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Short-wavelength cutoff effects in the ac fluctuation conductivity of superconductors
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The short-wavelength cutoff has been introduced in the calculation of the ac fluctuation conductivity of
superconductors. It is shown that a finite cutoff leads to a breakdown of the scaling property in frequency and
temperature. Also, it increases the phasef of the complex conductivity (tanf5s2 /s1) beyondp/4 at Tc .
Detailed expressions containing all essential parameters are derived for three-dimensional isotropic and aniso-
tropic fluctuation conductivity. In the two-dimensional case we obtain individual expressions for the fluctuation
conductivity for each term in the sum over discrete wave vectors perpendicular to the film plane. A comparison
of the theory to the experimental microwave fluctuation conductivity is provided.
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I. INTRODUCTION

Fluctuations of the order parameter near the critical te
peratureTc are much larger in high-Tc superconductors tha
in classical low-temperature superconductors. One of the
sons lies in the higher thermal energykBTc which provides
the excitations and the other in the very short cohere
lengths which occur in high-Tc cuprate superconductors
With these properties, the region of critical fluctuations w
estimated from the Ginzburg criterion to be of the order o
K or more, aroundTc , which renders the critical region ac
cessible to experimental investigations.1 Farther aboveTc ,
one expects to observe the transition from critical to non
teracting Gaussian fluctuations which are the lowest-or
fluctuation corrections to the mean-field theory.2

The layered structure of high-Tc superconductors require
some theoretical sophistication. One could treat these su
conductors with various models from three-dimensional~3D!
anisotropic to coupled layer Lawrence-Doniach models
purely two-dimensional~2D! ones. Due to the temperatur
variation of the coherence lengths, one could even expe
dimensional crossover in some systems. The fluctuation c
ductivity is altered by dimensionality in various models
that a detailed comparison of model calculations and exp
mental data could address the dimensionality problem.

For the reasons stated above, the fluctuation conduct
in high-Tc superconductors was studied experimentally
many authors3–14 Most of them used dc resistivity
measurements.3–5,9–14The reports were controversial in the
conclusions about the dimensionality of the system and
critical exponents. It has been shown that, in a wide temp
ture range aboveTc , the fluctuation conductivity did no
follow any of the single-exponent power laws predicted
scaling and mean-field theories.5 The data in the Gaussia
regime could be fitted by an expression derived within
Ginzburg-Landau~GL! theory with a short-wavelength cu
off in the fluctuation spectrum. Recently, Silvaet al.13 have
proved that the GL approach with an appropriate choice
cutoff parameter yields a result which is identical to that
the microscopic Aslamazov-Larkin~AL ! approach with re-
0163-1829/2003/67~17!/174515~13!/$20.00 67 1745
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duced excitations of the short-wavelength fluctuations.15 It
has been further shown that the detailed temperature de
dence of the fluctuation conductivity was not universal, b
sample dependent. In this respect, the GL approach has p
tical advantages since the cutoff parameter can be rea
adjusted in fitting the experimental data. Silvaet al.13 could
fit very well the data on a number of single crystals in t
Gaussian region fromTc11 K to Tc125 K.

When critical fluctuations are studied, it becomes ess
tial to know accurately the value ofTc . However, the deter-
mination of Tc from dc resistivity measurements bring
about some uncertainties. One should avoid the use of un
tifiable definitions ofTc such as, e.g.,~i! zero-resistance tem
perature,~ii ! midpoint of the transition,~iii ! maximum of the
derivativedr/dT, ~iv! intersection of the tangent to the tran
sition curve with the temperature axis, etc. The correct va
of the critical temperature can be determined as an additio
fitting parameter in the analysis of the fluctuation conduct
ity. Usually one assumes that a well-defined power law ho
in a given narrow temperature range and then determ
both Tc and the critical exponent from the selecte
segment.10,12,14However, the experimental data usually sho
an almost continuous change of slope so that the uncerta
in the determination ofTc is an unsolved problem. Beside
the effects of the cutoff have been neglected in the anal
of data close toTc . Even though the values of the fluctuatio
conductivity nearTc are not much affected by the introduc
tion of the cutoff, the slopes can be considerably chang4

and the analysis may become uncertain.
A number of microwave studies have been reported sh

ing clear signs of fluctuations in both the real and imagin
parts of the ac conductivity.6,7,16–18The real parts1 of the
complex conductivity (s̃5s12 is2) has a sharp peak atTc ,
which is not observed in, e.g., Nb as representative of lo
temperature classical superconductors.19 The salient feature
of the ac case is that the fluctuation conductivity does
diverge atTc because a finite frequency provides a limit
the observation of the critical slowing down nearTc . The
determination ofTc from the peak ins1 is a reasonable
©2003 The American Physical Society15-1
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choice.6 It is also important to note thats1 and s2 have
individually different temperature and frequency depe
dences, even though they result from the same underl
physics. Testing a given theoretical model becomes m
stringent when two curves have to be fitted with the same
of parameters.

The expressions for the ac fluctuation conductivity in t
Gaussian regime have been deduced within the ti
dependent Ginzburg-Landau~TDGL! theory of Schmidt.20

Using general physical arguments, Fisher, Fisher, and Hu21

provided a formulation for the scaling of the complex
conductivity as

s̃~v!}jz122DS̃6~vjz!, ~1!

wherej is the correlation length,z is the dynamical critical
exponent, D is the dimensionality of the system, an

S̃6(vjz) are some complex scaling functions above and
low Tc . This form of fluctuation conductivity was claimed t
hold in both the Gaussian and critical regimes. Dorsey22 has
deduced the scaling functions in the Gaussian regime ab
Tc and verified the previous results of Schmidt.20 More re-
cently, Wickham and Dorsey23 have shown that even in th
critical regime, where the quartic term in the GL free ene
plays a role, the scaling functions preserve the same form
in the Gaussian regime.

