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The matrix equations of the relativistic random-phase approximafiPA) are derived for an effective
Lagrangian characterized by density-dependent meson-nucleon vertex functions. The explicit density depen-
dence of the meson-nucleon couplings introduces rearrangement terms in the residual two-body interaction.
Their contribution is essential for a quantitative description of excited states. lllustrative calculations of the
isoscalar monopole, isovector dipole, and isoscalar quadrupole respof¥Pnf are performed in the fully
self-consistent RRPA framework based on effective interactions with a phenomenological density dependence
adjusted to nuclear matter and ground-state properties of spherical nuclei. The comparison of the RRPA results
on multipole giant resonances with experimental data constrains the parameters that characterize the isoscalar
and isovector channel of the density-dependent effective interactions.
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[. INTRODUCTION cently it has been shown that the fully consistent inclusion of

The success of models based on the relativistic mean fielthe Dirac sea of negative energy states in the RRPA is essen-
(RMF) [1] approximation in describing structure phenomenatial for a quantitative comparison with the experimental ex-
not only in nuclei along the valley g8-stability, but also in  citation energies of giant resonand&s5|.
exotic nuclei with extreme isospin values and close to the The RRPA with nonlinear meson interaction terms, and
particle drip lines, has also renewed the interest in theoreticalith a configuration space that includes the Dirac sea of
studies based on the relativistic random-phase approximatiomegative-energy state, has been very successfully employed
(RRPA). Although several RRPA implementations have beenn studies of nuclear compressional mofg$,7], of multi-
available since the 1980s, only very recently RRPA-basegole giant resonances and of low-lying collective states in
calculations have reached a level on which a quantitativespherical nuclej8], of the evolution of the low-lying isovec-
comparison with experimental data became possible. Twtor dipole response in nuclei with a large neutron excess
points are essential for the successful application of th¢9,10], and of toroidal dipole resonancgkl].
RRPA in the description of dynamical properties of finite  An interesting alternative to the highly successful RMF
nuclei: (i) the use of effective Lagrangians with nonlinear models with nonlinear self-interaction terms, is an effective
self-interaction terms, an@i) the fully consistent treatment hadron field theory with medium dependent meson-nucleon
of the Dirac sea of negative energy states. Many studies ovefertices. Such an approach retains the basic structure of the
the last decade have shown that the inclusion of nonlinearelativistic mean-field framework, but could be more directly
meson terms in meson-exchange RMF models, or nonlineaelated to the underlying microscopic description of nuclear
nucleon self-interaction terms in relativistic point-coupling interactions. In particular, the density-dependent relativistic
models, is absolutely necessary in order to reproduckadron field(DDRH) model[12] has been successfully ap-
ground-state properties of spherical and deformed nuclei oplied in the calculation of nuclear matter and ground-state
a quantitative level. Techniques which enable the inclusiomproperties of spherical nuclgl3], and extended to hypernu-
of nonlinear meson interaction terms in the RRPA frame<lei [14], neutron star mattdrl5], and asymmetric nuclear
work, however, have been developed only recently in thematter and exotic nucl¢il6]. Very recently, in Ref[17] we
calculation of the relativistic linear respongg], and in the have extended the relativistic Hartree-Bogoliub@®HB)
solution of the RRPA-matrix equatidi3]. For a quantitative model [18] to include density-dependent meson-nucleon
description of excited states, the RRPA configuration spaceouplings. The effective Lagrangian is characterized by a
must include not only the usual particle-hole states, but alsphenomenological density dependence of thew, and p
pair configurations formed from occupied states in the Fermmeson-nucleon vertex functions, adjusted to properties of
sea and empty negative-energy states in the Dirac sea. Evenclear matter and finite nuclei. It has been shown that, in
though it was known for a long time that the inclusion of comparison with standard RMF effective interactions with
configurations built from occupied positive-energy states andionlinear meson-exchange terms, the density-dependent
empty negative-energy states is essential for current conseameson-nucleon couplings significantly improve the descrip-
vation and the decoupling of spurious stafd$ only re- tion of symmetric and asymmetric nuclear matter, and of
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ground-state properties ™+ Z nuclei. This is, of course, dependent hadron field theory these couplings are chosen as
very important for the extension of RMF-based models tofunctions of the vector densityp,=\j,j*, with j,
exotic nuclei far fromg-stability _(descrlptlon_ of the neutron IE?’,L#”- Alternatively, the couplings could be functionals of
skin, the neutron halo, pygmy isovector dipole resona)mcesthe scalar densitps= . It has been shown, however, that

antlj f(t)r:_appllckatlonz n thig'elgé);:uc.ﬁaé astr;aprsmsa tthe vector density dependence produces better results for fi-
n this work we derive the Wi ensity-dependent .o nuclei [12], and provides a more natural relation be-

meson-nucleon (_:oupllngs._Jus_t as in the static case ﬂﬁveen the self-energies of the density-dependent hadron field
single-nucleon Dirac equation includes the additional rear

. S theory and the Dirac-Brueckner microscopic self-energies
rangement self-energies that result from the variation of th y P g

; . . 16]. In the present work we choose the vector density de-
vertex functionals with respect to the nucleon field operator endence for the meson-nucleon couplings
the explicit density dependence of the meson-nucleon COLE The single-nucleon Dirac equation is deri\./ed by the varia-
plings introduces rearrangement terms in the residual inter- , ) —
action of the RRPA. The rearrangement contribution is estion of the Lagrangiaril) with respect toys
sential for a quantitative analysis of excited states in the . .
RRPA framework. In Sec. Il we present the formalism of the P ={a{ —IV=V(r,0]+V(r,t)+ Bm+S(r.1))
relativistic RPA with density-dependent meson-nucleon cou- +3Rr 01 (5)
plings, and derive the RRPA equations in the small amplitude
limit of the time-dependent RMF. The results of an illustra-The Dirac Hamiltonian contains the scalar and vector
tive calculation of multipole giant resonances #Pb are  nycleon self-energies defined by the following relations:
analyzed in Sec. lll. Section IV contains the summary and

the conclusions. S(r,t)=g,(p,)o(r,1), (6)

Il. FORMALISM OF THE RELATIVISTIC RANDOM- V (r )= o (r 1)+ Z2 (it
PHASE APPROXIMATION WITH DENSITY-DEPENDENT w10 =0u(po) @10+, (po) 7 pu(r1)

