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Abstract

We treatD-dimensional black holes with Killing horizon for extended Gauss–Bonnet gravity. We use the Carlip method and
impose boundary conditions on the horizon what enables us to identify Virasoro algebra and evaluate its central charge and
Hamiltonian eigenvalue. The Cardy formula allows then to calculate the number of states and thus provides for a microscopic
interpretation of entropy.
 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The purpose of this Letter is to investigate how some recent results on microscopic interpretation of black
hole entropy depend on the form of gravity action. The problem of microscopic description of black hole entropy
was approached by different methods, like, e.g., string theory, which treated extremal and near extremal black
holes or, e.g., loop quantum gravity (see references in [1]). Another line of approach to this problem is based on
conformal field theory and Virasoro algebra. Such an algebra was identified by Brown and Henneaux [2] in 2+ 1
dimensions and after requiring asymptoticAdS3 symmetry. The well-known Bekenstein–Hawking entropy formula
for Einstein gravity black holes was then reproduced [3]. In fact, there are essentially two independent approaches
based on conformal field theory. One particular formulation was due to Solodukhin who reduced the problem of
D-dimensional black holes to effective two-dimensional theory with fixed boundary conditions on horizon. This
effective theory admits Virasoro algebra near horizon and calculation of its central charge allows to compute the
entropy [4–7]. Another approach based on conformal field theory was developed by Carlip [8]. In fact Carlip has
shown that under certain simple assumptions on boundary conditions near black hole horizon, one can identify a
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subalgebra of algebra of diffeomorphisms, which turns out to be Virasoro algebra. The fixed boundary conditions
give rise to central extension of this algebra. The entropy is then calculated from Cardy formula [9]

(1)SC = 2π

√(
c

6
− 4∆g

)(
∆− c

24

)
,

where∆ is the eigenvalue of Virasoro generatorL0 for the state we calculate the entropy and∆g is the smallest
eigenvalue. The corresponding entropy reproduces the Bekenstein–Hawking formula. Till now, similar analysis
was done for Einstein gravity and for dilaton gravity [8,10]. Here, we shall consider Gauss–Bonnet generalization
of Einstein gravity inD dimensions. In fact it is known [11,12] that classical entropy differs generally from area
law valid in Einstein theory and that for more general diffeomorphism invariant theory the entropy of black hole
with bifurcate horizon is

(2)S = −2π
∫
H

ε̂Eabcd
R ηabηcd .

Here,H is a cross section of the horizon,ηab denotes binormal toH andε̂ is induced volume element onH. The
tensorEabcd

R is given with

(3)Eabcd
R = ∂L

∂Rabcd
.

The tensorEabcd
R has all symmetries of Riemann tensorRabcd . In this Letter we shall treat Gauss–Bonnet gravity

with Lagrangian density

(4)L= −
[D/2]∑
m=0

λmLm(g).

Here,[D] denotes integer part ofD. Themth density is

(5)Lm(g)= (−1)m

2m
δ
c1d1···cmdm
a1b1···ambmR

a1b1
c1d1 · · ·Rambmcmdm,

where δb1···bk
a1···ak is totally antisymmetric product ofk Kronecker deltas, normalized to take values 0 and±1.

Corresponding tensorEabcd
R reads

(6)Ecd
R ab = −

[D/2]∑
m=0

mλm
(−1)m

2m
δ
cdc2d2···cmdm
aba2b2···ambmR

a2b2
c2d2 · · ·Rambmcmdm.

The problem of microscopic description for this case was treated with Solodukhin’s method by us [6]. This
method allows to obtain a relation between conformal charge and eigenvalue∆ but not their values independently.
Consequently the relation between entropy derived with Cardy formula and classical entropy was a proportionality
relation containing an unknown parameter. The method relied also essentially on particular assumptions like
spherical symmetry.

Here we want to treat Gauss–Bonnet gravity with Carlip method, which is using Wald’s covariant approach
[12,14,15] and is more suitable to generalizations. We shall treat general black holes with Killing horizons without
particular restrictions to spherical symmetry. We shall obtain separate values of conformal charge and eigenvalues
of Hamiltonian. Also due to an interesting discussion about assumptions needed for these methods to be valid [16]
and for these two methods to be consistent [5] one is motivated to test the method for different interactions. Indeed
in the present derivation for Gauss–Bonnet gravity we find consistency with Solodukhin method when the latter is
amended in the sense of Carlip proposal [5] as was done by us previously [6].
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2. Horizon as boundary

We shall use covariant phase space approach developed for a general diffeomorphism invariant field theory [14,
15]. For a given vector fieldξa defining a diffeomorphism, one can write corresponding Hamiltonian as a pure
surface term