The above-mentioned theoretical expressions of the
fluctuation conductivity did not take into account the slo
variation approximation which is required for the validity
the Ginzburg-Landau theory.2 It was noted a long time ago
that the summation over the fluctuation modes had to
truncated at a wave vector which corresponded roughly
the inverse of the intrinsic coherence lengthj0.24 The im-
proved treatment with a short-wavelegth cutoff was appl
in fluctuation diamagnetism,25 and dc paraconductivity fa
aboveTc .26 This approach was also applied in dc fluctuati
conductivity of high-Tc superconductors where one encou
ters a large anisotropy.4,5,13 Introduction of the short-
wavelength cutoff was found to be essential in fitting t
theoretical expressions to the experimental data. In view
the great potential of the microwave method describ
above, we find motivation to elaborate in this paper the
proved theory of ac fluctuation conductivity including th
short-wavelength cutoff. We find that the resulting expr
sions can be written in the form of Eq.~1!. However, the
cutoff introduces a breakdown of the scaling property in
variablevjz. Also, we find that the phasef of the complex
conductivity (tanf5s2 /s1) evaluated atTc departs from
the valuep/4 when a cutoff is introduced. Values off larger
thanp/4 were observed experimentally,7 but were attributed
to an unusually large dynamic critical exponent. Also, dev
tion of the scaling in the variablevjz was observed alread
at 2 K aboveTc ,7 but no analysis was made considering t
short-wavelength cutoff in the fluctuation spectrum. T
present theory is developed for different dimensionalit
which facilitates comparison with experimental data.
17451
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II. EFFECTS OF THE SHORT-WAVELENGTH CUTOFF

Frequency-dependent conductivity can be calcula
within the Kubo formalism from the current correlation fun
tion. For the fluctuation conductivity one has to consider
current due to the fluctuations of the order parameter. T
resulting expression for the real part of the conductivity i27

s1
xx5S 2e\

m D 2 1

kBT (
k

kx
2^ucku2&2

tk/2

11~vtk/2!2
, ~2!

where the current is assumed to be in thex direction.ck is
the Fourier component of the order parameter, andtk
5t0 /(11j2k2) is the relaxation time of thekth component.
The relaxation time for thek50 mode is given by

t05
p\

8kBTc
S j~T!

j0
D z

, ~3!

wherez is the dynamic critical exponent. An alternative a
proach is to calculate the response of the system to an e
nal field through the expectation value of the current opera
averaged with respect to the noise.22,28,29

Equation ~2! is obtained from the time-depende
Ginzburg-Landau theory and represents the equivalent of
Aslamazov-Larkin fluctuation conductivity obtained fro
microscopic calculations. In the following, we present t
results which take account of the short-wavelength cutof
this contribution to the ac fluctuation conductivity. The oth
contributions such as Maki-Thomson~MT! and one-electron
density of states~DOS! renormalization30–32 cannot be
treated within the time-dependent Ginzburg-Landau the
but require microscopic calculations. It has been show31

that the MT anomalous contribution in high-Tc supercon-
ductors is almost temperature independent while the D
contribution is strongly temperature dependent and cont
a number of parameters which have to be determi
through a complex fitting procedure in an experimental d
analysis.33 Since the three terms in the fluctuation conduct
ity are additive, it is important to have the Aslamazov-Lark
term corrected for the short-wavelength cutoff which th
allows us to fit the MT and DOS contributions properly fro
the rest of the total experimental fluctuation conductivity.

The sum in Eq.~2! can be evaluated by integration co
sidering the appropriate dimensionality. In this section
discuss the simplest case of an isotropic 3D supercondu
Integration ink space needs a cutoff since the order para
eter cannot vary appreciably over distances which are sho
than some minimum wavelength. The cutoff inkx can be
expressed askx

max5L/j0, whereL is a dimensionless cutof
parameter. Obviously,L→` would imply no cutoff in the
integration, whereas forL'1 one obtains the usually as
sumed cutoff at 1/j0. In the 3D isotropic case, the sam
cutoff applies also toky andkz so that for the 3D integration
in k space one has to set the cutoff limit for the modu
kmax5A3L/j0. With the change of variableq(T)5kj(T)
one obtains
5-2
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SHORT-WAVELENGTH CUTOFF EFFECTS IN THE ac . . . PHYSICAL REVIEW B 67, 174515 ~2003!
s1
3D,iso~v,T,L!5

e2

6p\j0
S j~T!

j0
D z21

3E
0

Q q4

~11q2!@V21~11q2!2#
dq,

~4!

where

Q~T,L!5kcutj~T!5A3LS j~T!

j0
D ~5!

is the temperature-dependent cutoff limit inq space and

V~v,T!5
vt0

2
5

p

16

\v

kBTc
S j~T!

j0
D z

~6!

is a dimensionless variable which depends on frequency
temperature as independent experimental variables.

For the dc case (v50) and no cutoff (L→`), one finds
from Eq. ~4!

sdc
3D,iso~T,L→`!5

e2

32\j0
S j~T!

j0
D z21

, ~7!

which reduces to the well-known Aslamazov-Larkin resul27

provided that relaxational dynamics is assumed (z52) and
j(T)/j0 is taken only in the Gaussian limit as 1/Ae. How-
ever, with a finite cutoff parameterL one obtains

sdc
3D,iso~T,L!5

e2

16p\j0
S j~T!

j0
D z21

3Farctan~Q!2Q
~ 5

3 Q211!

~11Q2!2 G . ~8!

This result has been obtained by Hopfenga¨rtneret al.4 except
that they used only the Gaussian limit 1/Ae for the reduced
correlation lengthj(T)/j0. Their analysis has shown that th
cutoff plays no role exactly atTc sinceQ→` regardless of
L. However, at any temperature aboveTc one gets a finiteQ
and the value of the conductivity is lowered with respect
the result given by Eq.~7!. Their conclusion was that th
Gaussian fluctuations with no cutoff yield an overestima
fluctuation conductivity.