MESON-NUCLEON COUPLINGS N (1—173)
e
2

) o _ A,(r,b). (7)
The standard density-dependent relativistic hadron field
(DDRH) model[12] for nuclear matter and finite nuclei is

defined by the Lagrangian density The density dependence of the vertex functigps g,,, and

g, produces therearrangementcontribution to the vector

o 1 1 1 self-energy,
L=y(iy- d—m)y+ = (do)°— —m2a?—=Q , Q"
2 2 ° 4 "+ P

d

Yp— - -
p,t
(9pvl'//y TY-p,

1 2 2 1. SHV 1 272 1 v y
+§mww —ZR#VRM +Empp _ZFMVFM —gglﬂ(ﬂﬂ

99,— 9o—
Rirt) =—2yy o, + .
S50 =7, 50y e, . ®
The inclusion of the rearrangement self-energies is essential
— — - —  (1-13) for the energy-momentum conservation and the thermody-
~9u¥y 0= gy pTY ey A——m—1. @ hamical consistency of the moddl2,13.
o _ In the time-dependent RMF modEL9] one usually ne-
Vectors in isospin space are denoted by arrows, and boldfaggiects the retardation effects for the meson fields, and the

symbols indicate vectors in ordinary three-dimensionakelf-energies are determined at each time by the solutions of
space. The Dirac spina# denotes the nucleon with mass  the Klein-Gordon and Poisson equations:

m,, m,, and m, are the masses of the-meson, the

o-meson, and the-meson.g,,, g,, andg, are the corre- [—A+m§]a(r,t)= —0,(py) ps(r,t),

sponding coupling constants for the mesons to the nucleon.

e’/4w=1/137.036. The coupling constants and the mass of [—A+mi]wﬂ(f1t)=9w(i)v) i u(r,0),

the o-meson are treated as free parameters, adjusted to re- 9)

produce nuclear matter properties and ground-state proper-

ties of finite nuclei.Q#*, R#*, andF*" are the field tensors
of the vector fieldsw, p, and of the photon

[—A+m2]p,(r,)=0,(p,)] (r.1),

—AA, (r,t)=eje,(r,t).

Q= gtw’— 9" w", 2
This approximation is justified by the large masses in the
ﬁ’”=a“5 V_aV’;M' 3) meson propagators. Retardation effects can be neglected be-
cause of the short range of the corresponding meson ex-
FAY— guAY — gV AM. (4) qhalrlge forces. The explicit solutions of E(®. read, respec-
tively,

The meson-nucleon couplings,, g,,, andg, are assumed
to be vertex functions of Lorentz-scalar bilinear forms of the )= — ) (rr ) pu(r )d3r’
nucleon field operators. In most applications of the density- o(r.h)= 9o(P)Do(r.r")ps(r, '
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) s which oscillates with a small amplitude. In the single-particle
w#(r,t):J’ 9u(py)D(r,r")j,(r',tydr’, space this field is represented by the operator
- - Y 1A
pu(r.t)= f 9,(p)D,(r,r )], (r D%, (10 f(H=2 fuhaa. (14

The expression for the single-particle density matrix reads

Aﬂ(r,t)zef De(r,r)jeu(r Hd3’,

A
p(r,r' )= (O (' b 15
with the Yukawa propagators Pl ) ;1 (D)W 0 19
1 e Mglr—r'l By writing the Dirac spinor in terms of large and small com-
Dy(ror')=g————— (1D ponents
4 |r —r ’|
( ’ )
where ¢ denotes ther, », andp mesons, and the photon. |¢/fi(r,t))=( i .I(r 0] (16)
The sources of the fields are the nucleon densities and gilr,
currents calculated in thleso—seaapproximation the density matrix takes the form

p(r,r't)
ps(r,t) =E D(r.Y),

(rt)f (r',v —|2 fi(r, t)gI (r',v

A
j ()= 2 (DY (1), =l a T A
X 12 ; gi(r.HEf(r' b Z‘, (r.Hgl(r b
Fu(r D=2 (D Ty (r), (17)

The equation of motion for the density operator reads

z
jcﬂ(m):; Gi(r, )y, (). igp=[A(p)+1(1).p]. (19)

where the summation is over all occupied states in the and in the small amplitude limit the density matrix is ex-
Fermi sea, i.e., only occupied single-nucleon states witlpanded to linear order

positive energy explicitly contribute to the nucleon self- R 0)

energies. Even though the stationary solutions for the p(1)=p™7+ 5p(1), (19

hegative-energy states do not cont_rlbu_te to t_he ‘_’e_”s'F'eS Where p© is the stationary ground-state density. From the
the no-seaapproximation, their contribution is implicitly in-

cluded in the time evolution of the nuclear syst&ud]. definition of the density ma}trile),Ait follows thatp(t) is a

The relativistic random-phase approximati®tRPA) rep-  Projector at all times, i.e.p*(t)=p(t). In particular, this
resents the small amplitude limit of the time-dependent relameans that the eigenvalues @f) are 0 and 1. In the non-
tivistic mean-field theory. In the remainder of this section werelativistic case particle states above the Fermi level corre-
will derive the RRPA equations with density-dependentspond to the eigenvalue 0, and hole states in the Fermi sea
meson-nucleon couplings from the response of the densityorrespond to the eigenvalue 1. In the relativistic case one

matrix p(t) to an external field, also has to take into account states from the Dirac sea. In the
. o no-seaapproximation these states are not occupied, i.e., they
F(t)y=Fe "'+ H.c., (13)  correspond to the eigenvalue 0 of the density matrix.

0 for unoccupied states above the Fermi lewetlexp)
pO=6.p®=4{ 1 foroccupied states in the Fermi éadexh) (20
0 for unoccupied states in the Dirac S@adex «).

p2(t)=p(t) also implies, in leading order and this means that the only nonvanishing matrix elements of

5;3 aredppn, Opnp, Opan, anddpy, . These are determined
o . by the solution of Eq(18), which in the linear approxima-
p©@sp+ 6pp = 6p, (21)  tion reads
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AU I S -
i9,0p=[h(©,5p]+ %5,),;)(0’ +[f.0?], (22

with
oh oh d oh
—8p=2, — &, —5 5P
p p % P Ppht Phpt 2 Ppan P ah
+ h S (23)
apha Pha -

Under the influence of the external fie{d3), in the small

PHYSICAL REVIEW G566, 064302 (2002

V ’ ! V a! ’
B=( pp’hh pa’hh ) (27)
Vaprnhy Vaarhh
and the amplitudeX andY are defined
op op
Lo vl s
5pah 5pha

The vectors which represent the external field contain the
matrix elements

(o) = [ fap
F_<fah)’ F_(fha). (29)

amplitude limit 5p also exhibits the harmonic time depen-
dencee !, Taking into account thdi{?)= &€ is diagonal

