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We analytically demonstrate the existence of white light solitons in logarithmically saturable noninstanta-
neous nonlinear media. This incoherent soliton has elliptic Gaussian intensity profile, and elliptic Gaussian
spatial correlation statistics. The existence curve of the soliton connects the strength of the nonlinearity, the
spatial correlation distance as a function of frequency, and the characteristic width of the soliton. For this
soliton to exist, the spatial correlation distance must be smaller for larger temporal frequency constituents of
the beam.
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I. INTRODUCTION

The propagation of incoherent light in noninstantaneo
nonlinear media and the associated nonlinear effects, suc
spatially incoherent solitons, have received considerable
tention in recent years@1–21#. It all started with the experi-
ment of Mitchellet. al. @1# which demonstrated the existenc
of optical spatial solitons made of partially spatially incohe
ent light. The spatially incoherent beam was generated
passing laser light through a rotating diffuser@1#. The result
was intriguing and called for further research, since u
then solitons were considered solely as coherent entities.
other experiment by Mitchell and Segev@2# went one step
further and demonstrated solitons made of incoher
‘‘white’’ light by using light emitted from an incandescen
light bulb @2#. The experimental results from Refs.@1# and
@2# were followed by a great deal of theoretical efforts aim
at understanding solitons made of incoherent light@3–21#.
Importantly, in some cases closed-form analytical solutio
for partially spatially incoherent quasimonochromatic so
tons were found. This is the case for the logarithmically sa
rable nonlinearity, where closed-form solutions were fi
found by using coherent density theory@10#, and subse-
quently by modal theory@11#, and mutual coherence functio
theory @12,13#. Analytic solutions for spatially incoheren
solitons were also found in Kerr-like media@14–19#. How-
ever, all of these theoretical studies considered only spat
incoherent, but temporally coherent~quasimonochromatic!
light. Therefore, they are unable to describe both tempor
and spatially incoherent solitons, which were observed
perimentally in Ref.@2#.

Temporally and spatially incoherent solitons were trea
theoretically for the first time in a recent study@22#. The
characteristic features of these solitons, such as propertie
the temporal power spectrum and spatiotemporal cohere
properties, were analyzed by using numerical methods@22#.

In this paper, we present the closed-form solution rep
senting temporally and spatially incoherent solitons. Mo
specifically, in logarithmically saturable noninstantaneo
nonlinear media, we find an analytic solution representin
1063-651X/2003/68~3!/036607~6!/$20.00 68 0366
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family of such incoherent solitons. These incoherent solito
have elliptic Gaussian intensity profile, and elliptic Gauss
spatial correlation statistics. The existence curve of suc
soliton connects the strength of the self-focusing, the spa
correlation distance at a particular frequency, and the c
acteristic width of the soliton. From the existence curve
follows that this soliton exists only when the spatial corre
tion distance is smaller for higher frequency constituents
the light.

II. THE MUTUAL SPECTRAL DENSITY THEORY

We begin with a brief review of the mutual spectral de
sity approach utilized to describe the evolution of tempora
and spatially incoherent light in noninstantaneous nonlin
media @23#. The physical system under consideration is
follows: The source of light emits spatially and tempora
incoherent cw~not pulsed! light. The temporal power spec
trum of the light is broad, and contained within some interv
@vmin ,vmax#. For example, the light source used in Ref.@2#
was an incandescent light bulb, and the width of the tempo
power spectrum wasuvmax2vminu/v0;0.3, where v0
5(vmax1vmin)/2. Although the temporal power spectru
is finite, due to the fact that it is broad, we refer to such lig
as white light@24#. Furthermore, in the spirit of Ref.@2# we
call the solitons made of such light white light solitons. T
beam formed from temporally and spatially incoherent lig
enters the noninstantaneous nonlinear medium. Due to
noninstantaneous response of the medium, the induced
linear index of refraction is unable to follow fast phase flu
tuations of incoherent light, but responds only to the tim
averaged intensityI. The time-averaged intensityI is in
temporal steady state:]I /]t50; the time average is take
over the response time of material. The dynamical eq
tion~s! that are used describe the evolution of time-avera
quantities ~i.e., statistically averaged quantities! along the
propagation axisz ~not in time t).

