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We adjust a new improved relativistic mean-field effective interaction with explicit density dependence of
the meson-nucleon couplings. The effective interaction DD-ME2 is tested in relativistic Hartree-Bogoliubov
and quasiparticle random-phase approximation (QRPA) calculations of nuclear ground states and properties of
excited states, in calculation of masses, and it is applied to the analysis of very recent data on superheavy nuclei.
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I. INTRODUCTION

Structure properties of medium-heavy and heavy nuclei
with many active valence nucleons are best described in
the framework of self-consistent mean-field methods. The
effective Gogny interaction, the Skyrme energy functionals,
and the relativistic meson-exchange effective Lagrangians
have been very successfully employed in models of nuclear
structure and low-energy dynamics [1].

The self-consistent mean-field approach enables a descrip-
tion of the nuclear many-body problem in terms of a universal
energy density functional. The exact energy functional, which
includes all higher order correlations, is approximated with
powers and gradients of ground-state nucleon densities.
Although it models the effective interaction between nucleons,
a general density functional is not necessarily related to any
given NN potential. By employing global effective interactions,
adjusted to empirical properties of symmetric and asymmetric
nuclear matter, and to bulk properties of few spherical nuclei,
self-consistent mean-field models have achieved a high level
of accuracy in the description of ground states and properties
of excited states in arbitrarily heavy nuclei. One of the major
goals of modern nuclear structure is to build a universal energy
density functional theory [2]. The theory is universal in the
sense that the same functional is used for all nuclei, with
the same set of parameters. This framework should provide
a basis for a consistent microscopic treatment of the nuclear
many-body problem, including infinite nuclear and neutron
matter, ground-state properties of all bound nuclei, low-energy
excited states, small-amplitude vibrations, large-amplitude
adiabatic properties, and reliable extrapolations toward the
drip lines.

One of the first steps in this direction has been the construc-
tion of microscopic mass tables based on the self-consistent
Skyrme Hartree-Fock (HF) and Skyrme Hartree-Fock-
Bogoliubov (HFB) framework. In a series of recent papers
[3–6] a set of complete microscopic mass tables of more than

9000 nuclei lying between the particle drip lines over the
range Z,N � 8 and Z � 120 have been constructed within
the HFB framework. By adjusting the parameters of the
Skyrme interaction, the strength and the cutoff parameters
of the (possibly density-dependent) δ-function pairing force,
and the parameters of two phenomenological Wigner terms,
with a total of ≈20 parameters in all, the measured masses of
2135 nuclei with Z,N � 8 have been fitted with an rms error
of less than 700 keV. In addition, although these effective
interactions have been adjusted only to masses, they also
produce excellent results for the charge radii, with an rms
deviation of ≈0.025 fm for the absolute charge radii and
charge isotope shifts of more than 500 nuclei [7]. However, the
Skyrme-HFB mass formulas are far from being definite. Future
improvements must include modifications to the interactions, a
better treatment of symmetry-breaking effects, and many-body
correlations. For instance, in Ref. [8] an improved version
of the deformed configuration-space HFB method has been
employed, based on the expansion of the HFB wave functions
in a complete set of transformed harmonic-oscillator basis
states, obtained by a local-scaling point transformation. This
method enables a careful treatment of the asymptotic part of
the nucleonic density and is therefore particularly suitable
for self-consistent HFB calculations of deformed weakly
bound nuclei close to the nucleon drip lines. In Ref. [9]
the coordinate-space HFB framework has been generalized to
include arbitrary mixing between protons and neutrons both in
the particle-hole and particle-particle channels. The resulting
HFB density matrices have a rich spin-isospin structure and
provide a microscopic description of pairing correlations in all
isospin channels.