In this paper we are primarily interested in the ac ca
Before integrating Eq.~4! with VÞ0, we find the corre-
sponding expression for the imaginary parts2. We can apply
Kramers-Kronig relations to each of the Fourier compone
in Eq. ~2! and carry out the summation. This is equivalent
a calculation of the kernelK2 for s2 from the kernelK1 used
in Eq. ~4!, namely,

K2~V!5
2V

p E
0

` K1~V8!

V22V82
dV8. ~9!

With the kernelK2(V), the imaginary part of the fluctuatio
conductivity can be calculated for any cutoff parameterL:
17451
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s2
3D,iso~v,T,L!5

e2

6p\j0
S j~T!

j0
D z21

3E
0

Q Vq4

~11q2!2@V21~11q2!2#
dq.

~10!

Finally, the complex fluctuation conductivity can be writte
in the form

s̃3D,iso~v,T,L!5
e2

32\j0
S j~T!

j0
D z21

@S 1
3D,iso~v,T,L!

1 iS 2
3D,iso~v,T,L!#. ~11!

The prefactor is equal to the dc result with no cutoff effect
in Eq. ~7!. The functionsS1,2 are given by the expressions

S 1
3D,iso~v,T,L!5

1

3pV2
@P2~P1

2 12!L12P1~P2
2 22!A

116 arctan~Q!#, ~12!

S 2
3D,iso~v,T,L!5

1

3pV2 F2P2~P1
2 12!A2P1~P2

2 22!L

224V arctan~Q!18V
Q

11Q2G , ~13!

where we used the following shorthand notation:

P65A2AAV21161, ~14!

L5 lnS 21Q21~Q2P2!2

21Q21~Q1P2!2D , ~15!

A5arctanS 2Q1P2

P1
D1arctanS 2Q2P2

P1
D . ~16!

It can be easily verified that theS1,2 functions given by Eq.
~12! and Eq. ~13! have proper limits. In the dc limit (V
→0), one finds thatS2→0, andS1 leads to the dc result o
Eq. ~8!. One can also verify that the ac results obtained p
viously by Schmidt20 and Dorsey22 can be recovered from
our Eq. ~12! and Eq.~13! in the limit L→`, i.e., when no
cutoff is made.

The effects of the cutoff are not trivial in the ac case. It
essential to examine those effects in detail as they hav
strong bearing on the analysis of the experimental data.
prefactor in Eq.~11! depends only on temperature while th
cutoff parameterL is found only in theS functions. There-
fore, the effects of the cutoff can be studied through theS
functions alone. We can look at the temperature and
quency dependences of these functions with and without
cutoff. Figure 1~a! shows a set ofS1 curves as functions o
j(T)/j0 for three different frequencies. Far aboveTc the
relaxation timet0 is so short thatvt0!1 for any of the
chosen frequencies. Therefore the response of the syste
5-3
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like in the dc case. With no cutoff,S1 saturates to unity
@dashed lines in Fig. 1~a!#. This limit is required in order tha
s1 from Eq.~11! becomes equal tosdc(L→`) in Eq. ~7!. If
a cutoff with a finite L is included,S1 decays at higher
temperatures@solid lines in Fig. 1~a!#. The reduction ofS1 is
more pronounced at smaller values ofj(T) since the integra-
tion in q space is terminated at a lower valueQ
5A3Lj(T)/j0. At higher temperatures the conductivitys1
at any frequency behaves asymptotically assdc given by Eq.
~8!.

At temperatures closer toTc the relaxation timet0 in-
creases asj(T)z with increasing correlation length accordin
to Eq.~3! which is usually termed the critical slowing down
Whenvt0'1 for a given frequency,S1 is sharply reduced
and vanishes in the limit ofTc . With the diverging prefactor
in Eq. ~11! it can still yield a finites1 at Tc . It may appear
from Fig. 1~a! that a cutoff has no effect whenTc is ap-
proached, but we show later that an important feature
persists ins1.

Obviously, at lower operating frequencies one needs
approachTc closer so that the critical slowing down cou
reach the conditionvt0'1. One can see from Fig. 1~a! that
for frequencies below 1 GHz one would have to approachTc
closer than 1 mK in order to probe the critical slowing dow
in fluctuations. The higher the frequency, the farther ab
Tc is the temperature where the crossovervt0'1 occurs.
This feature expresses the scaling property of the condu
ity in frequency and temperature variables. However,
scaling property holds strictly only in the absence of t
cutoff. Namely, if one setsL→`, the functionS1 depends
only on the scaling variableV. Figure 1~b! shows the same

FIG. 1. S1 curves for the 3D isotropic case calculated from E
~12! for a finite cutoff parameterL50.5 ~solid lines! and for L
5` ~dashed lines!. The variable isj(T)/j0 in ~a! andV in ~b!. The
curves are labeled by the frequencyv/2p used in the calculations
17451
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set of curves as in Fig. 1~a!, but plotted versusV. The three
dashed curves from Fig. 1~a! coalesce into one dashed curv
in Fig. 1~b!, thus showing the scaling property in the absen
of a cutoff. However, the solid lines representing the fun
tions S1 with a finite cutoff parameterL do not scale with
the variableV. The reason is that the functionS1 then de-
pends also onQ, which itself is not a function ofV. Namely,
the cutoff inq space depends on the properties of the sam
and on the temperature, but not on the frequency used in
experiment. Hence, the cutoff brings about a breakdown
the scaling property in frequency and temperature. The ef
is more pronounced at temperatures farther aboveTc where
the cutoff is stronger.

