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Cavity pattern formation with incoherent light
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We study the propagation dynamics of an incoherent light beam circulating in a passive cavity containing
noninstantaneous nonlinear media. It is shown that patterns form in this cavity in spite of spatial incoherence
of the light. We show that the pattern formation process is always associated with two consecutive thresholds.
The first~instability! threshold is unaffected by the cavity boundary conditions, whereas the second threshold
is induced by the feedback through the interplay of nonlinear gain and cavity loss.
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I. INTRODUCTION

Nonlinear optical systems with feedback and associa
phenomena, such as pattern formation@1# and cavity solitons
@2,3#, have been continuously drawing attention for seve
reasons. On the fundamental side, the understanding of
linear optical phenomena contributes immensely to the
derstanding of nonlinear dynamical systems in general,
has a direct impact on other fields@4#. Equivalent nonlinear
phenomena appear in various areas of physics, chemical
biological systems@4#. From the applications standpoin
these systems can be engineered to perform as useful de
for switching, storing, and manipulating information@5#. The
phenomenon of pattern formation refers to the fact that in
extended nonlinear medium, above a suitable threshold,
uniform intensity distribution of light becomes unstable, a
splits into space~time! correlated domains@1#. In nonlinear
optical cavities, patterns can assume a variety of for
stripes, hexagons, rolls etc.@6#. Nonlinear optical cavities
can also give rise to cavity solitons@2,3,5#. However, all
previous studies of nonlinear optical cavities have conside
only spatially coherent light@7#.

Here we present the study of pattern formation in a n
linear optical cavity with spatially incoherent light. The sy
tem is a passive ring cavity of lengthLc , containing a non-
linear medium ~crystal! of length L!Lc . The intensity
structure from the output face of the crystal is attenuated
a factore and imaged to the input face of the crystal by usi
conventional optics. The light entering the cavity is partia
spatially incoherent yet quasimonochromatic, with tempo
coherence lengthl coh much shorter than the cavity length
L! l coh!Lc . The finesse of the cavity is low, of order one
less, which ensures that the temporal coherence length o
light is not increased by any filtering process in the cav
Experimentally, this requirement can be achieved simply
making the length of the cavity large enough, since this
duces the separation between the resonant frequen
thereby decreasing finesse. The nonlinear medium has a
instantaneous response; its response time is much lo
than ~i! the characteristic time of phase fluctuations acr
the beam and~ii ! the average time of phase fluctuations b
tween the beams from different cycles. The medium
sponds only to the time-averaged intensity@8,9#. This is the
1063-651X/2003/68~1!/016616~6!/$20.00 68 0166
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key physical mechanism responsible for the pattern form
tion in this incoherent cavity. Examples for noninstantaneou
nonlinear media are photorefractive crystals@8#, liquid crys-
tals @9#, polymers, etc.

The main goal of this paper is to analyze the early stage
pattern formation process in the incoherent cavity. By us
the stability analysis of a uniform intensity beam in the ca
ity, it is shown that the pattern formation process is alwa
associated with two consecutive thresholds which are de
mined by the degree of spatial coherence, the strength o
nonlinearity, and the cavity feedback parameter. At the fi
threshold the beam becomes unstable, as self-focusing o
comes diffusive tendency of spatially incoherent light. T
second threshold occurs when the nonlinear gain overco
the loss in a single pass. The first~instability! threshold is
independent of the cavity boundary conditions, which is
contrast to the coherent cavities~e.g., see Ref.@10#!, whereas
the second threshold is an inherent cavity feature. As an
teresting feature of our system, we point out that if the no
linearity is at low~high! saturation, an increase in feedba
leads to forward~backward! crossing over of the two thresh
olds, i.e., to switching the pattern on~off!.

II. PROPAGATION EQUATIONS AND BOUNDARY
CONDITIONS

For the analysis of the incoherent cavity, the quantit
arising from coherence, such as the resonant frequen
~modes! of the cavity@11#, are unimportant. Hence, the the
oretical description cannot resort to the commonly us
mean-field theory@11#. Instead, a new approach with ne
parameters~e.g., the degree of spatial coherence! has to be
adopted.