By assuming linear polarization of the light, the instan
neous electric field is described by a complex amplitu
Ẽ(x,y,z,t), and the spatiotemporal coherence properties
©2003 The American Physical Society07-1
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the light are described by the mutual coherence func
@25#,

G~R1 ,R2 ;t!5^Ẽ* ~R2 ,t2!Ẽ~R1 ,t1!&

5
1

2pE0

`

dvGv~R1 ,R2!e2 ivt, ~1!

wheret5t12t2, andGv(R1 ,R2) denotes the mutual spec
tral density @25#. Brackets^•••& denote the time averag
over the response time of the material. In photorefractiv
the response time can be as long as 0.1 s. The mutual co
ence function describes the correlation statistics between
electric field values at two points (R1 ,t1) and (R1 ,t2) that
are separated in space and time@25#. We are interested in the
correlation statistics of the field between points upon
transverse cross section of the beam. Transverse cross
tion is perpendicular to the propagationz axis; let r1 and r2
denote the coordinates in this plane, i.e.,R1,25r1,21zk,
wherek denotes the unit vector of thez axis. The correlation
statistics in this plane is described by the mutual spec
density Bv(r1 ,r2 ,z)5Gv(r11zk,r21zk). Under the
paraxial approximation, the evolution ofBv is governed by
an integrodifferential equation@23#

]Bv

]z
2

i

2kv
@n'

(1)2n'
(2)#Bv

5
ikv

n0
$dn„I ~r1 ,z!…2dn„I ~r2 ,z!…%Bv~r1 ,r2 ,z!, ~2!

where I (r ,z)51/2p*0
`dvBv(r ,r ,z) denotes the time-

averaged intensity; the response of the material isn2(I )
5n0

212n0dn(I ), wheren0 anddn(I ) denote the linear and
nonlinear contributions, respectively, to the refractive ind
andkv5vn0 /c.

In deriving Eq.~2! we have assumed that the medium
dispersionless, i.e., the linear part of the refractive indexn0
is independent of frequency. Since the termdn(I ) that
couples all frequencies is independent of time]dn(I )/]t
50, and since Eq.~2! is in the frequency domain, dispersio
can be included by substitutingn0→n0(v). In this paper, we
neglect the effect of dispersion to allow for analytical calc
lations. Since the light is cw and the induced index of refr
tion dn(I ) is independent of time, ifn0(v) does not vary
significantly over the frequency span@vmin ,vmax#, disper-
sion effects are negligible.

The mutual spectral densityBv(r1 ,r2 ,z) contains infor-
mation on both intensity and spatial coherence propertie
light at frequencyv. The information on coherence prope
ties only is extracted by normalizingBv(r1 ,r2 ,z) @25#,

mv~r1 ,r2 ,z!5
Bv~r1 ,r2 ,z!

ABv~r1 ,r1 ,z!Bv~r2 ,r2 ,z!
. ~3!

The quantitymv(r1 ,r2 ,z) is referred to as the complex co
herence factor at frequencyv @25,26#. The spatial correlation
distance at frequencyv is determined by the characterist
width of mv(r1 ,r2 ,z) @25#.
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For the analysis presented henceforth, it is convenien
introduce new coordinates

r5
r11r2

2
and r5r12r2 .

Equation~2! in terms of new coordinates reads

]Bv

]z
2

i

kv
F ]2

]r x]rx
1

]2

]r y]ry
GBv

5
ikv

n0
H dnF I S r1

r

2
,zD G2dnF I S r2

r

2
,zD G J Bv~r ,r,z!;

~4!

the spatial vectorr5(r xi1r yj )/2 is used to describe th
variations of the time-averaged intensity in space, wher
the difference vectorr5rxi1ryj is used to describe the cor
relation between phases at two different spatial points fr
the transverse cross section of the beam. We utilize Eq.~4! as
the starting point to find white light solitons, such as tho
observed in Ref.@2#.