The properties of the functionS2 are shown in Fig. 2 for
the same set of three measurement frequencies as in F
When plotted versusj(T)/j0, the functionS2 exhibits a
maximum at the point where the corresponding functionS1

shows the characteristic crossover due tovt0'1 as dis-
cussed above. WhenTc is approached,S2 tends to zero.
When S2 is multiplied with the diverging prefactor in Eq
~11!, one finds a finites2 at Tc . Far aboveTc , the function
S2 vanishes, regardless of the cutoff. This is consistent w
the behavior ofS1. Namely, at high enough temperatures,S1

acquires asymptotically the dc value, as seen in Fig. 1.
viously, the imaginary part of the conductivity must vani
when the dc-like limit is approached. The decrease of
function S2 at higher temperatures is very rapid so that t
effects of the cutoff are unnoticeable on the linear sca
Only with the logarithmic scale used in the inset to Fig. 2~a!
does one observe that the cutoff effects are present als

. FIG. 2. S2 curves for the 3D isotropic case calculated from E
~13! for the same parameters as in Fig. 1. The effects of a fi
cutoff are small and can be seen only on logarithmic scales use
the insets.
5-4
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S2, though by a very small amount. Figure 2~b! shows the
scaling property ofS2 with no cutoff and its breakdown
when the cutoff is included.

We have noted above that bothS1 and S2 tend to zero
whenTc is approached. Also, the effect of the cutoff is se
to be small in that limit. Yet these functions are multiplied
the diverging prefactor in Eq.~11! and then may yield finite
s1 ands2. A careful analysis is needed in order to find t
phasef of the complex conductivity@f5arctan(s2 /s1)# at
Tc . For a 3D isotropic superconductor, Dorsey22 has pre-
dictedf5p/4, i.e.,s15s2 at Tc . His result was obtained
with no cutoff and it remains to be seen if this property
preserved even when a finite cutoff is made. Figure 3~a!
showsS1 andS2 as functions ofj(T)/j0 for 100 GHz fre-
quency. The effects of cutoff onS2 are noticeable only far
aboveTc . Closer toTc , the curves forS2 calculated with
and without the cutoff are indistinguishable. In contrast
finite cutoff reduces the values ofS1 even in the limit ofTc .
As a result, the final cutoff parameterL yields a crossing of
the curves forS1 andS2 at some temperature slightly abov
Tc . It is better seen on an enlarged scale in Fig. 3~b!. This is
a surprising result which has bearing on the experime
observations. Due to the cutoff, the conditionS15S2 (f
5p/4) is reached at a temperature slightly aboveTc . Since
bothS1 andS2 are multiplied with the same prefactor in E
~11!, one finds that the crossing ofs1(T) ands2(T) does not
occur at the peak ofs1(T), but at a slightly higher tempera

FIG. 3. ~a! Asymptotic behavior of the functionsS1 andS2 of
the 3D isotropic case calculated with the choicev/2p5100 GHz in
the limit T→Tc . The dashed lines are theS1,2 curves calculated
with no cutoff (L5`), and the solid lines include a finite cuto
(L50.5). ~b! Enlarged section which shows the crossing ofS1 and
S2 (f5p/4; see text! at a temperature slightly aboveTc . The two
dashed lines are indistinguishable in this temperature range.
17451
a

al

ture. Exactly atTc , s2 is higher thans1 since a finite cutoff
parameter reducess1, but has no effect ons2.

The observation that the cutoff brings about a reduction
s1 at Tc is worth further investigation since it can be me
sured experimentally. Figure 4~a! shows the ratioS2 /S1
~equal tos2 /s1) at temperatures approachingTc . With no
cutoff @dashed lines in Fig. 4~a!#, this ratio reaches unity
regardless of the frequency used. A finite cutoff parame
@L50.5 in Fig. 4~a!# makes the ratio equal to unity at
temperature slightly aboveTc , and in the limit of Tc the
ratio saturates at some higher value. The saturation lev
seen to be higher when a higher frequency is used.

One can find analytical expansions of theS functions in
the limit of Tc (V→`). The leading terms are

S1,2
3D,iso~W,V→`!'

4A2

3p S C7
1

2
D D 1

AV
, ~17!

where we used the notation

C5arctan~11A2W!2arctan~12A2W!, ~18!

D5 lnS 11A2W1W2

12A2W1W2D . ~19!

The parameterW depends on the frequencyv and the cutoff
parameterL:

FIG. 4. ~a! The ratioS2 /S1 ~equal tos2 /s1) for the 3D isotro-
pic case at temperatures approachingTc . With no cutoff ~dashed
lines! the ratio tends to unity for all frequencies. With a finite cuto
(L50.5) the ratio equals unity at a temperature slightly aboveTc ,
dependent on the frequency. In the limitT→Tc the ratio saturates to
a frequency-dependent value larger than unity.~b! The ratioS2 /S1

andF1,2 given by Eq.~22!. The variableW is defined by Eq.~20!.
5-5



ts

co

d

e

o

al-
er
.

of

t

-
Hz,

es

of
eter
ds

The

se.

D.-N. PELIGRAD, M. MEHRING, AND A. DULČIĆ PHYSICAL REVIEW B 67, 174515 ~2003!
W5A3LA16

p

kBTc

\v
. ~20!

Both functions tend to zero in the limit ofTc (V→`), but
their ratio is finite and depends on the parameterW. Figure
4~b! shows the plot ofS2 /S1 at Tc as a function ofW. One
can observe that for a given cutoff parameterL, the ratio
S2 /S1 at Tc increases at higher frequencies~lower W). The
limits at Tc in Fig. 4~a! represent only three selected poin
on the curve forS2 /S1 in Fig. 4~b!.

In a given experiment, the ratios2 /s1 at Tc can be di-
rectly determined from the experimental data so that the
responding value of the parameterW can be found uniquely
from the curve ofS2 /S1 in Fig. 4~b!, and the cutoff param-
eterL is obtained using Eq.~20!. We should note thatL is a
temperature-independent parameter. It can be determine
the above procedure from the experimental data atTc , but it
controls the cutoff at all temperatures.

One may observe from Eq.~17! that in the limit ofTc the
leading terms in the expansions of theS functions behave as
(j(T)/j0)2z/2. Taking into account the prefactor in Eq.~11!
one finds thats1 ands2 can have finite nonzero values atTc
only if z52, i.e., for the purely relaxational dynamics. W
have assumed this case in all the figures of this section.

