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The electrodynamic features of the multiband model are examined using the trans-
verse equation of motion approach in order to give the explanation of several long-
standing problems. It turns out that the exact summation of the most singular
terms in powers of 1/ωn leads to the total optical conductivity which, in the zero-
frequency limit, reduces to the results of the Boltzmann equation, both for the
metallic and semiconducting two-band regime. The detailed calculations have been
carried out for the quasi-one-dimensional (Q1D) two-band model corresponding to
the imperfect charge-density-wave (CDW) nesting. It is also shown that the results
of the present treatment of the impurity-scattering processes for the DC conductiv-
ity of the ordered CDW state are in agreement with the experimental observation.
Finally, the DC and optical conductivity are calculated numerically for a few typi-
cal Q1D cases.
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1. Introduction

Current investigations of the strongly-correlated electron systems often deal
with collective contributions to the electrical conductivity (and to the other trans-
port properties). This includes in particular the conductivity in the charge-density-
wave (CDW) or spin-density-wave (SDW) ordered states. In most of the studies,
the electrical conductivity is determined, theoretically and experimentally, either
relative to the conductivity in the metallic state or with respect to the conductivity
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in the semiconducting state of the pinned CDW/SDW. Obviously, the prerequisite
to such a procedures is the accurate evaluation of the conductivity in the metallic
state or in the state of the pinned CDW/SDW, and this simple problem that is still
not completely solved is in the focus of this work.

Actually, using the microscopic transverse response theory, Lee, Rice and Ander-
son have found that the single-particle optical conductivity in the ordered CDW
state with a negligibly small number of scattering centers is given in terms of
the semiconducting current-current correlation function which describes excitations
across the gap [1 – 3]. However, it is also shown that for the typical value of the
CDW gap and of the zero-frequency damping energy (arising from the impurity
scattering processes), their result matches neither the result of the longitudinal re-
sponse theory [4] nor the experimental observation [5,6]. Yet, the longitudinal and
transverse response have to coincide for fast enough (quasi)homogeneous longitudi-
nal fields, as implicit, for example, in the Maxwell equations of the medium, which
employ only one dielectric function.

In his textbook, Mahan [7] has further shown that an alternative, so-called force-
force correlation function method, gives a good description of the (high-frequency)
optical processes in both metallic and semiconducting systems, including various
excitations within the conduction band and across the (pseudo)gaps. But it also
fails to reach correctly the ω → 0 limit, requiring a specific ω = 0 field-theory
approach [7 – 9].

Also important is the observation that most analyses of the transport coefficients
are based on the Boltzmann equations applied to the nearly-free electron models
[7,10], completely neglecting band periodicity in the reciprocal space.

Most of these issues can be settled down using the longitudinal response theory
with a particular care devoted to the continuity equation [11,12]. In the present
article, it will be shown that this can be done alternatively (but in a somewhat
less strict way) using the gauge-invariant form of the transverse approach. For this
purpose, we consider a quasi-one-dimensional (Q1D) two-band model, taking the
impurity scattering into consideration.

The two bands are taken to result from the site-energy dimerization in the
highly-conducting direction, and, consequently, the Bloch functions and all rele-
vant vertex functions can be determined analytically (Sec. 3). Using the equation-
of-motion approach (which is found to be the generalization of the force-force cor-
relation function approach), the intra- and interband optical conductivity are cal-
culated (Sec. 4). In the intraband channel of the transverse correlation functions,
the most singular processes in powers of 1/ωn are collected, resulting in the optical
conductivity which matches up the DC conductivity obtained by the Boltzmann
equations [10] or by the Landau response theory [11]. The resulting interband con-
ductivity in the CDW ordered state is found to be consistent with the experimental
observation. Theory-wise, the semiconducting current-current correlation function
[1 – 3] is replaced by a slightly modified function containing an additional factor
which comes from the gauge-invariant treatment of the diamagnetic current con-
tributions. Finally (Sec. 5), the optical and DC conductivity are determined for a
few typical Q1D cases.
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2. Transverse multiband response theory

The optical conductivity tensor σαα(ω) is a measure of the absorption rate
for the (transverse) electromagnetic waves traveling across the crystal, and the
measured spectra, together with the DC conductivity data and other transport
coefficients, are an extremely valuable source of information about the electronic
subsystem. Although some aspects of the microscopic response theory can be found
in the textbooks [2,3,7 – 9,11,13], there is no systematic microscopic solution to the
multiband optical conductivity problem. Actually, it is easy to determine macro-
scopic symmetry features of σαα(ω), even in a general case. In this respect, we shall
combine the macroscopic symmetry features with the microscopic description of the
electron-photon coupling functions (determined for a simple, exactly solvable Q1D
electronic model) to develop a consistent microscopic multiband response theory.

2.1. Optical conductivity tensor

The optical conductivity analysis starts with the Hamiltonian [11]

H = Hfield
0 + Hel

0 + Hext
1 + Hext

2 , (1)

which comprises the bare photon term Hfield
0 , the bare electronic Hamiltonian Hel

0

and the first-order and the second-order electron-photon coupling term, Hext
1 and

Hext
2 . The bare photon contribution is

Hfield
0 =

1

2

∑

qα

[

P †
qαPqα + ω2

q0Q
†
qαQqα

]

. (2)

Here q and α are the wave vector and the polarization of the photon field Qqα,
Pqα is the field conjugate to Qqα, and ωq0 = cq is the bare photon dispersion.

The structure of a typical Q1D tight-binding electronic Hamiltonian Hel = Hel
0 +

Hext
1 +Hext

2 is determined below. However, notice that general symmetry properties
of σαα(ω) discussed here do not depend on details of Hel.

To obtain σαα(ω), the retarded photon Green function is required1

〈〈Qqα;Q−qα〉〉t = −iΘ(t)〈
[

Qqα(t), Q−q(0)
]

〉 (3)

= e−ηt 1

2π

∞
∫

−∞

dω eiωt〈〈Qqα;Q−qα〉〉ω ,

with Qqα(t) = eiHt/h̄Qqαe−iHt/h̄ and Qqα(0) = Qqα representing the photon
fields in the Heisenberg picture at time t and at t = 0, respectively. Using the

1Notice the redundant adiabatic factor e−ηt in the Fourier transformation, which is necessary
in the differential treatment of the retarded correlation functions.
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equation of motion formalism, we get

[

ω
(

ω + iη
)

− ω2
qα

]

〈〈Qqα;Q−qα〉〉ω = h̄, (4)

with the adiabatic term η → 0+. The renormalized photon frequency ωqα is given
by [11]

ω2
qα = ω2

q0 + Ω2
dia,α + 4πΠαα(ω), (5)

where Ω2
dia,α and 4πΠαα(ω) are, respectively, the diamagnetic and current-current

contributions to the photon self-energy, shown in Fig. 1 (for the Q1D model under

q,α q,α q,α q,α q,α q,α

Fig. 1. The Dyson equation for the photon Green function. The bare second-
order (first-order) electron-photon coupling leads to the second (third) term on the
right-hand side, giving rise to the diamagnetic (current-current) contribution to the
photon self-energy.

consideration, the explicit forms of Παα(ω) and Ω2
dia,α are given in Secs. 4.2 – 4.3

and Ref. [14], respectively). Combining the Maxwell equations with Eq. (4), it can
be shown that the transverse dielectric function εα(ω) satisfies the relation

[

ω
(

ω + iη
)

εα(ω) − ω2
q0

]

〈〈Qqα;Q−qα〉〉ω = h̄, (6)

with

εα(ω) = 1 +
4πi

ω
σαα(ω). (7)

The optical conductivity defined by Eq. (7) is

σαα(ω) =
i

4π
(

ω + iη
)

[

Ω2
dia,α + 4πΠαα(ω)

]

, (8)

whether the electromagnetic field is treated as a classical or as a quantum field.
This is a quite general and in many respects very useful result. In the general
case, with several valence bands or with several scattering channels in a single
band, Ω2

dia,α includes one or more diamagnetic contributions (depending on the

number of bands intersecting the Fermi level), and Παα(ω) represents all intra- and
interband current-current correlation functions.

