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The relativistic quasiparticle random phase approximation~RQRPA! is formulated in the canonical single-
nucleon basis of the relativistic Hartree-Bogoliubov~RHB! model. For the interaction in the particle-hole
channel effective Lagrangians with nonlinear meson self-interactions are used, and pairing correlations are
described by the pairing part of the finite-range Gogny interaction. The RQRPA configuration space includes
the Dirac sea of negative-energy states. Both in the particle-hole and particle-particle channels, the same
interactions are used in the RHB calculation of the ground state and in the matrix equations of the RQRPA. The
RHB1RQRPA approach is tested in the example of multipole excitations of neutron-rich oxygen isotopes. The
RQRPA is applied in the analysis of the evolution of the low-lying isovector dipole strength in Sn isotopes and
N582 isotones.
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I. INTRODUCTION

The multipole response of unstable nuclei far from t
line of b stability presents a very active field of researc
both experimental and theoretical. These nuclei are cha
terized by unique structure properties: the weak binding
the outermost nucleons and the effects of the coupling
tween bound states and the particle continuum. On
neutron-rich side, in particular, the modification of the effe
tive nuclear potential leads to the formation of nuclei w
very diffuse neutron densities, to the occurrence of the n
tron skin and halo structures. These phenomena will a
affect the multipole response of unstable nuclei, in particu
the electric dipole and quadrupole excitations, and n
modes of excitations might arise in nuclei near the drip li

A quantitative description of ground states and proper
of excited states in nuclei characterized by the closenes
the Fermi surface to the particle continuum necessitate
unified description of mean-field and pairing correlations,
for example, in the framework of the Hartree-Foc
Bogoliubov~HFB! theory. In order to describe transitions
low-lying excited states in weakly bound nuclei, in partic
lar, the two-quasiparticle configuration space must inclu
states with both nucleons in the discrete bound levels, st
with one nucleon in a bound level and one nucleon in
continuum, and also states with both nucleons in the c
tinuum. This cannot be accomplished in the framework
the BCS approximation, since the BCS scheme does not
vide a correct description of the scattering of nucleonic pa
from bound states to the positive-energy particle continuu
Collective low-lying excited states in weakly bound nuc
are best described by the quasiparticle random phase
proximation ~QRPA! based on the HFB framework. Th
HFB based QRPA has been investigated in a number of
cent theoretical studies. In Ref.@1#, a fully self-consistent
QRPA has been formulated in the HFB canonical sing
particle basis. The Hartree-Fock-Bogoliubov formalism
0556-2813/2003/67~3!/034312~15!/$20.00 67 0343
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coordinate state representation has also been used as a
for the continuum linear response theory@2,3#. In Ref. @4#,
the HFB energy functional has been used to derive the c
tinuum QRPA response function in coordinate space. T
HFB based continuum QRPA calculations have been p
formed for the low-lying excited states and giant resonanc
as well as for theb decay rates in neutron-rich nuclei.

In this work we formulate the relativistic QRPA in th
canonical single-nucleon basis of the relativistic Hartre
Bogoliubov ~RHB! model. The RHB model is based on th
relativistic mean-field theory and on the Hartree-Foc
Bogoliubov framework. It has been very successfully appl
in the description of a variety of nuclear structure pheno
ena, not only in nuclei along the valley ofb stability, but
also in exotic nuclei with extreme isospin values and close
the particle drip lines. Another relativistic model, the relati
istic random phase approximation~RRPA!, has been recently
employed in quantitative analyses of collective excitations
nuclei. Two points are essential for the successful applica
of the RRPA in the description of dynamical properties
finite nuclei: ~i! the use of effective Lagrangians with non
linear self-interaction terms, and~ii ! the fully consistent
treatment of the Dirac sea of negative-energy states.

The RRPA with nonlinear meson interaction terms, a
with a configuration space that includes the Dirac sea
negative-energy state, has been very successfully emplo
in studies of nuclear compressional modes@5–7#, of multi-
pole giant resonances and of low-lying collective states
spherical nuclei@8#, of the evolution of the low-lying isovec-
tor dipole response in nuclei with a large neutron exc
@9,10#, and of toroidal dipole resonances@11#.

In Sec. II, we present the formalism and formulate t
matrix equations of the relativistic QRPA~RQRPA! in the
canonical basis of the RHB framework for spherical eve
even nuclei. In Sec. III, the RHB1RQRPA approach is teste
in the example of the isoscalar monopole, isovector dipo
and isoscalar quadrupole response of22O, and the results are
©2003 The American Physical Society12-1
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compared with recent nonrelativistic QRPA calculations
the multipole response of neutron-rich oxygen isotopes
Sec. IV, the RQRPA framework is applied in the analysis
the evolution of the low-lying isovector dipole strength in S
isotopes andN582 isotones. The results are compared w
recent experimental data. Section V contains the summ
and the conclusions.

II. THE RELATIVISTIC QUASIPARTICLE RANDOM
PHASE APPROXIMATION

In this section the matrix equations of the RQRPA a
formulated in the canonical basis of the RHB framework
spherical even-even nuclei.

A. The relativistic mean-field Lagrangian
and the equations of motion

The nuclear matter equation of state and detailed pro
ties of finite nuclei have been very successfully described
relativistic mean-field~RMF! models@12–14#. In this frame-
work the nucleus is described as a system of Dirac nucle
that interact in a relativistic covariant manner by meson
change. In particular, the isoscalar scalars meson, the isos-
calar vectorv meson, and the isovector vectorr meson
build the minimal set of meson fields that is necessary fo
quantitative description of bulk and single-particle nucle
properties. The model is defined by the Lagrangian dens

L5LN1Lm1Lint . ~1!

LN denotes the Lagrangian of the free nucleon,

LN5c̄~ igm]m2m!c, ~2!

wherem is the bare nucleon mass andc denotes the Dirac
spinor.Lm is the Lagrangian of the free meson fields and
electromagnetic field,

Lm5
1

2
]ms]ms2

1

2
ms

2s22
1

4
VmnVmn1

1

2
mv

2 vmvm

2
1

4
RW mnRW mn1

1

2
mr

2rW mrW m2
1

4
FmnFmn, ~3!

with the corresponding massesms , mv , mr , and Vmn ,
RW mn , Fmn are field tensors,

Vmn5]mvn2]nvm ,

RW mn5]mrW n2]nrW m , ~4!

Fmn5]mAn2]nAm .

The model Lagrangian density contains also the interac
terms

Lint52c̄Gssc2c̄Gv
mvmc2c̄GW r

mrW mc2c̄Ge
mAmc. ~5!

The vertices read
03431
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m5gvgm, GW r

m5grtWgm, Ge
m5e

12t3

2
gm,

~6!

with the coupling constantsgs , gv , gr , ande. This simple
linear model, however, does not provide a quantitative
scription of complex nuclear systems. An effective dens
dependence has been introduced@15# by replacing the qua-
dratic s potential 1

2 ms
2s2 with a quartic potentialU(s)

5(1/2)ms
2s21(g2/3)s31(g3/4)s4. This potential includes

the nonlinears self-interactions with two additional param
etersg2 andg3. It has been shown that one can describe
properties of nuclear matter and finite nuclei with high acc
racy using density dependent coupling constantsgm(r), in-
stead of nonlinears self-interaction@16#.

From the model Lagrangian density, the classical va
tion principle leads to the equations of motion. The tim
dependent Dirac equation for the nucleon reads

@gm~ i ]m1Vm!1m1S#c50. ~7!

If one neglects retardation effects for the meson fields
self-consistent solution is obtained when the time-depend
mean-field potentials

S~rW,t !5gss~rW,t !,

Vm~rW,t !5gvvm~rW,t !1grtWrW m~rW,t !1eAm~rW,t !
~12t3!

