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The matrix equations of the relativistic random-phase approximation~RRPA! are derived for an effective
Lagrangian characterized by density-dependent meson-nucleon vertex functions. The explicit density depen-
dence of the meson-nucleon couplings introduces rearrangement terms in the residual two-body interaction.
Their contribution is essential for a quantitative description of excited states. Illustrative calculations of the
isoscalar monopole, isovector dipole, and isoscalar quadrupole response of208Pb, are performed in the fully
self-consistent RRPA framework based on effective interactions with a phenomenological density dependence
adjusted to nuclear matter and ground-state properties of spherical nuclei. The comparison of the RRPA results
on multipole giant resonances with experimental data constrains the parameters that characterize the isoscalar
and isovector channel of the density-dependent effective interactions.
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I. INTRODUCTION

The success of models based on the relativistic mean
~RMF! @1# approximation in describing structure phenome
not only in nuclei along the valley ofb-stability, but also in
exotic nuclei with extreme isospin values and close to
particle drip lines, has also renewed the interest in theore
studies based on the relativistic random-phase approxima
~RRPA!. Although several RRPA implementations have be
available since the 1980s, only very recently RRPA-ba
calculations have reached a level on which a quantita
comparison with experimental data became possible. T
points are essential for the successful application of
RRPA in the description of dynamical properties of fin
nuclei: ~i! the use of effective Lagrangians with nonline
self-interaction terms, and~ii ! the fully consistent treatmen
of the Dirac sea of negative energy states. Many studies
the last decade have shown that the inclusion of nonlin
meson terms in meson-exchange RMF models, or nonlin
nucleon self-interaction terms in relativistic point-couplin
models, is absolutely necessary in order to reprod
ground-state properties of spherical and deformed nucle
a quantitative level. Techniques which enable the inclus
of nonlinear meson interaction terms in the RRPA fram
work, however, have been developed only recently in
calculation of the relativistic linear response@2#, and in the
solution of the RRPA-matrix equation@3#. For a quantitative
description of excited states, the RRPA configuration sp
must include not only the usual particle-hole states, but a
pair configurations formed from occupied states in the Fe
sea and empty negative-energy states in the Dirac sea.
though it was known for a long time that the inclusion
configurations built from occupied positive-energy states
empty negative-energy states is essential for current con
vation and the decoupling of spurious states@4#, only re-
0556-2813/2002/66~6!/064302~13!/$20.00 66 0643
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cently it has been shown that the fully consistent inclusion
the Dirac sea of negative energy states in the RRPA is es
tial for a quantitative comparison with the experimental e
citation energies of giant resonances@3,5#.

The RRPA with nonlinear meson interaction terms, a
with a configuration space that includes the Dirac sea
negative-energy state, has been very successfully emplo
in studies of nuclear compressional modes@3,6,7#, of multi-
pole giant resonances and of low-lying collective states
spherical nuclei@8#, of the evolution of the low-lying isovec-
tor dipole response in nuclei with a large neutron exc
@9,10#, and of toroidal dipole resonances@11#.

An interesting alternative to the highly successful RM
models with nonlinear self-interaction terms, is an effect
hadron field theory with medium dependent meson-nucl
vertices. Such an approach retains the basic structure o
relativistic mean-field framework, but could be more direc
related to the underlying microscopic description of nucle
interactions. In particular, the density-dependent relativis
hadron field~DDRH! model @12# has been successfully ap
plied in the calculation of nuclear matter and ground-st
properties of spherical nuclei@13#, and extended to hypernu
clei @14#, neutron star matter@15#, and asymmetric nuclea
matter and exotic nuclei@16#. Very recently, in Ref.@17# we
have extended the relativistic Hartree-Bogoliubov~RHB!
model @18# to include density-dependent meson-nucle
couplings. The effective Lagrangian is characterized b
phenomenological density dependence of thes, v, and r
meson-nucleon vertex functions, adjusted to properties
nuclear matter and finite nuclei. It has been shown that
comparison with standard RMF effective interactions w
nonlinear meson-exchange terms, the density-depen
meson-nucleon couplings significantly improve the desc
tion of symmetric and asymmetric nuclear matter, and
©2002 The American Physical Society02-1
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T. NIKŠIĆ, D. VRETENAR, AND P. RING PHYSICAL REVIEW C66, 064302 ~2002!
ground-state properties ofNÞZ nuclei. This is, of course
very important for the extension of RMF-based models
exotic nuclei far fromb-stability ~description of the neutron
skin, the neutron halo, pygmy isovector dipole resonanc!,
and for applications in the field of nuclear astrophysics.

In this work we derive the RRPA with density-depende
meson-nucleon couplings. Just as in the static case
single-nucleon Dirac equation includes the additional re
rangement self-energies that result from the variation of
vertex functionals with respect to the nucleon field operato
the explicit density dependence of the meson-nucleon c
plings introduces rearrangement terms in the residual in
action of the RRPA. The rearrangement contribution is
sential for a quantitative analysis of excited states in
RRPA framework. In Sec. II we present the formalism of t
relativistic RPA with density-dependent meson-nucleon c
plings, and derive the RRPA equations in the small amplitu
limit of the time-dependent RMF. The results of an illustr
tive calculation of multipole giant resonances in208Pb are
analyzed in Sec. III. Section IV contains the summary a
the conclusions.

II. FORMALISM OF THE RELATIVISTIC RANDOM-
PHASE APPROXIMATION WITH DENSITY-DEPENDENT

MESON-NUCLEON COUPLINGS

The standard density-dependent relativistic hadron fi
~DDRH! model @12# for nuclear matter and finite nuclei i
defined by the Lagrangian density

L5c̄~ i g•­2m!c1
1

2
~]s!22

1

2
ms

2s22
1

4
VmnVmn

1
1

2
mv

2 v22
1

4
RW mnRW mn1

1

2
mr

2rW 22
1

4
FmnFmn2gsc̄sc

2gvc̄g•vc2grc̄g•rW tWc2ec̄g•A
~12t3!

2
c. ~1!

Vectors in isospin space are denoted by arrows, and bold
symbols indicate vectors in ordinary three-dimensio
space. The Dirac spinorc denotes the nucleon with massm.
ms , mv , and mr are the masses of thes-meson, the
v-meson, and ther-meson.gs , gv , andgr are the corre-
sponding coupling constants for the mesons to the nucle
e2/4p51/137.036. The coupling constants and the mass
the s-meson are treated as free parameters, adjusted t
produce nuclear matter properties and ground-state pro
ties of finite nuclei.Vmn, RW mn, andFmn are the field tensors
of the vector fieldsv, r, and of the photon

Vmn5]mvn2]nvm, ~2!