The following general properties of the expression (8) are important for the
interpretation of the measured spectra. There are at least two distinct structures
in the optical conductivity spectrum Re{σαα(ω)}, the first one is a delta function
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at ω = 0, related to the diamagnetic current, and the second one represents various
contributions, including the exciton contributions if the short-range dipole-dipole
interactions are present [2,15 – 17]. This is easily seen from

Re{σαα(ω)} =
1

4

[

Ω2
dia,α + 4πRe{Παα(0)}

]

δ(ω) −
1

ω
Im{Παα(ω)}. (9)

Obviously, in the normal metallic or insulating state, the delta-function term van-
ishes [13]. Therefore, any consistent treatment of the electron-photon coupling func-
tions has to fulfill the relation

Ω2
dia,α + 4πRe{Παα(0)} = 0. (10)

The total optical conductivity in the normal metallic or insulating state can be
written then in the form

σαα(ω) =
i

ω

[

Παα(ω) − Re{Παα(0)}
]

. (11)

Noteworthy, in the superconducting state the sum

1

2

[

Ω2
dia,α + 4πRe{Παα(0)}

]

(12)

measures the weight of the missing area in optical conductivity spectra [18 – 20],
while the single-particle contributions are still given by Eq. (11). Finally, notice that
in the absence of local dipolar excitations (the case of the site-energy dimerization
discussed in this article) the total current-current correlation function is the sum
of only two contributions, describing, respectively, the creation of the “free” intra-
and interband electron-hole pairs, while the processes associated with excitons (i.e.
the quasiparticles representing the bound electron-hole pairs) are not present.

The optical conductivity determined by Eq. (11), with the current-current cor-
relation function calculated by the equation of motion approach, is in the focus
of the present analysis. The causality requirement [2,13] (i.e. the Kramers–Kronig
relations), the effective mass theorem [4,21,22] and the gauge-invariance require-
ment [4,11,14] will be used to test the obtained results. A particular care will be
devoted to the non-physical singularity at ω = 0 related to the prefactor of ω−1 in
Eq. (11), and to the construction of the optical conductivity model with the correct
behaviour in the ω → 0 limit, giving rise to a unified description of the optical and
transport phenomena.

3. Electronic Hamiltonian with two qualitatively different

scattering channels

Although our model is Q1D, the present response theory is quite general and the
electronic Hamiltonian could represent an arbitrary multiband model. We assume
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that, in addition to the bare electronic Hamiltonian (denoted below by H0), there
is a static single-particle potential (H ′

0) characterized by a commensurate wave
vector, which describes, for example, the scattering of electrons on the site-energy
dimerization potential. The other single-electron scattering processes (on impuri-
ties, phonons, etc.) are represented by H ′

1. For most of the questions discussed
here, the main effects of the two-electron interactions are taken satisfactorily into
account through the effective mean fields included in H ′

0 or H ′
1,

2 resulting finally in
Hel

0 = H0 + H ′
0 + H ′

1 in Eq. (1). Hext = Hext
1 + Hext

2 couples the valence electrons
to transverse electromagnetic fields. The resulting total electronic Hamiltonian is

Hel = Hel
0 + Hext. (13)

We start by diagonalizing the Hamiltonian H0 + H ′
0. As mentioned above, we

consider the simplest Q1D model, where H ′
0 represents the site-energy dimerization

in the highly conducting direction and in H ′
1 only the impurity scattering is taken

into account. Next, we determine the related electron-photon coupling functions.
At the end of this section, the multiband current-current correlation function is
introduced.

3.1. Bare Hamiltonian

The single-particle properties of the Q1D site-energy-dimerization model come
from the exact diagonalization of the Hamiltonian [14]

H0 + H ′
0 =

∑

kσ

[

εc(k)c†
kσ

ckσ + εc(k)c†
kσ

ckσ + ∆
(

c†
kσ

ckσ + c†
kσ

ckσ

)]

. (14)

The bare electron dispersions of two subbands, artificially dimerized along the
highly conducting direction a, are

εc,c(k) = ±2ta cos k · a − 2tb cos k · b , (15)

with εc(k) ≡ εc(k ± π/ax̂), and with the wave vector k restricted to the new
(reduced) Brillouin zone, −0.5π/a ≤ kx ≤ 0.5π/a, −π/b ≤ ky ≤ π/b. ta and
tb (ta ≫ tb > 0) are the bond energies in the direction a and the perpendicular
direction b, respectively, and ∆ is the magnitude of the dimerization potential in the
direction a. Note that such potential corresponds to imperfect nesting in Eq. (15),
in contrast to the dimerization in all directions; the former nesting is chosen because
it is more interesting in the context of the conductivity studies.

The transformations between the unperturbed states, the band index l = c, c,
and the Bloch states, the band index L = C,C, of the form

l†
kσ

=
∑

L

Uk(l, L)L†

kσ
, (16)

2In contrast to that, in the longitudinal approach, based on the charge-charge correlation
functions, the long-range Coulomb interactions play the crucial role.
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leads to

H0 =
∑

Lkσ

EL(k)L†

kσ
Lkσ

, (17)

with the dispersions

EC,C(k) =
1

2
[εc(k) + εc(k)] ±

√

1

4
ε2
cc(k) + ∆2,

εcc(k) = εc(k) − εc(k) . (18)

The transformation-matrix elements are given by

(

Uk(c, C) Uk(c, C)
Uk(c, C) Uk(c, C)

)

=

(

u(k) v(k)
−v(k) u(k)

)

, (19)

where u(k) = cos
ϕ(k)

2
, v(k) = sin

ϕ(k)

2
, with the auxiliary phase ϕ(k) defined in

the usual way,

tan ϕ(k) =
2∆

εcc(k)
. (20)

The bands are shown in Fig. 2. Hereafter, the lower (conduction) band is as-
sumed to be partially filled and the upper (valence) band is empty. For the lower
band completely filled and ∆ ≫ tb, the band structure corresponds to the com-
mensurate CDW system, otherwise we have the metallic behaviour.

-0.2

-0.1

0

0.1

0.2

0.3

en
er

g
y

 (
eV

)

Fermi level
2∆

k
x

π/(2a)−π/(2a) 0

k
F

-k
F

C

C_

-0.2

-0.1

0

0.1

0.2

0.3

en
er

gy
 (e

V
)

2∆

k
x

π/a−π/a 0 k
F

-k
F

Fig. 2. The electron dispersions EC,C(kx, 0.5π/b) in the reduced (a) and extended
(b) zone representation, for 2ta = 0.25 eV and ∆ = 0.02 eV. In Fig. (b), the
solid and dashed lines correspond, respectively, to u(k) and v(k) in the relations

C†

kσ
= u(k)c†

kσ
− v(k)c†

kσ
, C†

kσ
= v(k)c†

kσ
+ u(k)c†

kσ
. The dot-dashed line is the

Fermi level µ in a typical metallic case.
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3.2. Electron-photon coupling Hamiltonian

Using the generalized minimal substitution method for the tight-binding elec-
trons [4,14], we obtain that the conduction electrons described by the Hamiltonian
(14) are coupled to the external electromagnetic fields through

