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While keeping the discreteness of the reciprocal space, we calculate the spectrum of
incoherent electron-hole excitations in the conducting Fermi liquids. The method is
illustrated on the well-known jellium model within the random phase approxima-
tion. It also leads to the formulation of a sum rule from which we get the details of
the dispersion curve for the collective plasmon mode. The notion of time averaging
in the discrete approach is briefly recalled.
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1. Introduction
The electron-hole excitations in conductors invoke in the frequency dependence

of dielectric function ε(k, ω) a dense alternation of poles and zeros at the scale of
discreteness of the reciprocal space [1]. Usually this complex mathematical problem
is avoided by making the standard procedure of continuation of the wave vector
variable k which is well founded for macroscopic systems, and in addition includes
the standard proposition allowing for the irreversibility in the thermodynamic limit
[2]. By this, the dense set of poles and zeros is eliminated, and ε(k, ω) becomes an
analytic function. In particular, within the random phase approximation (RPA) for
jellium, which will be followed here, Im ε is a continuous function of k and ω in the
range of variables covering the so-called electron-hole continuum.
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Although cumbersome at first sight, the discrete presentation of dielectric re-
sponse still appears to be advantageous and physically more transparent in some
treatments, like in the calculations of the cohesive energy [3, 4] and one-particle
spectral function [5] in the single-band and multi-band systems. In the present work
we show how the method developed in Refs. [4, 5] reproduces some well-known re-
sults for the jellium model. In particular, we derive an explicit expression for ener-
gies of incoherent excitations, which is, of course, not attainable after continuation.
This leads to the formulation of a sum rule which enables a direct determination of
the dispersion curve for the collective excitation (i. e. plasmon in the present exam-
ple). The particular detail which then can be followed in a transparent way is the
cross-over of the plasmon dispersion from the collective to the incoherent regime
as the wave vector increases, the subject which was often exposed incorrectly or
imprecisely in literature.

In Sect. 2 we start with the formulation of the problem and continue with the
explicit calculation of energies of incoherent excitations. Section 3 contains the
formulation of the sum rule, the analysis of the plasmon dispersion and the short
note on the calculation of Im ε in the discrete approach. Concluding remarks are
given in Sect. 4.

2. Incoherent excitations
We start from the well-known RPA dielectric function for the jellium [1]. The

excitation energy for a given value of the wave vector q is the solution of the
equation ε(q, ω) = 0 in the frequency variable ω. Let us write this equation in the
form

ε(q, ω) = 1 − 4e2

πq2L

kF∑
k‖=−kF

g(k‖, q)
E(k‖, q)

[ω + i sign(ω)η]2 − E2(k‖, q)
= 0 , (1)

where L3 is the volume of the system. We keep throughout this text the discrete
summation in terms of the wave vector component parallel to q,

k‖ = n
2π

L
, n ∈ Z. (2)

The equation k‖ = constant defines the locus of the constant electron-hole excita-
tion energy

E(k‖, q) =
1

2m
(2k‖ + q)q , (3)

i.e., the summation in Eq. (1) goes over all such loci. As shown in Fig. 1, the locus
for given values of q and k‖ is either circular [for E(k‖, q) > (k2

F − k2
‖)/2m] or

annular [for E(k‖, q) < (k2
F − k2

‖)/2m] surface, centered at k‖. The radius of the
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former is k⊥M ≡
√

k2
F − k2

‖, while the latter is bounded by concentric circles with

radii k⊥M and k⊥m ≡
√

k2
F − (k‖ + q)2.
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Fig. 1. The loci of the constant electron-hole excitation energies, containing all wave
vectors k with a same energy E(k, q) = E(k+q)−E(k) = (2k‖+q)q/2m = const.