In the self-consistent RRPA the matrix elements of the re-

in the stationary basis, the resulting RRPA equations read sjdual interaction are derived from the Dirac Hamiltonian of

(w— Ep+ Eh) 5pph: fph"r‘ z Vph’hp’ 5pp’h’
plh/

+Vpp’hh’ 5ph’p’ + 2 Vph’ha’ 5pa’h’
a'h’

+Vpa!hhl5phlal,
(0= €at €n)Ipan=Tant 2 Vanhp 9pprir
p’h’

+Vap’hh’5ph’p’+ 2 Vah’ha’apa’h'

a'h’

+Vaa’hh’ 5ph’a’ f

((z)_ Eh+ Gp) 5php: fhp+ E thrppr 5pp’h’
p/hf

+Vhp’ph’ 5phrp/ + 2 thrpa/ 5pa’h’
a’'h’

+Vha’ph’5ph’a’ ’ (24)

(0= €nt €,)Opha=TFhat 2 Vi ap' OPpr
p’h/

+Vhp'ah' 9Pnpr+ 2 Vit aar Parh
a'h’

+ Vha’ah’ 5ph/a/
or, in matrix form

o Sle Q- e

The RRPA matrice®\ andB read

B ( (Ep_ Gh) 5ppr 5hh’

(Eaf— eh) 5aa’ 5hh’ )
Vph’ha')

V ’ !
ph’hp
(26)

( Vah’ha’

Vah’hp’

Eq. (9,

Vabed™ Ipan f‘l’ (r)Wp (rp)V(ry,ry)

XW (1) Wy(rp)d3r,d3r,. (30)

In order to calculate the contributions of each meson field to
V(rq,r5), we expand the meson-nucleon couplings and their
derivatives around the ground-state den;aﬁy

ag;
(p,)= + Sp,,
9i(p,) =8i(pY) 70, |, Pu
ag;  Jg; 7%
= — &p,. 31
Iy IPuly apl], & (=Y

If for the meson fields appearing in the scalar and vector
nucleon self-energies we use the explicit solutigh) in
terms of the meson propagators and nucleon densities and
currents, the individual contributions of the meson fields to
V(rq,r,) are obtained from the particle-hole matrix element
of the Dirac Hamiltonian.

The contribution of the isoscalar-scalar sigma field

Vo(r1,r2) == B1829,(p,(r1))35(p, (r2))D o (r1,r2)

99, 2

s
1 + 1 lo————p4(r
{Bl 2& U(rl) 1 Zapg(rl) pS( l)

S(ri—ry)

(990- Io’(rl)
Fhbag, D )}r—l

{ 1129,(p,(r1)) (r )Ps( 2)

c7pv
o P
+ llBZWPS(rl)go(pv(rZ))

L1 99, 99, D
+ 1 ngv(rl) pS(rl)é,pv(rz) pS(rZ) o’(rl’rZ)l

(32
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where

Io’(rl):J rgo’(pv(r))Dg(rlvr)ps(r)dr-

The contribution of the isoscalar-vector omega field

Vo(r1,r2)=(BY)1(BY4)29.,(p,(r1))
X u(py(r2))D,(rq,r2)
9, 99, o(r1)
[ 9py(r1) op2 ( l)pu(rl)]lllZ
X ( _r2)+ g (pv(rl)) ( )pv( 2)
ad,, a9
apv(r )pv(rl)gw(pv(rZ)) (9 (r )pv(rl)
xag—‘” ]11 1,D 33
07pv(l'2)pv(r2) 1412 w(rlrr2)1 ( )
where

Iw(rl):f rgw(pv(r))Dg(rlar)pv(r)dr'
The contribution of the isovector-vector rho field
V(11,12 = (BY)1(BY,)273739,(p, (1))
Xgp(pv(rZ))Dp(rler)

99, 5. 99, 5 9,
+ + r
| &pv(rl) 72 8p§(l’1) ptv( 1)

apv(rl) 1
) d
X1lp p( - A(ri—rz)+19,(p,( (r))m 1(9 ?’; )
99,
ptv(r2)+ PRG; )ptv(rl)gp(pv(rZ))Tz

o9,
+ &P (rl)ptv( )apv(r )ptv( 2)]
X1315D ,(rq,12), (34)

where

Ip(rl): f rgp(pv(r))Dg(rl1r)ptv(r)dr'
Finally the contribution of the Coulomb field

Vo(r1,12)=€*(By*)1(BY,)2Dc(r1,r2). (39

PHYSICAL REVIEW (66, 064302 (2002

radial integrald 4(r) (¢=o0,0,p) contaianb(r,r’), which
is the radial factor in the first term of the multipole expansion
of the Yukawa propagatdill):

1 o L
Dy(rr)=— LZO Db(nr')M;L Yim(Q)Yiu(Q).
(36)

We notice that, in addition to the direct contribution of the
meson exchange interactioffgst terms in Eqs(32)—(34)],
the explicit density dependence of the meson—nucleon cou-
plings introduces a number oéarrangementerms in the
residual two-body interaction/(r,,r,). These rearrange-
ment terms are essential for fully consistent RRPA calcula-
tions. Only when their contribution is included in the matrix
elements of the residual interaction, it becomes possible to
reproduce reasonably well the excitation energies of giant
multipole resonances. Without rearrangement terms, one
finds discrepancies of the order of several MeV between the
experimental excitation energies and the RRPA peak ener-
gies, calculated with relativistic effective interactions that are
adjusted to ground state properties of spherical nuclei. A
similar effect is observed in RRPA calculations based on
effective forces with nonlinear meson self-interactions, when
the contribution of the nonlinear terms is not included in the
matrix elements of the residual interactifsi.

In the next section we present results of illustrative RRPA
calculations of the multipole response in spherical nuclei.

For the multipole operato@w the response functioR(E)
is defined

2

R(E)=2 BON—00 g g 212

(37)

wherel is the width of the Lorentzian distribution, and

1
B(\i—00)= 5377 HOdlIQuN)I2. (38)

In all the examples considered in Sec. lll, the continuous
strength distributions are obtained by folding the discrete
spectrum of RRPA states with the Lorentzimee Eq.(37)]
with constant widthl'=1 MeV.