RW mn5]mrW n2]nrW m, ~3!

Fmn5]mAn2]nAm. ~4!

The meson-nucleon couplingsgs , gv , andgr are assumed
to be vertex functions of Lorentz-scalar bilinear forms of t
nucleon field operators. In most applications of the dens
06430
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dependent hadron field theory these couplings are chose
functions of the vector densityrv5Aj m j m, with j m

5c̄gmc. Alternatively, the couplings could be functionals
the scalar densityrs5c̄c. It has been shown, however, th
the vector density dependence produces better results fo
nite nuclei @12#, and provides a more natural relation b
tween the self-energies of the density-dependent hadron
theory and the Dirac-Brueckner microscopic self-energ
@16#. In the present work we choose the vector density
pendence for the meson-nucleon couplings.

The single-nucleon Dirac equation is derived by the var
tion of the Lagrangian~1! with respect toc̄

i ] tc i5$a@2 i“2V~r ,t !#1V~r ,t !1b„m1S~r ,t !…

1S0
R~r ,t !%c i . ~5!

The Dirac Hamiltonian contains the scalar and vec
nucleon self-energies defined by the following relations:

S~r ,t !5gs~rv!s~r ,t !, ~6!

Vm~r ,t !5gv~rv!vm~r ,t !1gr~rv!tW•rW m~r ,t !

1e
~12t3!

2
Am~r ,t !. ~7!

The density dependence of the vertex functionsgs , gv , and
gr produces therearrangementcontribution to the vector
self-energy,

S0
R~r ,t !5

]gv

]rv
c̄gncvn1

]gr

]rv
c̄gntWc•rW n1

]gs

]rv
c̄cs. ~8!

The inclusion of the rearrangement self-energies is esse
for the energy-momentum conservation and the thermo
namical consistency of the model@12,13#.

In the time-dependent RMF model@19# one usually ne-
glects the retardation effects for the meson fields, and
self-energies are determined at each time by the solution
the Klein-Gordon and Poisson equations:

@2D1ms
2 #s~r ,t !52gs~rv! rs~r ,t !,

@2D1mv
2 #vm~r ,t !5gv~rv! j m~r ,t !,

~9!

@2D1mr
2#rW m~r ,t !5gr~rv! jWm~r ,t !,

2DAm~r ,t !5e jcm~r ,t !.

This approximation is justified by the large masses in
meson propagators. Retardation effects can be neglecte
cause of the short range of the corresponding meson
change forces. The explicit solutions of Eqs.~9! read, respec-
tively,

s~r ,t !52E gs~rv!Ds~r ,r 8!rs~r 8,t !d3r 8,
2-2
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vm~r ,t !5E gv~rv!Dv~r ,r 8! j m~r 8,t !d3r 8,

rW m~r ,t !5E gr~rv!Dr~r ,r 8! jWm~r 8,t !d3r 8, ~10!

Am~r ,t !5eE Dc~r ,r 8! j cm~r 8,t !d3r 8,

with the Yukawa propagators

Df~r ,r 8!5
1

4p

e2mfur2r8u

ur2r 8u
, ~11!

wheref denotes thes, v, andr mesons, and the photon
The sources of the fields are the nucleon densities

currents calculated in theno-seaapproximation

rs~r ,t !5(
i 51

A

c̄ i~r ,t !c i~r ,t !,

j m~r ,t !5(
i 51

A

c̄ i~r ,t !gmc i~r ,t !,

~12!

jWm~r ,t !5(
i 51

A

c̄ i~r ,t !tWgmc i~r ,t !,

j cm~r ,t !5(
i 51

Z

c̄ i~r ,t !gmc i~r ,t !.

where the summation is over allA occupied states in the
Fermi sea, i.e., only occupied single-nucleon states w
positive energy explicitly contribute to the nucleon se
energies. Even though the stationary solutions for
negative-energy states do not contribute to the densitie
the no-seaapproximation, their contribution is implicitly in-
cluded in the time evolution of the nuclear system@5,19#.

The relativistic random-phase approximation~RRPA! rep-
resents the small amplitude limit of the time-dependent re
tivistic mean-field theory. In the remainder of this section
will derive the RRPA equations with density-depende
meson-nucleon couplings from the response of the den
matrix r̂(t) to an external field,

F̂~ t !5F̂e2 ivt1H.c., ~13!
06430
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which oscillates with a small amplitude. In the single-partic
space this field is represented by the operator

f̂ ~ t !5(
kl

f kl~ t !âk
†âl . ~14!

The expression for the single-particle density matrix read

r̂~r ,r 8,t !5(
i 51

A

uc i~r ,t !&^c i~r 8,t !u. ~15!

By writing the Dirac spinor in terms of large and small com
ponents

uc i~r ,t !&5S f i~r ,t !

igi~r ,t ! D , ~16!

the density matrix takes the form

r~r ,r 8,t !

5S (
i 51

A

f i~r ,t ! f i
†~r 8,t ! 2 i(

i 51

A

f i~r ,t !gi
†~r 8,t !

i(
i 51

A

gi~r ,t ! f i
†~r 8,t ! (

i 51

A

gi~r ,t !gi
†~r 8,t !

D .

~17!

The equation of motion for the density operator reads

i ] tr̂5@ ĥ~ r̂ !1 f̂ ~ t !,r̂ #, ~18!

and in the small amplitude limit the density matrix is e
panded to linear order

r̂~ t !5 r̂ (0)1dr̂~ t !, ~19!

where r̂ (0) is the stationary ground-state density. From t
definition of the density matrix~15!, it follows that r̂(t) is a
projector at all times, i.e.,r̂2(t)5 r̂(t). In particular, this
means that the eigenvalues ofr̂ (0) are 0 and 1. In the non
relativistic case particle states above the Fermi level co
spond to the eigenvalue 0, and hole states in the Fermi
correspond to the eigenvalue 1. In the relativistic case
also has to take into account states from the Dirac sea. In
no-seaapproximation these states are not occupied, i.e., t
correspond to the eigenvalue 0 of the density matrix.
rkl
(0)5dklrk

(0)5H 0 for unoccupied states above the Fermi level~ indexp!

1 for occupied states in the Fermi sea~ indexh!

