verter; PC-personal computer.

The measurements of the line-shapes are based on time averaged measured
quantities of the 50 Hz AC arc, while calculations made by Bartels’ method assume
a stationary situation. In principle, one can expect that the plasma features (the
electron temperature, the electron density, the density of neutral species) all vary
with the phase of the exciting current. However, our recent time-resolved measure-
ments [7,8] show that only electron density really follows the sinusoidal variations
of discharge current over one period of driving voltage, whereas the density of
neutral particles practically does not change. Since the line profiles of the nS–3P
(n = 5, 6, 7) transitions are determined by the resonance broadening of the 3P lev-
els and a small electron broadening and shift of the upper levels [9], the nS–3P
lines are well suited for this averaged way of line shape measurements. The effect
of time averaging on measured line-shapes is less than the measuring accuracy and,
therefore, does not play an important role.

The electron densities were first determined by the Inglis-Teller method [9],
estimating the last discernible lines of the sodium nD–3P and nS–3P series. The
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electron densities obtained by this simple procedure are known as a rather crude
estimate. To increase the accuracy, we used further an improved method, still
based on the Inglis-Teller approach, which gives more reliable values of electron
density [10]. The data for electron densities given in this paper are a result of
this refined procedure. The densities of sodium and cadmium are determined by
measuring the spacing between the self-reversed maxima of the sodium resonance
lines at 589/590 nm [7,8]. This is a established technique which works well in all
high-pressure sodium-mercury discharges [11]. The shifts of the resonance-line blue
and red maxima depend on the sodium and cadmium density, respectively. The
electron temperatures were determined by fitting the line shapes calculated within
the Bartels’ method with the experimentally measured line profiles of nS–3P transi-
tions. Figures 2, 3 and 4 show the line shapes of the 52S1/2 – 32P1/2;3/2, the 62S1/2

– 32P1/2;3/2 and the 72S1/2 – 32P1/2;3/2 transitions, respectively. All presented
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Fig. 2. 52S1/2 – 32P1/2;3/2 atomic lines taken at the discharge current of 4 A (hollow
circles), simulation calculated within Bartels’ method (dotted line - 3750 K, full line
- 3950 K, dot-dash line - 4150 K). The average sodium (ground state) density was
1.5 × 1023 m−3, the average cadmium (ground state) density was 30 × 1023 m−3

and the effective electron density was 1.4 × 1022 m−3, Stark broadening FWHM
0.4 × 10−10 m. We estimate that the overall accuracy of our data is about 40%.
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Fig. 3. 62S1/2 – 32P1/2;3/2 atomic lines taken at the discharge current of 4 A (hollow
circles), simulation calculated within Bartels’ method (dotted line - 3750 K, full line
- 3950 K, dot-dash line - 4150 K). The average sodium (ground state) density was
1.5×1023 m−3, the average cadmium (ground state) density was 30×1023 m−3 and
the effective electron density was 1.4× 1022 m−3, Stark broadening 0.8× 10−10 m.

Fig. 4 (right). 72S1/2 – 32P1/2;3/2 atomic lines taken at the discharge current of
4 A (hollow circles), simulation calculated within Bartels’ method (dotted line -
3750 K, full line - 3950 K, dot-dash line - 4150 K). The average sodium (ground
state) density was 1.5 × 1023 m−3, the average cadmium (ground state) density
was 30 × 1023 m−3 and the effective electron density was 1.4 × 1022 m−3, Stark
broadening 1.7 × 10−10 m.

lines (open circles are experimental data) are measured at a same high discharge
current of 4 A (rms value). The data on the Na-Cd plasma at this current are used
in the calculations of the line shape (full or dotted lines) and are determined in a
separate experiment. The average sodium (ground state) density was 1.5×1023 m−3,
the average cadmium (ground state) density was 30 × 1023 m−3 and the effective
electron density was 1.4 × 1022 m−3. We estimate that the overall accuracy of our
data is about 40%. The line shape is first calculated within the Bartels’ model, and
subsequently numerically convoluted with the instrumental profile, represented by
a Gaussian of a 0.08 nm FWHM. The instrumental profile has been determined
from the measurements of the line shape of the HeNe laser line at 632.8 nm.
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3. Results and discussion