Ill. ILLUSTRATIVE RRPA CALCULATIONS: GIANT
RESONANCES

In this section the RRPA with density-dependent meson-
nucleon couplings is applied in illustrative calculations of
giant resonances in spherical nuclei. In particular, we analyze
the isoscalar monopole, the isovector dipole and the isoscalar
quadrupole resonances #%b. We will show which iso-
scalar and isovector properties of the effective mean-field

The subscripts 1 and 2 of the Dirac matrices refer to particlénteractions affect the multipole strength distributions, and

1 and 2, respectivelyp,, ps, and p;, denote the vector,

how the results of RRPA calculations can be used to con-

scalar, and isovector-vector density, respectively, and the detrain the effective interaction.
rivatives of the meson-nucleon couplings with respect to the For the density dependence of the meson-nucleon cou-

vector density are evaluated at ground-state dem@ityThe

plings we adopt the functionals used in R¢fs3,16,17. The

064302-5
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coupling of theo-meson andw-meson to the nucleon field TABLE |. The effective interaction DD—ME1. See Eq89)-

reads (41) for the definition of the coupling parameters.
gi(p)=0i(psadfi(x) for i=o, 0, (39 DD-ME1
m,, 549.5255
where m, 783.0000
5 m, 763.0000
f(x)—a, 1+bi(x+d) 40 9o (Psa) 10.4434
1+c¢i(x+d;)? 9u(Psa) 12.8939
9,(Psad 3.8053
is a function ofx=p/psy, andpsy denotes the baryon den- 8y 1.3854
sity at saturation in symmetric nuclear matter. The eight real b, 0.9781
parameters inf40) are not independent. The five constraints Co 1.5342
fi(1)=1, f(1)=f"(1), andf{(0)=0, reduce the number d, 0.4661
of independent parameters to three. Three additional param- a, 1.3879
eters in the isoscalar channel age(psa). 9.(pPsa), and b,, 0.8525
m,—the mass of the phenomenological sigma-meson. For Co 1.3566
the p-meson coupling the functional form of the density de- d, 0.4957
pendence is suggested by DB calculations of asymmetric a, 0.5008
nuclear mattef20]
9,(p)=0,(psaexd —a,(x—1)]. (47 In the present analysis we perform fully consistent RRPA
calculations of isoscalar monopole, isovector dipole, and
The isovector channel is parametrized )(psa) anda, . isoscalar quadrupole giant resonance$%#b. The single-

Usually the free values are used for the masses obtlaed  particle basis and the particle-hole couplings are obtained
p mesons:m,=783 MeV andm,=763 MeV. In principle from the same effective Lagrangian, and the configuration
one could also consider the density dependence of the messpace includes both particle-hole pairs, as well as pairs
masses. However, since the effective meson—nucleon cofiermed from hole states and negative-energy states from the
pling in nuclear matter is determined by the ragjbm, the  Dirac sea. Our starting point is the DD-MEL1 effective force,
choice of a phenomenological density dependence of thboth in the Dirac Hamiltoniar(5), as well as the residual
couplings makes an explicit density dependence of thénteraction. We then proceed to construct families of density-
masses redundant. dependent interactions with some given characteristen-

The eight independent parameters, seven coupling parargressibility, asymmetry energy, etcand study the resulting
eters and the mass of tilemeson, are adjusted to reproduce properties of giant resonances.
the properties of symmetric and asymmetric nuclear matter,
binding energies, charge radii and neutron radii of spherical
nuclei. In particular, in Ref[17] we have introduced the
density-dependent meson-exchange effective interaction
(DD-ME1), whose parameters are displayed in Table |I. The The isoscalar giant monopole resonafi&GMR) repre-
seven coupling parameters and theneson mass have been sents the most simple mode of collective excitations in nu-
simultaneously adjusted to properties of symmetric anctlei. In particular, the ISGMR in heavy nuclei is the only
asymmetric nuclear matter, and to ground-state propertiesource of experimental information on the nuclear matter
(binding energies, charge radii and differences between newompression modulu&... This quantity determines basic
tron and proton radjiof 12 spherical nuclei. For the open properties of nuclei, supernovae explosions, neutron stars
shell nuclei pairing correlations have been treated in the BC&nd heavy-ion collisions. The range of valuesaf has been
approximation with empirical pairing gap$ive-point for- deduced from the measured excitation energies of the
mula). ISGMR in spherical nuclei. The presently available experi-

In Ref. [17] the relativistic Hartree-BogoliuboYRHB) mental data set, however, does not limit the rang& ofto
model with the density-dependent interaction DD-MEL inbetter than 200—300 MeV. The microscopic determination of
the ph-channel, and with the finite range Gogny interactionthe nuclear matter compressibility is based on the construc-
D1S in thepp-channel, has been tested in the analysis of thé¢ion of sets of effective interactions that differ mostly by
equations of state for symmetric and asymmetric nucleatheir prediction of the excitation energies of ISGMR, i.e., by
matter, and of ground-state properties of the Sn and Pb isdhe value ofK.,, but otherwise reproduce reasonably well
topic chains. It has been shown that, as compared to standagstperimental data on ground-state nuclear properzie22.
nonlinear relativistic mean-field effective forces, the interac-Effective interactions with different values &f, are used to
tion DD-MEL1 has better isovector properties and thereforecalculate bulk ground-state properties of heavy spherical nu-
provides an improved description of asymmetric nuclearclei in a self-consistent mean-field framework, and RPA or
matter, neutron matter and nuclei far from stability. time-dependent mean-field calculations are performed for the

A. The isoscalar monopole resonance and the nuclear matter
incompressibility

064302-6
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isoscalar monopole excitations. Such a fully consistent cal- 15— ' ' ' - ' ' '
culation of both ground-state properties, as well as ISGMR r 1
excitation energies, restricts the range of possible values fo 145 -
K... However, since there are also other effects beyond the a " -
mean-field level which influence the isoscalar monopole 14 W
resonance (anharmonicities, pairing, coupling between s f j
single-nucleon and collective motipnit has been argued & ;5
[22] that, rather than on the systematics over the whole peg
riodic table, the determination of the nuclear compressibility .| i
should rely more on a good measurement and microscopit I 208
calculations of GMR in a single heavy nucleus such as Pb
208pp Microscopic calculations have been performed both in > 7
the nonrelativistic and in the relativistic mean-field frame-

work. Modern nonrelativistic Hartree-Fock plus RPA calcu- a5 o0 o0 380 20 260 30 m0 50
lations, using both Skyrme and Gogny effective interactions, K_(MeV)

indicate that the value d€,, should be in the range 210-220

MeV [21,22. In particular, in Ref[22] a set of effective FIG. 1. Density-dependent RRPA peak energies of the ISGMR
Gogny forces was generated, which on one hand allow & 208 as a function of the nuclear matter compressibHity.
good description of static properties of nuclei, and on theThe calculated peaks are shown in comparison with the experimen-
other hand span the range 21K, <300 MeV. It was tal excitation energy of the monopole resonande=14.1
shown that the RPA calculations reproduce the available exz 0-3 MeV|[25].