We begin by deriving equations governing the dynami
We assume that the light circulating through the cavity
linearly polarized. The slowly varying amplitude of the ele
tric field cycling through the cavity for thej th time is de-
scribed by a complex amplitudec j (x,z,t), wherex denotes
the spatial coordinate,z is the propagation axis, andt denotes
time. The spatial coherence properties and intensity of
field cycling for thej th time through the cavity are describe
by the mutual coherence function Bj (x1 ,x2 ,z)
5^c j (x2 ,z,t)* c j (x1 ,z,t)& @12#, where bracketŝ •••& de-
©2003 The American Physical Society16-1
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note the time average taken over the response time of
medium. Since the finesse of the cavity is low, and the te
poral coherence length of the lightl coh is much smaller than
the length of the cavityL, the phases of the fields that a
circulated through the cavity a different number of times
mutually uncorrelated, that is,^c j* c l&50 for j Þ l .

Under the paraxial approximation@13#, the propagation
dynamics of the mutual coherence functionsBj within the
nonlinear medium is given by an infinite set of coupled p
tial differential equations

]Bj

]z
2

i

k

]2Bj

]r ]r
5

ik

n0
$dn~ I 1!2dn~ I 2!%Bj~r ,r,z!, ~1!

where j 51,2, . . . . In Eq.~1!, the new set of spatial coordi
nates is defined byr 5(x11x2)/2 and r5x12x2 , I 6 de-
notes the time-averaged intensityI 65( lBl(r 6r/2,0,z), the
nonlinear response of the material isn2(I ).n0

2

12n0dn(I ), andk is the wave number of the carrier~in the
medium!. In the feedback loop, the light is imaged from th
z5L face of the crystal to the incident planez50. Hence,
besides the propagation equations~1!, the mutual coherence
functionsBj are also subject to the boundary conditions

Bj 11~r ,r,z50!5eBj~r ,r,z5L !, ~2!

where e denotes the cavity feedback parameter. From
~1!, we see that diffraction is accounted for in the nonline
part of the cavity@the termik21 ]2Bj /]r ]r]. The boundary
conditions consider only losses since the conventional o
cal system in the feedback loop images light from the out
to the input face of the crystal.

III. LINEAR STABILITY ANALYSIS OF A UNIFORM
INTENSITY BEAM

To study the stability of the uniform intensity beam, w
express the mutual coherence functions as

Bj~r ,r,z!5Bj
(0)~r!1Bj

(1)~r ,r,z!, ~3!

whereBj
(1)(r ,r,z) denotes small perturbations upon the u

form intensity componentBj
(0)(r). Boundary conditions~2!

must be satisfied by the uniform intensity compone
Bj 11

(0) (r)5eBj
(0)(r) and by the small perturbation

Bj 11
(1) (r ,r,0)5eBj

(1)(r ,r,L). From this, we express the un
form component of thej th cycle in terms of the uniform
component of the incident beam,Bj

(0)(r)5e j 21B1
(0)(r), and

find the total uniform intensity of the light in the cavity
I total5( lBl

(0)(0)5I (0)/(12e); the intensity of the inciden
beam is denoted byI (0)5B1

(0)(0). As long as perturbations
are small enough, i.e.,uBj

(1)(r ,r,z)u!uBj
(0)(r)u, Eq. ~1! can

be linearized:

]Bj
(1)

]z
2

i

k

]2Bj
(1)

]r ]r
5

ikk

n0
Bj

(0)~r!(
l

H Bl
(1)S r 1

r

2
,0,zD

2Bl
(1)S r 2

r

2
,0,zD J , ~4!
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where k5]dn(I )/]I u I 5I total
. Equations~4! are linearized,

however, they are still coupled. To uncouple Eq.~4!, we seek
their solution through the superposition of modes

Bj
(1)~r ,r,z!5e j 21M1~r ,r,z!1(

l>2
hjl M l~r ,r,z!, ~5!

wherehjl 5d j l 212d j l , andd j l denotes the Kronecker delta
From Eqs.~4! and~5!, we find that the modes evolve accor
ing to

]M j

]z
2

i

k

]2M j

]r ]r
5d1 j

ikkB1
(0)~r!

n0~12e! H M1S r 1
r

2
,0,zD

2M1S r 2
r

2
,0,zD J . ~6!

Equation~6! for the first modeM1 is equivalent to the equa
tion describing modulation instability~MI ! in a spatially in-
coherent single-pass system@14#, which implies that the first
modeM1 can experience nonlinear gain and destabilize
beam. In contradistinction, since the right-hand side of E
~6! is zero forj >2 @due to the termd1 j50], all other modes
M j , j >2, satisfy equation describing the evolution of sm
perturbations in alinear medium; consequently, they do no
experience any nonlinear gain.

