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Overlapping of two truncated crisis scenarios: Generator of peaks in mean lifetimes
of chaotic transients
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~Received 5 August 2002; revised manuscript received 25 March 2003; published 30 September 2003!

Maxima of mean transient time versus driving amplitude were found for weakly dissipated Duffing oscil-
lator. In the neighborhood of peak of mean transient time an approximate power-law dependence was found.
This behavior was compared with scaling in the vicinity of crisis point and interpreted as crossing of two
neighboring crisis points which appears with decrease of driving amplitude. At this point chaotic attractor was
destroyed and chaotic transient, exhibiting a maximum in the lifetime was borned. It was shown that the peak
of mean lifetime has a regular behavior described by quadratic function.
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I. INTRODUCTION

Transient chaotic behavior is common in the realm
nonlinear systems. Chaotic transient behaves chaotically
ing some transient time interval and then trajectory switch
often quite abruptly, into nonchaotic behavior@1–4#. The
length of chaotic transient depends sensitively on initial c
ditions. However, if one takes many initial conditions, t
chaotic transient lengths have an exponential distribu
@5–8#

P~t!5expS 2
t

^t& D , ~1!

where^t& is the mean lifetime of the transient.
In global bifurcation category of routes to chaos, the c

otic transient route, referred to as crises@9,10#, is the most
important route for systems modeled by various sets of
ferential equations@1–4#. The crisis route to chaotic attracto
is associated with collision of chaotic attractor and unsta
periodic orbit or its stable manifold@1–4,9,10#. The common
feature of such route are homoclinic and heteroclinic orb
which suddenly appear as the control parameter is varied
strongly influence the nature of other trajectories pass
near them, as shown for example, for chaotic transients
to homoclinic and heteroclinic connections leading to chao
behavior in the Lorenz model@3,11#.

For a large class of dynamical systems which exhibit c
sis, Grebogi, Ott, and Yorke@9,10# obtained the scaling o
the mean lifetimê t& in the form

^t&5bup2pcu2g ~2!

for the control parameterp close to the critical valuepc at
which chaotic transient is replaced by chaotic attractor.
pressions for the critical exponentg, which depend essen
tially on the stability properties of basic periodic orbit, we
obtained as@12,13#
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g5 1
2 1~ lnua1u!/u lnua2uu, ~3!

in the case of heteroclinic tangency, and

g5~ lnub1u!/~ lnub1b2u2!, ~4!

in the case of homoclinic tangency, whereua1u, ub1u, and
ua2u, ub2u are expanding and contracting eigenvalues,
spectively. In the case of unstable-unstable pair bifurcat
crisis a faster increase of the characteristic scaling was
tained@12,13#.

These phenomena have been studied mostly for nonlin
systems with sizeable dissipation.

In this paper we will investigate mean lifetimes of chao
transients for the equation of a single-well Duffing oscillato

ẍ1dẋ1x1x35 f cosvt. ~5!

This equation was previously investigated in Ref.@14–16#.
The system initially undergoes a period doubling subh
monic cascade that leads to chaos atf 523.0 ford50.1 and
v50.95. It quickly moves out of chaos with increasingf,
and then goes back into chaotic oscillations at approxima
f 532.0.

II. SHRINKING OF CHAOTIC REGION BETWEEN TWO
CRISIS POINTS

In this paper the system~5! was investigated for a size
ably lower dissipation (d50.014), keeping the driving fre
quency fixed atv50.95, and driving amplitude treated a
control parameter.