Elirilr]oflgt?cl):j Eiaiﬁqr:ifxgénﬁqoefgg It]/lt-:(‘:\l/\.lylr?1 r;eddjg%l \i/ty nuenergies. For the density-dependent effective interaction with

has been shown that even generalized Skyrme forces, Wiﬁﬁtxzzzr? cli\/letvb”t] Fig. Zthe dls.;t).lay tge |§?scaql?%r3g10_rll_ﬁpole
both density- and momentum-dependent terms, can only reeng f'Sh” Iggl\r;lF?n L@”ﬁéﬂ”m in&' 'S/S d ' Ie
produce the measured breathing mode energies for values BpStion of the peakis ai=14.1 MeV, and we plot
K. in the range 215 15 MeV. In relativistic mean-field the proton, neutron and total isoscalar transition densities.

models based on nonlinear meson self-interactions on the The present analysis, therefore, confirms that there is a

other hand, results of both RRPA and time-dependent calelpronounced difierence between the values of the nuclear

lations suggest that empirical GMR energies are best reprdpatter compression modulus predicted by microscopic non-

duced by an effective force withi..~250—270 MeV[24,6). relativistic (K..~210-230 MeV) and relativistic K_,

It has to be emphasized, however, that even though relativ- 250-270 MeV) mean-field plus random-phase approxima-

istic calculations have been performed using nonlinear effecion calculations. The origin of this discrepancy is at present

tive interactions with different values df. . these forces MOt understood, even though there are some indications that

were not constructed specifically with the purpose of deter!t m|ght be due, at least in part, to the dn‘ferences. in the
mining K., . Rather, standard nonlinear effective interactionsdenSIty Q¢p¢ndence Of. t.he. asymmetry energy predicted by
have been used, which also exhibit other differences tha{?onrelat'v'St'C and relativistic mode[26].
could affect the microscopic determination of the nuclear
matter compressibility.

Starting from DD-MEL, in this work we have generated a asymmetry energy
consistent set of relativistic density-dependent effective in- The calculated properties of isovector dipole giant reso-
teractions with 226K, <280 MeV. The same functional nances(IVGDR) will be predominantly determined by the
form for the density dependence for the meson—nucleon cou-

B. The isovector dipole response and the nuclear matter

plings has been used for these forces and, except for thh T 1T 1~ R B L B T
value of K., their parameters have been adjusted to the L 08 | 1 i ]
same set of experimental data on ground-state properties ¢ o
12 spherical nucldil7]. The results of fully consistent RRPA 5 or 1~ t .
calculations with these forces are shown in Fig. 1, where wee | {1 & oo’ -
display the calculated excitation energies of ISGMR{Pb = | 1% b ]
as function of the nuclear matter compressibility. The shadec 002 e ons
region denotes the range of presently available experimente i 1 L ~-- protons |
data[25]. We notice that, in accordance with the results ob- L 1 b Y] AP R R PR

0 10 20 30 40 50 2 4 6 8 10

tained with relativistic effective forces with nonlinear meson
self-interactions, only the density-dependent interactions
with K..~260-270 MeV reproduce the experimental value. FiG. 2. The isoscalar monopole strength distributieft pane)

We have also verified that ISGMR excitation energies forand transition densitiegright pane) in 2°8Pb, calculated with a
lighter nuclei, calculated with these particular interactions density-dependent effective interaction wikh, =270 MeV. The

are closest to the empirical curiig~80A~® MeV and that proton, neutron and total isoscalar transition densities correspond to
they reproduce the available data on experimental excitatiothe peak aE=14.1 MeV.

E MeV) 1 (fm)
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isovector channel of the effective interaction. In particular, BT ——1 T 71— T T T 1
the excitation energies of IVGDR can be directly related to

the nuclear matter asymmetry energy. The energy per particln>
of asymmetric nuclear matter can be expanded about thtE 134

13.6 —

equilibrium densityps,:in a Taylor series ip and « [27], 132
E(p,@)=E(p.0)+Sy(p)a+Sy(p)a’+ -, (42
where s
_N-Z e ¢
a= N-I'-Z’ (43) g 3
< 2
Ko Y T T R U P R T R R
E(p,0)=—av+ 5 (p— psaT)2 , (44) 30 32 34 36 38 004 008 012 016 02
18p%, a, (MeV) p (fm>)
and FIG. 3. The IVGDR excitation energy of%pPb (upper left

pane), and the parameter, of the linear density dependence of the
_ Po A nuclear matter asymmetry energy, as functions of the volume asym-
Sip)=ayt 5 (p=psad 5 8p (p=psa)®+ metry a,. The shaded area denotes the experimental IVGD reso-
Psat sat (45) nance energy 13:30.1 MeV. In the right panel the asymmetry
energy curves, as functions of the baryon density, are plotted for