0 for unoccupied states in the Dirac sea~ indexa!.

~20!
s of

d

r̂2(t)5 r̂(t) also implies, in leading order,

r̂ (0)dr̂1dr̂r̂ (0)5dr̂, ~21!
and this means that the only nonvanishing matrix element

dr̂ aredrph , drhp , drah , anddrha . These are determine
by the solution of Eq.~18!, which in the linear approxima-
tion reads
2-3
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i ] tdr̂5@ ĥ(0),dr̂#1F ]ĥ

]r
dr,r̂ (0)G1@ f̂ ,r̂ (0)#, ~22!

with

]ĥ

]r
dr5(

ph

]ĥ

]rph
drph1

]ĥ

]rhp
drhp1(

ah

]ĥ

]rah
drah

1
]ĥ

]rha
drha . ~23!

Under the influence of the external field~13!, in the small
amplitude limit dr also exhibits the harmonic time depe
dencee2 ivt. Taking into account thatĥkl

(0)5dklek is diagonal
in the stationary basis, the resulting RRPA equations rea

~v2ep1eh!drph5 f ph1 (
p8h8

Vph8hp8drp8h8

1Vpp8hh8drh8p81 (
a8h8

Vph8ha8dra8h8

1Vpa8hh8drh8a8 ,

~v2ea1eh!drah5 f ah1 (
p8h8

Vah8hp8drp8h8

1Vap8hh8drh8p81 (
a8h8

Vah8ha8dra8h8

1Vaa8hh8drh8a8 ,

~v2eh1ep!drhp5 f hp1 (
p8h8

Vhh8pp8drp8h8

1Vhp8ph8drh8p81 (
a8h8

Vhh8pa8dra8h8

1Vha8ph8drh8a8 , ~24!

~v2eh1ea!drha5 f ha1 (
p8h8

Vhh8ap8drp8h8

1Vhp8ah8drh8p81 (
a8h8

Vhh8aa8dra8h8

1Vha8ah8drh8a8

or, in matrix form

FvS 1 0

0 21D 2S A B

B* A* D G S X

YD 5S F

F̄
D . ~25!

The RRPA matricesA andB read

A5S ~ep2eh!dpp8dhh8

~ea2eh!daa8dhh8
D

1S Vph8hp8 Vph8ha8

Vah8hp8 Vah8ha8
D , ~26!
06430
B5S Vpp8hh8 Vpa8hh8

Vap8hh8 Vaa8hh8
D ~27!

and the amplitudesX andY are defined

X5S drph

drah
D , Y5S drhp

drha
D . ~28!

The vectors which represent the external field contain
matrix elements

F5S f ph

f ah
D , F̄5S f hp

f ha
D . ~29!

In the self-consistent RRPA the matrix elements of the
sidual interaction are derived from the Dirac Hamiltonian
Eq. ~5!,

Vabcd5
]hac

]rdb
5E Ca

1~r1!Cb
1~r2!V~r1 ,r2!

3Cc~r1!Cd~r2!d3r 1d3r 2 . ~30!

In order to calculate the contributions of each meson field
V(r1 ,r2), we expand the meson-nucleon couplings and th
derivatives around the ground-state densityrv

0

gi~rv!5gi~rv
0!1

]gi

]rv
U

0

drv ,

]gi

]rv
5

]gi

]rv
U

0

1
]2gi

]rv
2U

0

drv . ~31!

If for the meson fields appearing in the scalar and vec
nucleon self-energies we use the explicit solutions~10! in
terms of the meson propagators and nucleon densities
currents, the individual contributions of the meson fields
V(r1 ,r2) are obtained from the particle-hole matrix eleme
of the Dirac Hamiltonian.

The contribution of the isoscalar-scalar sigma field

Vs~r1 ,r2!52b1b2gs„rv~r1!…gs„rv~r2!…Ds~r1 ,r2!

2H b112

]gs

]rv~r1!
11112

]2gs

]rv
2~r1!

rs~r1!

111b2

]gs

]rv~r1!J I s~r 1!

r 1
d~r12r2!

2H b112gs„rv~r1!…
]gs

]rv~r2!
rs~r2!

111b2

]gs

]rv~r1!
rs~r1!gs„rv~r2!…

11112

]gs

]rv~r1!
rs~r1!

]gs

]rv~r2!
rs~r2!J Ds~r1 ,r2!,

~32!
2-4
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where

I s~r 1!5E rgs„rv~r !…Ds
0~r 1 ,r !rs~r !dr.

The contribution of the isoscalar-vector omega field

Vv~r1 ,r2!5~bgm!1~bgm!2gv„rv~r1!…

3gv„rv~r2!…Dv~r1 ,r2!

1H 2
]gv

]rv~r1!
1

]2gv

]rv
2~r1!

rv~r1!J 1112

I v~r 1!

r 1

3d~r12r2!1H gv„rv~r1!…
]gv

]rv~r2!
rv~r2!

1
]gv

]rv~r1!
rv~r1!gv„rv~r2!…1

]gv

]rv~r1!
rv~r1!

3
]gv

]rv~r2!
rv~r2!J 1112Dv~r1 ,r2!, ~33!

where

I v~r 1!5E rgv„rv~r !…Dv
0 ~r 1 ,r !rv~r !dr.

The contribution of the isovector-vector rho field

Vr
1~r1 ,r2!5~bgm!1~bgm!2t1

3t2
3gr„rv~r1!…

3gr„rv~r2!…Dr~r1 ,r2!

1H ]gr

]rv~r1!
t1

31
]gr

]rv~r1!
t2

31
]2gr

]rv
2~r1!

r tv~r1!J
31112

I r~r 1!

r 1
d~r12r2!1H gr„rv~r1!…t1

3 ]gr

]rv~r2!

3r tv~r2!1
]gr

]rv~r1!
r tv~r1!gr„rv~r2!…t2

3

1
]gr

]rv~r1!
r tv~r1!

]gr

]rv~r2!
r tv~r2!J

31112Dr~r1 ,r2!, ~34!

where

I r~r 1!5E rgr„rv~r !…Dr
0~r 1 ,r !r tv~r !dr.

Finally the contribution of the Coulomb field

Vc~r1 ,r2!5e2~bgm!1~bgm!2Dc~r1 ,r2!. ~35!