Hext =
∑

l

∑

kσ

∑

qα

δH l
0(k, q)l†

k+qσ
lkσ

, (21)

where, to the second order in the vector potential Aα(q),

δH l
0(k, q) ≈ −

∂εl(k)

∂kα

e

h̄c
Aα(q) +

1

2

∂2εl(k)

∂k2
α

(

e

h̄c

)2

A2
α(q) . (22)

The photon annihilation operator Aqα enters in Eq. (22) through

Aα(q) =

√

4πc2

V
Qqα, A2

α(q) =
∑

q′

Aα(q − q′)Aα(q′),

where

Qqα =

√

h̄

2ωqα

[

Aqα + A†
−qα

]

(23)

is the electromagnetic displacement field of Eq. (2) [11]. Finally, in the Bloch rep-
resentation, the coupling Hamiltonian becomes

Hext = Hext
1 + Hext

2

= −
1

c

∑

qα

Aα(q)Ĵα(−q) +
e2

2mc2

∑

qα

A2
α(q)γ̂αα(−q; 2) , (24)

with

Ĵα(q) =
∑

LL′

∑

kσ

JLL′

α (k)L†

kσ
L′

k+qσ
, (25)

γ̂αα(q; 2) =
∑

LL′

∑

kσ

γLL′

αα (k; 2)L†

kσ
L′

k+qσ
, (25′)

representing, respectively, the current density and Raman [14,21] density operators.

The structure of the related vertex functions JLL′

α (k) and γLL′

αα (k; 2) is given in
Appendix A.
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3.3. Single-particle scattering processes

We consider here only the intraband impurity scattering processes in the per-
turbation

H ′
1 =

∑

L

∑

kk
′

σ

V LL(k,k′)L†

kσ
Lk

′

σ
, (26)

for which one usually assumes V LL(k,k′) = V LL(k − k
′) [8,9]. This form of H ′

1 is
consistent with the regime in which εcc(kF) ≫ h̄/τ (τ is the relaxation time defined
below). The generalization is straightforward.

3.4. Current-current correlation function

In the equation of motion approach [11] used in the next section, the starting
point is the current-current correlation function of Eqs. (8)–(12) shown in Fig. 3.

C C

C C
J

CC
α

C C

C C

J
CC

α J
CC

α

_ _

__

_ _ _ _

C C

C C
J

CC
α J

CC
α

C C

C C

J
CC
α J

CC
α

_ _
_ _ _ _

__

X X

J
CC
α

J
CC
α

X X

J    (k)
CC
α

X X

J    (k)
CC
α

J
CC
α J

CC
αJ

CC
α

J
CC
α

J
CC
α J    (k)

CC
α

X X

J    (k)
CC
α

(b)

(c)

(a)

k k

k+qk+q
k’

direct process indirect process

X

J
CC
α J

CC
α

X

Fig. 3. (a) The Bloch representation of the current-current correlation function of
the two-band model (14), with the current vertices given by Eqs. (70) and (70′).
The shaded square is the electron-hole propagator defined by Eq. (28). (b) The in-
traband current-current correlation function at high-frequencies (the leading term
in powers of (H ′

1)
2/ω). (c) The structure of the high-frequencies self-energy term.

The direct processes are associated with the creation of an electron-hole pair with
wave vectors k and k + q (q is the wave vector of the external field), while the in-
direct processes involve the impurity-assisted electron-hole pairs with wave vectors
k and k

′ + q ≈ k
′, or k + q ≈ k and k

′ (k′ − k is the momentum relaxed on im-
purities, and the crosses represent the impurity scattering). Two different parts on
the diagrams treated as constants are encircled: the imaginary part of the electron
self-energy in the direct contribution and the effective current vertex in the indirect
contribution.
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It is defined by [1,2,7,14]

Παα(q, t) =
1

h̄V
〈〈Ĵα(q); Ĵα(−q)〉〉t ≡ −

i

h̄V
Θ(t)〈

[

Ĵα(q, t), Ĵα(−q, 0)
]

〉 . (27)

Here the current operator Ĵα(q) includes all intra- and interband current density
fluctuations, as seen from Eq. (25). According to Fig. 3, Παα(q, t) comprises two
intraband and two interband contributions, and the problem is reduced, as will be
seen immediately below, to the self-consistent calculation of intra- and interband
electron-hole propagator in the presence of the perturbation H ′

1. In Eq. (27), as well
as in Eqs. (28), (30), (33) and (34), the usual notation for the retarded correlation

functions is used: 〈〈Â; B̂〉〉t = −iΘ(t)〈
[

Â(t), B̂(0)
]

〉, with Â(t) being the operator

Â in the Heisenberg picture.

4. Equation of motion approach

4.1. Generalized correlation functions

The retarded electron-hole propagator

DLL′

1 (k,k+,k′
+,k′, t) = 〈〈L†

kσ
L′

k+qσ
;L′†

k
′

+qσ
Lk

′

σ
〉〉t

≡ −iΘ(t)〈
[(

L†

kσ
L′

k+qσ

)

t
,
(

L′†

k
′

+qσ
Lk

′

σ

)

0

]

〉

= e−ηt 1

2π

∞
∫

−∞

dω eiωtDLL′

1 (k,k′
+,k+,k′, ω) (28)

(k+ is the abbreviation for k + q) is the central quantity to all long-wavelength
correlation functions, as can be seen from Fig. 4, or from the expression

χf,g(q, t) =
1

h̄V

∑

LL′

∑

kk
′

σ

fLL′

(k,k+q)gL′L(k′+q,k′)DLL′

1 (k,k+,k′
+,k′, t) , (29)

which represents a generalized long-wavelength correlation function, with fLL′

(k,k+

q) and gL′L(k′+q,k′) being the charge, current, Raman or some other vertex func-

tions. In Eq. (28), the abbreviation (ÂB̂)t = Â(t)B̂(t) is used.

fg

L’L’

L L

L’L LL’

Fig. 4. The generalized correlation function in notations of Fig. 3.
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The symmetry of the fLL′

(k,k +q) and gL′L(k′ +q,k′) vertices, together with
the nature of the singularity of the leading term in the perturbation series, deter-
mines the summation rule for the related Feynman diagrams. The simplest way to
collect the most singular diagrams is to consider the equations of motion connecting
DLL′

1 (k,k+,k′
+,k′, t) with the correlation function DLL′

2 (k,k+,k′
+,k′, t) defined as

DLL′

2 (k,k+,k′
+,k′, t) = 〈〈

[

L†

kσ
L′

k+qσ
,H ′];L′†

k
′

+qσ
Lk

′

σ
〉〉t . (30)

The direct calculation gives the exact relation

h̄
[

DLL′

0 (k,k+, ω)
]−1

DLL′

1 (k,k+,k′
+,k′, ω) (31)

= h̄δk,k
′

[

fL(k) − fL′(k+)
]

+ DLL′

2 (k,k+,k′
+,k′, ω) .

Here

h̄
[

DLL′

0 (k,k+, ω)
]−1

= h̄(ω + iη) + EL(k) − EL′(k+) (32)

is a useful abbreviation. DLL′

2 (k,k+,k′
+,k′, ω) is the Fourier transform of

DLL′

2 (k,k+,k′
+,k′, t), and fL(k) ≡ f(EL(k)) = 〈L†

kσ
Lkσ

〉 =
[

1 + exp{β[EL(k) −

µ]}
]−1

is the Fermi–Dirac function, with β = 1/(kBT ).