2
~8!

are calculated at each step in time from the solution of
stationary Klein-Gordon equations

2Dfm1U8~fm!56^c̄Gmc&, ~9!

where the upper sign holds for vector fields and the low
sign for the scalar field. The indexm denotes mesons and th
photon, i.e.,fm5s,vm,rW m,Am. This approximation is justi-
fied by the large meson masses. The corresponding me
exchange forces are of short range and therefore retarda
effects can be neglected.

In practical applications to nuclear matter and finite n
clei, the relativistic models are used in theno-seaapproxi-
mation: the Dirac sea of states with negative energies d
not contribute to the densities and currents. For a nucl
with A nucleons

^c̄Gmc&5(
i 51

A

c̄ i~rW,t !Gmc i~rW,t !, ~10!

where the summation is performed only over the occup
orbits in the Fermi sea of positive energy states. The se
coupled equations~7! and ~9! define the RMF model. In the
stationary case they reduce to a nonlinear eigenvalue p
lem, and in the time-dependent case they describe the
linear propagation of the Dirac spinors in time@17#.

The mean-field approximation represents the lowest or
of the quantum field theory: the meson field operators
2-2
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QUASIPARTICLE RANDOM PHASE APPROXIMATION . . . PHYSICAL REVIEW C67, 034312 ~2003!
replaced by their expectation values. TheA nucleons, de-
scribed by a Slater determinantuF& of single-particle
spinors, move independently in the classical meson fie
The couplings of the meson fields to the nucleon are adju
to reproduce the properties of nuclear matter and finite
clei. Thes meson approximates a large attractive scalar fi
that is produced by very complicated microscopic proces
such as uncorrelated and correlated pion exchange. Thv
meson describes the short range repulsion between the n
ons, and ther meson carries the isospin quantum numb
The latter is required by the large empirical asymmetry
tential in finite nuclear systems. The basic ingredient of
microscopic nuclear force is the pion. In relativistic mea
field models, it does not contribute on the Hartree level
cause of parity conservation. The pion field has been
cluded in the relativistic Hartree-Fock model. However, t
resulting equations of motion are rather complicated and
model has been rarely used. Many effects that go beyond
mean-field level are apparently neglected in the RMF mo
Among them are the Fock terms, the vacuum polarizat
effects and the short range Brueckner-type correlations.
experimental data to which the meson-nucleon couplings
adjusted, however, contain all these effects and much m
It follows that these effects are not completely neglected.
the contrary, they are taken into account in an effective w
The concept behind the RMF model is therefore equiva
to that of the density functional theory, which is widely us
in solid state physics, molecular physics, chemistry and a
in nonrelativistic nuclear physics. The RMF model rep
sents the covariant form of this method.

B. Covariant density functional theory

The equations of motion of the relativistic mean-fie
model can also be derived starting from a density function
From the energy-momentum tensor one writes the total
ergy of the nuclear system,

ERMF@c,c̄,s,vm,rW m,Am#5(
i 51

A E c i
1~aW •pW 1bm!c i

1E F1

2
~¹W s!21U~s!Gd3r

2
1

2E @~¹W v!21mv
2 v2!]d3r

2
1

2E @~¹W r!21mr
2r2!]d3r

2
1

2E ~¹W A!2d3r 1E @gsrss

1gv j mvm1gr jWmrW m

1e jcmAm#d3r . ~11!

By using the definition of the relativistic single-nucleon de
sity matrix
03431
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r̂~rW,rW8,t !5(
i 51

A

uc i~rW,t !&^c i~rW8,t !u, ~12!

the total energy can be written as a functional of the den
matrix r̂ and the meson fields

ERMF@ r̂,fm#5Tr@~aW •pW 1bm!r̂#6E F1

2
~“fm!2

1U~fm!Gd3r 1Tr@~Gmfm!r̂#. ~13!

The trace operation involves a sum over the Dirac indi
and an integral in coordinate space. The indexm is used as a
generic notation for all mesons and the photon. From
classical time-dependent variational principle

dE
t1

t2
dt$^Fu i ] tuF&2E@ r̂,fm#%50 ~14!

the equations of motion~7! and ~9! are obtained. The equa
tion of motion for the density matrix reads

i ] tr̂5@ ĥ~ r̂,fm!,r̂ #. ~15!

The single-particle Hamiltonianĥ is the functional derivative
of the energy with respect to the single-particle density m
trix r̂,

ĥ5
dE

dr̂
. ~16!

C. Pairing correlations and the relativistic
Hartree-Bogoliubov theory

The inclusion of pairing correlations is essential for
quantitative description of open-shell nuclei. In Ref.@18#, a
fully microscopic derivation of the relativistic Hartree
Bogoliubov theory has been developed. Using the Gork
factorization technique, it has been shown that the pair
interaction results from the one-meson exchange (s, v, and
r mesons!. In practice, however, it turns out that the pairin
correlations calculated in this way, with coupling consta
taken from the standard parameter sets of the RMF mo
are too strong. The repulsion produced by the exchang
vector mesons at short distances results in a pairing ga
the Fermi surface that is by a factor 3 too large. However
has been argued in many applications of the Hartree-Fo
Bogoliubov theory, there is no real reason to use the sa
effective forces in both the particle-hole and particle-parti
channels.

Pairing correlations can be easily included in the fram
work of the density functional theory, by using a generaliz
Slater determinantuF& of the Hartree-Bogoliubov type. The
ground state of a nucleusuF& is represented as the vacuu
with respect to independent quasiparticle operators
2-3
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ak
15(

l
Ulkcl

11Vlkcl , ~17!

where Ulk , Vlk are the Hartree-Bogoliubov coefficient
They determine the Hermitian single-particle density mat

r̂5V* VT, ~18!

and the antisymmetric pairing tensor

k̂5V* UT. ~19!

The energy functional depends not only on the density m
trix r̂ and the meson fieldsfm , but in addition also on the
pairing tensor. It has the form

E@ r̂,k̂,fm#5ERMF@ r̂,fm#1Epair@ k̂#, ~20!

where ERMF@ r̂,f# is the RMF functional defined in Eq.
~13!. The pairing energyEpair@ k̂# is given by

Epair@ k̂#5
1

4
Tr@ k̂* Vppk̂ #. ~21!

Vpp is a general two-body pairing interaction. Finally, th
total energy can be written as a functional of the generali
density matrix@19#

R5S r k

2k* 12r* D , ~22!

which obeys the equation of motion

i ] tR5@H~R!,R#. ~23!

The generalized HamiltonianH is a functional derivative of
the energy with respect to the generalized density

H5
dE

dR 5S ĥD2m2l D̂

2D̂* 2ĥD1m1l
D . ~24!

It contains two average potentials: the self-consistent m
field ĥD , which encloses all the long range particle-hole~ph!

correlations, and the pairing fieldD̂, which includes the
particle-particle~pp! correlations. The single-particle poten
tial ĥD results from the variation of the energy function
with respect to the Hermitian density matrixr̂

ĥD5
dE

dr̂
, ~25!

and the pairing field is obtained from the variation of t
energy functional with respect to the pairing tensor

D̂5
dE

dk̂
. ~26!

The pairing field is an integral operator with the kernel
03431
-

d

n

Dab~rW,rW8!5
1

2 (
c,d

Vabcd
pp ~rW,rW8!kcd~rW,rW8!, ~27!

where a,b,c,d denote quantum numbers that specify t
Dirac indices of the spinors, andVabcd

pp (rW,rW8) are the matrix
elements of a general two-body pairing interaction.

The stationary limit of Eq.~23! describes the ground stat
of an open-shell nucleus@20,21#. It is determined by the
solutions of the Hartree-Bogoliubov equations

S ĥD2m2l D̂

2D̂* 2ĥD1m1l
D S Uk~rW !