An interesting pattern was obtained in the interval of
betweenf 523 andf 532, which was previously studied fo
sizeable dissipation. Atf 523 there is a chaotic attracto
Increasing the control parameterf, the system~5! passes
through crisis. At critical value of control parameterf
523.08 the chaotic attractor is destroyed. It is replaced b
chaotic repeller, invariant fractal set formed beyond the cr
@4#. Typical orbit beyond the crisis is transiently chaotic o
bit, with well defined mean lifetime of chaotic transients^t&
for a uniform set of initial conditions. Increasing the contr
parameter further, an inverse crisis scenario appearsf
©2003 The American Physical Society22-1



ed
it
ot

ie
r

in

ng

io

nt
th
o
co
e

a

es.
ker

e of

he

f
e-

t
ree
os
r
t

nd
ts.
un-
o-

t

we
and
e

he
m-
of

of

e

II,
-
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523.11. At this crisis point the chaotic repeller is replac
by chaotic attractor, and the transiently chaotic orbits w
well defined mean lifetime are replaced by stationary cha
orbits ~i.e., with lifetime ^t&5`). The whole interval be-
tween these two crisis points is characterized by trans
chaos. Similarly, several additional crisis scenarios appea
to f 532.

Figure 1~a! displays mean lifetime of chaotic transients
the interval betweenf 524.3 andf 530.0 for weak dissipa-
tion d50.014, expressed in terms of the period of drivi
force, T52p/v. Immediately above the critical point atf
524.3 and below the inverse critical point atf 530.0, the
mean lifetime of chaotic transient displays scaling behav
in accordance with the crisis scenario~2!, decreasing from
^t&5` at the crisis points. Between these two crisis poi
we found chaotic transient. However, further away from
crisis points in the interval between them, the lifetime
chaotic transient displays a complex dependence on the
trol parameterf, instead of smooth monotonic decreas
There are three pronounced peaks atf 525.2, f 525.4, and
f 529.3. The peak atf 525.4 is magnified in Fig. 1~b!.

Between these peaks, one observes pronounced minim

FIG. 1. ~a! Mean lifetime ^t& for control parameterf in the
interval ~24.3, 30.0! at dissipationd50.014. Control parameterf is
taken in steps of 0.1. Nature of the peak atf '25.3 denoted by an
arrow was closely investigated.~b! Magnified section fromf
525.1 to f 525.9 in ~a!. Dashed lines display an extrapolation
fits discussed in text.
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f 524.8 andf '27. The minimum atf '27 corresponds to
the lifetime smaller than the relaxation times.

Let us discuss the origin of observed peaks in lifetim
As already noted, dissipation in this study is much wea
than used in the previous studies of Duffing oscillator@14–
16#. Therefore, it can be expected that the dependenc
lifetime on the dissipation strengthd will reveal the nature of
this effect. From this point of view, we have performed t
calculation for a slightly stronger dissipation,d50.015, in
the same interval off as before~Fig. 2!. Contrary to the
situation in Fig. 1~b!, for d50.015 we find at the position o
a peak atf 525.3 a narrow interval of chaotic attractor b
tween f c1525.268 45 andf c2525.343 89~interval II!. The
points denoted asf c1 and f c2 are the crisis points of onse
and destruction of chaotic attractor in the narrow strip. Th
intervals off are shown in Fig. 2: region of transient cha
~25.1, 25.268 45! denoted I, region of chaotic attracto
~25.268 45, 25.343 89! denoted II, and the region of transien
chaos~25.343 89, 25.9! denoted III.

Here the transitions between the regions I and II, a
between II and III can be recognized as two crisis poin
These crises are due to collision of chaotic attractor and
stable periodic orbit of period-5. The value of critical exp
nentg151.3774 was calculated using Eq.~3! and the critical
value of the control parameterf c1 was obtained according to
procedure from Ref.@17#. Similar collision was observed a
the crisis pointf c2. In that caseg251.3745. For both crisis
points Poincare surfaces are almost identical.