3.1. Theoretical line profile

The total spectral line profile of sodium nS–3P (n = 5, 6, 7) transitions is influ-
enced by three main broadening mechanisms: Stark broadening (by electrons), the
van der Waals broadening (by neutral foreign atoms) and the resonance broaden-
ing (by similar atoms) [12]. The shape of an atomic line can be calculated in two
different approximations, impact and quasistatic, corresponding to two different in-
teraction pictures. The applications of the impact or the quasistatic approximations
yield very different line shapes [9]. However, the impact approximation yields the
same, Lorentzian line shape for all broadening mechanisms (resonance broadening,
van der Waals broadening, and Stark broadening):

PL(∆λ) =
∆λ1/2

π c

1
(∆λ − s)2 + (∆λ1/2)2

,

where the total Lorentzian line width (FWHM) is given by ∆λ1/2 = (∆λ1/2)S +
(∆λ1/2)R + (∆λ1/2)vdW. It represents the sum of the Stark, the resonance and the
van der Waals line widths. The total line shift is also given by s = ηW (∆λ1/2)vdW+
ηS (∆λ1/2)Stark, where the ηi parameters have a very weak temperature dependence
[9].

The Stark-broadened line width is given by [9]

(∆λ1/2)S = 11.37
λ2

0

4πc
C

2/3
4 v3/5

e Ne ,

where C4 represents the Stark interaction constant, ve is the mean electron velocity
and Ne is the electron density.

The resonance line width is given by [9]

(∆λ1/2)R =
πλ2

0

2c
CNa

3 NNa ,

where sodium-sodium interaction constant, CNa
3 , depends on the oscillator strength

for absorption, fik, as CNa
3 =

λ0

4πε

e2

4πmc
fik. The line widths are calculated using

the data for the sodium absorption oscillator strengths given in Ref. [13].
The van der Waals line width is given by [9]

(∆λ1/2)vdW =
2.02λ2

0

πc
(CNaCd

6 )2/5v3/5NCd ,

where v is the relative velocity between sodium and cadmium atoms. The sodium-
cadmium interaction constant, CNaCd

6 , depends on the cadmium dipole polarizabil-
ity, α [14], as CNaCd

6 = αe2〈r2
k〉, where 〈r2

k〉 represents the mean square radius of the
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valence electron in the excited sodium state k. The effective C6 sodium-cadmium
interaction constants used in calculations of the 52S1/2 – 32P 1/2;3/2, the 62S1/2 –
32P1/2;3/2 and the 72S1/2 – 32P1/2;3/2 transition line shapes are given in Table 1.

Table 1. Calculated effective Na-Cd interaction constants for n2S1/2 – 32P1/2;3/2

transitions.

Transition 52S1/2 – 32P1/2;3/2 62S1/2 – 32P1/2;3/2 72S1/2 – 32P1/2;3/2

λ(nm) 615.4/616.1 514.9/515,3 474.8/475.2
CNaCd

6

(10−42Jm6)
2.9 7.6 17.4

On the other hand, the quasistatic approximation for the van der Waals inter-
action yields the following profile

PQS(∆λ) =
√

∆λ0

2∆λ1.5
exp

(
−π∆λ0

4∆λ

)
,

where λ > λ0 and

∆λ0 =
λ2

0

2πc

(
4π

3

)2

CNaCd
6 v0.6 N2

Cd

represents the characteristic width of the van der Waals profile. There is no contri-
bution in the blue line-wing, PQS(∆λ, λ ≤ λ0) = 0.

Following Stormberg [12], the total line profile can be successfully simulated by
convolving the impact line profile (Lorentzian profile, PL(∆λ)) and the quasistatic
line profile (van der Waals profile, PQS(∆λ, λ ≥ λ0))

PL−QS(∆λ) =
∫

PL(∆λ − ζ)PQS(ζ) dζ .

The convolution integral gives a synthetic, normalized line profile, expressed in a
complicated but analytical form [12], convenient for rapid calculations [15]. How-
ever, while this result for the synthetic line profile is mathematically correct, it can
be questioned from the physical point of view. Presented construction of the resul-
tant synthetic line profile aimed to describe simultaneously the line core and the
line wings, suggests that we can also ”mix” (or convolve) two broadening mech-
anisms which are strictly limited: one to the line core (giving the impact line
profile), and another to the line wing (delivering the quasistatic line profile). This
is certainly not true [9], but justification for the application of this synthetic profile
in the line-shape analysis comes from the fact that it smoothly and correctly de-
scribes the complete line shape, behaving as an Lorentzian in the line core and in
the blue line-wing, and as an exponential in the red line-wing. This approach has
been very successfully applied to the analysis of the shape of atomic lines originat-
ing in various high-pressure discharges (sodium lines in high-pressure sodium and
metal-halide discharge [16], mercury lines in high-pressure mercury discharge [17]).
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3.2. Bartels’ method