Equation~6! can be solved with Fourier analysis. In ord
to satisfy conditionBj (r ,r,z)5Bj (r ,2r,z)* , we express
the modes asM j (r ,r,z)5Pj (r ,r,z)1Pj (r ,2r,z)* , where

Pj~r ,r,z!5E
2`

` E
2`

`

da dK egj (a)zL̂ j
a~K !Aj~a!e2 iKreiar .

~7!

Here,a denotes the spatial wave number,gj (a) the growth
rates,Aj (a) the amplitudes, andL̂ j

a(K) the spatial coherence
properties of the perturbations corresponding to thej th mode
M j . The functions L̂ j

a(K) are normalized so tha

*dKL̂j
a(K)51. From Eqs.~6! and~7! for j 51, and with the

use of*dKL̂1
a(K)51, we obtain an implicit integral equa

tion for the growth rate of the first modeg1(a):

kk

n0~12e!
E

2`

` h~K,a!

ig11
aK

k

dK521, ~8!

where h(K,a)5B̂1
(0)(K1a/2)2B̂1

(0)(K2a/2), and B̂j (K)
denotes the Fourier transform ofBj (r). The growth rate of
the first modeg1(a) can assume real values greater th
zero. The growth rate of the nongrowing eigenmodes
purely imaginary:gj (a)5 iKa/k, for j >2.

The boundary conditionsBj 11
(1) (r ,r,0)5eBj

(1)(r ,r,L) can
be written as

e jA1~a!L̂1
a~K !@eg1L21#5(

l 52

`

ajl Al~a!L̂ l
a~K !, ~9!
6-2
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CAVITY PATTERN FORMATION WITH INCOHERENT LIGHT PHYSICAL REVIEW E68, 016616 ~2003!
where j 51,2, . . . , aj j 5eeg2L, aj j 1152(eeg2L11), aj j 12
51, andajl 50 otherwise. From Eq.~9!, it follows that the
coherence propertiesL̂ j (K) and amplitudesAj (a) of the
non-growing modes (j >2) can be expressed in terms of th
coherence propertiesL̂1(K) and amplitudeA1(a) of the first
mode. From Eqs.~6! and ~7! for j 51, and by using
*dKL̂1

a(K)51, it follows that L̂1
a(K) is determined@via

h(K,a)] by the coherence of the source:

L̂1
a~K !52

kk

n0~12e!

h~K,a!

ig11
aK

k

. ~10!

The perturbations upon the incident beam can be written
B1

(1)(r ,0,0)5*2`
` AINC(a)eiarda1c.c., and via boundary

conditions as B1
(1)(r ,0,0)5( j 51

` @Bj
(1)(r ,0,0)

2eBj
(1)(r ,0,L)#. From these two identities and Eqs.~5! and

~7!, we obtain

A1~a!5~12e!
AINC~a!

12eeg1(a)L
. ~11!

From the analysis above, we conclude that the cohere
properties of the sourceB1

(0)(r), and the perturbations
AINC(a) upon the incident beam, determine the cohere
properties and the perturbations corresponding to the fi
that circulate in the cavity. Although the linear stabili
analysis performed in Eqs.~3!–~11! resembles the linear sta
bility analysis from Ref.@14#, we emphasize that there is
significant difference. Namely, together with lineariz
propagation equations~4!, here the solution has to obey th
cavity boundary conditions@Eq. ~2!#, which results in a spe
cific cavity threshold~to be explained below! that accompa-
nies pattern formation in a cavity. Such a threshold does
have a counterpart in a single-pass system such as the o
Ref. @14#. We also emphasize that Eqs.~1!–~11! can be
straightforwardly generalized to include (211)D systems.

IV. THE INSTABILITY THRESHOLD

The linear stability analysis of the uniform intensity bea
above is applicable for any type of input beam correlat
statistics and nonlinearity. From now on we assume that
correlation statistics is given by Lorenzian in Fourier spa
B̂1

(0)(K);(K21K0
2)21, and that the nonlinearity isdn(I )

5gI /(11I /I S). In the limit I S→`, the nonlinearity is of
Kerr type, and saturable otherwise. The nonlinear gaing1(a)
follows from Eq.~8!

ug1~a!u52uuau1uauA k

n0

I (0)

12e
2S a

2kD 2

, ~12!

where u5K0 /k denotes the degree of spatial coheren
From Eq. ~10!, we find the functional dependence of th
maximally destabilizing perturbationamax ~pattern wave
vector in the low visibility regime! on the degree of coher
enceu and other parameters:
01661
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amax

k
5S 2kI (0)

n0~12e!
2

u2

2
2A 2kI (0)

n0~12e!
u21

u4

4 D 1/2

.