The number of the points multiplied with the elementary surface (2π/L)2 of the
reciprocal space in a given locus is

g(k‖, q) =


 (k2

F − k2
‖)π kF > k‖ > kF − q

(2k‖ + q)qπ kF − q > k‖ > −q/2
for q < 2kF , (4)

and g(k‖, q) = (k2
F − k2

‖)π for q > 2kF . (5)

The dielectric function (1) diverges at energies which are infinitesimally close
to the values of electron-hole excitation energies (3) at the real ω-axis. The energy
difference between neighboring poles (3) is

∆E(q) = E(k‖ + 2π/L, q) − E(k‖, q) =
2πq

mL
. (6)

Between each such pair of neighboring poles (3), there should be a zero of the
dielectric function. In other words, all solutions of the equation ε(q, ω) = 0, except
the largest one, lie between neighboring electron-hole energies. Let us denote these
zeros by Ω(k‖, q), and write

Ω(k‖, q) + i sign(Ω)η = E(k‖, q) + Θ(k‖, q)∆E(k‖, q) , (7)

with 0 < Θ(k‖, q) < 1. Let us remind that, in contrast to these incoherent excita-
tions, the excitation with the largest energy can be macroscopically (with respect
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to 1/L) far from its closest electron-hole counterpart, E(kF , q). Such isolated zero
is a collective excitation, i. e. plasmon in the present jellium model.

An approximate expression for the energies of incoherent excitations follows
after retaining the ω-dependence only in those terms of Eq. (1) which contain
nearest neighboring poles to a given zero Ω(k‖, q), i. e. only in terms with E(k‖, q)
and E(k‖ + 2π/L, q). In terms with wave vectors different from k‖ or k‖ + 2π/L,
we substitute ω + i sign(ω)η with E(k‖, q). The validity of this approximative step
is discussed in the Appendix. Eq. (1) now reduces to

1 − 4
π2q2a0

{
F (k‖, q) +

π

mL

[
g(k‖, q)E(k‖, q)

[ω + i sign(ω)η]2 − E2(k‖, q)

+
g(k‖ + 2π

L , q)E(k‖ + 2π
L , q)

[ω + i sign(ω)η]2 − E2(k‖ + 2π
L , q)

]}
= 0,

(8)

where a0 = 1/me2 is the Bohr radius and

F (k‖, q)=
π

mL




k‖−2π/L∑
k′
‖=−kF

g(k′
‖, q)E(k′

‖, q)

E2(k‖, q) − E2(k′
‖, q)

+
kF∑

k′
‖=k‖+4π/L

g(k′
‖, q)E(k′

‖, q)

E2(k‖, q) − E2(k′
‖, q)


.

(9)
With the most divergent terms singled out, we can now make a continuation

of the residual sums in Eq. (9) by replacing each term with the integral over the
interval 2π/L. Choosing to replace a term characterized by the discrete value k′

‖
with the integral from k′

‖ − 2π/L to k′
‖, we come to the expression

F (k‖, q) =
1

2m




k‖−2π/L∫
−kF

d k′
‖

g(k′
‖, q)E(k′

‖, q)

E2(k‖, q) − E2(k′
‖, q)

+

kF∫
k‖+2π/L

d k′
‖

g(k′
‖, q)E(k′

‖, q)

E2(k‖, q) − E2(k′
‖, q)


 ,

(10)

where k‖ − 2π/L and k‖ +2π/L are the lower and upper boundaries of the interval
that corresponds to the missing terms k‖ and k‖ + 2π/L in the sum (9). We note
that the final result of integration in Eq. (10) does not depend on the choice of
integration boundaries for 2π/L intervals, as specified above.

Since the primitive function in the above integral is odd with respect to the pole
at k′

‖, the expression (10) can be rewritten in the form

F (k‖, q) =
1

2m

kF∫
−kF

d k′
‖

g(k′
‖, q)E(k′

‖, q)

E2(k‖, q) − E2(k′
‖, q)

. (11)
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After elementary integration, we get

F (k‖, q) =
π

4

[
−2kF −

k2
F − k2

‖
q

ln
∣∣∣∣ (kF − k‖)(kF + k‖ + q)
(kF + k‖)(kF − k‖ − q)

∣∣∣∣
+(2k‖ + q) ln

∣∣∣∣kF + k‖ + q

kF − k‖ − q

∣∣∣∣
]

.