Vk~rW !
D 5EkS Uk~rW !

Vk~rW !
D .

~28!

The chemical potentiall is determined by the particle num
ber subsidiary condition in order that the expectation va
of the particle number operator in the ground state equals
number of nucleons. The column vectors denote the qu
particle wave functions, andEk are the quasiparticle ener
gies. The dimension of the RHB matrix equation is two tim
the dimension of the corresponding Dirac equation. For e
eigenvector (Uk ,Vk) with positive quasiparticle energyEk

.0, there exists an eigenvector (Vk* ,Uk* ) with quasiparticle
energy2Ek . Since the baryon quasiparticle operators sati
fermion commutation relations, the levelsEk and2Ek can-
not be occupied simultaneously. For the solution that co
sponds to a ground state of a nucleus with even part
number, one usually chooses the eigenvectors with pos
eigenvaluesEk .

The RHB equations are solved self-consistently, with p
tentials determined in the mean-field approximation from
lutions of static Klein-Gordon equations

@2D1ms
2 #s~rW !52gsrs~rW !2g2s2~rW !2g3s3~rW !,

~29!

@2D1mv
2 #v0~rW !5gvrv~rW !, ~30!

@2D1mr
2#r3

0~rW !5grr3~rW !, ~31!

2DA0~rW !5erp~rW ! ~32!

for the s meson, thev meson, therW meson and the photon
field, respectively. Because of charge conservation, only
third component of the isovectorr meson contributes. In the
ground-state solution for an even-even nucleus there are
currents~time reversal invariance! and the spatial compo
nentsvW , rW 3 , AW of the vector fields vanish. In nuclei with a
odd number of protons or neutrons time reversal symmetr
broken, and the resulting spatial components of the me
fields play an essential role in the description of magne
moments and of moments of inertia in rotating nuclei. T
equation for the isoscalar scalars-meson field contains non
linear terms. The inclusion of nonlinear meson se
interaction terms in meson-exchange RMF models is ab
lutely necessary for a quantitative description of ground-s
2-4
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properties of spherical and deformed nuclei@14#. The source
terms in Eqs.~29!–~32! are sums of bilinear products o
baryon amplitudes,

rs~rW !5 (
k.0

Vk
†~rW !g0Vk~rW !, ~33!

rv~rW !5 (
k.0

Vk
†~rW !Vk~rW !, ~34!

r3~rW !5 (
k.0

Vk
†~rW !t3Vk~rW !, ~35!

rem~rW !5 (
k.0

Vk
†~rW !

12t3

2
Vk~rW !, ~36!

where(k.0 is a shorthand notation for the no-sea appro
mation. The self-consistent solution of the Dirac-Hartre
Bogoliubov integrodifferential equations and Klein-Gord
equations for the meson fields determines the ground sta
a nucleus. In the present implementation of the RHB mo
the coupled system of equations is solved by expanding
nucleon spinorsUk(rW) andVk(rW), and the meson fields in th
spherical harmonic oscillator basis@22#.

D. The relativistic quasiparticle random phase approximation

In this section, we will derive the RQRPA from the time
dependent RHB model in the limit of small amplitude osc
lations. The generalized density matrixR and the fieldsfm

5s,vm,rW m,Am have been considered as independent v
ables related only by the equations of motion. One can
the Klein-Gordon equations to eliminate the meson degr
of freedom, but this is only possible in the small amplitu
limit. The time-dependent meson field can be written as

fm5fm
(0)1dfm , ~37!

wherefm
(0) is the meson field that corresponds to the stati

ary ground state, anddfm is a small variation of the meso
field around the stationary state solution. In the linear
proximation the corresponding Klein-Gordon equation re

@2D1U9~fm
(0)!#dfm~rW !56gmdrm~rW !, ~38!

wheredrm(rW) are the various densities and currents@see Eq.
~10!#. If there are no nonlinear meson self-interaction term
U9(fm

(0))5mm
2 . The propagatorGm(rW,rW8) can be obtained

analytically and it has the Yukawa form. In the case of no
linear meson self-interaction termsU9(fm

(0)) depends on the
field fm

(0) , and an analytical solution is no longer possib

The propagatorGm(rW,rW8) has to be calculated numerical
~for details see Ref.@23#!. In both cases we find a linea
relation betweendfm anddrm ,

dfm~rW !56gmE d3r 8Gm~rW,rW8!drm~rW8!. ~39!
03431
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The generalized HamiltonianH can now be expressed a
a functional of the generalized densityR only. In the linear
approximation the generalized density matrix is expande

R5R01dR~ t !, ~40!

whereR0 is the stationary ground-state generalized dens
SinceR(t) is a projector at all times, in linear order

R0dR1dRR05dR. ~41!

In the quasiparticle basis the matricesR0 and H05H(R0)
are diagonal,

R05S 0 0

0 1D and H05S En 0

0 2En
D . ~42!

From Eq.~41! it follows that the matrixdR has the form

dR5S 0 dR

2dR* 0 D . ~43!

The linearized equation of motion~23! reduces to

i ] tR5@H0 ,dR#1FdH
dRdR,R0G . ~44!

Assuming an oscillatory solution

dR~ t !5(
n

dR (n)eivnt1H.c., ~45!

the RQRPA equation is obtained:

S A B

2B* 2A* D S Xn

YnD 5vnS Xn

YnD . ~46!

For k,k8, l , l 8 the RQRPA matrix elements read

Akk8 l l 85~Ek1Ek8!dkldk8 l 81
d2E

dRkk8
* dRll 8

and

Bkk8 l l 85
d2E

dRkk8
* dRll 8

*
. ~47!

If the two-body Hamiltonian is density independent the m
tricesA andB have the simple forms@24#

Akk8,l l 85^Fu†ak8ak ,@Ĥ,a l
1a l 8

1
#‡uF&,

Bkk8,l l 852^Fu†ak8ak ,@Ĥ,a l 8a l #‡uF&. ~48!

Using the representation of the Hamiltonian in the quasip
ticle basis,
2-5
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Ĥ5E01(
kk8

Hkk8
11 ak

1ak81
1

4 (
kk8 l l 8

Hkk8 l l 8
22 ak

1ak8
1 a l 8a l

1 (
kk8 l l 8

~Hkk8 l l 8
40 ak

1ak8
1 a l 8

1a l
11H.c.!

1 (
kk8 l l 8

~Hkk8 l l 8
31 ak

1ak8
1 a l 8

1a l1H.c.!, ~49!

we find

Akk8 l l 85Hkl
11dk8 l 82Hk8 l

11 dkl82Hkl8
11 dk8 l1Hk8 l 8

11 dkl1Hkk8 l l 8
22 ,

Bkk8 l l 854Hkk8 l l 8
40 . ~50!

In the quasiparticle representation the matrixH11 is diagonal,
i.e., Hkl

115Ekdkl . The matricesH22 andH40 are rather com-
plicated expressions containing the two-bodyph- and
pp-matrix elements and the coefficientsU andV ~for details
see Ref.@24#!.

In the more general case of a density-dependent Ha
tonian the same expressions can be used, but one has to
into account the rearrangement terms originating from
variation of the interaction with respect to the densityr̂.