The empirical value of the asymmetry energy at saturatiordfifferent values of the volume asymmeay.
density (volume asymmetry S,(psa)=a,=30x4 MeV.
The parametep, defines the linear density dependence ofdent effective interactions with 30 Me¥a,<37 MeV. The
the asymmetry energy, anklK, is the correction to the in- parameters of the density-dependent meson—nucleon cou-
compressibility. The contribution of the ter8)(p) a* in (42)  plings have been adjusted in such a way that, while increas-
is very small in ordinary nuclei and the coefficient is noting a, in units of 1 MeV, the resulting effective interactions
constrained in the mean-field approximation. still reproduce the same set of data on ground-state proper-
A ground-state nuclear property which is directly deter-ties of spherical nuclei, that was used for the original inter-
mined by the asymmetry energy is the difference between thaction DD-ME1[17]. This means that these effective inter-
neutron and the proton radii. In a recent study of neutroractions essentially differ only in their description of the
radii in nonrelativistic and covariant mean-field modgl§], = asymmetry energy curve as function of the baryon density.
the linear correlation between the neutron skin and the sym- The resulting nuclear matter asymmetry energy curves,
metry energy has been analyzed. In particular, the analysand the calculated IVGDR excitation energies?fiPb, are
has shown that there is a very strong linear correlation bedisplayed in Fig. 3. In the upper left panel we plot the RRPA
tween the neutron skin thickness $fPb and the individual ~excitation energy of the IVGDR if°%b as function of the
parameters that determine the symmetry en8gy): a,, volume asymmetng,. Similar to what has been observed in
Po, andAK,. The empirical value of ,—r, in 2°Pb (0.20  Ref.[31], the resonance energy decreases with increasing
+0.04 fm from proton scattering datf29], and 0.19 The reason for this decrease is shown in the lower left panel,
+0.09 fm from the alpha scattering excitation of the isovec-where we plot the corresponding values of the slope param-
tor giant dipole resonanck80]) places the following con- eter py, which defines the linear density dependence of the
straints on the values of the parameters of the symmetragsymmetry energy. We notice that, in order to reproduce the
energy: a,~30-34 MeV, 2 MeV/fmi<p,<4 MeV/im®, bulk properties of spherical nuclei, an increaseagfneces-
and —200 MeV=AKy=<—-50 MeV. sitates a nonlinear increase jp§. The resulting asymmetry
Properties of isovector collective modes in finite nucleienergy curves as functions of the baryon density are shown
should, in principle, provide additional constraints on thein the right panel of Fig. 3. The increase pf with a,4
isovector channel of the effective interaction. In an analysigmplies a transition from a parabolic to an almost linear den-
of Skyrme forces and giant resonances in exotic nUggj, sity dependence 08, in the density regiorp=<0.2 fm™ 3.
Reinhard noticed a somewhat surprising property of thelhis means, in particular, that the increase of the asymmetry
IVGDR: while it is true that the excitation energy of this energy at saturation point will produce an effective decrease
resonance is sensitive to the volume asymmairythe reso-  of S, below p~0.1 fm™3. But this is, of course, the density
nance energy decreases by increasing the asymmetry enemggion characteristic for the IVGDR. We find, therefore, that
at saturation. This was qualitatively explained by noticingthe excitation energy of the IVGDR decreases with increas-
that an increase in the volume asymmetry is always accoming S,(ps.) =2a4, because this increase implies a decrease of
panied by an increase of the slopg, i.e., of the linear S, at low densities characteristic for the surface modes. In
density dependence of the asymmetry energy. In order tthe upper left panel of Fig. 3 we also compare the calculated
study this effect in a more quantitative way, we have generfVGDR peak energies fof°®Pb with the experimental value
ated, starting from DD-ME1, a set of eight density depen-of 13.3+0.1[32]. It appears that the experimental IVGDR

064302-8



RELATIVISTIC RANDOM-PHASE APPROXIMATION . . . PHYSICAL REVIEW C66, 064302 (2002

LT e o e B B B B 02— T 1 1 are plotted in the right panel. Singg is constant, by in-
r 2085 11 L — total . creasinga, the asymmetry energ$, increases for all den-
12 - 7 protons sities. As a result, the IVGDR peak energies 9fPb in-
z T azasmev | 00T 4 7 crease linearly witha, (upper left panel
£ s - -
=T T o ..... C. The isoscalar quadrupole response and the nucleon
ME 1 | v e | effective mass
0 dl 11 ! 001 Lov Ly 1o In nonrelativistic RPA calculations, the excitation energy

5 10 15 20 25 30 35 40 2 4 6 8 10 of the isoscalar giant quadrupole resonafi&QR can be
E(MeV) 1 (fm) directly related to the nucleon effective mass that character-
izes a given effective interaction. In the nonrelativistic mean-
field approximation, the total effective masg of a nucleon
in a nucleus characterizes the energy dependence of an ef-
{)ective local potential that is equivalent to the, generally non-
ocal and frequency dependent, microscopic nuclear potential
[33]. m* is a measure of the density of single-nucleon states

excitation energy constrains the nuclear matter asymmetr?round the F'e:rmlss;rface .a?d, trg'erefor.e, I atfffeclts the|g|ant
energy at saturation density to the interval 34 Me&\4, esonances. -or .skyrme interactions, in particuiar, a finear

7 - : dependence om* is found for the RPA excitation energies
<36 MeV. For the effective interaction with,=35 MeV, . X .
in Fig. 4 we display the RRPA isovector dipole strength dis_of the ISGQR. The larger the effective mass, i.e., the higher

tribution and the corresponding proton, neutron, and totame deInS||tyt OJ Issl;%tesRar?(uirtwdtithne I;errm| Sé”iacti’ thel lO\IN%r :15
isovector transition densities for the peak at 13.3 MeV in € calcuiate Q excitation energy. both the caicuiatio
208p1, of ground-state properties in spherical nuclei, as well as the

Figure 5 illustrates what happens when the increase of thgPA results for ISGQR excitation energies, place the follow-

nuclear matter asymmetry energy at saturation density is néﬁ?efao;istrnasmf /nn;[r_]eon8lfl(§z<ir§5ectlve mass for Skyrme-type
accompanied by an increase of the slope paranpgtebtart- onsi Ry :

ing with DD-ME1, which hasa,=33.1 MeV, we have gen- In the relativistic framework the expression “effective

erated a set of effective interactions with different values Oimass_ has _bee_n used to denote dlfferent. quantities. The

a,, but now they all have the same slope parameter quantity which is u§ua!ly useq to charqcterlze an effective

(I4o,wer left pane), i.e., the parameters are not readjusted tqmteracnon, and which in the literature is most often called
P L P J ‘tpe relativistic effective mass,” is also known as the “Dirac

reproduce the data set of ground state properties of spherical_~
S ) - . mass”[34]

nuclei. Binding energies and radii are only approximately

reproduced with these effective interactions. The resulting mp=m+S(r), (46)

asymmetry energy curves as functions of the baryon density

FIG. 4. The isovector dipole strength distributidieft pane)
and transition densitiefright pane) in 2°%Pb, calculated with a
density-dependent effective interaction wéth= 35 MeV. The pro-
ton, neutron and total isovector transition densities correspond t
the peak aE=13.3 MeV.