(12)

Furthermore, by solving the biquadratic Eq. (8), we get for the function Θ(k‖, q)
in Eq. (7) the expression

Θ(k‖, q) =
1
2
[1 + x − sign(x)

√
1 + x2], (13)

where
x ≡ 2πg(k‖, q)

q[π2q2a0 − 4F (k‖, q)]
. (14)

Evidently, Θ varies in the range (0, 1) in accordance with the starting assumption.
More precisely,

0 < Θ(k‖, q) < 1/2
Θ(k‖, q) = 1
1/2 < Θ(k‖, q) < 1

for π2q2a0 − 4F (k‖, q)
> 0
= 0
< 0

. (15)

The above results can be written in a more explicit way in the limits q << kF

and q >> 2kF . In the former case and for k‖ ¿ kF , the expression (12) reduces to

F (k‖, q) ≈ −πkF +
πk2

‖
2kF

+
π(2k‖ + q)(k‖ + q)

2kF
, (16)

and the leading term in the energy of incoherent excitations is

Ω(k‖, q) = E(k‖, q) +
πq(2k‖ + q)

2kF mL
, (17)

i.e., the zeros of ε(ω,k) in the ω-plane lie very close to the corresponding electron-
hole excitation poles. Here and further on, we omit for simplicity the infinitesimal
imaginary part in excitation energies (7).

As the wave number k‖ increases, the energy of incoherent excitations moves
gradually towards the first higher neighboring electron-hole excitation. For k‖ close
to kF and for kF À q À kF − k‖, the function (12) reduces to

F (k‖, q) ≈ π(2kF + q)
4

ln
2kF + q

q
− πkF

2
− πkF (kF − k‖)

2q
ln

kF − k‖
q

. (18)

Keeping only the leading term in the above expression, the approximate expression
for the corresponding energies of incoherent excitation reads

Ω(k‖, q) = E(k‖ + 2π/L, q) − 2π(kF − k‖)
mL ln(2kF /q)

, (19)
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i.e., these energies are very close to the energies of the first larger neighboring
electron-hole excitations.

In the latter case, q >> 2kF , Eq. (12) reduces to

4F (k‖, q) ≈ π

(
2k‖kF

q
−

k2
F − k2

‖
q

ln
kF − k‖
kF + k‖

)
¿ π2q2a0. (20)

Energies of incoherent excitations are then given by

Ω2(k‖, q) − E2(k‖, q) =
4e2

πLq2
g(k‖, q)

[
1 +

4me2F (k‖, q)
π2q2

]
E(k‖, q), (21)

i.e., they are very close to their electron-hole counterparts for all values of k‖.
The physical reason for this small departure of incoherent excitations from bare
electron-hole ones is the weakness of the bare Coulomb interaction 4πe2/q2 in this
regime.

It follows from the foregoing analysis that the regime of small values of q qual-
itatively differs from that of large ones. In the former case, the energy of incoher-
ent excitations moves from their electron-hole counterpart towards the first larger
neighboring electron-hole excitation, crossing the half-width ∆E(q)/2 (Eq. 6), as
k‖ moves from the lower bound, −q, to the upper bound, kF − 2π/L. On the con-
trary, in the latter case, it does not cross the half-width. It is interesting to estimate
the value of the wave vector qcr which roughly separates these two regimes. To this
end, we note that in the regime of small values of q the difference between the
energy of incoherent excitation and its electron-hole counterpart has the largest
value for k‖ ≈ kF . Let us define the critical wave number qcr for which Θ(kF , qcr)
(13) is equal to 1/2. In this case, x in Eq. (14) diverges, i.e. qcr is the solution of
the equation

πq2
cra0 = −2kF + (2kF + qcr) ln

2kF + qcr

qcr
. (22)

To summarize, for q > qcr, the energies of incoherent excitations are closer to
their electron-hole counterparts than to the next neighboring electron-hole excita-
tions, regardless to the value of the wave number k‖. For q < qcr, the energies of
incoherent excitations are closer either to their electron-hole counterparts or to the
first larger neighboring electron-hole excitations for small and large values of the
wave number k‖, respectively. The wave number qcr roughly separates these two
regimes.

3. Collective excitations
In the above approximate calculations of energies of incoherent excitations, we

explore the fact that corresponding zeros and poles of the dielectric function densely
alternate on the ω-axis. However, this method cannot be used for the excitation
with the highest energy, lying above the maximum of electron-hole excitation energy
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E(kF , q) for a given q. In order to determine the Ω(kF , q)-dependence of this
collective mode, we write Eq. (1) in the form

kF∑
k‖=−kF

g(k‖, q)E(k‖, q)
∏

k′
‖ /=k‖

[
ω2−E2(k′

‖, q)
]
−(q2Lπ/4e2)

kF∏
k‖=−kF

[
ω2−E2(k‖, q)

]
kF∏

k‖=−kF

[
ω2 − E2(k‖, q)

] = 0.