Bartels’ method [18] is based on the assumptions that the axially symmetric
plasma is in a partial local thermodynamic equilibrium (PLTE), the equation of
state for ideal gas is fulfilled, the partial pressure of the emitting atoms is constant
throughout the plasma column, and that the depletion of the ground state pop-
ulation due to excitation and ionization can be neglected. The population of an
excited atomic state is given by the Boltzmann equation

Nn(r) = N0(r)
gn

g0
exp

(
− En

kT (r)

)

where gn and g0 are statistical weights of level n and of the ground state, re-
spectively. The ground-state atomic density, N0(r) is related to the total vapour
pressure and the gas temperature via the equation of state

N0(r) =
g0

U(T )
p

kT (r)
,

where U(T ) is the partition function of the atom, k is the Boltzmann constant and
p is the local vapour pressure. T (r) is the temperature distribution along a radius
of the discharge

T (r) = TA − (TA − TW )
( r

R

)n

.

TA is the axis temperature and TW is the wall temperature, whereas n = 2, assum-
ing a parabolic temperature distribution. Partition function of the atom, U(T ), is
approximately equal to g0 under high-pressure discharge conditions.

The intensity of a spectral line within Bartels’ method is given by

I(ν) =
2hν3

c2
exp

(
− hv

kTm

)
MY (τ0, p) ,

where τ0 is the optical depth, and the function Y (τ0, p) represents the influence of
the optical depth on the peak line intensity, and could be expressed parametrically.
The parameters M and p describe the inhomogeneity of the plasmas, so that p = 1
corresponds to a homogeneous plasma column, and p = 0 to a completely inhomo-
geneous source. The energy of the lower level for the line under investigation must
satisfy the conditions: kTm ¿ En (pressure broadening) and kTm ¿ En + 0.5Ei

(Stark broadening). The function M must satisfy conditions: M =
√

En/Em (van
der Waals broadening) and M =

√
En + 0.5Ei/

√
Em + 0.5Ei (Stark broadening).

En and Em are the energies of the lower and the upper level of the atomic line,
respectively, whereas Ei is the ionization energy. Under our conditions both, M
and p, are constant within a spectral line.
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3.3. Comparison of the experimental and calculated line shapes

The simulations shown here are the best fits to the line-shapes measured in
the experiment. The line profile is first calculated by the line-shape function
PL−QS(∆λ) which depends on the broadening mechanisms. This synthetic line
shape, PL−QS(∆λ), is used in the Bartels’ model to obtain the “true” line shape
emitted by the discharge. This line shape is subsequently numerically convolved
with the instrumental profile represented by a Gaussian of 0.08 nm FWHM, in
order to obtain the profile which can be directly compared with the measured one.

Figure 2 shows the lineshape of the 52S1/2 – 32P1/2;3/2 sodium atomic lines
at 615.4/616.1 nm taken at a high discharge current of 4 A (rms value). Only a
fraction of the numerous experimental points is shown in the figure with the aim to
achieve a better presentation of the fit. One can observe that the use of the electron
temperature of 3950 K leads to the best fit of the experimental data, clearly visible
in the case of the long-wavelength component at 616.1 nm. The overall agreement
between experiment and the fit is rather good for the other two close temperatures,
too. We can, therefore, estimate that the electron temperature determined in this
way (3950 K) has an error of at most ± 200 K (± 5%). Careful inspection of the
blue and the red line-wings shows that while the blue wing shows almost perfect
agreement, the red wing shows a discrepancy between experimental line shape and
the simulated line shape. This asymmetry is even more visible in the case of the
62S1/2 – 32P1/2;3/2 lines at 514.9/515.3 nm (Fig. 3) and the 72S1/2 – 32P1/2;3/2

lines at 474.8/475.2 nm (Fig. 4), both taken at the same high discharge current of
4 A (rms value). The figures show that the line-shape simulations share the same
electron temperature of 3950 K, with an error bar of ± 200 K.