To get a better understanding of the origin of the peak,
have investigated geometrical shape of the attractor
stable manifold of the period-5 orbit. In transition from th
region I into II ~crisis point f c1), the left arm of chaotic
attractor is touching the stable manifold@Fig. 3~a!#, i.e., the
collision of attractor and manifold is in accordance with t
crisis scenario. Increasing further the value of control para
eter we enter into the region II. For a particular value

FIG. 2. Lifetimes of chaotic transient in the interval fromf
525.1 to f 525.9 for d50.015. Interval is segmented into thre
sections: chaotic transient~I!, chaotic attractor~II !, and chaotic
transient~III !. The two crisis points between the regions I and
and II and III are denoted asf c1 and f c2, respectively. For discus
sion see the text.
2-2



s
le
it
ly
to

in

ion

is
on

an
ly,

ble

of

le
ce

le
us,
icu-
ue
ap-

n-
de-

es
red,
w
ted

he
ed.
e

ns
eral
rio

m-

to
e

tor

is

OVERLAPPING OF TWO TRUNCATED CRISIS . . . PHYSICAL REVIEW E 68, 036222 ~2003!
control parameter within the region II (f 525.3), the chaotic
attractor and stable manifold are displayed@Fig. 3~b!#. This
consideration reveals the nature of geometrical change
chaotic attractor. With increase of control parameter the
arm of attractor~that has touched the unstable periodic orb!
is moving away from the stable manifold. Simultaneous
with increase of control parameter the right arm of attrac
is approaching the stable manifold@Fig. 3~b!#. With a further
increase of control parameter the right arm is approach
the stable manifold, and forf 5 f c2 they collide@Fig. 3~c!#.

FIG. 3. Poincare sections displaying portion of chaotic attrac
in collision with stable manifold of period-5 orbit. Position of th
unstable period-5 orbit is marked byd. ~a! f 5 f c1, ~b! f 525.3, ~c!
f 5 f c2 at d50.015.
03622
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This collision can be recognized as transition from the reg
II into III, i.e., the crisis.

Lowering the dissipation strengthd, the crisis pointsf c1
and f c2 are moving towards each other, i.e., the region II
narrowing. Particularly interesting is the value of dissipati
strength associated with the collision of crisis points (f c1
5 f c2). In that moment, the region II disappears and we c
state that the regions I and III are in collision. Numerical
we found that the collision of crisis points appears ford
50.014 456. Figure 4 displays chaotic attractor and sta
manifold at the point of touching (f 5 f c15 f c2). As seen,
there is a simultaneous collision of the left and right arms
the attractor with the stable manifold.

For the control parameterf slightly smaller than 25.349 64
~Fig. 4!, the left arm of the attractor collides with the stab
manifold, resulting in destruction of attractor, in accordan
with the crisis scenario. Similarly, forf slightly higher than
25.349 64, the right arm of attractor collides with stab
manifold leading again to destruction of the attractor. Th
the existence of chaotic attractor is associated with a part
lar value of control parameter. Additionally, we can arg
that an additional lowering of dissipation can cause dis
pearance of chaotic attractor.

As seen from Fig. 3 the density of points differs in depe
dence on position on chaotic attractor. This density is
creasing with increase of Lyapunov exponent.

In the next step we performed the calculations of lifetim
for dissipation halfway between the two cases conside
i.e., ford50.0145~Fig. 5!. In this case too, there is a narro
region of chaotic attractor, and the interval was segmen
into three sections: I, II, and III. However, with respect to t
previous case, the interval II of chaotic attractor is reduc
In particular, the crisis pointf c1525.333 70 has moved mor
towards higher values than the crisis pointf c2525.349 15.

We note that the calculated results exhibit fluctuatio
around the scaling curves. This is in accordance with gen
observation of fluctuations associated with crisis scena
@18,19#.