III. SOLITONS IN THE LOGARITHMICALLY
SATURABLE NONLINEARITY

We consider the following model for the nonlinear refra
tive index: dn(I )5k ln(I/It) @10–13,27#. The coefficientk
.0 specifies the strength of the nonlinearity, whileI t is the
threshold intensity. Although this model nonlinearity diffe
from the photorefractive screening nonlinearity@28# in which
white light solitons were observed experimentally@2#, it does
provide a platform upon which we can find analytical so
tions that yield insight into the realistic physical process.
fact, previous studies of coherent solitons@27# as well as of
spatially incoherent quasimonochromatic solitons@10–13#
have used this model nonlinearity to gain valuable insight
this spirit, we use the logarithmic nonlinearity that yield
closed-form solutions, highlighting important features of i
coherent white light solitons.

To seek steady state solutions we require that both
intensity profile and the spatiotemporal coherence proper
of the beam do not change during propagation, i.e., we
quire]Bv /]z50. Since quasimonochromatic spatially inc
herent solitons with elliptic Gaussian intensity profiles a
correlation statistics were previously found in logarithm
cally saturable@11# and realistic saturable@21# nonlinear me-
dia, we seek for stationary wave solutions in the form

Bv~r x ,rx ,r y ,ry!5Av exp2F r x
2

2Rx
2

1
rx

2

2Qx
2

1
r y

2

2Ry
2

1
ry

2

2Qy
2G .

~5!

HereAv denotes the spectral density of the light beam;
quantitiesRx and Ry denote the characteristic width of th
spatial soliton, whereasQx andQy are closely related to the
spatial correlation distance of the incoherent light. When
zatz ~5! is inserted into evolution equation~4! with ]Bv /]z
50, anddn(I )5k ln(I/It), it follows that quantitiesQx and
Qy must obey
7-2
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Qx5Qy5
1

kv
An0

k

5
c

vAn0k

5
v0

v
Q0 , ~6!

where Q05cv0
21/An0k and v0 denotes the central fre

quency within the power spectrum. QuantitiesQx andQy are
determined by the strength of the nonlinearityk, frequency
v, the linear index of refractionn0, and the speed of lightc.

The spatial coherence properties for each frequency c
stituent of the beam can be found from the complex coh
ence factor@see Eq.~3!#:

mv~r x ,rx ,r y ,ry!5P i 5x,yexpH 2F 1

Q0
2

v2

v0
2

2
1

4Ri
2Gr i

2

2 J
5expF2

p

l s,x
2 ~v!

rx
2

2
2

p

l s,y
2 ~v!

ry
2

2 G , ~7!

wherel s,x(v) and l s,y(v) denote the spatial correlation dis
tances at frequencyv in the x andy directions, respectively
These spatial correlation distances are determined by
characteristic widths of the complex coherence factormv

@25#. From Eq.~7! it follows that the characteristic widths o
the elliptic beam are connected to the spatial correlation
tancesl s,x(v) and l s,y(v) and the strength of the nonlinea
ity through

1

l s,i~v!
5An0k

pc2
v22

1

4pRi
2
, i 5x,y. ~8!

Equation~8! is the existence curve for the white light so
tons in the logarithmically saturable nonlinear medium.
the limit of temporally coherent~quasimonochromatic!, but
spatially incoherent solitons, we recover the solution for su
solitons in logarithmic media@10–12#. In the limit of spa-
tially and temporally coherent beams, we recover the so
tion for coherent solitons in logarithmically saturable nonl
ear media@27#.