All three figures show the same pattern: a very good agreement between exper-
iment and simulation for the blue wing(s), and a pronounced asymmetry in the red
wing(s). The red asymmetry increases with the increased discharge current (not
shown here) and also increases with the main quantum number of the atomic tran-
sition, being the strongest for the 72S1/2 – 32P3/2 line at 475.2 nm. Although the
presence of cadmium produces a red asymmetry, the one demonstrated in Figs. 2
to 4 can not be attributed to the asymmetric broadening by cadmium, because it
would require one to two orders of magnitude higher cadmium pressure (compared
to the measured one) to reach the observed level of asymmetry.

One can also change the calculated sodium-cadmium interaction constants, but
a close match with the experiment (in the red line-wing) would require orders of
magnitude higher C6 constant to reach the observed level of asymmetry (see Fig.
5). Although 5-fold larger C6 constant produces a calculated profile that apparently
looks as a better fit (see Fig. 5), a closer inspection of the difference between the
calculated and measured profiles (lower part of Fig. 5) reveals that this introduces
an additional near-wing asymmetry in both, blue and red wing. The simulation
shown in Fig. 5, based on the original data taken from Fig. 2 (solid line, C6, lower
part of Fig. 5), shows a clear asymmetry only in the red wings of both lines. So, we
believe that excessively high cadmium pressure or an excessively large C6 constant
can not be the cause of the observed red-wing asymmetry.
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Fig. 5. Upper part – 52S1/2 – 32P1/2;3/2 atomic lines taken at the discharge current
of 4 A (hollow circles), simulation calculated within Bartels’ method (full line, at
3950 K), for two different values of the effective C6 constant. Lower part – the
difference between experimental and calculated profiles for two different effective
C6 constants.

The only parameter neglected so far that can cause a similar effect is the in-
teraction of neutral radiating atom with the ions [9]. In a qualitative picture, this
interaction can enhance the red wing of the line involved, since it contributes only
to the red wing intensity of the lines we investigate [9]. Measurements and calcu-
lations of the ion densities in high pressure discharges, performed by Waszink [19]
and van Trigt and Blom [20], show that in high-pressure discharge the ion density
on the axis can reach the values of about 1.5 × 1022 m−3. That high density could
be large enough to produce the effect we observe in our NaCd discharge.

4. Conclusion

We have measured three sodium atomic lines belonging to the n2S1/2 –
32P1/2;3/2 (n = 5, 6, 7) series. Comparing the measured line-shapes and the cal-
culated ones, we have shown that there exists a residual red asymmetry which
can not be attributed to the interaction of the sodium radiating atom in the n2S1/2

atomic state with its neutral neighbors. Instead, we suggest that this residual asym-
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metry is caused by the interaction with ionic species which are present in significant
densities in the sodium-cadmium high-pressure discharge.
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OBLIK LINIJA NATRIJEVIH PRIJELAZA n2S1/2–32P1/2;3/2 U Na-Cd IZBOJU
PRI VISOKOM TLAKU

Mjerili smo natrijeve linije niza n2S1/2–32P1/2;3/2 (n = 5, 6, 7) koje nastaju u vi-
sokotlačnom izboju u natrij-kadmijevoj plazmi. Odred–eni oblici linija se uspored
–uju s računatima na osnovi Bartelsove metode. Elektronske se gustoće ocjenjuju
Vidalovim postupkom (pobolǰsanom Inglis-Tellerovom metodom), a gustoća natrija
i kadmija se odred–uje odnosom interakcijskih konstanti kvazimolekula natrij-natrij
(natrij-kadmij) i pomaka vrhova zbog samoapsorpcije natrijeve rezonantne linije.
Pretpostavljamo da su glavni mehanizmi širenja spektralnih linija n2S1/2–32P1/2;3/2

Starkovo širenje (elektronima), vlastito-̌sirenje (neutralnim natrijevim atomima) i
van der Waalsovo širenje (kadmijevim atomima). Elektronske su temperature odred
–ene Bartelsovom metodom kojom smo načinili prilagodbe eksperimentalno odred
–enim profilima n2S1/2–32P1/2;3/2 linija. Sve linije pokazuju “crvenu” asimetriju
koja se ne može objasniti elektronskim širenjem, vlastitim-̌sirenjem ili širenjem
stranim atomima. Smatramo da je “crvena” asimetrija uzrokovana interakcijom
natrijevih atoma koji zrače s natrijevim i kadmijevim ionima.
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