The way to evaluate DLL′

2 (k,k+,k′
+,k′, t) depends on the choice of representa-

tion of this function. There are two alternative ways,

DLL′

2 (k,k+,k′
+,k′, t) = −iΘ(t)〈

[[

L†

kσ
L′

k+qσ
,H ′

]

t
,
(

L′†

k
′

+qσ
Lk

′

σ

)

0

]

〉 (33)

or

DLL′

2 (k,k+,k′
+,k′, t) = −iΘ(t)〈

[[

L†

kσ
L′

k+qσ
,H ′

]

0
,
(

L′†

k
′

+qσ
Lk

′

σ

)

−t

]

〉 , (34)

leading to two different self-consistent schemes (one described below and another
encountered in the longitudinal response theory [11]), both giving, as will be argued

below, the same result. Again, [Â, B̂]t is the abbreviation for [Â(t), B̂(t)].

It is important to realize at the outset that the first term on the right-hand
side of Eq. (31) is significant for all interband correlation functions χf,g(q, t) in
Eq. (29), irrespective of the vertex symmetries. The probability for the direct cre-
ation of the interband electron-hole pair is proportional here to fL(k)− fL′(k+) ≈
fL(k) − fL′(k), so that all occupied states in the conduction band(s) are equally

important. For vertices fLL′

(k,k + q) and gL′L(k′ + q,k′) taken to represent the
intraband current vertices, the correlation function χf,g(q, t) in Eq. (29) becomes
the intraband current-current correlation function Πintra

αα (q, t). According to the
discussion of Sec. 2.1, the related intraband optical conductivity is ruled by the
prefactor ω−1 in Eq. (11). The direct processes in Eq. (31) (see the first term on
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the right-hand side of Fig. 3c, related to fC(k) − fC(k+) → 0, are insignificant,
and Πintra

αα (q, t) can be adequately described by the second, indirect term in this

equation (the second term in Fig. 3c; see also Fig. 5), with DLL′

2 (k,k+,k′
+,k′, t)

given by Eq. (34).
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Fig. 5. The direct intraband (1 → 2), indirect intraband (1 → 3 → 4), direct
interband (1 → 5) and indirect interband (1 → 6 → 7) optical excitations. In this
article the second and third processes are considered, the indirect intraband, using
the exact summation of the impurity scattering processes, and the direct interband,
using the phenomenological treatment of the impurity scattering. The dotted line is
the photon dispersion, and the dashed line corresponds to the impurity scattering.

Before turning to the evaluation of Πintra
αα (q, t), it is interesting to contrast this

conclusion with its analog in the longitudinal response theory. In the longitudi-
nal approach, the long-range Coulomb forces are activated, and the first term in
Eq. (31) dominates the intraband charge-charge correlation function, even in the
dynamic limit, since the small probability for the intraband electron-hole pair cre-
ation, proportional to fC(k)− fC(k+), cancels out the q−2 singularity of the long-
range forces, which is the well-known RPA result. On the other hand, the indirect
scattering processes are proportional to the effective intraband charge vertex, anal-
ogous to the effective intraband current vertex introduced below, Eq. (41). Since
the bare long-wavelength intraband charge vertex satisfies q(k+q,k) ≈ q(k,k) = e,
where e is the bare electron charge, the effective intraband charge vertex for the
indirect scattering processes vanishes, because q(k,k)−q(k′,k′) = 0. Since the lon-
gitudinal and transverse approaches are to be equivalent, this means that the direct
longitudinal processes are to be equivalent to the indirect transverse processes in
the intraband channel, while the contributions of both the indirect longitudinal
and the direct transverse scattering processes are to be negligible. This issue will
be further discussed in Sec. 4.2.5.

The above transverse approach can now be applied to the current-current cor-
relation function of the two-band model, rewritten in the form

Παα(q, t) =
1

h̄V

∑

LL′

∑

kk
′

σ

JLL′

α (k)JL′L
α (k′)DLL′

1 (k,k+,k′
+,k′, t) . (35)
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Here the vertices fLL′

(k,k + q) and gL′L(k′ + q,k′) in Eq. (29) are replaced by

JLL′

α (k,k + q) ≈ JLL′

α (k) and JL′L
α (k′ + q,k′) ≈ JL′L

α (k′), respectively. Optical
processes relevant to the two-band model (including the indirect interband ones
not considered in the present analysis) are illustrated in Fig. 5.

In order to make presentation of the results more transparent, we shall first de-
termine the intraband contributions, and then give the analysis of the interband op-
tical excitations. For the sake of brevity, in the next section the (intra)band index C

will be omitted (EC(k) → E(k), JCC
α (k) → Jα(k), . . . , with C†

kσ
→ c†

kσ
). It should

be noticed that the results obtained below for the intraband optical conductivity
are quite general, i.e. they cover various physically different regimes. As explained
in Sec. 4.2.2, when the electron filling of the dimerized band varies between 0 and
1, the electronic system transforms from an electron-like semiconducting, through
a metallic, into a hole-like semiconducting regime. A more detailed discussion of
this issue is given in Sec. 5, in the context of the total optical conductivity.

4.2. Intraband optical conductivity

According to the aforementioned arguments, the intraband optical processes are
described by the equations

h̄D−1
0 (k,k+, ω)D1(k,k+,k′

+,k′, ω) = D2(k,k+,k′
+,k′, ω) , (36)

h̄D−1
0 (k′,k′

+, ω)D2(k,k+,k′
+,k′, ω) = −D3(k,k+,k′

+,k′, ω) (37)

+h̄〈
[[

c†
kσ

ck+qσ
,H ′

]

, c†
k

′

+qσ
ck′

σ

]

〉 ,

where D−1
0 (k′,k′

+, ω) is the intraband term in Eq. (32) and D3(k,k+,k′
+,k′, ω) is

the Fourier transform of the force-force correlation function [7,14,23]

D3(k,k+,k′
+,k′, t) = −iΘ(t)〈

[[

c†
kσ

ck+qσ
,H ′

]

0
,
[

c†
k

′

+qσ
ck′

σ
, H ′

]

−t

]

〉 . (38)

The second term in Eq. (37) is the ground-state average of the four-operator product
at t = 0. It is off-diagonal in the Bloch representation, and its value can be obtained
by putting E(k′

+) − E(k′) ≈ 0 in the left-hand side of Eq. (37), and then taking
the formal limit ω → 0. The result is

h̄〈
[[

c†
kσ

ck+qσ
,H ′

]

, c†
k

′

+qσ
ck′

σ

]

〉 ≈ D3(k,k+,k′
+,k′, ω = 0). (39)

For the impurity scattering, we have the cancellation of this constant term with its
counterpart obtained by the electron ⇀↽ hole replacement (e.g., see Eq. (47)), but
for a time-dependent perturbation H ′

1, Eq. (39) achieves an interesting structure,
as pointed out in Refs. [23,24].

Due to the large velocity of light, the energy and wave vector transfers in the
external points of the intraband current-current correlation function fulfill h̄ω ≫
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E(k′
+) − E(k′), and the factors D0(k,k+, ω) and D0(k

′,k′
+, ω) in Eqs. (36) and

(37), representing the propagator of the virtual electron-hole pairs (related to the
process 1 → 3 in Fig. 5), can be replaced by 1/ω. The resulting intraband correlation
function becomes

Πintra
αα (ω) = −

1

h̄V (h̄ω)2

∑

kk
′′

k1k
′′

1
σ

[

Jα(k) − Jα(k′′)
][

Jα(k′′
1) − Jα(k1)

]

(40)

×

〈

V (k − k
′′)V (k′′

1 − k1)
[

D1(k,k′′,k′′
1 ,k1, ω) −D1(k,k′′,k′′

1 ,k1, 0)
]

〉

.

〈. . .〉 is here and subsequently the average over the impurity sites [7].