(23)
Factors that multiply the highest powers, ωkF Lπ and ωkF Lπ−2 in the polynomial
presentation of the nominator on the left-hand side are

akF
= −q2Lπ/4e2, (24)

and akF −2π/L =
kF∑

k‖=−kF

g(k‖, q)E(k‖, q) +
q2Lπ

4e2

kF∑
k‖=−kF

E2(k‖, q) , (25)

respectively. As it follows from the elementary algebra, the ratio akF −2π/L/akF
is

equal to the sum of all zeroes of Eq. (23). From this we get

kF −2π/L∑
k=−kF

Ω2(k‖, q) − E2(k‖, q) + Ω2(kF , q) − E2(kF , q) = ω2
pl . (26)

The above relation is a sum rule which states that the sum of differences of the
squares of excitation energies and corresponding electron-hole energies equals to
the square of the plasmon energy ω2

pl = 4πNe2/(L3m) [1]. The dispersion of the
collective mode Ω(kF , q) ≡ Ωpl(q) follows directly from this relation once the
energies of the incoherent excitations are determined, as it was done in the previous
section. To illustrate this, let us recall two characteristic points of the dispersion
curve Ωpl(q). First, since all incoherent and electron-hole excitations vanish for
q = 0, the above sum rule reproduces the well-known result that ωpl is the energy
of the highest long-wavelength excitation, i. e. of the plasmon [1]. Second, it is
known from the continuum approach [6] that the dispersion curve Ωpl(q) touches
the border of the electron-hole continuum at a finite wave number. Here we point
out that this wave number coincides with the wave number qcr given by Eq. (22).
The result by which plasmons do not exist as collective excitations at wave numbers
at which all incoherent excitations are closer to their electron-hole counterparts than
to the next neighboring electron-hole excitations can be derived in the following
way. The plasmon dispersion Ωpl(q) follows also from Eq. (8) after omitting the
term with poles and substituting E(k‖, q) by Ωpl(q) in the expression (9) for the
function F (k‖, q). Thus we get

1 − 4
π2q2a0

F

(
mΩpl(q)

q
− q

2
, q

)
= 0 . (27)

In the continuum approximation, the plasmon dispersion touches the border of
the electron-hole quasi-continuum for Ωpl(q) = (2kF + q)q/2m. In this way, Eq.
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(27) reduces to Eq. (22), i. e., the plasmon indeed ceases to exist as a collective
excitation just at q = qcr.

In the original works [6] as well as in the textbooks [1, 2, 7–9], the touching point
qcr is usually interpreted as the wave number above which the decay of plasmons
into electron-hole pairs takes part. Sometimes it is even stated or hinted that the
dispersion curve Ωpl(q) and the upper border of electron-hole range cross at q = qcr

[2, 9]. We note that within the present discrete approach, the curve Ωpl(q) neither
touches nor crosses the border of electron-hole excitations, but just approaches it
at the distances of the order of ∆E(q), and remains at this distance for q > qcr. To
show this quantitatively, let us calculate the highest excitation energy for q À qcr

by using the expression (21) for the differences Ω2(k‖, q) − E2(k‖, q) in this limit.
We get from the sum rule (26)

Ω2(kF , q)−E2(kF , q) = ω2
pl−

2e2

Lmq

∑
k‖ /=kF

(
k2

F − k2
‖
) (

2k‖ + q
) [

1 +
4me2F (k‖, q)

π2q2

]
.

(28)
In order to calculate the sum on the right-hand side, we divide it in the convenient
way and make the continuation,

Ω2(kF , q) − E2(kF , q)

= ω2
pl −

e2

πmq


 kF∫

−kF

dk
(
k2

F − k2
)
(2k + q)

[
1 +

4me2F (k‖, q)
π2q2

]
(29)

−
kF∫

kF −2π/L

dk
(
k2

F − k2
)
(2k + q)


 .