From the existence curve we read that for white lig
solitons to exist, the spatial correlation distance must
crease for higher frequency constituents of the light. Figur
illustrates the functional dependencel s,i(v) as calculated
from Eq.~8! for realistic parameter values. This result can
interpreted as follows. Optical spatial solitons occur wh
diffraction is exactly balanced by refraction~nonlinearity!.
White light solitons are made up of a continuum of freque
cies ~wavelengths!. Through the nonlinear couplingdn(I ),
every frequency constituent ‘‘see’’ the same self-induc
waveguide, that is, the refraction ‘‘force’’ felt by every fre
quency constituent is the same. Consequently, to balance
refraction force, all frequencies have the same diffract
angleu. If the size of the beam is several times larger th
03660
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the spatial correlation distance, the diffraction angleu is
mainly governed by the degree of coherence. In that limitu
is proportional to the ratio of the wavelength and the spa
correlation distance,u}l/ l s,i(l) @20#. From this, we imme-
diately obtainl s,i(l)}l, which is exactly the result from Eq
~8! in the limit Ri@ l s,i(v). Equation~8! is more accurate
since it takes into account diffraction from~i! the finite size
of the beam envelope and~ii ! the spatial incoherence.

From Eq.~8! it also follows that the characteristic width
should be larger than some threshold value,

Ri.
1

2

c

vAkn0

. ~9!

Inequality~9! must be satisfied for every frequencyv within
the spectrum. Suppose that the frequencies lie within
interval @vmin ,vmax#, where vmin5v0(12D) and vmax
5v0(11D); D denotes the width of the temporal pow
spectrum, i.e., the degree of temporal coherence. Clearly

Ri.
c

2v0~12D!Akn0

, ~10!

then inequality~9! is satisfied for all frequencies. This mean
that for the white light soliton to exist, its size must exceed
value imposed by the degree of temporal~in! coherence (D),
and the strength of the nonlinearity.

From Eqs.~5! and~7! we see that the intensity profile an
the spatial correlation statistics of this white light soliton a
elliptic Gaussian functions. Figure 2 shows contour of t
total intensity profile~thick long dashed line!, and contours
of the complex coherence factor at three representative
quencies vmin52.6931015 Hz ~dotted line!, v053.44
31015 Hz ~dashed-dotted line!, and vmax54.1931015 Hz
~solid line!. From themv contours we see that higher fre

FIG. 1. The spatial correlation distance decreases with the
crease of frequency. The value ofl s,i(v) is calculated from Eq.~8!
with the following parameters:k50.0003, n052.3, Ri510 mm,
v053.4431015 Hz, which corresponds to the wavelength of 54
nm in vacuum.
7-3
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BULJAN et al. PHYSICAL REVIEW E 68, 036607 ~2003!
quency constituents of the beam have smaller cohere
area, which is in accordance with Fig. 1. From Eq.~8! it also
follows that l s,i(v) decreases with the increase ofRi . This
means that major axis of the intensity profile ellipse is p
pendicular to the major axes of the ellipses representing
complex coherence factors. Ellipses representingmv from
Fig. 2 are very slightly elongated along thex axis ~they are
almost circular! since parameter values there correspond
the case whenl s,i(v) is one order of magnitude smaller tha
2ApRi . In such a case,l s,x(v).An0kp21vc21. l s,y(v)
@see Eq.~8!#. The ellipses become more elongated wh
l s,i(v) is several times larger than 2ApRi , i.e., when the
correlation distance is several times larger than the cha
teristic width of the soliton. When the value of one of th
intensity profile semiaxes, sayRy , becomes infinitely large
i.e., when Ry→`, the soliton from Eq.~5! becomes (1
11)D.

Note that the complex coherence functio
mv(r x ,rx ,r y ,ry) depends only on the difference coordinat
r i . This means that the statistical fluctuations of light th
forms the soliton obey a stationary random process@25#.
However, in the context of spatially incoherent quasimon
chromatic solitons, it has been shown that the complex
herence factor must, in general, depend on the spatial c

FIG. 2. The intensity structure and the complex coherence fu
tion of an incoherent white light soliton in logarithmic nonlinearit
The outer~thick! dashed curve is a contour plot of the intens
profile of the solitonI (x,y) defined byI (x,y)5I 0e21 (I 0 is the
intensity at the peak!. The three internal ellipses are contours of t
complex coherence factormv at frequenciesvmin52.6931015 Hz
~dotted line!, v053.4431015 Hz ~dashed-dotted line!, and vmax