The diagrammatic representation of Πintra
αα (q, ω) is given in Fig. 6a, with the

structure of the leading term, proportional to (H ′
1)

2/ω, shown explicitly in Fig. 6b.
The expression

jα(k,k′′) =
V (k − k

′′)

h̄ω

[

Jα(k) − Jα(k′′)
]

(41)

can be recognized as an effective current vertex for the indirect intraband photon
absorption/emission processes, and is a sum of two terms encircled in Fig. 6b. Notice
also that D1(k,k′′,k′′

1 ,k1, ω) − D1(k,k′′,k′′
1 ,k1, 0) is proportional to ω, canceling

out the factor of ω−1 in one of the effective vertices.

kk

k’’k’’

1

1
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k’’
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k

k’’

j  (k’’,k) j  (k,k’ ’)α α k

k’’

J  (k)α J  (k)α k

k’’

J  (k’’)α J  (k’’)α k

k’’

J  (k’’)α
J  (k)α k

k’’

J  (k)α J  (k’’)α

(a)

(b)

X X

X

X X

XX X

Fig. 6. (a) The indirect contributions to the intraband current-current correlation
function in the equation of motion approach. The open square is the effective cur-
rent vertex, and the dashed line represents the related force-force correlation func-
tions (see, for example, the discussion of the force-force correlation function method
in Sec. 8.1.B of Ref. [7]). (b) The leading term in the high-frequency limit. On the
right-hand side, the products V (k−k

′′)Jα(k)/(h̄ω) and V (k−k
′′)Jα(k′′)/(h̄ω) are

encircled into the effective vertex. The dot is the bare intraband current vertex.

It is important to notice that in the leading term (Fig. 6b), the expression (40)
is identical to the result of the force-force correlation function method [7]. While
the latter method is usually limited to the examination of this leading term, or to
the summation of irrelevant higher order diagrams which results in the well-known
Hopfield formula [7], the present approach is focused on the exact summation of
the most singular contributions in powers of (H ′

1)
2/ω and should be regarded as a

generalization of the standard force-force correlation function approach.
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4.2.1. Proper electron-hole representation

After determining the structure of the external points (i.e. the effective vertices)
in the diagram shown in Fig. 6a, we have to find the internal structure of the
diagram. The latter is represented by the indirect (impurity-assisted) electron-hole
propagator D1(k,k′′,k′′

1 ,k1, ω), characterized by the momentum transfer k − k
′′,

rather than by the negligibly small external momentum transfer k+ − k = q of
the direct processes in Eq. (31). Its internal structure is determined here by the
self-consistent solution of the exact equation

h̄D−1
0 (k,k′′, ω)D1(k,k′′,k′′

1 ,k1, ω) (42)

= h̄δk,k1

δk′′

,k
′′

1

[

f(k) − f(k′′)
]

+ D2(k,k′′,k′′
1 ,k1, ω) .

D1(k,k′′,k′′
1 ,k1, ω) represents the electron-hole pair created by the indirect photon

absorption shown in Fig. 5, which means that the energy transfer h̄ω is close to the
electron-hole pair energy E(k) − E(k′′). The wave vectors k and k

′′ (k1 and k
′′
1 ,

as well) are independent of each other, and therefore the first term in Eq. (42)
dominates the low-energy physics, preferring the optical processes between the
states E(k) ≈ µ and E(k′′) ≈ µ.

In combining Eq. (42) with the equation of motion for D2(k,k′′,k′′
1 ,k1, ω) (see

Eq. (53) for more detail) it is sufficient to collect only the terms in the summa-
tion which are relevant to the self-consistent equation for the kernel Fα(k′′

1 ,k1, ω)
in the current-current correlation function (see Figs. 7c,d, and the criterion of the

k
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1
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Fig. 7. (a) A few leading contributions included in the self-consistent treatment of
Eq. (42). (b) Typical contributions omitted in the self-consistent scheme. (c) The
self-consistent equation of the kernel Fα(k′′

1 ,k1, ω) and (d) of the electron-hole prop-
agator D1(k,k′′,k′′

1 ,k1, ω). The diamond represents the electron-hole self-energy
consisting of the single-particle self-energy and vertex-correction contributions.
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validity shown in Figs. 7a,b)

Πintra
αα (ω) = −

1

h̄V (h̄ω)2

∑

k1k
′′

1
σ

〈

[

Fα(k′′
1 ,k1, ω)−Fα(k′′

1 ,k1, 0)
][

Jα(k′′
1)−Jα(k1)

]

〉

,

(43)
where

Fα(k′′
1 ,k1, ω) =

∑

kk
′′

V (k − k
′′)V (k′′

1 − k1)
[

Jα(k) − Jα(k′′)
]

D1(k,k′′,k′′
1 ,k1, ω) .

(44)
The idea of the present approach is the self-consistent treatment of Eqs. (42)
and (44), which represent two equations connecting the electron-hole propagator
D1(k,k′′,k′′

1 ,k1, ω) with the kernel Fα(k′′
1 ,k1, ω). The solution is based on the

expansion

D1(k,k′′,k′′
1 ,k1, ω) =

∞
∑

n=0

D
(2n)
1 (k,k′′,k′′

1 ,k1, ω), (45)

where D
(2n)
1 (k,k′′,k′′

1 ,k1, ω) includes only the self-consistent terms proportional to
(H ′

1)
2n/ωn.

As is easily seen in the longitudinal analysis, the self-consistent expression for
D1(k,k′′,k′′

1 ,k1, ω), with k
′′ → k + q, plays the leading role. Accordingly, to com-

pare both response theories, one needs the self-consistent scheme for Fα(k′′
1 ,k1, ω)

and the recurrence relations for D
(2n)
1 (k,k′′,k′′

1 ,k1, ω) (see Sec. 4.2.3).

For pedagogical reasons, it is convenient to consider first the zeroth order con-
tribution to (43) and define the effective number of conduction electrons and the
related electron-hole damping energy.

4.2.2. High-frequency limit

The direct calculation gives the first term in the expansion (45)

D
(0)
1 (k,k′′,k′′

1 ,k1, ω) = δk,k1

δk′′

,k
′′

1

[

f(k) − f(k′′)
]

D0(k,k′′, ω) . (46)

The related contribution to the current-current correlation function (which is a
good approximation for Πintra

αα (ω) at high frequencies) is given by

Πintra,(0)
αα (ω) =

1
(

h̄ω
)2

1

V

∑

kk
′′

σ

Jα(k)
(

Jα(k) − Jα(k′′)
)[

f(k) − f(k′′)
]

×〈|V (k − k
′′)|2〉

1

h̄

[

D0(k,k′′, ω) −D0(k
′′,k, ω)

]

(47)
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≈
1

(

h̄ω
)2

1

V

∑

kk
′′

σ

Jα(k)
(

Jα(k) − Jα(k′′)
)[

f(E(k)) − f(E(k) + h̄ω)
]

×〈|V (k − k
′′)|2〉

1

h̄

[

D0(k,k′′, ω) + D0(k
′′,k, ω)

]

. (47′)

For the impurity scattering processes, the real part of this function is negligible,
while the imaginary part is given by

Im{Πintra,(0)
αα (ω)} ≈ −

1
(

h̄ω
)2

1

V

∑

kσ

J2
α(k)

[

f(E(k)) − f(E(k) + h̄ω)
] h̄

τ(k, ω)
, (48)

where the electron-hole damping energy is

h̄

τ(k, ω)
=

∑

k
′′

〈|V (k − k
′′)|2〉

(

1 −
Jα(k′′)

Jα(k)

)

(−)
2

h̄
Im

{

D0(k,k′′, ω)
}

. (49)

Furthermore, in this case, the frequency dependent part in 1/τ(k, ω) is negligibly
small, and we can put the average over the Fermi surface 〈1/τ(k, 0)〉FS ≡ 1/τ in
Eq. (48) instead of 1/τ(k, ω). We finally get [14]

Im{Πintra,(0)
αα (ω)} ≈ −

e2neff
intra,α

m

1

ωτ
, (50)

with

neff
intra,α = −

m

e2

1

V

∑

kσ

J2
α(k)

∂f(k)

∂E(k)
(51)

being the effective number of conduction electrons. The behaviour of neff
intra,a with

band filling δ is shown in Fig. 8 for a few typical values of the ratio ∆/(2ta), and
compared to the prediction of the free-electron and free-hole approximation. Notice
that for ∆ > 2ta ≫ 2tb, one obtains the well-known result neff

intra,a ∝ sin kFx2a =

sin δπ (2a is the primitive-cell parameter of the dimerized lattice).