After straightforward steps, we get
Ω(kF , q) = E(kF , q) +

e2kF

πq2

(
2π

L

)2

, (30)

noting that corrections to the energies of incoherent excitations as calculated in
the previous section [introduced in Eq. (29) through the function F (k‖, q)] do not
contribute to the result (30) up to the order of ω4

pl/(q6/m3).
To conclude, the above analysis shows that the highest branch of excitations

gradually approaches the quasi continuous incoherent electron-hole range as q ap-
proaches qcr from below. In this range, it is a well-defined collective (plasmon)
mode. For q > qcr, it remains above the top of this range at the microscopic energy
difference of the order of ∆E(q) or less, and as such does not have the properties
of a collective mode. Simultaneously as q passes through qcr qualitative changes
in the incoherent electron-hole range take place, as was already emphasized at the
end of Sect. 2. In Fig. 2, we illustrate the above discussion, which to some extent
complements that from Ref. [7], with numerical results for a large finite system.
Note that our plasmon dispersion clearly differs from those schematically presented
in, e.g., Refs.[2, 9].
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We close this section with a short remark, based on the arguments given in Ref.
[2], on the calculation of Im ε(q, ω) in the present discrete approach. In order to
get a proper result for the dissipative contributions to the correlation and response
functions, one uses the standard recipe, i. e. calculates imaginary parts of their
Fourier transforms only after the continuation in the reciprocal q - space. This order
of steps is based on the assumption that the characteristic energetic level spacing in
the system is sufficiently small in comparison to the reciprocal time of observation
of the system. The equivalent proposition in the classical statistical physics is that
the available time for the statistical averaging is much shorter than the Poincare
cycle time. The duration of the time of observation, however, becomes irrelevant
(i. e. it can be assumed arbitrarily long), once the continuation is performed.

0 0.1 0.2 0.3 0.4
q/kF

0

0.2

0.4

0.6

0.8

1

Ω
/E

F

Fig. 2. The dispersion Ω(kF , q) for N = 8.37 · 109, and L = 10a0. The asymptotic
curve starting from origin is E(kF , q).

If one keeps, like in the present approach, the discrete summations throughout
the calculations, the dissipative contributions are well-defined only after making
averaging on the energy scales larger than the inherent energy level spacings. In
particular, in our case one reproduces the correct result for Im ε(q, ω) by averaging
in ω on an interval not smaller than the energy differences ∆E(q) from Eq. (6).
Indeed, after averaging the imaginary part of the dielectric function (1),

Im ε(q, ω) =
2e2

q2L

kF∑
k‖=−kF

g(k‖, q)
{
δ
[
ω + E(k‖, q)

]
+ δ

[
ω − E(k‖, q)

]}
, (31)

over ∆E(q), the smallest possible energy interval consistent with the above propo-
sition, we get

Im ε(q, ω) =
1

∆E(q)

ω+∆E(q)/2∫
ω−∆E(q)/2

Im ε(q, ω′)dω′ =
me2

πq3
g(

mω

q
− q

2
, q) . (32)

FIZIKA A (Zagreb) 10 (2001) 4, 203–214 211
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This is the well-known result for the imaginary part of the Lindhard function [1, 8, 9]
in the region of the electron-hole quasi continuum. We note that the above averaging
procedure might be particularly relevant for mesoscopic situations in which the
cross-over from the dissipative regime to the regime without dissipation by varying
the width of time (i.e., frequency) window becomes attainable experimentally.

4. Conclusion
In the standard treatments with continuous wave vector, the electron-hole re-

gion is reduced to a structureless continuum. The present analysis, in which we keep
systematically the wave vector discreteness, leads to explicit results for shifts of en-
ergies of incoherent excitations with respect to the corresponding bare electron-hole
excitation energies. Although these shifts are infinitesimal in macroscopic systems,
their knowledge enables non-standard calculations of other physical observables,
like correlation energies [4] and spectral functions [5]. The simple example of this
kind is the calculation of the plasmon dispersion through the use of the sum rule
(26).

The approach presented here may be straightforwardly extended to more com-
plex macroscopic (e. g. multiband [4, 5]) systems. Furthermore, it is obviously par-
ticularly appropriate in studies of small mesoscopic systems in which electron-hole
excitations are characterized by essentially larger energy level spacings with respect
to those in the macroscopic limit. Then one also encounters interesting possibility
of cross-over from the dissipatively irreversible to reversible regime, connected with
fundamental principles of thermodynamic averaging.