(7)H [ξ ] =
∫
∂C

(
Q[ξ ] − ξ · B

)

provided that a(D − 1)-form B, defined with

(8)δ

∫
∂C

ξ · B =
∫
∂C

ξ · Θ,

exists. HereJ = dQ and definitions of symplectic potentialΘ and conserved currentJ are given in [8]. Due to
vanishing on shell of bulk terms variation ofH [ξ ] is equal to variation of the boundary termJ [ξ ]. Following [2,8],
one obtains for the Dirac bracket{J [ξ1], J [ξ2]}∗

(9)
{
J [ξ1], J [ξ2]

}∗ =
∫
∂C

(
ξ2 · Θ[φ,Lξ1φ] − ξ1 · Θ[φ,Lξ2φ] − ξ2 · (ξ1 · L)

)
,

and the algebra

(10)
{
J [ξ1], J [ξ2]

}∗ = J
[{ξ1, ξ2}

] +K[ξ1, ξ2]
with central extensionK. Due to Bianchi identity and antisymmetric properties ofδ symbol in (6), one finds for
Gauss–Bonnet case

(11)∇dE
abcd
R = 0.

Thus symplectic potential [12] takes simple form

(12)Θpa1···an−2 = 2εapa1···an−2E
abcd
R ∇dδgbc

and the special form of (9) for Gauss–Bonnet case is

(13)
{
J [ξ1], J [ξ2]

}∗ = 2
∫
∂C

{
εapa1···an−2

(
ξ
p

2 E
abcd
R ∇dδ1gbc − ξ

p

1 E
abcd
R ∇dδ2gbc

) − ξ2 · (ξ1 · L)
}
.

We shall now impose existence of Killing horizon and consider a certain class of boundary conditions on it [8].
In particular we assumeD-dimensional spacetimeM with boundary∂M such that we have a Killing vectorχa

(14)χ2 = gabχ
aχb = 0 at∂M.

Near the horizon (“stretched horizon”) we defineρa

(15)∇aχ
2 = −2κρa.

Variations are required to satisfy boundary conditions near the horizon as follows

χaχb

χ2 δgab → 0, χatbδgab → 0,

(16)ρa∇a

(
gbcδg

bc
) = 0, ρa∇a

(
ρbδχb

χ2

)
= ρa∇a

(
δρ2

ρ2

)
= 0 atχ2 = 0,



M. Cvitan et al. / Physics Letters B 555 (2003) 248–254 251

and we keepχa and ρa fixed. Here ta is any unit spacelike vector tangent to∂M. We shall consider
diffeomorphisms generated by vector fieldsξa where

(17)ξa = T χa +Rρa,

with conditions

(18)R = 1

κ

χ2

ρ2 χ
a∇aT , ρa∇aT = 0.

An additional requirement will be necessary as already explained in [8]

(19)δ

∫
∂C

ε̂

(
κ̃ − ρ

|χ |κ
)

= 0,

where κ̃2 = −a2/χ2, and aa = χb∇bχ
a is the acceleration of an orbit ofχa . This condition will guarantee

existence of generatorsH [ξ ].
Now we want to calculate the central term from (10). In evaluating (13) we integrate over(D − 2)-surfaceH,

which is the intersection of Killing horizonχ2 = 0 with the Cauchy surfaceC. As usual we introduce two null
normals onH. One is Killing vectorχa and the other is future directed null normalNa = ka − αχa − ta , where
ta is tangent toH and has a normt2 = 2α− α2χ2, andka = −(χa − ρa |χ |/ρ)/χ2. Now the volume element can
be written as

(20)εbca1···an−2 = ε̂a1···an−2ηbc + · · · ,
where only the first term contributes to the integral, and binormalηab is

(21)ηab = 2χ[bNc] = 2

|χ |ρ ρ[aχb] + t[aχb].

For the purpose of evaluation of integral (13) over the horizon we need to evaluate integrands to the lowest order
in χ2. We use

(22)∇dδgab ≡ ∇d∇aξb + ∇d∇bξa = −2χdχaχb
T̈

χ4 + 2χdχ(aρb)

( ...
T

κχ2ρ2 + 2κṪ

χ4

)
,

together with symmetries ofEabcd
R for first two terms, and finiteness of Lagrangian on the horizon for the third

term. Finally, we get

(23)
{
J [ξ1], J [ξ2]

}∗ = 1

2

∫
H

ε̂a1···an−2E
abcd
R ηabηcd

(
1

κ

(
T1

...
T 2 − T2

...
T 1

) − 2κ
(
T1Ṫ2 − T2Ṫ1

))
.

Next we need to calculate the Noether charge

(24)Qc3···cn = −Eabcd
R εabc3···cn∇[cξd] = −1

2
Eabcd
R ηabηcd

(
2κT − T̈

κ

)
ε̂c3···cn .