Beyond this approximation, the expression (47) requires the evaluation of two
coupled integrations over k and k

′′. In the low-dimensional electronic systems,
where the van Hove singularities in the band structure may play important role,
this is not a trivial task.

The most outstanding advantage of the present approach is the fact that the
effective current vertex jα(k,k′′) consists of two terms, which, together with two

terms in jα(k′′
1 ,k1), give four contributions to Π

intra,(0)
αα (ω), two of them representing

the so-called self-energy contributions, and the other two the vertex corrections (see
Fig. 6b) [7,23]. We shall show next that in the nth order term in (45), the single-
particle vertex corrections and the single-particle self-energy contributions are also
treated on equal footing, even if the relaxation processes on impurities are treated
beyond the approximation 1/τ(k, ω) ≈ 1/τ .
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Fig. 8. The effective number of conduction electrons (51) shown in the dimensionless
form, for 2ta = 0.25 eV, tb → 0, T = 10 K and ∆ = 0 (dotted line), 10 meV (solid
line). The dot-dashed line is the dimensionless concentration of conduction electrons
V0n = 2akF/π ≡ δ, i.e. the prediction of the free-electron approximation. V0 is the
primitive cell volume and maa = h̄2/(2taa2) is the mass scale parameter. The dop-
ing regions with the electron-like (∂neff

intra,a/∂δ > 0) and hole-like (∂neff
intra,a/∂δ < 0)

conductivity are also indicated. Inset: The effective number (maa/m)V0n
eff
intra,a for

2ta = 0.25 eV, tb → 0, T = 10 K and ∆ = 0.25 eV. The dot-dashed line is the
prediction of the free-hole approximation, 1 − V0n.

4.2.3. Kernel in the low-frequency limit

The effects of the impurity scattering on the correlation function (37) can be rep-
resented in the following way:

D2(k,k′′,k′′
1 ,k1, ω) (52)

=
∑

q

V (q)
[

D1(k,k′′ − q,k′′
1 ,k1, ω) −D1(k + q,k′′,k′′

1 ,k1, ω)
]

.

When combined with this expression, Eqs. (42) and (46) lead to

D1(k,k′′,k′′
1 ,k1, ω) ≈ D

(0)
1 (k,k′′,k′′

1 ,k1, ω)

+
1

h̄
D0(k,k′′, ω)

∑

q

|V (q)|2
1

h̄

{

D0(k,k′′ + q, ω) + D0(k + q,k′′, ω)
}

×
[

D1(k,k′′,k′′
1 ,k1, ω) −D1(k + q,k′′ + q,k′′

1 ,k1, ω)
]

. (53)

On the right-hand side of this equation, only the self-consistent terms are taken
into account. The first term in the brackets represents the single-particle self-energy
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kupčić and barǐsić: optical properties within the q1d multiband models . . .

contributions and the second one the single-particle vertex corrections. It is impor-
tant to remember again that these corrections are the largest for E(k) ≈ E(k′′),
so that D0(k,k′′, ω) can be approximated by ω−1. As a consequence, the solution
of this equation can be sought in powers of |V (q)|2/ω. However, due to the de-
pendence on k + q and k

′′ + q of the vertex-corrections term, we have to turn
back to the kernel (44) and apply several changes to its dummy variables to obtain
the self-consistent description of Fα(k′′

1 ,k1, ω) and the desired recurrence relations

between the contributions D
(2n)
1 (k,k′′,k′′

1 ,k1, ω). The kernel is described by

Fα(k′′
1 ,k1, ω) −F (0)

α (k′′
1 ,k1, ω) =

1

ω

∑

kk
′′

∣

∣V (k − k
′′)

∣

∣

2[
Jα(k′′) − Jα(k)

]

×D1(k,k′′,k′′
1 ,k1, ω)Σ(k,k′′, ω) , (54)

where

h̄Σ(k,k′′, ω) = −
∑

q

〈|V (q − k
′′)|2〉

(

1 −
Jα(q)

Jα(k′′)

)

1

h̄
D0(k, q, ω)

−
∑

q

〈|V (q − k)|2〉

(

1 −
Jα(q)

Jα(k)

)

1

h̄
D0(q,k′′, ω) (55)

is the electron-hole self-energy and F
(0)
α (k′′

1 ,k1, ω) is the kernel corresponding to

the replacement of D1(k,k′′,k′′
1 ,k1, ω) in Eq. (44) by D

(0)
1 (k,k′′,k′′

1 ,k1, ω). The
only approximation made in the derivation of Eq. (54) is

Jα(k − k
′′ + q) − Jα(q) ≈

[

Jα(k) − Jα(k′′)
] Jα(q)

Jα(k′′)
, (56)

which allows a simple description of the vertex corrections in Fα(k′′
1 ,k1, ω), and

which treats correctly the disappearance of the forward-scattering contributions
(k ≈ k

′′) to both Σ(k,k′′, ω) and Fα(k′′
1 ,k1, ω). As briefly discussed at the end

of Sec. 4.2.5, this approximation is directly related to the restrictions enforced by
the the continuity equation for the charge density. Similarly, the definition (45),
together with the self-consistent relations (53) and (54), gives rise to the recurrence
relations illustrated in Fig. 7d:

D
(2n)
1 (k,k′′,k′′

1 ,k1, ω) =
−Σ(k,k′′, ω)

ω
D

(2n−2)
1 (k,k′′,k′′

1 ,k1, ω)

=

(

−Σ(k,k′′, ω)

ω

)n

D
(0)
1 (k,k′′,k′′

1 ,k1, ω) . (57)
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4.2.4. Memory-function approximation

The simplest way to solve Eq. (54) is to replace Σ(k,k′′, ω) by its imaginary part
averaged over the Fermi surface, i/τ(ω). As mentioned above, for the impurity scat-
tering processes, the real part of Σ(k,k′′, ω) can be ignored. Even if Re{Σ(k,k′′, ω)}
is not small, we can turn back to the electronic Hamiltonian and try to include the
Re{Σ(k,k′′, ω)} effects into the effective single-particle Hamiltonian, and to diago-
nalize it, as we did here with the scattering processes on the dimerization potential
H ′

0. The real part of the new self-energy Σ(k,k′′, ω) is minimized in this way, with
only the imaginary part playing an important role in Eq. (57).

In this case, we obtain the expression

Fα(k′′
1 ,k1, ω) ≈ F (0)

α (k′′
1 ,k1, ω)

ω

ω + i/τ(ω)
, (58)

which leads to the well-known results of the memory-function approximation
[14,23,24]

Πintra
αα (ω) ≈ −

e2neff
intra,α

m

i/τ(ω)

ω + i/τ(ω)
,

σintra
αα (ω) ≈

i

ω

e2neff
intra,α

m

ω

ω + i/τ(ω)
, (59)

where h̄/τ(ω) is the intraband memory (relaxation) function. This result is consis-
tent with the causality requirement,

Re{σintra
αα (−ω)} = Re{σintra

αα (ω)} ,

Im{σintra
αα (−ω)} = −Im{σintra

αα (ω)} , (60)

provided that τ(ω) = τ . If τ(ω) is frequency dependent, the correspond-
ing Re{Σ(k,k′′, ω)} is non-zero, but the result (59) is still acceptable. For
Re{Σ(k,k′′, ω)} not too large, we can introduce the effects of Re{Σ(k,k′′, ω)}
through the mass redefinition m → m(ω) through the Kramers–Kronig relations.
The result is the generalized Drude formula for the intraband optical conductivity.