~13!

Furthermore, from Eq.~12!, it follows that there exists a
well-defined threshold at which the beam becomes mod
tionally unstable; if

kI (0)/~12e!.u2n0 , ~14!

the beam is unstable.
We point out that the incoherent beam incident on

cavity is unstable if and only if the same beam with intens
enhanced by the factor (12e)21 is unstable in a single-pas
system@14#. The factor (12e)21 simply reflects the increas
of total intensity in the cavity due to feedback,I total
5I (0)/(12e). Thus, below and at the instability threshol
one cannot distinguish from the cavity system with incide
intensity I (0), and the single-pass system with intens
I (0)/(12e). Physically, this equivalence is a consequence
the mutual incoherence between the fields of different cyc
The perturbations and the uniform parts of beams from
ferent cycles do not interfere, but simply add up. This me
that apart from the trivial enhancement of total intensity, t
cavity boundary conditions do not affect the position of t
MI threshold. This is also confirmed by the fact that t
position of the instability threshold, given by inequality~14!,
does not depend on the length of the sampleL, which is
embedded in boundary conditions~2!. This result is in a
sharp contrast to coherent cavities@10#, where the instability
process is influenced by the boundary conditions through
interference of fields from different cycles.

V. THE CAVITY THRESHOLD

In contrast to the instability threshold, the boundary co
ditions, through the interplay of nonlinear gain and cav
loss, induce a transition from the low to high visibility pa
tern. To see this, we calculate the modulation depth of
intensity pattern. From Eqs.~5!, ~7!, and~11!, it follows that
the intensity pattern atz5L is

(
i 51

`

Bi
(1)~r ,0,L !5E eg1(a)L

12eeg1(a)L
AINC~a!eiar da1c.c.

~15!

From Eq.~15!, we can estimate the modulation depth~vis-
ibility ! m5(I max2I min)/(I max1I min) of the pattern.

First, we calculate integral~15! numerically. We assume
that the noise upon the incident beam does not have
preferential spatial frequencya, i.e., uAINC(a)u is indepen-
dent of a, while the phase ofAINC(a) is random. For the
illustrations of the pattern visibility, we use the followin
parameters. The length of the nonlinear medium isL
55 mm, the wavelength of the carrier wave isl5488 nm
~in vacuum!, and the linear part of the refractive index
n052.3. The dependences of the modulation depth on
feedbacke and the strength of the nonlinearityDn5gI (0)

are displayed in Figs. 1 and 2, respectively; solid lines r
6-3
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BULJAN et al. PHYSICAL REVIEW E 68, 016616 ~2003!
resent the values ofm calculated numerically from integra
~15!. Vertical lines represent the positions of the thresho
as is explained in figure captions. From Figs. 1 and 2, we
that just after the instability threshold, the modulation de
grows until it comes close to the second threshold where
modulation depth experiences a sudden jump. This sec

FIG. 1. The modulation depthm of the pattern vs the feedbac
parametere. Vertical solid~dashed! lines show the position of the
first ~second! threshold. Solid curves showm calculated numeri-
cally from Eq.~15!. ~a! The dotted curve representsmamax

@see Eq.
~16!#, and the dashed curve represents modulation depth calcu
from expression~18!. ~b! The region of the stable output, and of
low and high visibility pattern. Fore close to 1, the nonlinearity is
highly saturated, and the pattern is switched off. The parame
used areDn51024, u50.0068, andI (0)/I S50.1.

FIG. 2. The modulation depth vsDn5gI (0) for different values
of e; u50.0096, andI S5`. m is shown from the instability thresh
old up to the cavity threshold~indicated by vertical dashed lines!.
01661
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threshold is the cavity threshold which appears when
denominator of the integrand~15! becomes zero.

Before explaining the cavity threshold, let us gain mo
insight into the modulation depth of the pattern by analyti
formulas. From Eq.~15!, it follows that the maximally de-
stabilizing perturbationamax has the largest contribution t
integral~15!. The modulation depth of the maximally dest
bilizing perturbationamax ~not the whole pattern! is

mamax
.C1~12e!

eg1(amax)L

12eeg1(amax)L
, ~16!

where parameterC1 corresponds to the strength of the sm
intensity perturbations upon the incident beam. The dot
curve in Fig. 1 displays the behavior ofmamax

. We see that

mamax
describes well the trend of the modulation depth b

havior in between the two thresholds, however, it diverg
faster than the modulation depth calculated numerically.