E. The relativistic QRPA in the canonical basis

The full RQRPA equations are rather complicated, b
cause they require the evaluation of the matrix eleme
Hkk8 l l 8

22 and Hkk8 l l 8
40 in the basis of the Hartree-Bogoliubo

spinorsUk(rW) andVk(rW). It is considerably simpler to solve
these equations in the canonical basis, in which the rela
istic Hartree-Bogoliubov wave functions can be expresse
the form of BCS-like wave functions. In this case one nee
only the matrix elementsVkl8k8l

ph of the residualph interac-
tion, and the matrix elementsVkk8ll8

pp of the pairingpp in-
teraction, as well as certain combinations of the occupa
factorsuk , vk . The numerical details are described in t
Appendix. In the following we use the indicesk, l, k8 and
l8 to denote states in the canonical basis. We emphasize
the solution of the relativistic quasiparticle RPA equations
the canonical basis does not represent an approximation
obtain a full solution and the results do not depend on
special choice of the basis.
03431
il-
ake
e

-
ts

v-
in
s

n

hat

e
is

Taking into account the rotational invariance of th
nuclear system, the quasiparticle pairs can be coupled
good angular momentum and the matrix equations of
RQRPA read

S AJ BJ

B* J A* JD S Xn,JM

Yn,JMD 5vnS 1 0

0 21D S Xn,JM

Yn,JMD . ~51!

For each RQRPA energyvn , Xn, andYn denote the corre-
sponding forward- and backward-going two-quasiparti
amplitudes, respectively. The coupled RQRPA matrices
the canonical basis read

Akk8ll8
J

5Hkl
11(J)dk8l82Hk8l

11(J)dkl82Hkl8
11(J)dk8l1Hk8l8

11(J)dkl

1
1

2
~jkk8

1 jll8
1

1jkk8
2 jll8

2
!Vkk8ll8

ppJ

1zkk8ll8Vkl8k8l
phJ , ~52!

Bkk8ll8
J

5
1

2
~jkk8

1 jll8
1

2jkk8
2 jll8

2
!Vkk8ll8

ppJ
1zkk8ll8

~21! j l2 j l81JVklk8l8
phJ . ~53!

H11 denotes the one-quasiparticle terms

Hkl
11 5~ukul2vkvl!hkl2~ukvl1vkul!Dkl , ~54!

i.e., the canonical RHB basis does not diagonalize the D
single-nucleon mean-field HamiltonianĥD and the pairing
field D̂. The occupation amplitudesvk of the canonical states
are eigenvalues of the density matrix.Vph and Vpp are the
particle-hole and particle-particle residual interactions,
spectively. Their matrix elements are multiplied by the pa
ing factorsj6 and z, defined below by the occupation am
plitudes of the canonical states. The relativistic particle-h
interactionVph is defined by the same effective Lagrangi
density as the mean-field Dirac single-nucleon Hamilton
ĥD . Vph includes the exchange of the isoscalar scalars me-
son, the isoscalar vectorv meson, the isovector vectorr
meson, and the electromagnetic interaction. The two-b
matrix elements include contributions from the spatial co
ponents of the vector fields,
zkk8ll855
hkk8

1 hll8
1 for s, and the time componentsv0, r0, A0 if J is even

for the space componentsvW , rW , AW if J is odd

hkk8
2 hll8

2 for s, and the time componentsv0, r0, A0 if J is odd

for the space componentsvW , rW , AW if J is even
2-6
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with the h coefficients defined by

hkk8
6

5ukvk86vkuk8 ,

and

jkk8
6

5ukuk87vkvk8 .

The RQRPA configuration space includes the Dirac se
negative-energy states. In addition to the configurations b
from two-quasiparticle states of positive energy, the RQR
configuration space must also contain pair configurati
formed from the fully or partially occupied states of positi
energy and the empty negative-energy states from the D
sea. The inclusion of configurations built from occupi
positive-energy states and empty negative-energy state
essential for current conservation and the decoupling of s
rious states@27#. In recent applications of the relativistic RP
it has been shown that the fully consistent inclusion of
Dirac sea of negative-energy states in the RRPA config
tion space is essential for a quantitative comparison with
experimental excitation energies of giant resonances@5,28#.

It should be emphasized that the present RQRPA mod
fully consistent: the same interactions, both in the partic
hole and particle-particle channels, are used in the R
equation~28! that determines the canonical quasiparticle
sis, and in the RQRPA equation~51!. In both channels the
same strength parameters of the interactions are used i
RHB and RQRPA calculations. No additional adjustment
the parameters is needed in RQRPA calculations. This is
essential feature of our calculations and it ensures
RQRPA amplitudes do not contain spurious components
sociated with the mixing of the nucleon number in the RH
ground state~for 01 excitations!, or with the center-of-mass
translational motion~for 12 excitations!.

In the following section, we present results of illustrati
RQRPA calculations of the multipole response in spher
nuclei. For the multipole operatorQ̂lm the response function
R(E) is defined as

R~E,J!5(
n

B~J,vn!
1

p

G/2

~E2vn!21~G/2!2
, ~55!

whereG is the width of the Lorentzian distribution, and

B~J,vn!5u(
kk8

$Xkk8
n,J0^kiQ̂Juuk8&

1~21! j k2 j k81JYkk8
n,J0 ^k8iQ̂Jik&%

3~ukvk81~21!Jvkuk8!u
2. ~56!

In all the examples considered in Sec. III, the discr
strength distributions are folded by a Lorentzian of widthG
51 MeV. For the stateuJ,n&, the RQRPA transition density
reads
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drJ
n~r !5(

kk8
$^kuuYJuuk8& f k~r ! f k8~r !

1^k̂iYJi k̂8&gk~r !gk8~r !%~Xkk8
n,J0

1~21!JYkk8
n,J0

!

3~ukvk81 ~21!Jvkuk8!, ~57!

wherek andk̂ denote the quantum numbers of the large a
small components of the Dirac spinors, respectively.f k(r )
andgk(r ) are the corresponding large and small radial co
ponents.

III. ILLUSTRATIVE CALCULATIONS
AND TESTS OF THE RQRPA

Nuclear properties calculated with the RHB1RQRPA
model will, of course, crucially depend on the choice of t
effective RMF Lagrangian in theph channel, as well as on
the treatment of pairing correlations. The most succes
RMF effective interactions are purely phenomenologic
with parameters adjusted to reproduce the nuclear ma
equation of state and a set of global properties of spher
closed-shell nuclei. In most applications of the RHB mod
in particular, we have used the NL3 effective interaction@29#
for the RMF effective Lagrangian. Properties calculated w
NL3 indicate that this is probably the best nonlinear effect
interaction so far, both for nuclei at and away from the li
of b stability. In thepp channel of the RHB model we hav
used a phenomenological pairing interaction, the pairing p
of the Gogny force,

Vpp~1,2!5 (
i 51,2

e2[( rW12rW2)/m i ]
2
~Wi1Bi P

s2Hi P
t

2Mi P
sPt!, ~58!

with the set D1S@30# for the parametersm i , Wi , Bi , Hi ,
andMi ( i 51,2). This force has been very carefully adjust
to the pairing properties of finite nuclei all over the period
table. In particular, the basic advantage of the Gogny forc
the finite range, which automatically guarantees a proper
off in momentum space. All RHB1RQRPA calculations pre-
sented in this work have been performed with the NL31D1S
combination of effective interactions.

In order to illustrate the RHB1RQRPA approach and to
test the numerical implementation of the RQRPA equatio
in this section we calculate the isoscalar monopole, isove
dipole, and isoscalar quadrupole response of22O. Similar
calculations for the neutron-rich oxygen isotopes were
cently performed by Matsuo@2,3# in the framework of the
nonrelativistic continuum linear response theory based on
Hartree-Fock-Bogoliubov formalism in coordinate state re
resentation. The two theoretical frameworks differ, of cour
both in the physical contents, as well as in the numeri
implementation. The results can, nevertheless, be comp
at least at the qualitative level. In the HFB1QRPA model of
Refs. @2,3#, a Woods-Saxon parametrization is adopted
the single-particle potential, and a Skyrme-type dens
dependentd force is used for the residual interaction in th
2-7
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N. PAAR, P. RING, T. NIKŠIĆ, AND D. VRETENAR PHYSICAL REVIEW C67, 034312 ~2003!
ph channel of the QRPA. Since the calculation of the sing
particle potential andph interaction is not self-consistent, th
interaction strength of the residual interaction is renorm
ized for each nucleus in such a way that the dipole respo
has a zero-energy mode corresponding to the spur
center-of-mass motion. For the pairing interaction, a dens
dependentd force is used both in the calculation of the HF
pairing field for the ground state, and in the linear respo
equation for the excitations. The calculation is consisten
the pp channel. The present RHB1RQRPA calculations are
fully self-consistent: the same combination of effective int
actions, NL3 in theph channel and Gogny D1S in thepp
channel, are used both in the RHB calculation of the grou
state and as RQRPA residual interactions. The paramete
the RQRPA residual interactions have exactly the same
ues as those used in the RHB calculation.