The subscripts 1 and 2 of the Dirac matrices refer to part
1 and 2, respectively.rv , rs , and r tv denote the vector
scalar, and isovector-vector density, respectively, and the
rivatives of the meson-nucleon couplings with respect to
vector density are evaluated at ground-state densityrv

0 . The
06430
le

e-
e

radial integralsI f(r ) (f[s,v,r) containDf
0 (r ,r 8), which

is the radial factor in the first term of the multipole expansi
of the Yukawa propagator~11!:

Df~r ,r 8!5
1

rr 8
(
L50

`

Df
L ~r ,r 8! (

M52L

L

YLM~V!YLM* ~V8!.

~36!

We notice that, in addition to the direct contribution of th
meson exchange interactions@first terms in Eqs.~32!–~34!#,
the explicit density dependence of the meson–nucleon c
plings introduces a number ofrearrangementterms in the
residual two-body interactionV(r1 ,r2). These rearrange
ment terms are essential for fully consistent RRPA calcu
tions. Only when their contribution is included in the matr
elements of the residual interaction, it becomes possible
reproduce reasonably well the excitation energies of g
multipole resonances. Without rearrangement terms,
finds discrepancies of the order of several MeV between
experimental excitation energies and the RRPA peak e
gies, calculated with relativistic effective interactions that a
adjusted to ground state properties of spherical nuclei
similar effect is observed in RRPA calculations based
effective forces with nonlinear meson self-interactions, wh
the contribution of the nonlinear terms is not included in t
matrix elements of the residual interaction@8#.

In the next section we present results of illustrative RR
calculations of the multipole response in spherical nuc
For the multipole operatorQ̂lm the response functionR(E)
is defined

R~E!5(
i

B~l i→0 f !
G2

4~E2Ei !
22G2 , ~37!

whereG is the width of the Lorentzian distribution, and

B~l i→0 f !5
1

2J11
u^0 f uuQ̂luul i&u2. ~38!

In all the examples considered in Sec. III, the continuo
strength distributions are obtained by folding the discr
spectrum of RRPA states with the Lorentzian@see Eq.~37!#
with constant widthG51 MeV.

III. ILLUSTRATIVE RRPA CALCULATIONS: GIANT
RESONANCES

In this section the RRPA with density-dependent mes
nucleon couplings is applied in illustrative calculations
giant resonances in spherical nuclei. In particular, we ana
the isoscalar monopole, the isovector dipole and the isosc
quadrupole resonances in208Pb. We will show which iso-
scalar and isovector properties of the effective mean-fi
interactions affect the multipole strength distributions, a
how the results of RRPA calculations can be used to c
strain the effective interaction.

For the density dependence of the meson-nucleon c
plings we adopt the functionals used in Refs.@13,16,17#. The
2-5
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coupling of thes-meson andv-meson to the nucleon field
reads

gi~r!5gi~rsat! f i~x! for i 5s,v, ~39!

where

f i~x!5ai

11bi~x1di !
2

11ci~x1di !
2

~40!

is a function ofx5r/rsat, andrsat denotes the baryon den
sity at saturation in symmetric nuclear matter. The eight r
parameters in~40! are not independent. The five constrain
f i(1)51, f s9 (1)5 f v9 (1), and f i9(0)50, reduce the numbe
of independent parameters to three. Three additional par
eters in the isoscalar channel aregs(rsat), gv(rsat), and
ms—the mass of the phenomenological sigma-meson.
the r-meson coupling the functional form of the density d
pendence is suggested by DB calculations of asymme
nuclear matter@20#

gr~r!5gr~rsat!exp@2ar~x21!#. ~41!

The isovector channel is parametrized bygr(rsat) and ar .
Usually the free values are used for the masses of thev and
r mesons:mv5783 MeV andmr5763 MeV. In principle
one could also consider the density dependence of the m
masses. However, since the effective meson–nucleon
pling in nuclear matter is determined by the ratiog/m, the
choice of a phenomenological density dependence of
couplings makes an explicit density dependence of
masses redundant.

The eight independent parameters, seven coupling pa
eters and the mass of thes-meson, are adjusted to reprodu
the properties of symmetric and asymmetric nuclear ma
binding energies, charge radii and neutron radii of spher
nuclei. In particular, in Ref.@17# we have introduced the
density-dependent meson-exchange effective interac
~DD-ME1!, whose parameters are displayed in Table I. T
seven coupling parameters and thes-meson mass have bee
simultaneously adjusted to properties of symmetric a
asymmetric nuclear matter, and to ground-state prope
~binding energies, charge radii and differences between n
tron and proton radii! of 12 spherical nuclei. For the ope
shell nuclei pairing correlations have been treated in the B
approximation with empirical pairing gaps~five-point for-
mula!.

In Ref. @17# the relativistic Hartree-Bogoliubov~RHB!
model with the density-dependent interaction DD-ME1
the ph-channel, and with the finite range Gogny interacti
D1S in thepp-channel, has been tested in the analysis of
equations of state for symmetric and asymmetric nuc
matter, and of ground-state properties of the Sn and Pb
topic chains. It has been shown that, as compared to stan
nonlinear relativistic mean-field effective forces, the intera
tion DD-ME1 has better isovector properties and theref
provides an improved description of asymmetric nucl
matter, neutron matter and nuclei far from stability.
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In the present analysis we perform fully consistent RR
calculations of isoscalar monopole, isovector dipole, a
isoscalar quadrupole giant resonances in208Pb. The single-
particle basis and the particle-hole couplings are obtai
from the same effective Lagrangian, and the configurat
space includes both particle-hole pairs, as well as p
formed from hole states and negative-energy states from
Dirac sea. Our starting point is the DD-ME1 effective forc
both in the Dirac Hamiltonian~5!, as well as the residua
interaction. We then proceed to construct families of dens
dependent interactions with some given characteristic~com-
pressibility, asymmetry energy, etc.!, and study the resulting
properties of giant resonances.

A. The isoscalar monopole resonance and the nuclear matter
incompressibility

The isoscalar giant monopole resonance~ISGMR! repre-
sents the most simple mode of collective excitations in
clei. In particular, the ISGMR in heavy nuclei is the on
source of experimental information on the nuclear ma
compression modulusK` . This quantity determines basi
properties of nuclei, supernovae explosions, neutron s
and heavy-ion collisions. The range of values ofK` has been
deduced from the measured excitation energies of
ISGMR in spherical nuclei. The presently available expe
mental data set, however, does not limit the range ofK` to
better than 200–300 MeV. The microscopic determination
the nuclear matter compressibility is based on the const
tion of sets of effective interactions that differ mostly b
their prediction of the excitation energies of ISGMR, i.e.,
the value ofK` , but otherwise reproduce reasonably w
experimental data on ground-state nuclear properties@21,22#.
Effective interactions with different values ofK` are used to
calculate bulk ground-state properties of heavy spherical
clei in a self-consistent mean-field framework, and RPA
time-dependent mean-field calculations are performed for

TABLE I. The effective interaction DD–ME1. See Eqs.~39!–
~41! for the definition of the coupling parameters.