Here we show two important results. First, the memory-function approxima-
tion, which in the traditional form has not been found to be transparent, can be
understood as a simple replacement Σ(k, ω) → i/τ(ω) of the exact-summation re-
sult given below. Second, the memory-function results are acceptable even in the
cases with the pronounced optical excitations across a gap (or pseudogap) (where
neff

intra,α ≪ n; see, for example, the hole-like semiconducting regime in Fig. 8 at

δ ≈ 1), provided that the electron group velocity vα(k) = Jα(k)/e in Eq. (51)
is determined using the relation (73). The intraband conductivity spectrum ob-
tained in this way is related with the interband conductivity spectrum through the
well-controlled conductivity sum rule [14].
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4.2.5. Exact summation

In the case when the wave vector dependence of the imaginary part of Σ(k,k′′, ω)
is significant, and the real part of Σ(k,k′′, ω) is not too large, the full recurrence

relations for D
(2n)
1 (k,k′′,k′′

1 ,k1, ω) can be used to obtain the intraband current-
current correlation function. The result is

Πintra
αα (ω) =

1

V

∑

kk
′′

σ

[

Jα(k) − Jα(k′′)
]2 〈|V (k − k

′′)|2〉

h̄ω

×
[

f(k) − f(k′′)
] 1

h̄

D0(k,k′′, ω)

h̄ω + h̄Σ(k,k′′, ω)
, (61)

≈ −
1

V

∑

kk
′′

σ

J2
α(k)

∂f(k)

∂E(k)

1

h̄ω + h̄Σ(k,k′′, ω)
〈|V (k − k

′′)|2〉

×

(

1 −
Jα(k′′)

Jα(k)

)

1

h̄

[

D0(k,k′′, ω) + D0(k
′′,k, ω)

]

. (61′)

Physically the most important case corresponds to the approximation Σ(k,k′′, ω) ≈
Σ(k,k, ω) = Σ(k, ω). In this case, we obtain

Πintra
αα (ω) ≈ −

1

V

∑

kσ

J2
α(k)

∂f(k)

∂E(k)

(−)Σ(k, ω)

ω + Σ(k, ω)
. (61′′)

The final form of the optical conductivity comes from Eqs. (61′′) and (11)

σintra
αα (ω) ≈

i

ω

1

V

∑

kσ

J2
α(k)(−)

∂f(k)

∂E(k)

ω

ω + Σ(k, ω)
, (62)

which is the result identical to the result of the longitudinal response theory.

The longitudinal response theory gives a simpler way to obtain the same
σintra

αα (ω). The difference between the two approaches is in the way how the con-
tinuity equation connecting the charge density and current density fluctuations is
treated. The consideration of the direct processes of the wave vector q in the lon-
gitudinal approach allows a more precise treatment of the continuity equation, in
the way analogous to the Landau response theory [11,12]. But here only an approx-
imate solution is possible, since the theory is formulated in terms of the indirect
intraband processes (of the wave vector k − k

′′).

4.2.6. Zero-frequency limit

First significant consequence of the present exact summation method is the behav-
iour of the intraband optical conductivity in the zero-frequency limit. When the
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real part of Σ(k, ω) is small enough, we can write

Σ(k, ω) ≈ iΣ′′(k, 0) ≡ i/τ(k) , (63)

resulting in the DC conductivity which is equal to the well-known Boltzmann result
[7,10]

σintra
αα (0) ≡ σDC

αα = (−)
1

V

∑

kσ

J2
α(k)

∂f(k)

∂E(k)
τ(k) =

e2τ0

mV0

m

maa
ñeff

intra,α . (64)

Here

ñeff
intra,α =

maa

m
V0n

eff
intra,α = (−)

maa

N

∑

kσ

v2
α(k)

∂f(k)

∂E(k)

τ(k)

τ0
(51′)

is the effective number of conduction electrons shown in the dimensionless form
and τ0 = τ(k = 0) is the temperature dependent k = 0 relaxation time. The
relation (62), together with Eq. (66), gives the complete description of the optical
conductivity in a general multiband model, with the symmetry of the intra- and
interband current vertices playing an essential role. Thus, Eq. (64) provides the
direct link between the low-frequency optical conductivity and various transport
coefficients not only in the single-band but also in the multiband models.

4.3. Interband optical conductivity

The approximation in which the D2(k,k′′,k1, ω) term in Eq. (31) is omitted
leads to the ideal interband current-current correlation function and to the ideal
interband conductivity characterized by a sharp threshold at the energy EC(kF)−
EC(kF) [1 – 3,14]. The former one is given by

Πinter
αα (ω) =

1

V

∑

kσ

|J
CC
α (k)|2

{

fC(k) − fC(k)

h̄ω − ECC(k) + ih̄η
+

fC(k) − fC(k)

h̄ω + ECC(k) + ih̄η

}

, (65)

with ECC(k) = EC(k) − EC(k). The latter one comes from Eqs. (11) and (65)

σinter
αα (ω) =

i

ω

1

V

∑

kσ

h̄ω|J
CC
α (k)|2

ECC(k)

2
[

fC(k) − fC(k)
]

h̄ω + ih̄η − E2
CC(k)/

(

h̄ω
) , (66)

with η = 0 in the numerator and η → 0+ in the denominator. The leading term in
the interband electron-hole self-energy

h̄ΣLL′(k, ω) = −
∑

q

[

〈|V L′L′

(q − k)|2〉
1

h̄
DLL′

0 (k, q, ω)

+〈|V LL(q − k)|2〉
1

h̄
DLL′

0 (q,k, ω)

]

(67)
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arises from the single-particle self-energy contributions. A reasonable generalization
for the interband optical conductivity is given by Eq. (66) with the replacement of
η by Im{ΣCC(k, ω)}.

The interplay between the self-energy and vertex-corrections terms in ΣCC(k, ω),
the correct treatment of the indirect interband optical excitations, as well as the
role of the effective mass theorem in resolving all these issues will be explained
elsewhere [12]. It should be noticed here that the Landau-like function (66) gives
the in-gap optical conductivity slightly different from the corresponding Lindhard-
like function, as easily seen by comparing Fig. 9 with Fig. 4 reported in Ref. [14].
The understanding of the difference between these two results is also of general
importance, and will be discussed in detail in Ref. [12].
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Fig. 9. The development of the normalized total single-particle optical conductivity
with temperature in the ordered CDW state: ∆(T ) = ∆0

√

1 − T/TCDW, ∆0 = 10
meV, TCDW = 66 K, kF = 0.5π/a, 2ta = 0.25 eV, tb → 0 and h̄Γintra = h̄Γinter = 5
meV. σDC

aa labels the DC conductivity at ∆ = 0.