A more accurate description can be achieved by appr
mately integrating expression~15!. The growth rateg(a)
5g1(a) can be Taylor expanded around the maximally d
stabilizing perturbationamax, g(a).g(amax)1 1

2 g9(amax)
3(a2amax)

2, and the integrand~15! is approximately

eg1(a)L

12eeg1(a)L
.

1

e (
j 51

`

e jeg(amax)L je2 j /2ug9(amax)uL(a2amax)
2
.

~17!

Approximate integration overa gives the following expres-
sion for the modulation depth:

m5C
12e

e

Li1/2~eeg(amax)L!

Aug9~amax!uL
, ~18!

where Li k(x)5( j 51
` xj / j k denotes the polylogarithm func

tion. We see that Eq.~18! for the modulation depth contain
the term 1/Aug9(amax)uL which expresses the spatial wav
number selectivity. Namely, if the absolute value of the d
rivative ug9(amax)u is larger, integrand~17! will be more
peaked aroundamax, and only a small number of spatia
frequencies close toamax will contribute to the pattern. The
functional dependence of the modulation depth from Eq.~18!
on the feedback is displayed by a dashed curve in Fig
Evidently, the functional form~18! does not increase mono
tonically from the first to the second threshold but has
minimum. This is a consequence of the spatial wave num
selectivity term 1/Aug9(amax)uL. Thus, the functional form
~18! can be used to describe the modulation depth only fr
that minimum up to the second threshold, i.e., wh
ug9(amax)uL becomes sufficiently large. From Fig. 1, we o
serve that the functional form~18! gives a good description
for the behavior of the modulation depth below the seco
threshold. In Fig. 1, the parameterC is chosen such that th
minimum of the curve from expression~18! intersects the
numerically calculated curve for the modulation depth.

ted

rs
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CAVITY PATTERN FORMATION WITH INCOHERENT LIGHT PHYSICAL REVIEW E68, 016616 ~2003!
Now we explain the cavity threshold. In the cavity, th
output pattern, with preferred periodicity determined
amax, is imaged~with some loss! to the input plane, thus
affecting the output pattern. From the denominator in E
~15!, it follows that the modulation depth of the intensi
pattern is determined by the relation between the nonlin
gain and cavity loss. If the nonlinear gain is smaller than
cavity loss, the modulation depth at the input is sm
enough, so that the pattern at the input is regarded as n
with preferential periodicity determined byamax. However,
if the nonlinear gain is larger than the cavity loss, the inte
sity structure at the input is more than just preferential no
this structure guides the light from the input beam into
shape. This significantly differs from the single-pass M
where the modulation depth at the input is always small,
the pattern builds from small noise@14#. From Figs. 1 and 2,
we see that the feedback of the maximally destabilizing p
turbation induces a rapid increase of the modulation de
which is referred to as the cavity threshold; it occurs appro
mately when the nonlinear gain becomes equal to the ca
loss, i.e., whene expg1(amax)L51. The transition will be
sharper for larger values of the feedback parametere ~see
Fig. 2!. This threshold is analogous to that in many feedba
systems with gain~e.g., see Ref.@15#!. The behavior of the
intensity pattern in between the two thresholds correspo
to noisy precursors in one-dimensional patterns observe
Ref. @16#.

We note that the features of the intensity structure ab
the cavity threshold cannot be determined from the stab
analysis of Sec. III. However, this analysis shows that f
mation of any such structure is preceded by the two cons
tive thresholds, and it predicts the positions of these thre
olds in parameter space spanned byDn, u, ande ~see Fig.
3!. From inequality~14!, it follows that the increase of co
herence and/or the strength of the nonlinearity always le
to pattern formation. The dependence of the stability on
feedbacke depends on the saturation of the medium. If t
medium is Kerr, or in the regime of low saturationI (0)(1
2e)21I S

21!1, the increase of feedback acts destabilizi
However, if the medium is in the regime of high saturati
I (0)(12e)21I S

21@1, then the increase of feedback leads
the stabilization of the beam. Thus, as an interesting fea
of the cavity system, we show that in the limit of low~high!
saturation, the increase of feedback leads to switching
pattern on~off! @see Figs. 1~b! and 3#.
01661
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VI. CONCLUSION

In conclusion, we have analyzed the early stage of pat
formation process in a nonlinear optical cavity with incohe
ent light. The nonlinear medium within the cavity has a no
instantaneous response, that is, it is unable to follow
random fluctuations of incoherent light. We have demo
strated that two consecutive thresholds always accomp
the process of pattern formation. In contrast to the cohe
cavity cases@10#, the instability threshold is unaffected b
the incoherent cavity boundary conditions. The second~cav-
ity! threshold is determined by the interplay of nonline
gain and cavity loss. It appears when the nonlinear gain
single pass overcomes the cavity loss. For future work
incoherent optical cavities, such as the one described h
we envision the study of incoherent cavity solitons, who
features are yet to be determined.