DD-ME1

ms 549.5255
mv 783.0000
mr 763.0000
gs(rsat) 10.4434
gv(rsat) 12.8939
gr(rsat) 3.8053
as 1.3854
bs 0.9781
cs 1.5342
ds 0.4661
av 1.3879
bv 0.8525
cv 1.3566
dv 0.4957
ar 0.5008
2-6
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isoscalar monopole excitations. Such a fully consistent
culation of both ground-state properties, as well as ISGM
excitation energies, restricts the range of possible values
K` . However, since there are also other effects beyond
mean-field level which influence the isoscalar monop
resonance ~anharmonicities, pairing, coupling betwee
single-nucleon and collective motion!, it has been argued
@22# that, rather than on the systematics over the whole
riodic table, the determination of the nuclear compressibi
should rely more on a good measurement and microsc
calculations of GMR in a single heavy nucleus such
208Pb. Microscopic calculations have been performed bot
the nonrelativistic and in the relativistic mean-field fram
work. Modern nonrelativistic Hartree-Fock plus RPA calc
lations, using both Skyrme and Gogny effective interactio
indicate that the value ofK` should be in the range 210–22
MeV @21,22#. In particular, in Ref.@22# a set of effective
Gogny forces was generated, which on one hand allo
good description of static properties of nuclei, and on
other hand span the range 210<K`<300 MeV. It was
shown that the RPA calculations reproduce the available
perimental data on ISGMR in medium-heavy and heavy
clei only for K` in the range 210–220 MeV. In Ref.@23# it
has been shown that even generalized Skyrme forces,
both density- and momentum-dependent terms, can only
produce the measured breathing mode energies for value
K` in the range 215615 MeV. In relativistic mean-field
models based on nonlinear meson self-interactions on
other hand, results of both RRPA and time-dependent ca
lations suggest that empirical GMR energies are best re
duced by an effective force withK`'250–270 MeV@24,6#.
It has to be emphasized, however, that even though rela
istic calculations have been performed using nonlinear ef
tive interactions with different values ofK` , these forces
were not constructed specifically with the purpose of de
mining K` . Rather, standard nonlinear effective interactio
have been used, which also exhibit other differences
could affect the microscopic determination of the nucle
matter compressibility.

Starting from DD-ME1, in this work we have generated
consistent set of relativistic density-dependent effective
teractions with 220<K`<280 MeV. The same functiona
form for the density dependence for the meson–nucleon c
plings has been used for these forces and, except for
value of K` , their parameters have been adjusted to
same set of experimental data on ground-state propertie
12 spherical nuclei@17#. The results of fully consistent RRPA
calculations with these forces are shown in Fig. 1, where
display the calculated excitation energies of ISGMR in208Pb
as function of the nuclear matter compressibility. The sha
region denotes the range of presently available experime
data@25#. We notice that, in accordance with the results o
tained with relativistic effective forces with nonlinear mes
self-interactions, only the density-dependent interacti
with K`'260–270 MeV reproduce the experimental valu
We have also verified that ISGMR excitation energies
lighter nuclei, calculated with these particular interactio
are closest to the empirical curveEx'80A21/3 MeV and that
they reproduce the available data on experimental excita
06430
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energies. For the density-dependent effective interaction w
K`5270 MeV, in Fig. 2 we display the isoscalar monopo
strength distribution and transition densities in208Pb. The
position of the ISGMR peak is atE514.1 MeV, and we plot
the proton, neutron and total isoscalar transition densitie

The present analysis, therefore, confirms that there
pronounced difference between the values of the nuc
matter compression modulus predicted by microscopic n
relativistic (K`'210–230 MeV) and relativistic (K`

'250–270 MeV) mean-field plus random-phase approxim
tion calculations. The origin of this discrepancy is at pres
not understood, even though there are some indications
it might be due, at least in part, to the differences in t
density dependence of the asymmetry energy predicted
nonrelativistic and relativistic models@26#.

B. The isovector dipole response and the nuclear matter
asymmetry energy

The calculated properties of isovector dipole giant re
nances~IVGDR! will be predominantly determined by th

FIG. 1. Density-dependent RRPA peak energies of the ISG
in 208Pb as a function of the nuclear matter compressibilityK` .
The calculated peaks are shown in comparison with the experim
tal excitation energy of the monopole resonance:E514.1
60.3 MeV @25#.

FIG. 2. The isoscalar monopole strength distribution~left panel!
and transition densities~right panel! in 208Pb, calculated with a
density-dependent effective interaction withK`5270 MeV. The
proton, neutron and total isoscalar transition densities correspon
the peak atE514.1 MeV.
2-7
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isovector channel of the effective interaction. In particul
the excitation energies of IVGDR can be directly related
the nuclear matter asymmetry energy. The energy per par
of asymmetric nuclear matter can be expanded about
equilibrium densityrsat in a Taylor series inr anda @27#,

E~r,a!5E~r,0!1S2~r!a21S4~r!a41••• , ~42!

where

a[
N2Z

N1Z
, ~43!

E~r,0!52av1
K0

18rsat
2 ~r2rsat!

21••• , ~44!

and

S2~r!5a41
p0

rsat
2 ~r2rsat!1

DK0

18rsat
2 ~r2rsat!

21••• .

~45!

The empirical value of the asymmetry energy at satura
density ~volume asymmetry! S2(rsat)5a453064 MeV.
The parameterp0 defines the linear density dependence
the asymmetry energy, andDK0 is the correction to the in-
compressibility. The contribution of the termS4(r)a4 in ~42!
is very small in ordinary nuclei and the coefficient is n
constrained in the mean-field approximation.