From the experimental data atTc one can determine als
the parameterj0. Using Eq.~11! and theS functions in Eq.
~17!, one obtains finite conductivities atTc :

s1,2
3D,iso~v,Tc ,L!5

e2

6\j0
A2

p

kBTc

\v
F 1,2

3D,iso~W!, ~21!

where
17451
r-

by

F 1,2
3D,iso~W!5

1

p S C7
1

2
D D . ~22!

As explained above, from the ratio of the experimental v
uess2(Tc)/s1(Tc) at Tc one can determine the paramet
W, and the values ofF1,2 can then be calculated from Eq
~22!. The remaining unknown parameterj0 can be obtained
using Eq. ~21! and either of the experimental values
s1(Tc) or s2(Tc).

It is also interesting to look at the plots ofF1,2(W) in Fig.
4~b!. One can observe thatF2 saturates to unity already a
small values ofW>2. On the other hand,F1 is smaller than
unity at any finite value ofW, in conformity with the ratio
(F2 /F1)5(S2/S1) at Tc . At this point it is useful to find the
expected range of values ofW encountered in the experi
ments. For microwave frequencies in the range 1–100 G
with L50.5, andTc5100 K, one finds thatW is in the
range 9–90. According to Fig. 4~b!, F2'1 in this range.
This means that the cutoff makes no effect onS2, and only
S1 is reduced, in conformity with the calculated curv
shown in Fig. 3.

III. ANISOTROPY

Most high-Tc superconductors are anisotropic, some
them even having a high value of the anisotropy param
g5j0ab /j0c . Therefore, for practical purposes one nee
adequate expressions for the ac fluctuation conductivity.
real part of the fluctuation conductivity in theab plane is
obtained using the Kubo formalism as in the isotropic ca
One obtains
ity
s1
3D,aniso5S 2e\

maba
D 2

kBTc(
k

kx
2t0/2

~11kab
2 jab

2 1kc
2jc

2!@V21~11kab
2 jab

2 1kc
2jc

2!2#
. ~23!

Takingkx
25kab

2 /2 and substituting the variablesqab5kabjab andqc5kcjc , one can evaluate the sum in Eq.~23! by integration
in the qab plane and along theqc axis:

s1
3D,aniso~v,T,Lab ,Lc!5

e2

8p\j0c
S j~T!

j0
D z21E

0

QabE
2Qc

Qc qab
3

~11qab
2 1qc

2!@V21~11qab
2 1qc

2!2#
dqabdqc , ~24!

where we allowed a cutoffQab(T)5A2Labjab(T)/j0ab in the qab plane and a possibly different cutoffQc(T)
5Lcjc(T)/j0c along theqc axis. The dimensionless parameterV is the same as given by Eq.~6!. We use the notationj(T)/j0
for both jab(T)/j0ab andjc(T)/j0c .

We may briefly examine the dc case (V50). With no cutoff one obtains

sdc
3D,aniso~T,Lab,c→`!5

e2

32\j0c
S j~T!

j0
D z21

, ~25!

which reduces to the Aslamazov-Larkin result forz52 ~relaxational dynamics! andj(T)/j0 taken in the Gaussian limit. Note
that the fluctuation conductivity in theab plane depends onj0c . Finite cutoff parameters reduce the fluctuation conductiv
when the temperature is increased aboveTc :
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sdc
3D,aniso~T,Lab ,Lc!5

e2

16p\j0c
S j~T!

j0
D z21Farctan~Qc!2

Qab
2 Qc

2~11Qab
2 !~11Qab

2 1Qc
2!

2
213Qab

2

2~11Qab
2 !3/2

arctanS Qc

A11Qab
2 D G . ~26!

This expression has not been reported in the previous literature. Analysis of a dc fluctuation conductivity is difficult b
of the number of unknown parameters.

The ac fluctuation conductivity can be obtained from the integral in Eq.~24! for the real part while the imaginary part i
obtained by a procedure analogous to that of the isotropic case described in the preceding section:

s2
3D,aniso~v,T,Lab ,Lc!5

e2

8p\j0c
S j~T!

j0
D z21E

0

QabE
2Qc

Qc Vqab
3

~11qab
2 1qc

2!2@V21~11qab
2 1qc

2!2#
dqabdqc . ~27!

The full expression can again be written in the form

s̃3D,aniso~v,T,Lab ,Lc!5
e2

32\j0c
S j~T!

j0
D z21

@S 1
3D,aniso~v,T,Lab ,Lc!1 iS 2

3D,aniso~v,T,Lab ,Lc!#. ~28!

The S functions for the 3D anisotropic case are found to be

S 1
3D,aniso~v,T,Lab ,Lc!5

1

3pV2
@2Qc~31Qc

2!L11P2~P1
2 12!L22T2~T1

2 122Qab
2 !L312P1~P2

2 22!A1

22T1~T2
2 221Qab

2 !A228A11Qab
2 ~22Qab

2 !A3116A4112VQcA5#, ~29!

S 2
3D,aniso~v,T,Lab ,Lc!5

1

3pV2 F4Qc~31Qc
2!A512P2~P1

2 12!A122T2~T1
2 122Qab

2 !A2

2P1~P2
2 22!L21T1~T2

2 221Qab
2 !L3112V

21Qab
2

A11Qab
2

A3224VA426VQcL1G , ~30!
at
3D
the
-
n

where we used the shorthand notations forP6 as in Eq.~14!
and the following:

T65A2AA~11Qab
2 !21V26~11Qab

2 !, ~31!

L15 lnS ~11Qc
2!2@V21~11Qab

2 1Qc
2!2#

~11Qab
2 1Qc

2!2@V21~11Qc
2!2#

D , ~32!

L25 lnS 21Qc
21~Qc2P2!2

21Qc
21~Qc1P2!2D ), ~33!

L35 lnS 2~11Qab
2 !1Qc

21~Qc2T2!2

2~11Qab
2 !1Qc

21~Qc1T2!2D , ~34!