In the analysis of Refs.@2,3#, Matsuo has illustrated the
importance of a consistent treatment of pairing correlati
in the HFB1QRPA framework. The residual pairing intera
tion in the QRPA generates pronounced dynamical corr
tion effects on the responses through pair density fluc
tions. Moreover, the energy weighted sum rules are o
satisfied if the pairing interaction is consistently includ
both in the static HFB and in the dynamical linear respon
We have verified that the results obtained in the HFB1QRPA
framework are also reproduced in the RHB1RQRPA calcu-
lations.

In the left panel of Fig. 1 we display the monopo
strength function of the neutron number operator in22O.
There should be no response to the number operator sin
is a conserved quantity, i.e., the Nambu-Goldstone mode
sociated with the nucleon number conservation should h
zero excitation energy. The dashed curve~no dynamical pair-
ing! represents the strength function obtained when the p
ing interaction is included only in the RHB calculation of th
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E [MeV]

0

1

2

R
[1

/M
eV

]

0 5 10 15 20 25 30 35

E [MeV]

0

full pairing
no dynamical pairing

0 5 10 15 20 25 30 35

E [MeV]

0

200

400

600

800

R
[e

2 fm
4 /M

eV
]

0 5 10 15 20 25 30 35

E [MeV]

0

200

400

600

800

full pairing
no dynamical pairing
no pairing

22
O

 |<ν|
^
N |0>|

2
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+

FIG. 1. The strength function for the neutron number opera
~left!, and the isoscalar strength function for the monopole oper
~right! in 22O. The curves correspond to the RMF1RRPA calcula-
tion without pairing~dotted!, with pairing correlations included in
the RHB calculation of the ground state, but not in the RRPA
sidual interaction~dashed!, and to the fully self-consistent RHB
1RQRPA calculation~solid!.
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ground state, but not in the residual interaction of t
RQRPA. The solid line~zero response! corresponds to the
full RHB1RQRPA calculation, with the pairing interactio
included both in the RHB ground state, and in the RQR
residual interaction. The same result was also obtained in
HFB1QRPA calculation for24O in Ref. @3#: the spurious
strength of the number operator appears when the pai
interaction is included only in the stationary solution for t
ground state, i.e., when the dynamical QRPA pairing cor
lations are neglected.

The isoscalar strength functions of the monopole opera
( i 51

A r i
2 in 22O, shown in the right panel of Fig. 1, correspon

to three different calculations:~a! the RMF1RRPA calcula-
tion without pairing,~b! pairing correlations are included i
the RHB calculation of the ground state, but not in t
RQRPA residual interaction~no dynamical pairing!, and ~c!
the fully self-consistent RHB1RQRPA calculation. Just as in
the case of the number operator, by including pairing cor
lations only in the RHB ground state a strong spurious
sponse is generated below 10 MeV. The Nambu-Goldst
mode is found at zero excitation energy~in this particular
calculation it was located below 0.2 MeV! only when pairing
correlations are consistently included also in the resid
RQRPA interaction. When the result of the full RH
1RQRPA is compared with the response calculated with
pairing, one notices that, as expected, pairing correlati
have relatively little influence on the response in the reg
of giant resonances above 20 MeV. A more pronounced
fect is found at lower energies. The fragmentation of t
single peak at'12.5 MeV reflects the broadening of th
Fermi surface by the pairing correlations.

The isovector strength function (Jp512) of the dipole
operator

Q̂1m
T515

N

N1Z (
p51

Z

r pY1m2
Z

N1Z (
n51

N

r nY1m ~59!

for 22O is displayed in the left panel of Fig. 2. In this ex
ample we also compare the results of the RMF1RRPA cal-
culations without pairing, with pairing correlations include
only in the RHB ground state~no dynamical pairing!, and
with the fully self-consistent RHB1RQRPA response. A
large configuration space enables the separation of the z
energy mode that corresponds to the spurious center-of-m
motion. In the present calculation for22O this mode is found
at E50.04 MeV.

The isovector dipole response in neutron-rich oxygen i
topes has recently attracted considerable interest bec
these nuclei might be good candidates for a possible ide
fication of the low-lying collective soft mode~pygmy state!,
which corresponds to the oscillations of excess neutrons
of phase with the core composed of an equal number
protons and neutrons@31,32#. The strength functions show
in Fig. 2 illustrate the importance of including pairing corr
lations in the calculation of the isovector dipole respon
Pairing is, of course, particularly important for the low-lyin
strength below 10 MeV. The inclusion of pairing correlatio
in the full RHB1RQRPA calculation enhances the low
energy dipole strength near the threshold. For the main p

r
or

-
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in the low-energy region ('8.65 MeV), in the right panel of
Fig. 2 we display the proton and neutron transition densitie
In contrast to the well known radial dependence of the is
ovector giant dipole resonance~IVGDR! transition densities
~proton and neutron densities oscillate with opposite phase
the amplitude of the isovector transition density is muc
larger than that of the isoscalar component!, the proton and
neutron transition densities for the main low-energy peak a
in phase in the nuclear interior, there is no contribution from
the protons in the surface region, the isoscalar transition de
sity dominates over the isovector one in the interior, and th
strong neutron transition density displays a long tail in th
radial coordinate. A similar behavior has been predicted fo
the light neutron halo nuclei6He, 11Li, and 12Be in Ref.
@33#, where it has been shown that the long tails of the wav
functions of the loosely bound neutrons are responsible f
the different radial dependence of the transition densities th
correspond to the soft low-energy states as compared
those of the giant resonances.

The effect of pairing correlations on the isovector dipole
response in22O is very similar to the one obtained in the
HFB1QRPA framework~Fig. 8 of Ref. @3#!. In the low-
energy region below 10 MeV, however, the pairing interac
tion used in the QRPA calculation produces a much strong
enhancement of the dipole strength, as compared to the
sults shown in Fig. 2. The reason probably lies in the choic
of the pairing interaction. While we use the volume Gogn
pairing, in Ref.@3# a density-dependentd force was used in
the pp channel. This interaction is surface peaked and ther
fore produces a stronger effect on the low-energy dipo
strength near the threshold. Nevertheless, we emphasize t
the RHB1RQRPA results for the low-lying dipole strength
distribution in 22O are in very good agreement with recen
experimental data@32#.