A ground-state nuclear property which is directly det
mined by the asymmetry energy is the difference between
neutron and the proton radii. In a recent study of neut
radii in nonrelativistic and covariant mean-field models@28#,
the linear correlation between the neutron skin and the s
metry energy has been analyzed. In particular, the ana
has shown that there is a very strong linear correlation
tween the neutron skin thickness in208Pb and the individual
parameters that determine the symmetry energyS2(r): a4 ,
p0, andDK0. The empirical value ofr n2r p in 208Pb (0.20
60.04 fm from proton scattering data@29#, and 0.19
60.09 fm from the alpha scattering excitation of the isove
tor giant dipole resonance@30#! places the following con-
straints on the values of the parameters of the symm
energy: a4'30–34 MeV, 2 MeV/fm3<p0<4 MeV/fm3,
and2200 MeV<DK0<250 MeV.

Properties of isovector collective modes in finite nuc
should, in principle, provide additional constraints on t
isovector channel of the effective interaction. In an analy
of Skyrme forces and giant resonances in exotic nuclei@31#,
Reinhard noticed a somewhat surprising property of
IVGDR: while it is true that the excitation energy of th
resonance is sensitive to the volume asymmetrya4, the reso-
nance energy decreases by increasing the asymmetry en
at saturation. This was qualitatively explained by notici
that an increase in the volume asymmetry is always acc
panied by an increase of the slopep0, i.e., of the linear
density dependence of the asymmetry energy. In orde
study this effect in a more quantitative way, we have gen
ated, starting from DD-ME1, a set of eight density depe
06430
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dent effective interactions with 30 MeV<a4<37 MeV. The
parameters of the density-dependent meson–nucleon
plings have been adjusted in such a way that, while incre
ing a4 in units of 1 MeV, the resulting effective interaction
still reproduce the same set of data on ground-state pro
ties of spherical nuclei, that was used for the original int
action DD-ME1@17#. This means that these effective inte
actions essentially differ only in their description of th
asymmetry energy curve as function of the baryon densi

The resulting nuclear matter asymmetry energy curv
and the calculated IVGDR excitation energies in208Pb, are
displayed in Fig. 3. In the upper left panel we plot the RR
excitation energy of the IVGDR in208Pb as function of the
volume asymmetrya4. Similar to what has been observed
Ref. @31#, the resonance energy decreases with increasinga4.
The reason for this decrease is shown in the lower left pa
where we plot the corresponding values of the slope par
eter p0, which defines the linear density dependence of
asymmetry energy. We notice that, in order to reproduce
bulk properties of spherical nuclei, an increase ofa4 neces-
sitates a nonlinear increase ofp0. The resulting asymmetry
energy curves as functions of the baryon density are sh
in the right panel of Fig. 3. The increase ofp0 with a4
implies a transition from a parabolic to an almost linear de
sity dependence ofS2 in the density regionr<0.2 fm23.
This means, in particular, that the increase of the asymm
energy at saturation point will produce an effective decre
of S2 below r'0.1 fm23. But this is, of course, the densit
region characteristic for the IVGDR. We find, therefore, th
the excitation energy of the IVGDR decreases with incre
ing S2(rsat)[a4, because this increase implies a decrease
S2 at low densities characteristic for the surface modes
the upper left panel of Fig. 3 we also compare the calcula
IVGDR peak energies for208Pb with the experimental value
of 13.360.1 @32#. It appears that the experimental IVGD

FIG. 3. The IVGDR excitation energy of208Pb ~upper left
panel!, and the parameterp0 of the linear density dependence of th
nuclear matter asymmetry energy, as functions of the volume as
metry a4. The shaded area denotes the experimental IVGD re
nance energy 13.360.1 MeV. In the right panel the asymmetr
energy curves, as functions of the baryon density, are plotted
different values of the volume asymmetrya4.
2-8
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excitation energy constrains the nuclear matter asymm
energy at saturation density to the interval 34 MeV<a4
<36 MeV. For the effective interaction witha4535 MeV,
in Fig. 4 we display the RRPA isovector dipole strength d
tribution and the corresponding proton, neutron, and to
isovector transition densities for the peak at 13.3 MeV
208Pb.

Figure 5 illustrates what happens when the increase of
nuclear matter asymmetry energy at saturation density is
accompanied by an increase of the slope parameterp0. Start-
ing with DD-ME1, which hasa4533.1 MeV, we have gen
erated a set of effective interactions with different values
a4, but now they all have the same slope parameterp0
~lower left panel!, i.e., the parameters are not readjusted
reproduce the data set of ground state properties of sphe
nuclei. Binding energies and radii are only approximat
reproduced with these effective interactions. The result
asymmetry energy curves as functions of the baryon den

FIG. 4. The isovector dipole strength distribution~left panel!
and transition densities~right panel! in 208Pb, calculated with a
density-dependent effective interaction witha4535 MeV. The pro-
ton, neutron and total isovector transition densities correspon
the peak atE513.3 MeV.

FIG. 5. The IVGDR excitation energy of208Pb ~upper left
panel!, and the parameterp0 of the linear density dependence of th
nuclear matter asymmetry energy, as functions of the volume as
metry a4. The shaded area denotes the experimental IVGD re
nance energy 13.360.1 MeV. In the right panel the asymmetr
energy curves, as functions of the baryon density, are plotted
different values of the volume asymmetrya4.
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are plotted in the right panel. Sincep0 is constant, by in-
creasinga4 the asymmetry energyS2 increases for all den-
sities. As a result, the IVGDR peak energies of208Pb in-
crease linearly witha4 ~upper left panel!.

C. The isoscalar quadrupole response and the nucleon
effective mass

In nonrelativistic RPA calculations, the excitation ener
of the isoscalar giant quadrupole resonance~ISGQR! can be
directly related to the nucleon effective mass that charac
izes a given effective interaction. In the nonrelativistic mea
field approximation, the total effective massm* of a nucleon
in a nucleus characterizes the energy dependence of a
fective local potential that is equivalent to the, generally no
local and frequency dependent, microscopic nuclear poten
@33#. m* is a measure of the density of single-nucleon sta
around the Fermi surface and, therefore, it affects the g
resonances. For Skyrme interactions, in particular, a lin
dependence onm* is found for the RPA excitation energie
of the ISGQR. The larger the effective mass, i.e., the hig
the density of states around the Fermi surface, the lowe
the calculated ISGQR excitation energy. Both the calculat
of ground-state properties in spherical nuclei, as well as
RPA results for ISGQR excitation energies, place the follo
ing constraint on the nucleon effective mass for Skyrme-ty
interactions:m* /m50.860.1 @31#.