Appendix

In this Appendix we consider the validity of the approximation introduced by
passing from Eq. (1) to Eq. (8). By this step we replace in the residual sums
[represented by the function F (k‖, q) (Eq. 12)] the exact value of a given solution
Ω(k‖, q) of Eq. (1) by the corresponding pole E(k‖, q) as defined by Eq. (7). Let
us start from the exact expression for the function F (k‖, q)

F̃ (k‖, q) =
π

mL




k‖−2π/L∑
k′
‖=−kF

g(k′
‖, q)E(k′

‖, q)[
E(k‖, q) + Θ(k‖, q)∆E(q)

]2 − E2(k′
‖, q)

+

kF∑
k′
‖=k‖+4π/L

g(k′
‖, q)E(k′

‖, q)[
E(k‖, q) + Θ(k‖, q)∆E(q)

]2 − E2(k′
‖, q)


 .

(33)

Here the value of the zero of Eq.(1) is written in the form (7). The Taylor expansion
of F̃ (k‖, q) in terms of Θ(k‖, q)∆E(q) gives

F̃ (k‖, q) − F (k‖, q) = F1(k‖, q)Θ(k‖, q)∆E(q) + O [
[Θ(k‖, q)∆E(q)]2

]
, (34)
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with

F1(k‖, q) = − 2π

mL
E(k‖, q)




k‖−2π/L∑
k′
‖=−kF

g(k′
‖, q)E(k′

‖, q)[
E2(k‖, q) − E2(k′

‖, q)
]2

+
kF∑

k′
‖=k‖+4π/L

g(k′
‖, q)E(k′

‖, q)[
E2(k‖, q)2 − E2(k′

‖, q)
]2


 .

(35)

This correction can be estimated after replacing sums by integrals. We get

F1(k‖, q) = − g(k‖, q)
2q∆E(q)

. (36)

The approximation is justified if∣∣∣∣F1(k‖, q)∆E(q)
F (k‖, q)

∣∣∣∣ =

2g(k‖, q)

π
∣∣∣−2kF q − (k2

F − k2
‖) ln

∣∣∣ (kF −k‖)(kF +k‖+q)

(kF +k‖)(kF −k‖−q)

∣∣∣ + (2k‖ + q)q ln
∣∣∣ kF +k‖+q

kF −k‖−q

∣∣∣∣∣∣ ¿ 1.

(37)
This condition is best fulfilled for small and large excitation energies due to the
vanishing density of electron-hole excitations g(k‖, q). Eq. (37) also indicates that
the approximation might be less adequate in the range of wave numbers k in which
F (k, q) = 0 is small. The value k0 for which F (k0, q) = 0 can be determined
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Fig. 3. The function Θ(k‖, q) calculated by means of Eq. (13) (solid lines) and
numerically from Eq. (1) for kF = 200π/L, L/a0 = 10 and for wave numbers
q = 0.1kF (triangles), 0.3kF (hollow squares) and 2kF (filled squares).
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from Eq. (12). Assuming q ¿ kF − k0 we get

k0

kF
ln

1 + k0
kF

1 − k0
kF

≈ 1, (38)

and k0 ≈ 0.65kF .
The direct insight into the validity of method follows from the comparison of

analytically calculated values of differences Θ(k‖, q) = [Ω(k‖, q) − E(k‖q)]/∆E(q)
and those obtained numerically for the mesoscopic system of N ≈ 8 · 106π/3 elec-
trons, and L/a0 = 10, which by means of Eq. (22) gives qcr ≈ 0.13kF . It is shown
in Fig. 3. For q = 0.1kF < qcr this difference raises monotonously from zero to
unity, while for q = 0.3kF > qcr it shows highly non monotonous behavior. Finally
for q = 2kF >> qcr Θ(k‖, q) is close to zero in the whole range of wave numbers
k‖. The curves in Fig. 3 clearly confirm the above estimations that the deviations
of the results of analytic method from Sec. II from numerical calculations are neg-
ligible for small and large excitation energies. For intermediate values of excitation
energies and for q < qcr the method is less accurate, but deviations from numerical
results are still quite small. Finally, for q >> qcr, this deviation is negligible for all
excitations.
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DISKRETAN PRISTUP NEKOHERENTNIM UZBUDAMA U VODIČIMA

Računamo spektar nekoherentnih uzbuda elektron-̌supljina u vodljivim Fermijevim
tekućinama zadržavajući diskretnost recipročnog prostora. Pristup se predstavlja
pomoću poznatog modela drhtavice i približenja nasumičnih faza. Dobiva se zbroj-
no pravilo iz kojeg slijede pojedinosti disperzijske krivulje za kolektivan plazmonski
mod. Podsjeća se ukratko na pojam vremenskog prosjeka u ovom diskretnom pris-
tupu.
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