In the left panel of Fig. 3 we display the RHB1RQRPA
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E [MeV]

0

0.2

0.4

0.6

0.8

1

1.2

R
 [

e2 fm
2 /M

eV
]

full pairing
no dynamical pairing
no pairing

0 2 4 6 8 10

r [fm]

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

r2 δρ
 [

fm
-1

]

neutrons
protons

22
O

E=8.65 MeV

1
-

FIG. 2. The isovector strength function of the dipole operator i
22O ~left!. The fully self-consistent RHB1RQRPA response~solid
line! is compared with the RMF1RRPA calculation without pairing
~dotted line!, and with the RHB1RRPA calculation that includes
pairing correlations only in the ground state~dashed line!. The pro-
ton and neutron transition densities for the peak atE58.65 MeV
are shown in the right panel.
03431
s.
-

s,

re

n-
e
e
r

e
r

at
to

-
er
re-
e

e-
e
hat

isoscalar and isovector quadrupole (Jp521) strength distri-
butions in 22O. The low-lyingJp521 state is calculated a
E52.95 MeV, and this value should be compared with t
experimental excitation energy of the first 21 state: 3.2 MeV
@34#. The strong peak atE522.3 MeV in the isoscalar
strength function corresponds to the isoscalar giant~IS! giant
quadrupole resonance. The isovector response, on the
hand, is strongly fragmented over the large region of exc
tion energiesE.18–38 MeV. The effect of pairing correla
tions on the isoscalar response is illustrated in the right pa
of Fig. 3, where again the full RHB1RQRPA strength func-
tion is compared to the RMF1RRPA calculation without
pairing, and with the response obtained when the pair
interaction is included only in the RHB ground state~no
dynamical pairing!. As one would expect, the effect of pai
ing correlations is not particularly pronounced in the gia
resonance region. The inclusion of pairing correlations, ho
ever, has a relatively strong effect on the low-lying 21 state.
This is seen more clearly in the left panel of Fig. 4, whe
only the low-energy portion of the isoscalar strength dis
butions in 22O is shown. With respect to the RRPA calcul
tion, the inclusion of the pairing interaction in the static s
lution for the ground state increases the excitation energ
the lowest 21 state by'3 MeV. The fully self-consistent
RHB1RQRPA calculation lowers the excitation energy fro
'4.5 MeV toE52.95 MeV. The inclusion of pairing corre
lations increases the collectivity of the low-lying 21 state. A
very similar result for the low-lying quadrupole state in24O
has been obtained by Matsuo in the HFB1QRPA framework
@3#. The proton and neutron transition densities for the1

state atE52.95 MeV are shown in the right panel of Fig. 4
They display a characteristic radial dependence. Both tra
tion densities are, of course, peaked in the surface region
the proton contribution is much smaller. The RHB1RQRPA
results for the 21 excitations are in agreement with the no
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FIG. 3. The RHB1RQRPA isoscalar and isovector quadrupo
strength distributions in22O ~left panel!. In the right panel the full
RHB1RQRPA isoscalar strength function~solid! is compared to
the RMF1RRPA calculation without pairing~dotted!, and with the
response obtained when the pairing interaction is included onl
the RHB ground state~dashed!.
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relativistic QRPA calculations of the quadrupole response
neutron-rich oxygen isotopes@3,4,35,36#.

IV. EVOLUTION OF THE LOW-LYING ISOVECTOR
DIPOLE STRENGTH IN Sn ISOTOPES

AND NÄ82 ISOTONES

The dipole response of very neutron-rich isotopes is ch
acterized by the fragmentation of the strength distribut
and its spreading into the low-energy region, and by the m
ing of isoscalar and isovector modes. It appears that in m
relatively light nuclei the onset of dipole strength in the lo
energy region is due to nonresonant independent sin
particle excitations of the loosely bound neutrons. The str
ture of the low-lying dipole strength changes with mass.
we have shown in the RRPA analysis of Ref.@10#, in heavier
nuclei low-lying dipole states appear that are characteri
by a more distributed structure of the RRPA amplitud
Among several peaks characterized by single-particle tra
tions, a single collective dipole state is identified below
MeV, and its amplitude represents a coherent superpos
of many neutron particle-hole configurations.

Very recently experimental data have been reported on
concentration of electric dipole strength below the neut
separation energy inN582 semimagic nuclei. The distribu
tion of the electric dipole strength in138Ba, 140Ce, and
144Sm displays a resonant structure between 5.5 MeV an
MeV, exhausting'1% of the isovectorE1 energy weighted
sum rule ~EWSR! @37#. In 138Ba negative parity quantum
numbers have been assigned to 18 dipole excitations
tween 5.5 MeV and 6.5 MeV@38#.

In Figs. 5 and 6 we display the isovector dipole stren
distributions in eightN582 isotones, calculated in the RH
1RQRPA framework with the NL31D1S combination of
effective interactions. The calculation is fully self-consiste
with the Gogny finite-range pairing included both in th
RHB ground state, and in the RQRPA residual interacti
The isovector dipole response is shown for even-Z nuclei
from 146Gd to the doubly magic132Sn. In addition to the
characteristic peak of the isovector giant dipole resona
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FIG. 4. Low-energy portion of the isoscalar quadrupole stren
distribution in 22O ~left!. The neutron and proton transition densiti
for the Jp521 state atE52.95 MeV ~right!.
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~IVGDR! at '15 MeV, the evolution of the low-lying di-
pole strength with decreasing proton number is clearly
served below 10 MeV. The strength of the low-lying dipo
response increases with the relative increase of the neu
contribution, i.e., with reducing the number of protons. F
the main peaks in the low-energy region below 10 MeV,
the panels on the right side of Figs. 5 and 6 we display
corresponding neutron and proton transition densities.
radial dependence is very different from that of the transit
densities of the IVGDR peak. For all eight nuclei the ma
peak below 10 MeV does not correspond to an isovec
excitation, i.e., the proton and neutron transition densi
have the same sign. The relative contribution of the prot
in the surface region decreases with reducing the pro
number. In particular, for the nuclei shown in Fig. 6:138Ba,
136Xe, 134Te, and132Sn, there is practically no proton con
tribution to the transition density beyond 6 fm. The dynam
is that of a pygmy resonance: the neutron skin oscilla
against the core. In Ref.@37# it was emphasized that th
observed low-lying dipole states in theN582 isotones are
not just statisticalE1 excitations sitting on the tail of the
GDR, but represent a fundamental structure effect. In Fig
we show that this is also the case for the RHB1RQRPA
results. For the dipole strength distribution of140Ce, shown
in the left panel, in the right column we compare the neutr
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FIG. 5. RHB1RQRPA isovector dipole strength distributions
146Gd, 144Sm, 142Nd, and 140Ce, calculated with the NL31D1S
effective interaction. The corresponding proton and neutron tra
tion densities for the main peak in the low-energy region below
MeV are displayed in the panels on the right side.
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and proton transition densities for the IVGDR peak at 14.
MeV, for the peak at 12.51 MeV, and for the main peak in t
low-energy region at 8.22 MeV. The peak at 12.51 MeV,
well as other peaks in the interval 10–14 MeV, displays tra
sition densities very similar to those of the GDR peak, i.
these states belong to the tail of the GDR. The dynamics
the low-energy mode at 8.22 MeV, on the other hand, is v
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FIG. 6. Same as in Fig. 5, but for theN582 isotones:138Ba,
136Xe, 134Te, and132Sn.
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FIG. 7. The isovector dipole strength distribution in140Ce ~left
panel!. The neutron and proton transition densities for the IVGD
peaks at 14.31 MeV, 12.51 MeV, and for the main peak in t
low-energy region at 8.22 MeV~right!.
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different: the proton and neutron transition densities are
phase in the nuclear interior, there is almost no contribut
from the protons in the surface region, the isoscalar tra
tion density dominates over the isovector one, and the p
of the strong neutron transition density in the surface reg
is shifted toward larger radii.