In the relativistic framework the expression ‘‘effectiv
mass’’ has been used to denote different quantities.
quantity which is usually used to characterize an effect
interaction, and which in the literature is most often call
‘‘the relativistic effective mass,’’ is also known as the ‘‘Dira
mass’’@34#

mD5m1S~r !, ~46!

wherem is the nucleon mass andS(r ) is the scalar nucleon
self-energy. Here we also adopt the term ‘‘Dirac mass.’’ T
Dirac mass should not be identified with the effective ma
determined from nonrelativistic shell and optical mod
analyses of experimental data, i.e., with the ‘‘nonrelativist
type effective mass.’’ The Dirac mass is determined, on o
hand by the binding energy at saturation density in nucl
matter ~the effective single-nucleon potential is the sum
the attractive scalar and repulsive vector nucleon s
energies!, and on the other hand by the empirical spin-or
splittings in finite nuclei~the effective single-nucleon spin
orbit potential is proportional to the difference between t
scalar and vector self-energies!. This is the reason why, fo
virtually all mean-field relativistic effective interactions
0.55m<mD<0.60m. In this range of values the Dirac mas
does not affect the spacings between single-nucleon ener
and therefore it cannot be related to the ISGQR.

The ‘‘nonrelativistic-type effective mass’’m* («), i.e., the
quantity that should be compared with the empirical effect
mass derived from nonrelativistic analyses of scattering
bound-state data, is defined by thek2massm̃(«) ~character-
izes the momentum dependence of the mass operator!, by the
E2massm̄(«) ~characterizes the explicit energy dependen
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of the mass operator!, and by the ‘‘Lorentz mass’’me* («)
~results from different Lorentz transformation properties
the scalar and vector potentials! @34,35#,

m* ~«!

m
5

m̃~«!

m Fme* ~«!

m
1

m̄~«!

m
212

«

m S m

m̃~«!
21D G .

~47!

The nonrelativistic-type effective mass and its energy dep
dence near the Fermi surface has been analyzed in R
@34,35# for symmetric nuclear matter. In Ref.@36# the stan-
dard relativistic mean-field model has been extended by
cluding dynamical effects that arise in the coupling of sing
nucleon motion to collective surface vibrations. It has be
shown that a simple phenomenological scheme, based
linear ansatz for the energy dependence of the scalar
vector components of the nucleon self-energy for states c
to the Fermi surface, allows a simultaneous description
bulk nuclear properties and single-nucleon spectra in a s
consistent relativistic framework.

Here we would like, without going beyond the mean-fie
level, to use the isoscalar quadrupole response to cons
the isoscalar properties of our density-dependent effec
interactions. This can be done in the following way. We fi
notice that a particular ratio of isoscalar parametersbi andci
( i[s,v) in Eq. ~40!, characterizes the density of singl
nucleon states around the Fermi surface. In Fig. 6 we dis
the average energy gaps between the last occupied an
first unoccupied major shellŝEparticles&2^Eholes& in 208Pb,
where

^E&5

(
nl j

~2 j 11!Enl j

(
nl j

~2 j 11!

, ~48!

FIG. 6. Average energy gap between the last occupied and
unoccupied major shells in208Pb, as function of the isoscalar pa
rameterd Eq. ~49!. The average gaps of neutron states are deno
by dots, and those of proton states by squares.
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and the sums run over occupied~unoccupied! states within a
major shell. The average gaps for proton and neutron st
are plotted as functions of the parameterd

d5
bs /cs

bv /cv
, ~49!

see Eq.~40!. Starting from DD-ME1, we have generated
set of five effective interactions with 0.93<d<1.01. For
each interaction the remaining parameters were readjuste
reproduce our standard set of ground-state data for 12 sp
cal nuclei, as well as the nuclear matter equation of state
particular, for all five interactions the Dirac mass ismD
'0.58. The average gap between the last occupied and
unoccupied major shells, both for proton and neutron sta
is approximately linearly proportional tod. This parameter,
therefore, plays the role of the inverse of the effective ma
As functions ofd, in Fig. 7 we plot the corresponding cen
troid energy of the isoscalar quadrupole Hartree respons
208Pb ~upper panel!, and the peak energies of the ISGQ
obtained by the full RRPA calculation with the five densit
dependent interactions~lower panel!. The calculated ISGQR
excitation energies are compared with the experimental va
of 10.960.3 MeV @37# ~shaded area!. Both the centroids of
the Hartree response and the ISGQR peak energies are
early proportional tod and the comparison with experimen
tal data on ISGQR, therefore, places an additional constr
on the parameters that characterize the isoscalar chann
the effective interaction. Ford50.93, in Fig. 8 we plot the
RRPA isoscalar quadrupole strength distribution in208Pb
~left panel!, and for the ISGQR peak at 11.2 MeV the proto
neutron, and total isoscalar transition densities. The posi
of the calculated peak should be compared with the empir
excitation energy 10.960.3 MeV, and also the 0\v low-

st

d

FIG. 7. Centroid energies of the isoscalar quadrupole Har
response~upper panel!, and the ISGQR peak energies calculated
RRPA ~lower panel!, for five different density-dependent interac
tions characterized by the parameterd Eq. ~49!. As in the previous
examples, the calculation is performed for208Pb. The shaded are
denotes the empirical ISGQR excitation energy in208Pb: 10.9
60.3 MeV @37#.
2-10
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lying discrete 21 state at 4.62 MeV is found in good agre
ment with the experimental value of 4.07 MeV.

IV. SUMMARY AND CONCLUSIONS

During the last decade the standard RMF models w
nonlinear meson-exchange effective interactions have b
very successfully applied in the description of a variety
nuclear structure phenomena. In recent years also the rel
istic random-phase approximation~RRPA!, based on effec-
tive Lagrangians with nonlinear meson self-interacti
terms, has been used to investigate properties of low-ly
collective states and of giant resonances. The use of no
ear effective interactions, however, presents not only a n
ber of technical problems, but also the predictive power
models based on these type of interactions appears t
somewhat limited, especially for isovector properties of e
otic nuclei far fromb-stability. An interesting alternative ar
models with density-dependent meson-nucleon vertex fu
tions. Even though these two classes of models are es
tially based on the same microscopic structure, i.e.,
density-dependent interactions, the latter can be more
rectly related to the underlying microscopic nuclear inter
tions. In a number of recent analyses it has been also sh
that relativistic effective interactions with explicit density d
pendence of the meson-nucleon couplings, provide an
proved description of asymmetric nuclear matter, neut
matter and nuclei far from stability.