A15arctanS 2Qc1P2

P1
D1arctanS 2Qc2P2

P1
D , ~35!
17451
A25arctanS 2Qc1T2

T1
D1arctanS 2Qc2T2

T1
D , ~36!

A35arctanS Qc

A11Qab
2 D , ~37!

A45arctan~Qc!, ~38!

A55arctanS 11Qab
2 1Qc

2

V D 2arctanS 11Qc
2

V D . ~39!

The effects of the cutoff are similar as those described
length in the preceding section for the simpler case of
isotropic superconductors. In this section we discuss only
modifications in the limitT→Tc where the relevant param
eters can be determined. TheS functions can be expanded i
the limit of Tc (V→`), and the leading terms are
5-7
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S 1
3D,aniso~Wab ,Wc ,V→`!

'
4A2

3p FC12U1SA11Wab
4 2

1

2
Wab

2 DC2

1
3

A2
WcC31A2Wab

3 C42
1

2
D11

1

2
U2SA11Wab

4

1
1

2
Wab

2 DD21
1

2A2
Wc

3D3G 1

AV
, ~40!

S 2
3D,aniso~Wab ,Wc ,V→`!

'
4A2

3p FC12U2SA11Wab
4 1

1

2
Wab

2 DC2

1
1

A2
Wc

3C31
3

A2
WabC41

1

2
D1

2
1

2
U1SA11Wab

4 2
1

2
Wab

2 DD22
3

2A2
WcD3G 1

AV
,

~41!

where we used the following shorthand notation:

U65AA11Wab
4 6Wab

2 , ~42!

C15arctan~11A2Wc!2arctan~12A2Wc!, ~43!

C25arctanS U21A2Wc

U1
D 2arctanS U22A2Wc

U1
D ,

~44!

C35arctan~Wab
2 1Wc

2!2arctan~Wc
2!, ~45!

C45arctanS Wc

Wab
D , ~46!

D15 lnS 11A2Wc1Wc
2

12A2Wc1Wc
2D , ~47!

D25 lnS A11Wab
4 1A2WcU21Wc

2

A11Wab
4 2A2WcU21Wc

2D , ~48!

D35 lnS Wc
4@11~Wab

2 1Wc
2!2#

~Wab
2 1Wc

2!2~11Wc
4!
D . ~49!

The cutoff parameters appear in

Wab5A2LabA16

p

kBTc

\v
, ~50!

Wc5LcA16

p

kBTc

\v
. ~51!
17451
We note that in the anisotropic case, theS functions behave
also as 1/AV whenT→Tc . As already discussed in the pre
vious section, this implies that finite nonzeros1(Tc) and
s2(Tc) can be obtained only forz52 ~relaxational model!.
Since the available experimental data in anisotropic highTc
superconductors6–8 show finite nonzeros1(Tc) ands2(Tc),
we can adoptz52 in the remainder of this section.

In analogy to the 3D isotropic case described in the p
ceding section, one may define the functions

F 1,2
3D,aniso~Wab ,Wc!5

3AV

4A2
S1,2

3D,aniso~Wab ,Wc ,V→`!,

~52!

so that the conductivities atTc are given by

s1,2
3D,aniso~v,Tc ,Lab ,Lc!5

e2

6\j0c
A2

p

kBTc

\v

3F 1,2
3D,aniso~Wab ,Wc!.

~53!

The ratio of experimental valuess2/s1 at Tc does not define
uniquely the cutoff parametersLab and Lc . It puts, how-
ever, a constraint on their choice. Figure 5~a! shows the plot

FIG. 5. ~a! The ratioF2 /F1 for 3D anisotropic case as a func
tion of Wab andWc @cf. Eq. ~52!#. ~b! Selection of curves for fixed
ratios ofF2 /F1 indicated by numbers. The dashed line marks
conditionLab5Lc (Wab5A2Wc).
5-8
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of F2 /F1 given by Eq.~52! as a function of two variables
Wab and Wc . It is evident that a fixed value ofF2 /F1 de-
fines a simple curve of possible choices of (Wab ,Wc). Fig-
ure 5~b! shows a selection of such curves forF2 /F1
51.05, 1.1, 1.15, and 1.2. The dashed line marks the co
tion Lab5Lc (Wab5A2Wc). Experimentally, one has to
probe the possible choices for (Wab , Wc) and look at the fits
of the theoretical curves to the experimental data atT.Tc .
The parameterj0c in Eq. ~28! can be obtained once th
choice for (Wab , Wc) is made.

Note that in practical applications of the above theory o
needs measurements where the microwave current fl
only in theab plane. Particularly suitable for this purpose a
the measurements in which the superconducting samp
placed in the antinode of the microwave electric fieldEv in
the cavity.34,35

IV. TWO-DIMENSIONAL FLUCTUATIONS

The superconducting transition does not occur in a stri
2D system. However, if the sample is a very thin film so th
its thickness is much smaller than the correlation length,
fluctuations will be restricted within the film thicknessd in
one direction and develop freely only in the plane of the fil
Using the formalism described in the preceding sections,
find that the fluctuation conductivity is given by

s1
2D~v,T,L!

5
e2

4\d S j~T!

j0
D 2

3(
qn

E
0

Q q3

~11q21qn
2!@V21~11q21qn

2!2#
dq, ~54!

s2
2D~v,T,L!

5
e2

4\d S j~T!

j0
D 2

3(
qn

E
0

Q Vq3

~11q21qn
2!2@V21~11q21qn

2!2#
dq,

~55!

s̃2D~v,T,L!5
e2

16\d S j~T!

j0
D 2

(
qn

@S 1
2D~V,Q,qn!

1 iS 2
2D~V,Q,qn!#, ~56!

where

qn5npS j0

d D S j~T!

j0
D ~57!

and Q5A2L(j(T)/j0). The prefactor is the Aslamazov
Larkin result for the 2D case with no cutoff and the Gauss
form 1/e replaced by the more general express
(j(T)/j0)2.