5. Comparison with experiments

In the simplest limit, ΣCC(k, ω) ≈ iΓintra and ΣCC(k, ω) ≈ iΓinter, the optical
conductivity of the present two-band model,

σαα(ω) = σintra
αα (ω) + σinter

αα (ω) , (68)

is a function of the Fermi wave vector kF, three band parameters, ta, tb and ∆, and
two damping energies, h̄Γintra and h̄Γinter. For kFx ≈ 0.5π/a, the model illustrates
optical properties of various Q1D imperfectly nested CDW systems (including both
the ordered CDW state and the pseudogap effects at temperatures above the critical
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temperature TCDW). In this section, we shall briefly discuss a few qualitative results
important to the Q1D CDW systems. First, the temperature dependence of the
DC and optical conductivity in the ordered CDW state is discussed for the strictly
1D case (tb → 0). Then we contrast the interband conductivity found here to
the oversimplified semiconducting optical conductivity usually encountered in the
textbooks [1 – 3].

5.1. DC conductivity in the ordered CDW state

The temperature dependence in kBT , ∆(T ), Γintra(T ) and Γinter(T ) is responsi-
ble for the transfer with increasing/decreasing temperature of the optical conductiv-
ity spectra between the intraband and interband channels. This effect is particularly
large in the vicinity of the metal-to-insulator phase transition. It should be noticed
that, in the approximation in which τ(k) → τ0 = 1/Γintra is set in Eq. (51′), the
temperature dependence of σDC

αα is given by the product of the effective number of
conduction electrons ñeff

intra,α(T ) and the relaxation time τ0(T ). We have two ad-
justable parameters at any temperature, and the analysis of the DC conductivity
data is thus possible only by the combination with the optical conductivity measure-
ments. The latter method allows also the determination of the magnitude of CDW

order parameter ∆0 and the critical exponent β in ∆(T ) = ∆0

(

1 − T/TCDW

)β
, as

well as the bond energy ta and the damping energy Γinter.

In Figs. 9 and 10 the optical conductivity normalized to the DC conductivity
at ∆ = 0 and the temperature dependence of the DC conductivity are shown for
typical values of the parameters.
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Fig. 10. The temperature dependence of the normalized effective number of conduc-
tion electrons in the ordered CDW state for different values of exponent β: ∆0 = 10
meV, TCDW = 66 K, kF = 0.5π/a, 2ta = 0.25 eV, tb → 0 and h̄Γintra = h̄Γinter = 5
meV. Notice that this figure also represents the temperature behaviour of the nor-
malized DC conductivity, since σDC

aa (T )/σDC
aa (TCDW) ≈ ñeff

intra,a(T )/ñeff
intra,a(TCDW).
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5.2. Optical conductivity of a simple semiconductor

The typical result for the interband conductivity in the ordered CDW state is
shown in Fig. 11 (solid and dotted curves), and compared to the data measured in
the blue bronze K0.3MoO3 (diamonds) [5]. Notice that the gauge-invariance factor
h̄ω/ECC(k) in Eq. (66) ensures the disappearance of σinter

αα (0) at T → 0, indepen-
dently of the value of the phenomenologically introduced damping energy h̄Γinter.
The dashed curve is the prediction of the usual optical model for semiconductors
[1 – 3], with the factor h̄ω/ECC(k) absent, which is characterized by a significant

(but non-physical) contribution to σDC
αα at T → 0.
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Fig. 11. The interband optical conductivity (66) (h̄η → h̄Γinter), for 2ta = 0.4
eV, tb → 0, ∆ = 0.09 eV, kF = 0.5π/a, T = 10 K and h̄Γinter = 0.3 eV (solid
curve) and 1 meV (dotted curve). The dashed curve is the prediction of the usual
(gauge-non-invariant) optical conductivity for semiconductors, calculated using the
same band parameters, with h̄Γinter = 0.15 eV. σDC

aa is the DC conductivity of the
∆ = 0, h̄Γintra = 0.15 eV case. The diamonds are experimental data measured in
K0.3MoO3 at T = 10 K [5].

6. Conclusion

In this article, the response of the conduction electrons in a Q1D multiband
model to the transverse electromagnetic fields has been studied in the presence of
two scattering mechanisms. In contrast to the coherent scattering on the site-
energy-dimerization potential, the impurity scattering processes give negligibly
small contribution to the real part of the electron self-energy, but dominate in
the relaxation processes in both the intra- and interband optical excitations. We
determine the current-current correlation function, i.e. the optical conductivity of

FIZIKA A 14 (2005) 1, 47–74 71
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the related two-band model as a function of band filling. The transverse equation
of motion approach has been used to collect the most singular contributions to the
optical conductivity. It is shown that the present multiband optical analysis rep-
resents a generalization of the usual force-force correlation function method, and
that in the DC limit it approaches correctly the results of Boltzmann equations,
due to its gauge-invariant form. The present optical conductivity model gives the
frequency and temperature dependence of the single-particle contributions to the
optical conductivity spectra in the ordered CDW state which are consistent with
both the experimental observation and the prediction of the longitudinal response
theory. It is explained that, while the response to the longitudinal fields is associ-
ated with the direct electron-hole pair excitations, the response to the transverse
electromagnetic fields can be understood in terms of the indirect (impurity-assisted)
electron-hole pair excitations.
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Appendix A. Current and static Raman vertices

The vertex functions in the expression (25) depend on the unperturbed vertices
J ll

α (k) = (e/h̄)∂εl(k)/∂kα and γll
αα(k; 2) = (m/h̄2)∂2εl(k)/∂k2

α in the following
way

JLL′

α (k) =
∑

l

Uk(l, L)U∗

k(l, L′)J ll
α (k) ,

γLL′

αα (k; 2) =
∑

l

Uk(l, L)U∗

k(l, L′)γll
αα(k; 2) . (69)

For the α = a polarization of the electromagnetic fields, the result is

J
CC,CC
a (k) = ∓

[

u2(k) − v2(k)
]

Jcc
a (k) = ∓ cos ϕ(k)Jcc

a (k) , (70)

J
CC
a (k) = 2u(k)v(k)Jcc

a (k) = sinϕ(k)Jcc
a (k) , (70′)

γ
CC,CC
aa (k; 2) = ∓

[

u2(k) − v2(k)
]

γcc
aa(k; 2) = ∓ cos ϕ(k)γcc

aa(k; 2) . (71)

Similarly, for α = b

J
CC,CC
b (k) = Jcc

b (k) , J
CC
b (k) = 0,

γ
CC,CC
bb (k; 2) = γcc

bb (k; 2) . (72)

72 FIZIKA A 14 (2005) 1, 47–74
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Finally, using Eqs. (18), (70) and (72), we can check the Ward identity [7] which
relates the intraband current vertex JLL

α (k) with the electron group velocity vL
α(k)

JLL
α (k) = evL

α(k) =
e

h̄

∂EL(k)

∂kα
. (73)
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OPTIČKA SVOJSTVA U MODELU S VIŠE VRPCI - PRISTUP POMOĆU
JEDNADŽBI GIBANJA

Primjenom formalizma jednadžbi gibanja razmatrali smo elektrodinamička svoj-
stva modela s vǐse vrpci u cilju rješavanja nekoliko starih problema. Pokazuje se
da egzaktno zbrajanje najsingularnijih doprinosa u potencijama od 1/ωn vodi do
ukupne optičke vodljivosti koja se u statičkoj granici podudara s rezultatima Boltz-
mannovih jednadžbi, u obje granice modela s dvije vrpce, metalnoj i poluvodičkoj.
Načinili smo precizne račune za kvazi-jednodimenzijski (K1D) model dvije vrpce
koji odgovara slučaju s neidelnim ugnježd–enjem tipa val-gustoće naboja (VGN).
Takod–er se pokazuje da izloženi opis procesa raspršenja na nečistoćama daje isto-
smjernu vodljivost ured–enog VGN stanja koja je u skladu s eksperimentalnim
opažanjem. Na koncu, daju se numerički rezultati istosmjerne i optičke vodljivosti
za nekoliko karakterističnih K1D primjera.
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