Among the new structure phenomena observed or
dicted in nuclei far from stability, one of the most interesti
is the evolution of the isovector dipole response in nuc
with a large neutron excess. The multipole response of nu
with large neutron excess has been the subject of many
oretical studies in recent years, and some predictions h
been confirmed by very recent experimental data on lo
lying electric dipole strength in neutron rich nuclei@38,39#.
There are, however, many unknowns and this topic pres
an interesting challenge for modern theoretical advance
is, therefore, important to develop also a relativistic fram
work, based on effective Lagrangians with densi
dependent meson-nucleon couplings, in which the dynam

FIG. 8. The isoscalar quadrupole strength distribution~left
panel! and transition densities~right panel! in 208Pb, calculated for
d50.93~see text for description!. The vertical bar denotes the 0\v
21 discrete state. The proton, neutron, and total isoscalar trans
densities correspond to the ISGQR peak atE511.2 MeV excitation
energy.
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of exotic collective modes in nuclei far from stability can b
investigated.

In this work we have derived the RRPA matrix equatio
in the small amplitude limit of the time-dependent relativis
mean-field theory. The explicit density dependence of
meson-nucleon vertices introduces a number of rearran
ment terms in the residual two-body interaction. We ha
found that the rearrangement contribution to the matrix e
ments of the RRPA equations is crucial for a quantitat
comparison with experimental data on giant resonances
the present analysis we have performed illustrative RR
calculations of the isoscalar monopole, isovector dipole a
isoscalar quadrupole response of208Pb. The calculations are
fully self-consistent: the single-particle basis and t
particle-hole couplings are generated from the same effec
Lagrangian, and the RRPA configuration space includes b
the positive-energy particle-hole pairs, as well as pa
formed from hole states and negative-energy states in
Dirac sea. On the one hand, we have tested our approac
comparing the RRPA results for giant resonances with w
known experimental data. On the other hand, we have
analyzed how the RRPA results on multipole giant re
nances can be used to constrain the parameters that ch
terize the isoscalar and isovector channel of the dens
dependent effective Lagrangians. Starting with the rece
introduced effective interaction DD-ME1@17#, RRPA calcu-
lations have been performed for families of densi
dependent interactions with a given characteristic~nuclear
matter incompressibility, asymmetry energy, etc.!.

The analysis of the isoscalar monopole response
shown that only the density-dependent interactions with
nuclear matter compression modulus in the rangeK`

'260–270 MeV, reproduce the experimental excitation
ergy of the isoscalar giant monopole resonance in208Pb.
This confirms our previous results obtained with relativis
effective forces with nonlinear meson self-interactions a
points, once again, to the pronounced difference between
values of the nuclear matter compression modulus predi
by microscopic nonrelativistic and relativistic mean-fie
plus RPA calculations. The RRPA results for the isovec
dipole response constrain the isovector channel of the ef
tive interactions. By using interactions with different valu
of the volume asymmetry energya4, but which otherwise
reproduce the same data set of ground-state propertie
spherical nuclei, we have shown that the calculated IVG
peak energy actually decreases by increasing the asymm
energy at saturation. The comparison with the experime
IVGDR excitation energy constrains the volume asymme
to the interval 34 MeV<a4<36 MeV. In the nonrelativistic
framework the isoscalar quadrupole response can be re
to the effective mass of the mean-field interaction. The c
cept of effective mass in the relativistic mean-field models
more complicated, and the quantity which is usually term
as ‘‘effective mass’’ cannot be identified with the effectiv
mass determined from nonrelativistic shell and optical mo
analyses of experimental data. Nevertheless, we have sh
that a comparison of RRPA results with the empirical ISGQ
and with the low-lying 0\v 21 state, places an additiona
constraint on the parameters which characterize the isosc

on
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channel of the density-dependent effective interactions.
The RRPA with density-dependent meson-nucleon c

plings presents an important step in the relativistic desc
tion of the nuclear many-body problem. In this work we d
not attempt an analysis of the multipole response in ex
nuclei far fromb-stability. In order to do that, pairing corre
lations must be included in the RRPA framework. Work is
progress on the fully self-consistent relativistic quasiparti
random-phase approximation~RQRPA!, based on effective
Lagrangians with density-dependent meson-nucleon c
plings, and formulated in the relativistic Hartree-Bogoliub
canonical single-particle basis.

In the present analysis we have only considered the
change of the isoscalar-vectors-meson, the isoscalar-vecto
v-meson, and the isovector-scalarr-meson. Other meson
fields, of course, could be included in the relativistic mea
field model description of ground-state properties of fin
nuclei, as well as in the RRPA treatment of excited sta
For the latter, in particular, it might be important to exte
the model by including at least the isovector-pseudosc
p-meson and the isovector-scalard-meson. The problem
however, is our very limited knowledge of the meso
nucleon couplings in these channels at finite density. In
mean-field Hartree approximation the contribution of t
pion vanishes in nuclear matter and in the ground state
finite nuclei. Relativistic Brueckner-Hartree-Fock calcu
tions of asymmetric nuclear matter indicate that signific
strength can be expected in the isovector-scalar channel
that the isovector-vector and isovector-scalar meson-nuc
couplings at saturation density are of comparable stren
@20#. Several calculations of finiteNÞZ systems have
n-

g,

d

e

ys
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shown, however, that while the overall isovector strength
a relatively well-defined value, the distribution between t
scalar and vector channels is not determined by ground-s
properties, at least for nuclei not too far from stability.
appears, therefore, that at present it would be rather diffi
to extend the relativitic RPA by including additional meso
degrees of freedom, since the corresponding meson-nuc
couplings cannot be determined in the usual way, i.e., fr
the calculated ground-state properties of spherical nuclei.
the other hand, RRPA calculations of excited states, and
giant resonances in particular, could be used, as shown in
present analysis, to constrain the vertex functions for ad
tional channels of effective nuclear interactions. For t
isovector-scalar channel, for example, additional informat
could be obtained from the isovector dipole response in
clei with a large neutron excess. The excitation energy
strength of the dipole pygmy resonance in neutron rich
clei, as well as its relative position with respect to t
IVGDR, could provide information about the distribution o
the strength of the isovector nuclear effective interaction
tween the scalar and vector channels. The pion-nucleon R
channel could be constrained, for example, by RRPA ca
lation of spin-multipole resonances and of the strength
energy of Gamow-Teller resonances.
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