54.1931015 Hz ~solid line!. These contours are defined b
mv(x1 ,y1 ,x2 ,y2)5mv(0,0,x,y)5e21. Other parameters arek
50.0003,n052.3, Rx55 mm, andRy520 mm. The contours of
mv have smaller area for higher frequencies, i.e., coherence ar
smaller for higher frequency constituents of the soliton beam.
cross section of the complex coherence factor is an ellipse slig
stretched along thex axis, whereas the intensity profile ellipse
stretched along they axis.
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dinatesr i . More precisely, the spatial correlation distance
also a function ofr i , and must, in general, increase at t
tails of the soliton@20#. The soliton presented above does n
contain this generic feature. This is attributed to the fact t
the logarithmic nonlinearity is in fact approximation of th
more realistic case, ln(11I/It), in the limit whenI @I t @10–
13,27#; this limit is not satisfied at the soliton ‘‘tails.’’ Hence
the model logarithmic nonlinearity has its limits in descri
ing the realistic physical process: it gives useful informati
on the features of incoherent solitons except for the tails.
the features of white light solitons specifically, numeric
simulations in realistic saturable nonlinearity shows that
sults highlighting the decrease of spatial correlation dista
with the increase of frequency are generic for white lig
solitons@22#.

Let us address the issue of soliton stability. This solit
satisfies the stability criteriondI0 /dP.0, whereI 0 is the
intensity at the soliton peak, whileP denotes the powerP
5**drxdryI @29#. Since this criterion is established und
quite general circumstances@29#, we can conclude that white
light soliton from Eq.~5! is stable. To support this view, le
us analyze the propagation of the beam with characteris
slightly different from the white light soliton~5!. We utilize
the procedure from Ref.@12# for spatially incoherent, but
temporally coherent solitons in logarithmic medium. We a
sume that the mutual spectral density is of the form

Bv~r x ,rx ,r y ,ry,z !5av~z! )
j 5x,y

expF2
r j

2

2sj
2~z!

2
r j

2

2qj
2~z!

v2

v0
2

1 ir jr jfv~z!G ,

~11!

wherefv(z) andav(z) denote the phase and the amplitu
of the mutual spectral density, respectively;sj (z) denotes its
width, and qj (z) is associated with the spatial correlatio
distance. When expression~11! is inserted in the evolution
equation~4!, we obtain a dynamical system for the set
coordinates (av ,sj ,qj ,fv) @12#:

dav~z!

dz
52

1

kv
2fv~z!av~z!, ~12!

dsj~z!

dz
5

1

kv
fv~z!sj~z!, ~13!

dqj~z!

dz
5

1

kv
fv~z!qj~z!, ~14!

1

kv

dfv~z!

dz
5

1

kv0

2

1

qj
2~z!sj

2~z!
2

fv
2 ~z!

kv
2

2
k

n0

1

sj
2~z!

.

~15!

It is straightforward to see that a fixed point of the dynami
system~12!–~15! is given by qj5Q05kv0

21An0 /k and fv

50, which are the conditions for the existence of white lig
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INCOHERENT WHITE LIGHT SOLITONS IN . . . PHYSICAL REVIEW E68, 036607 ~2003!
soliton@see Eq.~6!#. To gain more insight into the stability o
the soliton, let us observe the evolution of the dynami
system~12!-~15! from an initial condition slightly displaced
from the soliton condition,qj (0)5Q01dqj (0) andfv(0)
5dfv(0); without losing any generality we assumesj (0)
5Rj andav(0)5Av . From Eqs.~12!–~15! we see that the
phase of the mutual spectral densityfv is proportional to the
frequency, i.e.,

fv~z!5kvf0~z!5
vn0

c
f0~z!, ~16!

wheref0(z) denotes the phase at the central frequencyv0.
From Eq. ~12! it follows that av(z)5av(0)a8(z), where
a8(z) is frequency independent. The quantitiesav(z), qj (z),
and f0(z) can be expressed in terms of the characteri
width sj (z). From Eqs.~13! and ~14! it follows that qj (z)
5qj (0)/sj (0)sj (z). From Eqs. ~12! and ~13! we obtain
av(z)5av(0)@sj (0)/sj (z)#2. From Eq. ~13! we see that
f0(z)5sj

21(z)dsj (z)/dz, which together with Eq.~15!
gives an ordinary differential equation forsj (z):

d2sj~z!

dz2
5

1

kv0

2

sj
2~0!

qj
2~0!sj

3~z!
2

k

n0

1

sj~z!