On a quantitative level, the present RHB1RQRPA calcu-
lation does not compare too well with the experimental d
on the low-lying dipole strength in theN582 isotones. First,
while the observed low-energy dipole states in138Ba, 140Ce,
and 144Sm are concentrated between 5.5 MeV and 8 M
the calculated pygmy states in these nuclei are above 8 M
This can be partly explained by the low effective nucle
mass of the NL3 mean-field interaction@39#. On the other
hand, the excitation energies of the IVGDR are, as will
shown below in the example of Sn isotopes, rather well
produced by the NL3 interaction. The fact that NL3 repr
duces the IVGDR, but not the centroid of the low-ener
dipole strength, might indicate that the isovector channe
this force needs a better parametrization. Second and m
important, the number of RQRPA peaks below 10 MeV,
the operator~59!, is much smaller than the number of ob
served dipole states in the low-energy region@38,37#. The
observed low-lyingE1 strength consists of many states
different origin. This has been discussed in Ref.@37#. In ad-
dition to the two-phonon and three-phonon states, and
soft pygmy state, in this energy region one could also exp
some compressional low-lying isoscalar dipole strength@40#,
may be mixed with toroidal states@11,41#, as well as theE1
strength generated by the breaking of the isospin symm
due to a clustering mechanism@42#. A detailed investigation
of the nature of all observed low-lying dipole states inN
582 nuclei is, of course, beyond the scope of the pres
analysis, since our model space does not include m
tiphonon configurations.

The Sn isotopes present another very interesting exam
of the evolution of the low-lying dipole strength with neutro
number@43#. In Ref. @10# we have performed an analysis o
the isovector dipole response of neutron-rich Sn isotope
the relativistic RPA framework. The RMF1RRPA calcula-
tion has shown that, among several dipole states in the l
energy region between 7 MeV and 9 MeV, and characteri
by single-particle transitions, a single state is found with
more distributed structure of the RRPA amplitude, exhau
ing '2% of the EWSR. The results of the fully sel
consistent RHB1RQRPA calculation, with the NL31D1S
combination of effective interactions, are shown in Figs
and 9: the isovector dipole strength functions of the Sn i
topes~left panels!, and the corresponding proton and neutr
transition densities for the main peaks in the low-energy
gion ~right panels!. With the increase of the number of neu
trons a relatively strong peak appears below 10 MeV, ch
acterized by the dynamics of the pygmy resonance~see the
transition densities!. The low-energy pygmy peak is mos
pronounced in124Sn. It does not become stronger by furth
increasing the neutron number, and additional fragmenta
of the low-lying strength is observed in132Sn. For the Sn
isotopes we can compare the RHB1RQRPA results with ex-
perimental data on IVGDR. In the upper panel of Fig. 10 t

e
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experimental IVGDR excitation energies@44# are shown in
comparison with the calculatedEGDR. The energy of the
resonance is defined as the centroid energy

Ē5
m1

m0
, ~60!

with the energy weighted moments for discrete spectra

mk5(
n

B~J,vn!En
k . ~61!

For k51 this equation defines the EWSR. The calcula
energies of the IVGDR are in excellent agreement with
experimental data, and the mass dependence of the excit
energies is reproduced in detail. In the middle panel of F
10 we plot the calculated energies of the pygmy states
comparison with the IVGDR, the excitation energies of t
pygmy states decrease more steeply with the increasing m
number. The ratio of the energy weightedm1 moments cal-
culated in the low (E<10 MeV) and high (E.10 MeV)
energy regions, as function of the mass number, is plotte
the lower panel of Fig. 10. The relative contribution of t
low-energy region increases with the neutron excess.
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FIG. 8. RHB1RQRPA isovector dipole strength distributions
Sn isotopes, calculated with the NL31D1S effective interaction.
The corresponding proton and neutron transition densities for
main peak below the IVGDR are displayed in the panels on
right side.
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ratio m1,LOW/m1,HIGH reaches a maximum'0.06 for 124Sn,
and it slowly decreases to'0.05 for 132Sn.

V. SUMMARY

In this work we have formulated the relativistic QRPA
the canonical single-nucleon basis of the relativistic Hartr
Bogoliubov ~RHB! model. The RHB model presents th
relativistic extension of the Hartree-Fock-Bogoliubov fram
work, and it provides a unified description of the mean-fie
and pairing correlations. A consistent and unified treatm
of the ph and pp channels is very important for weakl
bound nuclei far from stability. In the RHB framework th
ground state of a nucleus can be written either in the qu
particle basis as a product of independent quasipart
states, or in the canonical basis as a highly correlated B
state. By definition, the canonical basis diagonalizes the d
sity matrix and it is always localized. It describes both t
bound states and the positive-energy single-particle c
tinuum. The QRPA model employed in this work is full
self-consistent. For the interaction in the particle-hole ch
nel effective Lagrangians with nonlinear meson se
interactions are used, and pairing correlations are descr
by the pairing part of the finite-range Gogny interactio
Both in theph and pp channels, the same interactions a
used in the RHB equations that determine the canonical q
siparticle basis, and in the matrix equations of the RQRP
This is very important, because the energy weighted s
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FIG. 9. Same as in Fig. 8, but for the heavier Sn isotopes.
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rules are only satisfied if the pairing interaction is cons
tently included both in the static RHB and in the dynamic
RQRPA calculations. The two-quasiparticle configurati
space includes states with both nucleons in the disc
bound levels, states with one nucleon in the bound levels
one nucleon in the continuum, and also states with b
nucleons in the continuum. The RQRPA configuration sp
includes the Dirac sea of negative-energy states. In add
to the configurations built from two-quasiparticle states
positive energy, the RQRPA configuration space conta
pair configurations formed from the fully or partially occu
pied states of positive energy and the empty negative-en
states from the Dirac sea. The inclusion of configuratio
built from occupied positive-energy states and em
negative-energy states is essential for the decoupling of
rious states.

The RHB1RQRPA approach has been tested in the
ample of the isoscalar monopole, isovector dipole, and is
calar quadrupole excitations of22O. The NL3 parametriza-
tion has been used for the RMF effective Lagrangian, and
Gogny D1S finite-range interaction has been employed in
pp channel. In the present numerical implementation
RHB eigenvalue equations, the Klein-Gordon equations
the meson fields, and the RQRPA matrix equations
solved by expanding the nucleon spinors and the me
fields in a basis of eigenfunctions of a spherical harmo
oscillator. The calculations have illustrated the importance
a consistent treatment of pairing correlations in the R
1RQRPA framework. The results have been compared w
calculations performed in the nonrelativistic continuu
QRPA based on the coordinate state representation of

112 116 120 124 128 132
A
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EXP.

Sn

FIG. 10. In the upper panel the experimental IVGDR excitat
energies of the Sn isotopes are compared with the RHB1RQRPA
results calculated with the NL31D1S effective interaction. The cal
culated energies of the pygmy states are shown in the middle p
The values of the ratiom1,LOW/m1,HIGH, of the energy weighted
moments m1 in the low-energy region (E<10 MeV) and in the
region of giant resonances (E.10 MeV), are plotted in the lower
panel.
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HFB framework. It has been shown that the RHB1RQRPA
results are in agreement with recent experimental data
with the nonrelativistic QRPA calculations of the multipo
response of neutron-rich oxygen isotopes.

The RHB1RQRPA has been employed in the analysis
the evolution of the low-lying isovector dipole strength in S
isotopes andN582 isotones. The analysis is motivated b
very recent data on the concentration of electric dip
strength below the neutron separation energy inN582
semimagic nuclei. It has been shown that in neutron-r
nuclei a relatively strong peak appears in the dipole respo
below 10 MeV, with a QRPA amplitude characterized by
coherent superposition of many neutron quasiparticle c
figurations. The dynamics of this state corresponds to tha
a pygmy dipole resonance: the oscillation of the skin of e
cess neutrons against the core composed of an equal nu
of protons and neutrons. It should be emphasized that, e
though the IVGDR excitation energies calculated with t
NL3 effective interaction are in excellent agreement w
experimental data on Sn isotopes, the pygmy peaks in
low-energy region do not compare too well with the data
low-lying dipole strength inN582 isotones. The calculate
peaks are'2 MeV higher than the experimental weighte
mean energies. This might indicate that there are proble
with the isovector channel of the effective interaction a
with the effective mass. Namely, if the pygmy resonance
directly related to the thickness of the neutron skin, the sp
ting between the excitation energies of the pygmy state
the IVGDR should be determined by the isovector channe
the effective force. A detailed quantitative analysis of t
empirical low-lying isovector dipole response of neutro
rich N582 nuclei in the RHB1RQRPA framework will be
included in a forthcoming publication.