As seen, small changes in dissipation strengthd lead to
small changes in the critical values of crisis points. Assu

r

FIG. 4. Poincare sections displaying portion of chaotic attrac
in collision with stable manifold of period-5 orbit atf 5 f c15 f c2

525.349 64 atd50.014 456. Position of unstable period-5 orbit
marked byd.
2-3
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V. PAAR AND N. PAVIN PHYSICAL REVIEW E 68, 036222 ~2003!
ing linear extrapolation of positions of crisis pointsf c1 and
f c2 to the first case ofd50.014 where no chaotic attractor
present atf '25.3, we have calculated the values off c1 ,
f c2 , g, and lnb ~Table I!. The corresponding curves ar
drawn in Fig. 1~b! ~dashed lines!. There is a crossing of two
curves, i.e., of scaling corresponding to two crisis scenar
At the position of crossing of two curves there is a maximu
of lifetime in Fig. 1~b!. This is more clearly seen from th
calculations atd50.0142~Fig. 6!, which is still on the cross-
ing side, but closer to the point of crossing. In accorda
with the previous discussion the two crisis points are clo
to each other and the crossing of two scaling curves give
higher maximum, which will further increase towards t
point of crossing. However, in Fig. 6 there is some differen
of the shape of calculated peak in comparison to the shap
peak obtained by overlap of two scaling curves. Let us c
sider Fig. 6 taking into account that the change of dissipa
leads to a shift of critical valuesf c1 and f c2. As a starting
point, let us assume that the change of dissipation leads
shift of critical values, without any significant influence o
the shape of curves. Accordingly, the values of lifetimes
chaotic transients from Fig. 5 (d50.0145) have been
changed in such a way that the points appearing on the

FIG. 5. Lifetimes of chaotic transient in the interval fromf
525.1 to f 525.9 at dissipationd50.0145. For discussion see th
text.

TABLE I. Critical values of control parameterf and of param-
etersb andg in the power-law formula~2!. For the first two rows
the near-lying crisis parameters aroundf 525.3 were used to deter
mine parameters in the power-law formula~2!. For dissipationd
50.0140 andd50.0142 chaotic attractor atf '25.3 disappears
The values given in the last two rows are determined by a strai
forward linear extrapolation of the cases ford50.0150 andd
50.0145.

d fc1 f c2 g1 g2 ln b1 ln b2

0.0150 25.26845 25.34389 1.3774 1.3745 5.5 3
0.0145 25.33370 25.34915 1.3815 1.3809 5.3 3
0.0142 25.37285 25.35231 1.3840 1.3847 5.2 3
0.0140 25.39895 25.35441 1.3856 1.3873 5.1 3
03622
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hand side of the critical valuef c1 were shifted to the right for
D f 50.039 15, and the points on the right-hand side off c2 to
the right forD f 50.003 16. Ford50.0142 the pointf c1 has
moved behind the pointf c2, the two curves in Fig. 5 have
partially overlapped. For the points of overlap the lifetime
chaotic transients was calculated from the relation

1

^t&
5

1

^t1&
1

1

^t2&
, ~6!

using values from both curves. Results obtained in this w
are displayed in Fig. 7~dashed line!.

Let us more closely investigate the structure of the pea
the mean lifetime distribution, concerning the essential to
of this investigation.

Numerical procedure used in obtaining Figs. 6 and
shows a pattern which resembles at the first sight a sing
structure. In order to clarify this issue a higher resoluti
computation was performed in the neighborhood of me
lifetime peak. To this end the resolution was increas

t-

FIG. 6. Lifetimes of chaotic transient in the interval fromf
525.1 to f 525.9 at dissipationd50.0142. Labelsf c1 and f c2 are
attributed on the basis of linear extrapolation. For discussion see
text.

FIG. 7. Lifetimes of chaotic transient in the interval fromf
525.1 to f 525.9 atd50.0142. For discussion see the text.
2-4
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20 times (D f 50.0001). The results of calculation for th
escape rate 1/^t& was presented in Fig. 8.~The maximum of
mean lifetimê t& corresponds to the minimum of escape ra
1/̂ t&.! From this higher resolution computation, it is evide
that the pattern of the escape rate~i.e., of the mean lifetime!
is in fact regular, with the presence of some local oscillatio
@18,19#.