Using the same method as in (23), we can calculate from (24) and (7)1

(25)J
[{ξ1, ξ2}

] = −1

2

∫
H

ε̂a1···an−2E
abcd
R ηabηcd

(
2κ

(
T1Ṫ2 − T2Ṫ1

) − 1

κ

(
Ṫ1T̈2 − T̈1Ṫ2 + T1

...
T 2 − ...

T 1T2
))
.

1 As in Einstein case the second term in (7) can be neglected: condition (19) enables us to factorizeξ · Θ into 1
2E

abcd
R ηabηcd × δ (terms

that vanish on shell), which together with (8) implies that
∫
H ξ · B vanishes on shell.
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Now we are able to deduce central charge from (10), (23) and (25)

(26)K[ξ1, ξ2] = −1

2

∫
H

ε̂a1···an−2E
abcd
R ηabηcd

1

κ

(
Ṫ1T̈2 − T̈1Ṫ2

)
.

3. Conformal charge and entropy

In previous sections we have introduced constraint algebra (10) where we have calculated various terms. As
explained in [8], this algebra can be connected to the Virasoro algebra of diffeomorphisms of the circle or the real
line provided we require the following condition

(27)
1

A

∫
H

ε̂T1(v, θ)T2(v, θ)= κ ′

2π

∫
dv T1(v, θ)T2(v, θ).

Here,v is the parameter of the orbits of the Killing vectorχa∇av = 1, θ denotes angular coordinates,A≡ ∫
H ε̂ is

the area of the horizon and 2π/κ ′ is period in the variablev of the functionsT (v, θ). For rotating black hole

(28)χa = ta +
∑

Ωiψ
a
i ,

whereta is time translation Killing vector,ψa
i are rotational Killing vectors with corresponding anglesψi and

angular velocitiesΩi . The variablest , ψi associated with orbits ofta , ψa
i , and variables(v, θi) associated with

orbits ofχa , θai =ψa
i are related withv = t , θi = ψi −Ωiv. We choose for diffeomorphism defining functionsTn

(29)Tn(v, θi)= 1

κ ′ e
in

(
κ ′v+∑

li θi
)
,

where li are integers. It can be checked that Lie brackets of corresponding diffeomorphisms satisfy classical
Virasoro algebra. Also we see that condition (27) is fullfilled and thus enables us to obtain full Virasoro algebra
with nontrivial central termK[Tm,Tn] which can be calculated from (26)

(30)iK[Tm,Tn] =
(
κ ′

κ

)
Â

8π
m3δm+n,0,

where

(31)Â≡ −8π
∫
H

ε̂a1···an−2E
abcd
R ηabηcd .

Here, we have used that metric does not depend on variablesθi on which diffeomorphism defining functionsTn
depend. That enabled us to factorize the integral in (26). Finally, we obtain Virasoro algebra

(32)i
{
J [ξ1], J [ξ2]

}∗ = (m− n)J [Tm+n] + c

12
m3δm+n,0,

with central chargec equal to

(33)
c

12
= Â

8π

κ ′

κ
.

From relation (24) we can calculate the eigenvalue of the Hamiltonian

(34)∆≡ J [T0] = −
∫
H

ε̂a1···an−2E
abcd
R ηabηcd

κ

κ ′ = κ

κ ′ Â.
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We are interested in calculating entropy via Cardy formula (1). Thus

(35)S = Â

4

√
2−

(
κ ′
κ

)2

.

Thus entropy is proportional to the classical entropy (2). The constant of proportionality is dimensionless. The
proportionality relation becomes equality when we take for the period of functionsTn the period of the Euclidean
black hole ([6,8,17] and references therein).

In that case we obtain

(36)
c

12
=∆,

together with classical result (2) which can be also written in more explicit form using specific properties of Gauss–
Bonnet gravity [18] as follows

(37)S = −4π
[D/2]∑
m=1

mλm

∫
ε̂Lm−1.

4. Conclusion

In this Letter we have tried to make progress in the efforts to give microscopic interpretation to entropy formulas
for more general theories than the Einstein theory. Here, theD-dimensional extended Gauss–Bonnet theory was
considered. It was shown that using Carlip method [8] and asking certain boundary conditions near black hole
horizon one can define an algebra of diffeomorphisms containing Virasoro algebra as its subalgebra.

Calculation of central charge enables, with the help of Cardy formula, to find the entropy which is as expected
to be different than area law but agrees with Gauss–Bonnet entropy as derived in [12,13].

The result is more general then alternative derivation by us in Ref. [6], because here we do not have to restrict
ourselves to spherical symmetry. Also here it is possible to calculate separately central charge and eigenvalue of
Virasoro generatorL0. It is also encouraging that it shows that the two methods give consistent results.
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