5F j~sj !, j 5x,y. ~17!

This is Newton’s equation for a unit mass particle that fe
a force F j (sj ). Finally, we can observe the evolution of
beam that is initially slightly displaced from the equilibrium
qj (0)5Q01dqj (0), udqj (0)u!Q0. The radius of the beam
is si(z)5Ri1dsi(z), and the evolution ofdsi(z) in the lin-
earized regimeudsi(z)u!si(z) is given by

d2dsj~z!

dz2
.2

2kv0
k3/2dqj~0!

n0
3/2Rj

2
2k

n0Rj
2
dsj~z!

52
2kv0

k3/2dqj~0!

n0
3/2Rj

2V j
2dsj~z!, j 5x,y.

~18!

The initial conditions for Eq.~18! are set bys(z50)5Rj ,
and by the initial displacement of the phases8(z50)
5sj (0)df0(0)5Rjdf0(0), from which we obtain

sj~z!5Rj S 12
dqj~0!

Q0
D1

dqj~0!

Q0
Rj cosV j z

1
df0~0!

V j
Rj sinV j z. ~19!
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Thus, since the medium is self-focusingk.0, the width of
the beam sj (z) oscillates around the valueRj„1
2dqj (0)/Q0…. If dqj (0).0, the spatial correlation distanc
is initially larger than the correlation distance of the solito
consequently, diffraction tendency is initially smaller tha
self-focusing, and the radius oscillates around sligh
smaller value thanRj @12#. If dqj (0),0, the spatial corre-
lation distance is initiallysmaller than the correlation dis-
tance of the soliton; consequently, diffraction initially ove
comes the nonlinearity, and the radius oscillates aro
slightly larger value thanRj @12#. Consequently, if the mu-
tual spectral density is slightly different from the mutu
spectral density of the soliton@Eqs.~5!, ~6!, and~8!#, it will
oscillate close to it. The oscillations will be faster if th
nonlinearityk is larger, or if the characteristic radiusRj is
smaller. To get an idea of the characteristic scales of
oscillations, for the parametersk50.001, n052.3, andRj
520 mm, the frequency of oscillations is V j

5A2kn0
21Rj

2251.47 mm21, and the period isD j52p/V j

54.26 mm. The oscillations will be periodic or quasipe
odic, since there are two characteristic frequencies of os
lation ~one per each spatial coordinate!.

IV. CONCLUSION

In summary, we have presented closed-form soliton so
tion representing spatially and temporally incoherent solito
in logarithmically saturable noninstantaneous nonlinear m
dia. This incoherent soliton has elliptic Gaussian intens
profile, and elliptic Gaussian spatial correlation statisti
The existence curve of this soliton, Eq.~8!, connects the
strength of the nonlinearityk, the spatial correlation dis
tances as a function of frequency,l s,x(v) and l s,y(v), and
the characteristic widths of the solitonRx and Ry , respec-
tively. From the existence curve it follows that for this so
ton to exist, the spatial correlation distance must be sma
for larger frequency constituents of the light. Furthermore,
size must exceed a threshold imposed by the strength o
nonlinearity and the degree of temporal incoherence. T
stability of the soliton follows from the criteriondI0 /dP
.0, and from analyzing the oscillations of the mutual spe
tral density that is close to the mutual spectral density of
soliton. For future work on white light solitons, we envisio
‘‘dark’’ and ‘‘antidark’’ white light solitons. The analysis of
the spectral density at the darkest spot of a dark soliton
the vicinity of such spot seems to be an interesting prob
in view of the recent study of universal pattern of colors ne
an isolated phase singularity@30#. Finally, the properties of
interactions of white light solitons and other interesting pro
lems have not been explored yet.
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