% wherem is the nucleon mass arf§{r) is the scalar nucleon
144 '208' t ST St self-energy. Here we also adopt the term “Dirac mass.” The
b Pb ] M ] Dirac mass should not be identified with the effective mass
: f L z determined from nonrelativistic shell and optical model
§13.6— = 36, analyses of experimental data, i.e., with the “nonrelativistic-
type effective mass.” The Dirac mass is determined, on one
Lo e r hand by the binding energy at saturation density in nuclear
matter (the effective single-nucleon potential is the sum of
the attractive scalar and repulsive vector nucleon self-
energiey and on the other hand by the empirical spin-orbit
i 1 splittings in finite nuclei(the effective single-nucleon spin-
e o o 4 1w g orbit potential is proportional to the difference between the
] scalar and vector self-energie¥his is the reason why, for
B ST BN S S R S virtually all mean-field relativistic effective interactions,
2 4 3% 3 004 008 012 016 02 0.55m=mp=<0.60m. In this range of values the Dirac mass
a, (MeV) p (fm™) does not affect the spacings between single-nucleon energies,
and therefore it cannot be related to the ISGQR.
FIG. 5. The IVGDR excitation energy of®Pb (upper left The “nonrelativistic-type effective massh* (¢), i.e., the
pane), and the parametg, of the linear density dependence of the ;antity that should be compared with the empirical effective

nuclear matter asymmetry energy, as functions of the volume asyny 5s¢ derived from nonrelativistic analyses of scattering and
metry a,. The shaded area denotes the experimental IVGD reso-

nance energy 13:80.1 MeV. In the right panel the asymmetry _bound-state data, is defined by the massm(e) (character-
energy curves, as functions of the baryon density, are plotted fol2€S the momentum dependence of the mass opgratothe
different values of the volume asymmetay. E—masan(e) (characterizes the explicit energy dependence

Py (Mev/fm3)
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FIG. 6. Average energy gap between the last occupied and first FIG. 7. Centroid energies of the isoscalar quadrupole Hartree
unoccupied major shells iR%Pb, as function of the isoscalar pa- responséupper pané| and the ISGQR peak energies calculated in
rameters Eq. (49). The average gaps of neutron states are denote®RPA (lower pane), for five different density-dependent interac-
by dots, and those of proton states by squares. tions characterized by the paramefeEq. (49). As in the previous

examples, the calculation is performed f8fPb. The shaded area

denotes the empirical ISGQR excitation energy APb: 10.9
of the mass operatprand by the “Lorentz massij (¢) +0.3 MeV[37]. P Q 9

(results from different Lorentz transformation properties of

the scalar and vector potentin[84,35, . . -
P Al 3 and the sums run over occupi@thoccupiedl states within a

major shell. The average gaps for proton and neutron states

m*(g) _ﬁ1(s) m3 (&) N E(s) e[ m are plotted as functions of the parameder
m m m m m\| m(e)
(47 b,/c,
0= p.lc,’ (49

The nonrelativistic-type effective mass and its energy depen-
dence near the Fermi surface has been analyzed in Ref§ee Eq.(40). Starting from DD-MEL, we have generated a
[34,39 for symmetric nyclear matter. In Ref36] the stan- . set of five effective interactions with 0.835<1.01. For
dard relativistic mean-field model has been extended by ing, - interaction the remaining parameters were readjusted to
cluding dynamical effects that arise in the coupling of single~e,4y,ce our standard set of ground-state data for 12 spheri-
nucleon motion to collective surface vibrations. It has bee

h h imole oh logical sch based "tal nuclei, as well as the nuclear matter equation of state. In
shown that a simple phenomenological scheme, based on rticular, for all five interactions the Dirac mass g,

linear ansatz for the energy dependence of the scalar a Id0 58. The average gap between the last occupied and first
vector components of the nucleon_ self-energy for states clo occupied major shells, both for proton and neutron states,
to the Fermi surfacg, allows a simultaneous descr_|pt|on Ols approximately linearly proportional t6. This parameter,
bulk _nuclear properties and single-nucleon spectra in a sel herefore, plays the role of the inverse of the effective mass.
cor|1_|S|stent reIatnlgslt.llE: fraTﬁwct)rk. ind b dth field As functions ofé, in Fig. 7 we plot the corresponding cen-
ere we would Tike, without going beyond the mean-fie a%)id energy of the isoscalar quadrupole Hartree response in
; . . - “¥0%h (upper pang| and the peak energies of the ISGQR
f[he |so:_;calar properties of our densﬂy-dependent eﬁe?t'vgbtain(edpgy tkf)e fl?” RRPA call?:ulation w?th the five densﬁy-
mtgractlons. Thls_ can be (.jone.ln the following way. We ﬂrStdependent interactiorttower panel. The calculated ISGQR
n_o_t|ce thaF a particular ratio of |s_oscalar param_eba rand_ci excitation energies are compared with the experimental value
(i=0,) in Eq. (40), characterllzes the den§|ty of smgle- of 10.9+0.3 MeV [37] (shaded areaBoth the centroids of
nucleon states around the Fermi surface. In Fig. 6 we displ e Hartree response and the ISGQR peak energies are lin-
;_het average gndergy _gapsh bI(Ietween th_e lESt OC(.:UpZ'&%Snd t Srly proportional ta5 and the comparison with experimen-
ws unoccupied major shelkE particed ~(Enoles in ' tal data on ISGQR, therefore, places an additional constraint
where on the parameters that characterize the isoscalar channel of
the effective interaction. Fof=0.93, in Fig. 8 we plot the
RRPA isoscalar quadrupole strength distribution 55Pb

%: (2] +1)Ey; (left pane), and for the ISGQR peak at 11.2 MeV the proton,
(E)= J—, (48) neutron, and total isoscalar transition densities. The position
z (2j+1) of the calculated peak should be compared with the empirical
nj excitation energy 10:90.3 MeV, and also the ®w low-
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of exotic collective modes in nuclei far from stability can be
investigated.

In this work we have derived the RRPA matrix equations
in the small amplitude limit of the time-dependent relativistic
mean-field theory. The explicit density dependence of the
meson-nucleon vertices introduces a number of rearrange-
ment terms in the residual two-body interaction. We have