The S functions are given by
17451
i-
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s
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y
t
e

.
e

n

S 1
2D~V,Q,qn!5

1

V F2 arctanS 11Q21qn
2

V D
22 arctanS 11qn

2

V D 1S 11qn
2

V D
3 lnS ~11qn

2!2@V21~11Q21qn
2!2#

~11Q21qn
2!2@V21~11qn

2!2#
D G ,

~58!

S 2
2D~V,Q,qn!5

1

V F2~11qn
2!

V FarctanS 11Q21qn
2

V D
2arctanS 11qn

2

V D G
2 lnS ~11qn

2!2@V21~11Q21qn
2!2#

~11Q21qn
2!2@V21~11qn

2!2#
D

22
Q2

11Q21qn
2G . ~59!

The summation overqn in Eq. ~56! has to be carried ou
until the factor np(j0 /d) reaches some cutoff valueL,
which is of the order of unity. If the film thickness is larg
(d@j0), one has to sum up to a highn value. In such cases
the summation is well approximated by an integration, a
one retrieves the 3D case of the preceding section. The
character is better displayed when the film thickness is co
parable toj0. Then, only a few terms have to be taken in
account. In the extreme case ofd,j0, only then50 term is
found below the cutoff limit.

The zero-frequency limit (V→0) yields

sdc
2D~T,L!5

e2

16\d S j~T!

j0
D 2

(
qn

Q4

~11Q21qn
2!2~11qn

2!
.

~60!

The n50 term yields the previous result of Hopfenga¨rtner
et al.4 and Gauzziet al.5

In the limit of Tc (V→`) one obtains

s1
2D~Tc!5

e2

p\d

kBTc

\v (
n

F2 arctan~W21Wn
2!

22 arctan~Wn
2!1Wn

2 ln
Wn

4@11~W21Wn
2!2#

~11Wn
4!~W21Wn

2!2G ,

~61!
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s2
2D~Tc!5

e2

p\d

kBTc

\v (
n

F2Wn
2 arctan~W21Wn

2!

22Wn
2 arctan~Wn

2!2 ln
Wn

4@11~W21Wn
2!2#

~11Wn
4!~W21Wn

2!2G ,

~62!

where we used the notation

W5A2LA16

p

kBTc

\v
, ~63!

Wn5npS j0

d DA16

p

kBTc

\v
. ~64!

One may observe that forn50 the real part of the conduc
tivity is finite, but the imaginary part diverges. It is due to t
logarithmic term in Eq.~62!. This is an unphysical result. I
may indicate that then50 term is not physically acceptabl
or that the 2D model should not be applied exactly atTc .

V. COMPARISON WITH EXPERIMENT

The relevance of the theoretical expressions derived in
preceding sections can be demonstrated by compariso
the calculated and experimentally measured ac fluctua
conductivity. As an example we present here an analysi
the data in Bi2Sr2Ca2Cu3O102d ~BSCCO! thin film. The ex-
perimental results of the complex conductivity measured
9.5 GHz are shown in Fig. 6~a!. The main features are th
same as reported previously in single crystals of highTc
superconductors.6,18 We have to note that in our measur
ment the thin film was positioned in the center of an elliptic
microwave cavity resonating ineTE111 mode and oriented in
such a way that the electric fieldEv was in theab plane.
Thus the in-plane conductivity was measured and the ap
cation of the theoretical expressions of the preceding s
tions is appropriate. The normal-state conductivitysn(T)
was determined from the linear resistivityrn(T) above 160
K. Other experimental details have been repor
previously.35–37 In this section, we are interested in the flu
tuation conductivity nearTc which is shown on an enlarge
scale in Fig. 6~b!. The real part of the conductivity has
maximum when the coherence length diverges. Since
critical temperature of a phase transition is characterized
the divergence of the coherence length, we use the maxim
of s1 in Fig. 6~b! to determineTc584.04 K. One can also
observe in Fig. 6~b! that the imaginary part of the conduc
tivity crosses the real part at a temperature slightly aboveTc .
This is a consistency test of the short-wavelength cutoff
discussed in Sec. II. The experimental values ofs1 ands2 at
Tc can be used in the evaluation of the parameters wh
enter the theoretical expressions of the preceding sectio

Figure 7~a! shows the experimental data aboveTc plotted
against the reduced temperaturee5 ln(T/Tc). We can analyze
this data first by the theoretical expressions which have
cutoff on the fluctuation wave vector. It is straightforward
evaluatej0c using Eq.~53! and the experimental value ofs2
17451
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at Tc . The determination ofj0c from s2(Tc) does not de-
pend on the choice of the cutoff parameters so that its va
can be used in the subsequent data analysis. We have
tainedj0c50.016 nm in Bi2Sr2Ca2Cu3O102d thin film. Once
this parameter is determined, the fluctuation conductivity
all temperatures aboveTc follows from Eq. ~28!. The real
and imaginary parts of the ac fluctuation conductivity have
be mutually consistent. This can be exploited in the d
analysis. We insert the experimental values ofs2 into the
imaginary part of Eq. ~28! and solve numerically for
j(T)/j0. Then we exploit these same values of the redu
correlation length in the real part of Eq.~28!. The calculated
s1 is shown by the dotted line in Fig. 7~a!. The calculated
line lies far from the experimental points. Note in particul
that the calculateds1 meetss2 at Tc when no cutoff is
included~cf. Sec. II!. Besides, the shape of the calculateds1
differs from that of the experimental one. We may conclu
that with no cutoff on the fluctuation wave vector the the
retical expression does not describe properly the experim
tal fluctuation conductivity.