On the other hand, the use of Eq.~6! as an estimate fo
observed lifetimes would suggest that the peak display
quadratic shape. Assuming that the approximate value of
escape rate is a superposition of two escape rates~6! and that
the values 1/̂t1& and 1/̂ t2& approximately satisfy the
Grebogi-Ott-Yorke scaling~2!, the total escape rate in th
neighborhood of minimum value (1/^t&)min was approxi-
mated by the second order Taylor expansion

1

^t&
'S 1

^t& D
min

1
1

2 S 1

^t& D
f 5 f 0

9
~ f 2 f 0!2, ~7!

where

S 1

^t& D
f 5 f 0

9
5

g1~g121!

b1
~ f c12 f 0!g122

1
g2~g221!

b2
~ f 02 f c2!g222. ~8!

FIG. 8. Escape rate of chaotic transient (1/^t&) on lin-lin scale
for interval of control parameter fromf 525.349 to f 525.3575
with stepD f 50.0001 at dissipationd50.0142. For discussion se
the text.
03622
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Here,f 0 denotes the value of control parameterf at which the
escape rate achieves a minimum value (1/^t&)min .

Inserting into Eqs.~7! and ~8! the parameter values from
Table I for dissipation strengthd50.0142, we obtained

1

^t&
'0.000 02511.7~ f 225.3525!2. ~9!

This theoretical prediction is rather close to the fit to t
computed data in Fig. 8~dashed line!:

1

^t&
'0.000 02711.7~ f 225.3532!2. ~10!

This leads to conclusion that the peak of mean lifetim
has a regular~nonsingular! behavior which can be well rep
resented by a quadratic function. A seemingly singular sh
in Figs. 6 and 7 is a consequence of insufficient resolut
because the quadratic maximum is not visible on the sc
used in the figures.

III. CONCLUSION

For chaotic attractor in a narrow interval of control p
rameter, with crisis points at both ends, we have found in
same interval the appearance of a peak of lifetime of cha
transient that is born with decreasing dissipation after
struction of chaotic attractor. This pattern, characteristic
weak dissipation, was explained in the framework of ov
lapping crisis scenarios, i.e., crossing of two end cri
points. It is noted that this may provide a mechanism
appearance of local maximum at each interval of chao
attractor having crisis points at both ends, that is, shrink
with decreasing driving amplitude. The peak height is larg
just following destruction of chaotic attractor and gradua
decreases with further decrease of dissipation strength. T
the interval with singularitŷ t&5` at dissipation strength
above the value of control parameter corresponding to
crossing of two crisis points is replaced by a finite maximu
A general scheme of this effect is illustrated in Fig. 9. Th
mechanism can lead, in general, to multiple peaks in lifeti
at weak dissipation. In the log-log plot these peaks are
played as an approximate piecewise linear function, wh
can be interpreted in the framework of Grebogi-Ott-Yor
scaling.

To our knowledge, the pattern of multiple peaks in lif
time has not been reported so far in the literature, proba
creasing
FIG. 9. Schematic presentation of crisis point crossing mechanism for generation of peaks in lifetime of chaotic transient with de
dissipation strengthd.
2-5



t
e

fo
y
rd
tu
a

ng

-

e
of
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because these peaks are associated with weak dissipa
while most of previous investigations have been perform
at sizeable dissipation.

We have presented the pattern of peaks of lifetime
Duffing oscillator with linear dissipation, which is widel
used as a model for studying nonlinear phenomena. In o
to gain some additional evidence on possible generic na
of peaks of lifetime, we have additionally investigated
03622
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model with more complex Coulomb dissipation, containi

the sgn(ẋ) and sgn(ẋ2) terms. Previously, bifurcation dia
grams of that model have been investigated in Ref.@20#.
Studying lifetimes of chaotic transients in that model, w
found a qualitatively similar pattern of peaks as in the case
Duffing oscillator.

N.P. thanks T. Tel for useful discussion.
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