. found that the rearrangement contribution to the matrix ele-
ments of the RRPA equations is crucial for a quantitative
comparison with experimental data on giant resonances. In
the present analysis we have performed illustrative RRPA
calculations of the isoscalar monopole, isovector dipole and
pane) and transition densitieGight panel in 2%8Pb, calculated for  isoscalar quadrupole response®8#Pb. The calculations are
5=0.93(see text for descriptionThe vertical bar denotes théi@  fully self-consistent: the single-particle basis and the
2% discrete state. The proton, neutron, and total isoscalar transitioparticle-hole couplings are generated from the same effective
densities correspond to the ISGQR peaEatll.2 MeV excitation ~ Lagrangian, and the RRPA configuration space includes both
energy. the positive-energy particle-hole pairs, as well as pairs
formed from hole states and negative-energy states in the
lying discrete 2 state at 4.62 MeV is found in good agree- Dirac sea. On the one hand, we have tested our approach by
ment with the experimental value of 4.07 MeV. comparing the RRPA results for giant resonances with well
known experimental data. On the other hand, we have also
analyzed how the RRPA results on multipole giant reso-
nances can be used to constrain the parameters that charac-
During the last decade the standard RMF models witherize the isoscalar and isovector channel of the density-
nonlinear meson-exchange effective interactions have beetependent effective Lagrangians. Starting with the recently
very successfully applied in the description of a variety ofintroduced effective interaction DD-MHEIL7], RRPA calcu-
nuclear structure phenomena. In recent years also the relatilations have been performed for families of density-
istic random-phase approximatidRRPA), based on effec- dependent interactions with a given characterigtioclear
tive Lagrangians with nonlinear meson self-interactionmatter incompressibility, asymmetry energy, etc.
terms, has been used to investigate properties of low-lying The analysis of the isoscalar monopole response has
collective states and of giant resonances. The use of nonlirshown that only the density-dependent interactions with the
ear effective interactions, however, presents not only a numauclear matter compression modulus in the rargg
ber of technical problems, but also the predictive power of~260-270 MeV, reproduce the experimental excitation en-
models based on these type of interactions appears to gy of the isoscalar giant monopole resonance’¥#b.
somewhat limited, especially for isovector properties of ex-This confirms our previous results obtained with relativistic
otic nuclei far fromg-stability. An interesting alternative are effective forces with nonlinear meson self-interactions and
models with density-dependent meson-nucleon vertex funggoints, once again, to the pronounced difference between the
tions. Even though these two classes of models are essevalues of the nuclear matter compression modulus predicted
tially based on the same microscopic structure, i.e., oy microscopic nonrelativistic and relativistic mean-field
density-dependent interactions, the latter can be more dplus RPA calculations. The RRPA results for the isovector
rectly related to the underlying microscopic nuclear interac-dipole response constrain the isovector channel of the effec-
tions. In a number of recent analyses it has been also showive interactions. By using interactions with different values
that relativistic effective interactions with explicit density de- of the volume asymmetry energy,, but which otherwise
pendence of the meson-nucleon couplings, provide an imreproduce the same data set of ground-state properties of
proved description of asymmetric nuclear matter, neutrorspherical nuclei, we have shown that the calculated IVGDR
matter and nuclei far from stability. peak energy actually decreases by increasing the asymmetry
Among the new structure phenomena observed or presnergy at saturation. The comparison with the experimental
dicted in nuclei far from stability, one of the most interesting IVGDR excitation energy constrains the volume asymmetry
is the evolution of the isovector dipole response in nucleito the interval 34 Me¥a,<36 MeV. In the nonrelativistic
with a large neutron excess. The multipole response of nucldiamework the isoscalar quadrupole response can be related
with large neutron excess has been the subject of many thés the effective mass of the mean-field interaction. The con-
oretical studies in recent years, and some predictions haweept of effective mass in the relativistic mean-field models is
been confirmed by very recent experimental data on lowmore complicated, and the quantity which is usually termed
lying electric dipole strength in neutron rich nuc|[&8,39. as “effective mass” cannot be identified with the effective
There are, however, many unknowns and this topic presentaass determined from nonrelativistic shell and optical model
an interesting challenge for modern theoretical advances. Hnalyses of experimental data. Nevertheless, we have shown
is, therefore, important to develop also a relativistic frame-that a comparison of RRPA results with the empirical ISGQR
work, based on effective Lagrangians with density-and with the low-lying Gw 2" state, places an additional
dependent meson-nucleon couplings, in which the dynamicsonstraint on the parameters which characterize the isoscalar

E (MeV) 1 (fm)

FIG. 8. The isoscalar quadrupole strength distributiteft

IV. SUMMARY AND CONCLUSIONS
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channel of the density-dependent effective interactions.  shown, however, that while the overall isovector strength has
The RRPA with density-dependent meson-nucleon coua relatively well-defined value, the distribution between the
plings presents an important step in the relativistic descripscalar and vector channels is not determined by ground-state
tion of the nuclear many-body problem. In this work we did properties, at least for nuclei not too far from stability. It
not attempt an analysis of the multipole response in exoti@ppears, therefore, that at present it would be rather difficult
nuclei far from-stability. In order to do that, pairing corre- t0 extend the relativitic RPA by including additional meson
lations must be included in the RRPA framework. Work is indegrees of freedom, since the corresponding meson-nucleon
progress on the fully self-consistent relativistic quasiparticle?@UPlings cannot be determined in the usual way, i.e., from
random-phase approximatigGRQRPA), based on effective the calculated ground-state properties of spherical nuclei. On

Lagrangians with density-dependent meson-nucleon colhe other hand, RRPA calculations of excited states, and of

plings, and formulated in the relativistic Hartree-Bogoliuboy 9iant resonances in particular, could be used, as shown in the
canonical single-particle basis. present analysis, to constrain the vertex functions for addi-

In the present analysis we have only considered the e>g_ional channels of effective nuclear interactions. For the
change of the isoscalar-vectormeson, the isoscalar-vector Isovector-scalar channel, for example, additional information

w-meson, and the isovector-scalarmeson. Other meson could be obtained from the isovector dipole response in nu-
fields, of course, could be included in the relativistic mean-C1€1 With @ large neutron excess. The excitation energy and

field model description of ground-state properties of finiteStre_"ngth of the d'F_’Ole pPygmy resonance in neutron rich nu-
clei, as well as its relative position with respect to the

nuclei, as well as in the RRPA treatment of excited Statesl\/GDR Id de inf . b he distributi f
For the latter, in particular, it might be important to extend » could provide Iniormation about the distribution o

the model by including at least the isovector—pseudoscalatlhe strength of the isovector nuclear eﬁectivg interaction be-
m-meson and the isovector-scalasmeson. The problem, tween the scalar and vector channels. The pion-nucleon RMF

however, is our very limited knowledge of the m(:)Son_channel could be constrained, for example, by RRPA calcu-

nucleon couplings in these channels at finite density. In théatlon of spin-multipole resonances and of the strength and
mean-field Hartree approximation the contribution of the®Nergy of Gamow-Teller resonances.

pion vanishes in nuclear matter and in the ground states of
finite nuclei. Relativistic Brueckner-Hartree-Fock calcula-
tions of asymmetric nuclear matter indicate that significant This work has been supported in part by the Bundesmin-
strength can be expected in the isovector-scalar channel, aigterium fu Bildung und Forschung under Project No. 06
that the isovector-vector and isovector-scalar meson-nuclecfiM 979, and by the Gesellschaftrf$chwerionenforschung
couplings at saturation density are of comparable strength&Sl) Darmstadt. T.N. acknowledges the support from the
[20]. Several calculations of finittN#Z systems have Alexander von Humboldt—Stiftung.
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