ACKNOWLEDGMENTS

This work was supported by the German-Israeli D
project, the Israeli Science Foundation, and is part of
MURI program on optical spatial solitons. H.B. acknow
edges support from the Lady Davis Foundation.

FIG. 3. The positions of the modulation instability thresho
~solid line! and the cavity threshold~dashed line! in the (u,e) plane
depending on the saturation intensityI S ; Dn51024. White ~cross-
hatched! region denotes stable output~pattern, respectively!.
in
@1# F.T. Arecchi, S. Boccaletti, and P. Ramazza, Phys. Rep.318, 1
~1999!.

@2# W.J. Firth and G.K. Harkness, inSpatial Solitons, edited by S.
Trillo and W. Torruellas~Springer-Verlag, Berlin, 2001!, Chap.
13, pp. 343–358; C.O. Weisset al., in Spatial Solitons, edited
by S. Trillo and W. Torruellas~Springer-Verlag, Berlin, 2001!,
Chap. 15, pp. 395–416.

@3# W.J. Firth and A.J. Scroggie, Phys. Rev. Lett.76, 1623~1996!.
@4# G. Nicolis, Introduction to Nonlinear Science~Cambridge Uni-

versity Press, Cambridge, 1995!; H. Haken,Synergetics: An
Introduction ~Springer-Verlag, Berlin, 1977!.
@5# S. Barlandet al., Nature~London! 419, 699~2002!; M. Bram-

billa et al., Phys. Rev. Lett.79, 2042 ~1997!; V.B. Taranenko
et al., Phys. Rev. A61, 063818~2000!.

@6# W.J. Firth et al., Phys. Rev. A46, R3609 ~1992!; W.J. Firth
and A.J. Scroggie, Europhys. Lett.26, 521~1994!; K. Staliunas
et al., Phys. Rev. A51, 4140~1995!; Phys. Rev. Lett.79, 2658
~1997!; G.L. Oppoet al., Phys. Rev. A49, 2028 ~1994!; S.J.
Jensenet al., Phys. Rev. Lett.81, 1614~1998!.

@7# In fact, almost all previous studies on pattern formation
6-5



.
ck
o

y

t, i
.

-

ys.

BULJAN et al. PHYSICAL REVIEW E 68, 016616 ~2003!
optical cavities considered cases where the light wasboth spa-
tially and temporally coherent. There are only two exceptions
The first relates to some of the single-mirror feedba
systems—those with the distance between the mirror and n
linear medium much larger thanl coh @R. MacDonaldet al.,
Opt. Commun.89, 289 ~1992!#; The second is a recent stud
@T. Carmonet al., Phys. Rev. Lett.89, 183902~2002!# with a
passive nonlinear ring cavity withl coh!Lc . We emphasize
that the light in both of these studies was spatially coheren
contrast to our current study with spatially incoherent light

@8# M. Mitchell et al., Phys. Rev. Lett.77, 490 ~1996!; D.N.
Christodoulideset al., ibid. 78, 646~1997!; M. Mitchell et al.,
ibid. 79, 4990~1997!.

@9# M. Peccianti and G. Assanto, Opt. Lett.26, 1791~2001!.
@10# S. Coen and M. Haelterman, Phys. Rev. Lett.79, 4139~1997!;
01661
n-

n

M. Haelterman, S. Trillo, and S. Wabnitz, Opt. Lett.17, 745
~1992!.

@11# L.A. Lugiato and R. Lefever, Phys. Rev. Lett.58, 2209~1987!;
L.A. Lugiato and C. Oldano, Phys. Rev. A37, 3896~1988!.

@12# L. Mandel and E. Wolf,Optical Coherence and Quantum Op
tics ~Cambridge University Press, New York, 1995!.

@13# V.V. Shkunov and D. Anderson, Phys. Rev. Lett.81, 2683
~1998!.
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