A finite cutoff on the fluctuation wave vector improve
greatly the agreement of the theory and experiment. Fr
Fig. 6~b! we can evaluate the ratios2(Tc)/s1(Tc)51.28 at
Tc . This value yields a constraint on the choices ofLab and
Lc as described in Sec. III and Fig. 5. The actual choices
presented in the inset of Fig. 7~b!. For a given choice (Lab ,

FIG. 6. ~a! Experimental complex conductivity in
Bi2Sr2Ca2Cu3O102d thin film at 9.5 GHz.~b! Enlarged section nea
Tc .
5-10
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Lc) from this constraining line, one has to determine firstj0c

using Eq.~53! and the experimental value ofs2 at Tc . Then,
the temperature dependence of the reduced correlation le
j(T)/j0 is evaluated numerically from the imaginary part
Eq. ~28! with the selected pair (Lab , Lc) and the experi-
mental values ofs2. The obtained values ofj(T)/j0 are
finally used to calculates1 from the real part of Eq.~28!.
The results vary with the possible choices of the pairs (Lab ,
Lc) from inset of Fig. 7~b!. The best fit of the calculateds1
to the experimental points is shown by the solid line in F
7~a!. It is obtained with the choice (Lab50.71, Lc50.05).
It is physically reasonable. WithLab being of the order of
unity, the minimum wavelength of the superconducting flu
tuations in theab plane is given by 2pj0ab , which is much
larger than the atomic size and could be accepted as a m
scopic quantity. In contrast, the value of 2pj0c is below the
atomic size and, hence, could not be physically accepted
the lower limit of the fluctuation wavelength along thec axis.
Therefore one needs a value ofLc!1 so that the minimum
wavelength of the superconducting fluctuations 2pj0c /Lc
along thec axis becomes also an acceptable mesosc
quantity.

We have tested also a number of other choices of
cutoff parameters. By shifting the choice of the paramet
along the constraining curve in the inset of Fig. 7~b!, one

FIG. 7. ~a! Experimental data~symbols! of the complex conduc-
tivity from Fig. 6 aboveTc plotted vs the reduced temperaturee
5(ln T/Tc). Various lines are the conductivities calculated in the
cases as described in the text.~b! Enlarged view of the high-
temperature part of the same curves as in~a!. The constraining
curve for the choices of the cutoff parametersLab andLc resulting
from the experimental ratios2(Tc)/s1(Tc)51.28 atTc is shown in
the inset.
17451
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degrades the fit of the calculateds1 to the experimental
points. The dashed line in Fig. 7~a! is the calculateds1 using
the choice of equal cutoff parameters (Lab5Lc50.09) per-
mitted by the constraint in the inset of Fig. 7~b!. The fit to the
experimental points is seen to be much worse than that of
solid line. For the sake of completeness, we show also
result for a choice of cutoff parameters on the other bra
of the constraining curve in the inset of Fig. 7~b!. If one
takesLab50.08,Lc50.71, the calculateds1 is as shown by
the dash-dotted line in Fig. 7~a!. The fit is unsatisfactory.
Moreover, this choice has to be refuted on the grounds o
physically unacceptable minimum wavelength of the fluctu
tions along thec axis. Also shown in Fig. 7~a! by the short-
dotted line is the result obtained by the isotropic 3D expr
sion in Eq.~11!. In this case the parametersj050.016 nm
and L50.08 are obtained straightforwardly from Eq.~21!
and the experimental values ofs1 ands2 at Tc . The fit in
Fig. 7~a! is obviously not good. It is also seen that the e
pressions for the anisotropic 3D case always yield cur
which are different from that of the isotropic 3D case. T
complexity of the anisotropic 3D expressions elaborated
Sec. III is not futile. Indeed, we find that these expressio
must be used when analyzing an anisotropic supercondu
Figure 7~b! shows an enlarged view of the high-temperatu
part where the same curves as in Fig. 7~a! are better distin-
guished.

We have analyzed also the 2D expressions of Sec.
Figure 8~a! shows again the same experimental data as
Fig. 7~a!, but fitted withn50 term of the 2D expansion in
Eq. ~56!. The parameterd has been chosen so as to optimi

FIG. 8. ~a! Experimental data~symbols! as in Fig. 7~a! with the
calculated 2D curve as described in the text.~b! The superposition
of the calculated 2D and 3D curves.
5-11



e
os

n

te
re
a

ro

ai
ve
e
r

h
ne
tu
i

-
le
g
fro
e

a
d

cu
ivi
to
re

en-

d to

the

e-
ri-
per

re-
and

ith
ac-
a

as
ra-

or
ex-
rt-
the

he

of

tra
ss

y

g

ky

,

nd

A.

D.-N. PELIGRAD, M. MEHRING, AND A. DULČIĆ PHYSICAL REVIEW B 67, 174515 ~2003!
the fit to the experimental values ofs1. The resulting curve
in Fig. 8~a! was obtained withd51.2 nm. The 2D results ar
not so sensitive to the fluctuation wave vector cutoff as th
of the 3D case. The curves obtained with no cutoff (L
5`) and with L50.7 are practically indistinguishable i
Fig. 8~a!. One may conclude that closer toTc the BSCCO
superconductor clearly does not behave as a 2D sys
However, at higher temperatures both 2D and 3D exp
sions yield almost equally good fits to the experimental v
ues, as seen in Fig. 8~b!. Thus the dimensionality of the
fluctuations at higher temperatures cannot be resolved f
the ac fluctuation conductivity.

Finally, we remark that the above analysis could expl
very well the experimental ac fluctuation conductivity abo
Tc in the BSCCO thin film using Aslamazov-Larkin-typ
expressions with wave vector cutoff as deduced in the p
ceding sections of this paper. The other contributions suc
Maki-Thomson and one electron density of states, mentio
in Sec. II, are not necessary over most of the tempera
range covered in the experiment. This is in accordance w
the recent microscopic calculation38 proving that these con
tributions may cancel in the ultraclean case of nonlocal e
trodynamics. However, they may play a role at high enou
temperatures where the above-calculated curves depart
the experimental data. Their analysis is beyond the scop
the present paper.

VI. CONCLUSIONS

We have presented full analytical expressions for the
fluctuation conductivity in 3D isotropic, 3D anisotropic, an
2D superconductors. The effects of the short-wavelength
off in the fluctuation spectrum on the dc and ac conduct
ties were discussed in detail. The short-wavelength cu
brings about a breakdown of the scaling property in f
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