Summarizing, the relativistic QRPA formulated in the c
nonical basis of the RHB model represents a significant c
tribution to the theoretical tools that can be employed in
description of the multipole response of unstable wea
bound nuclei far from stability.

ACKNOWLEDGMENTS

This work has been supported in part by the Bundesm
isterium für Bildung und Forschung under Project No. 0
TM 979, and by the Gesellschaft fu¨r Schwerionenforschung
~GSI! Darmstadt. T.N. acknowledges the support from t
Alexander von Humboldt-Stiftung.

APPENDIX: NUMERICAL DETAILS
OF THE SOLUTION OF THE RQRPA EQUATIONS

IN THE CANONICAL BASIS

The relativistic quasiparticle RPA equations can be s
plified considerably by employing the canonical basis. A
cording to the theorem of Bloch and Messiah@25#, any RHB
wave function can be expressed either in the quasipar
basis as a product of independent quasiparticle states,
the canonical basis as a highly correlated BCS state.
systems with an even number of particles we have
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uF&5 )
k.0

~uk1vkak
†ak̄

†
!u2&. ~A1!

u2& denotes the nucleon vacuum, the operatorsak
† and ak̄

†

create nucleons in the canonical basis. The occupation p
abilities are given by

vk
25

1

2 S 12
«k2m2l

A~«k2m2l!21Dk
2D . ~A2!

«k5^kuĥDuk& andDk5 ^kuD̂uk̄& are the diagonal element
of the Dirac single-particle Hamiltonian and the pairing fie
in the canonical basis, respectively. In contrast to the B
framework, however, neither of these fields is diagonal in
canonical basis. The basis itself is specified by the requ
ment that it diagonalizes the single-nucleon density ma
r̂(rW,rW8)5(k.0Vk(rW)Vk

†(rW8). The transformation to the ca
nonical basis determines the energies and occupation p
abilities of single-nucleon states that correspond to the s
consistent solution for the ground state of a nucleus. Sinc
diagonalizes the density matrix, the canonical basis is lo
ized. It describes both the bound states and the posit
energy single-particle continuum@26#.

Many of the eigenvalues~A2! of the density matrix are
identically zero. In particular, those at very high energies
the continuum, but also those that correspond to the leve
the Dirac sea~no-sea approximation!. Because of this degen
eracy the levels in the canonical basis are not uniquely
termined by the numerical diagonalization of the density m
trix r̂(rW,rW8). In addition to the well defined eigenstatesuk&
with nondegenerate eigenvalues 0,vk

2,1, there is one se
of eigenstates with eigenvalues equal to 0 and another s
eigenstates with eigenvalues equal to 1. Any linear comb
tion of eigenstates with eigenvalue 0~1! is again an eigen-
state with eigenvalue 0~1!. The diagonal pairing matrix ele
ments Dm vanish in these degenerate subspaces.
corresponding single-particle energies«m , however, are ar-
bitrary and unphysical. Within these two subspaces the
nonical basis is not uniquely defined.

We therefore introduce an additional requirement that
canonical basis in each of these subspaces diagonalize
single-particle HamiltonianĥD . In practical applications one
thus first diagonalizes the matrixr̂. This gives all the canoni-
cal basis states with 0,vk

2,1, and in addition two sets
of degenerate eigenstates with eigenvalues 0 and 1.
eigenstatesuk& and ul& are considered degenerate if th
corresponding eigenvalues differ by less than a giv
parametered :

uvk
22vl

2u,ed . ~A3!

In the second step the single-particle HamiltonianĥD is di-
agonalized in the subspace of degenerate eigenvectors o
density matrix with eigenvalues 0~1!. These new vectors ar
also eigenvectors ofr̂ with eigenvalues 0~1!. This procedure
uniquely determines the energies«k and occupation prob
abilities vk

2 of single-particle states, which correspond to t
03431
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self-consistent solution for the ground state of a nucleus. A
appropriate choice, of course, has to be made for the para
etered . If it is too large, a linear combination of the eigen
statesuk& and ul& that diagonalizesĥD will no longer be an
eigenvector of the density matrixr̂.

It is important to illustrate how the RQRPA results depen
on the choice of the parametered in Eq. ~A3!. For the
nucleus 22O, in Fig. 11~a! we display the isovector dipole
strength distributions, calculated withed5102421027. For
any two values ofed.1026 the corresponding strength dis-
tributions show pronounced differences. Whened<1026,
the dipole response does not depend any longer on its pre
numerical value, and the spurious Nambu-Goldstone 12

mode is found at an excitation energy<0.1 MeV.
The RQRPA matrix is diagonalized in the finite dimen

sional two-quasiparticle (2qp) vector space. There are two
types of 2qp states:~1! those built fromqp states of positive
energy, and~2! those formed by one fully or partially occu-
pied state of positive energy and one empty negative-ene
state from the Dirac sea. The dimension of the RQRPA co
figuration space is thus determined by two cutoff paramete
ECp is the maximum value of the sum of the diagonal matr
elements ofH11 ~54! for the first type of 2qp states, andECa
is the maximum absolute value of the sum of the diagon
matrix elements ofH11 ~54! for 2qp states with one quasi-
particle in the Dirac sea. The choice of the two cutoff param
etersECp andECa is restricted by the following conditions:
~a! there should be no response to the number operator,
the Nambu-Goldstone 01 mode associated with the nucleon
number conservation should have zero excitation energy,~b!
the spurious excitation corresponding to the translation of t
nucleus decouples as a zero-energy excitation mode, and~c!
the response function does not depend on the precise num
cal values ofECp andECa .
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FIG. 11. ~a! The RQRPA isovector dipole response in22O cal-
culated for different values of the parametered ~A3!. ~b! Neutron
number operator response in22O computed for four values of the
cutoff energy parameterECp . ~c! The position of the spurious 12

state in 22O and 120Sn as a function of the 2qp cutoff energy pa-
rameterECp . ~d! The excitation energies of the ISGMR in22O and
120Sn as functions of the cutoff energy parameterECa . See text for
description.
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In Fig. 11~b! we show how the response to the neutr
number operator for22O varies with the cut-off paramete
ECp in the range 30–270 MeV. The choiceECa

51700 MeV includes the entire negative-energy Dirac sp
trum. The response is obviously reduced as the numbe
2qp configurations increases. Already forECp590 MeV the
Nambu-Goldstone 01 mode converges to<0.1 MeV.

A large configuration space is also necessary in orde
bring the spurious 12 state at zero excitation energy. In Fi
11~c! we illustrate the convergence of the energy of the2

spurious state in22O and 120Sn. The excitation energies ar
R

ia

g,

d

e

ys

ng

03431
-
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to

plotted as functions of the energy cutoff parameterECp . ECa
is kept at 1700 MeV.

The choice of the cutoff parameterECa has a pronounced
influence on the calculated isoscalar monopole respo
This is illustrated in Fig. 11~d!, where we show how the
energies of the giant monopole resonance~GMR! in 22O and
120Sn depend on the value ofECa . For ECa<1150 MeV,
only positive-energy 2qp states are included in the RQRP
basis and the excitation energies of the GMR peaks are
ply too low. As ECa is increased to include the negativ
energy states, the GMR excitation energies also increase
saturate forECa>1500 MeV.
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