An important class of self-consistent mean-field models
belongs to the framework of relativistic mean-field theory
(RMF). RMF-based models have been successfully applied
in analyses of a variety of nuclear structure phenomena,
not only in nuclei along the valley of β stability, but also
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in exotic nuclei with extreme isospin values and close to
the particle drip lines. The RMF framework has recently
been extended to include effective Lagrangians with density-
dependent meson-nucleon vertex functions. The functional
form of the meson-nucleon vertices can be deduced from in-
medium Dirac-Brueckner interactions, obtained from realistic
free-space NN interactions, or a phenomenological approach
can be adopted, with the density dependence for the σ, ω,
and ρ meson-nucleon couplings adjusted to properties of
nuclear matter and a set of spherical nuclei. The latter was em-
ployed in Ref. [10], where the relativistic Hartree-Bogoliubov
(RHB) model was extended to include medium-dependent
vertex functions. It has been shown that, in comparison with
standard nonlinear meson self-interactions, relativistic models
with an explicit density dependence of the meson-nucleon
couplings provide an improved description of asymmetric
nuclear matter, neutron matter, and nuclei far from stability.
The relativistic random-phase approximation (RRPA), based
on effective Lagrangians characterized by density-dependent
meson-nucleon vertex functions, has been derived in Ref. [11].
A comparison of the RRPA results on multipole giant reso-
nances with experimental data provides additional constrains
on the parameters that characterize the isoscalar and isovector
channels of the density-dependent effective interactions. In a
microscopic analysis of the nuclear matter compressibility and
symmetry energy [12], it has been shown that the experimental
data on the giant monopole resonances restrict the nuclear
matter compression modulus of structure models based on
the relativistic mean-field approximation to Knm ≈ 250–
270 MeV, whereas the isovector giant dipole resonances and
the available data on differences between neutron and proton
radii limit the range of the nuclear matter symmetry energy at
saturation (volume asymmetry) of these effective interactions
to 32 MeV � a4 � 36 MeV.

In this work we continue the investigation of relativistic
effective forces with density-dependent meson-nucleon cou-
plings, and we adjust a new phenomenological interaction
to be used in RMF+BCS, RHB, and relativistic quasiparti-
cle random-phase approximation [R(Q)RPA] calculations of
ground states and excitations of spherical and deformed nuclei.
The construction of the effective interaction DD-ME2 and the
resulting equations of state for symmetric and asymmetric
nuclear matter are analyzed in Sec. II. In Sec. III the new
interaction is employed in a series of RHB and R(Q)RPA
calculations of ground-state properties and giant resonances.
The model is tested in the calculation of masses and is applied
to the analysis of very recent data on superheavy nuclei. The
results are summarized in Sec. IV.

II. THE EFFECTIVE DENSITY-DEPENDENT
INTERACTION DD-ME2

References [13–15] contain a very detailed discussion
of the density-dependent nuclear hadron field theory. The
relativistic RHB model and the random phase approximation
(RPA) based on effective interactions with density-dependent
meson-nucleon couplings are described in Refs. [10] and
[11], respectively. For completeness we include the essential

features of the relativistic Lagrangian density with medium-
dependent vertices

L = ψ̄ (iγ · ∂ − m) ψ + 1

2
(∂σ )2 − 1

2
mσσ 2 − 1

4
	µν	

µν

+ 1

2
m2

ωω2− 1

4
�Rµν

�Rµν + 1

2
m2

ρ �ρ 2− 1

4
FµνF

µν − gσ ψ̄σψ

− gωψ̄γ · ωψ − gρψ̄γ · �ρ �τψ − eψ̄γ · A
(1 − τ3)

2
ψ.

(1)

Vectors in isospin space are denoted by arrows, and bold-faced
symbols will indicate vectors in ordinary three-dimensional
space. The Dirac spinor ψ denotes the nucleon with mass m.
The masses mσ ,mω, and mρ are those of the σ meson,
the ω meson, and the ρ meson, with gσ , gω, and gρ being
the corresponding coupling constants for the mesons to the
nucleon. This Lagrangian is, of course, invariant under parity
transformation and, since we only consider solutions with
well-defined parity, the expectation value of the pseudoscalar
pion field vanishes in the Hartree approximation. The coupling
constants and unknown meson masses are parameters, adjusted
to reproduce nuclear matter properties and ground-state prop-
erties of finite nuclei. Here 	µν, �Rµν , and Fµν are the field
tensors of the vector fields ω, ρ, and of the photon:

	µν = ∂µων − ∂νωµ, (2)

�Rµν = ∂µ �ρ ν − ∂ν �ρ µ, (3)

Fµν = ∂µAν − ∂νAµ. (4)

The functions gσ , gω, and gρ are assumed to be vertex
functions of Lorentz-scalar bilinear forms of the nucleon
operators. In practical applications of the density-dependent
hadron field theory the meson-nucleon couplings are assumed
to be functions of the baryon density ψ†ψ . In a relativistic
framework the couplings can also depend on the scalar density
ψ̄ψ . Nevertheless, expanding in ψ†ψ is the natural choice,
because the baryon density is connected to the conserved
baryon number, unlike the scalar density for which no
conservation law exists. The scalar density is a dynamical
quantity, to be determined self-consistently by the equations of
motion, and is expandable in powers of the Fermi momentum.
For the meson-exchange models it has been shown that the
dependence on baryon density alone provides a more direct
relation between the self-energies of the density-dependent
hadron field theory and the Dirac-Brueckner microscopic self-
energies [13]. The explicit dependence of the vertex functions
on the baryon density produces rearrangement contributions
to the vector nucleon self-energy. The rearrangement terms
result from the variation of the vertex functionals with respect
to the baryon fields in the density operator (which coincides
with the baryon density in the nuclear matter rest frame). For a
model with density-dependent couplings, the inclusion of the
rearrangement self-energies is essential for energy-momentum
conservation and thermodynamical consistency (i.e., for the
pressure equation derived from the thermodynamic definition
and from the energy-momentum tensor) [14,15].

The meson-nucleon vertex functions are determined either
by mapping the nuclear matter Dirac-Brueckner nucleon
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self-energies in the local density approximation [13,15,16] or
by adjusting the parameters of an assumed phenomenological
density dependence of the meson-nucleon couplings to repro-
duce properties of symmetric and asymmetric nuclear matter
and finite nuclei [10,14]. In the phenomenological approach
of Refs. [10,13,14] the coupling of the σ meson and ω meson
to the nucleon field reads

gi(ρ) = gi(ρsat)fi(x) for i = σ, ω, (5)

where

fi(x) = ai

1 + bi(x + di)2

1 + ci(x + di)2
(6)

is a function of x = ρ/ρsat, and ρsat denotes the baryon density
at saturation in symmetric nuclear matter. The eight real
parameters in (6) are not independent. The five constraints—
fi(1) = 1, f ′′

σ (1) = f ′′
ω (1), and f ′′

i (0) = 0—reduce the number
of independent parameters to three. Three additional param-
eters in the isoscalar channel are gσ (ρsat), gω(ρsat), and mσ ,
the mass of the phenomenological σ meson. For the ρ-meson
coupling the functional form of the density dependence is
suggested by Dirac-Brueckner calculations of asymmetric
nuclear matter [16]:

gρ(ρ) = gρ(ρsat) exp[−aρ(x − 1)]. (7)

The isovector channel is parametrized by gρ(ρsat) and aρ .
Usually the free values are used for the masses of the ω and
ρ mesons: mω = 783 MeV and mρ = 763 MeV. In principle
one could also consider the density dependence of the meson
masses. However, since the effective meson-nucleon coupling
in nuclear matter is determined by the ratio g/m, the choice
of a phenomenological density dependence of the couplings
makes an explicit density dependence of the masses redundant.

The eight independent parameters (seven coupling pa-
rameters and the mass of the σ meson) are adjusted to
reproduce the properties of symmetric and asymmetric nuclear
matter, binding energies, charge radii, and neutron radii of
spherical nuclei. In Ref. [10] we introduced the density-
dependent meson-exchange effective interaction (DD-ME1),
whose parameters are displayed in Table I. The seven cou-
pling parameters and the σ -meson mass were simultaneously
adjusted to properties of symmetric and asymmetric nuclear
matter, and to ground-state properties of twelve spherical
nuclei [17–19]. For the open-shell nuclei pairing correlations
were treated in the BCS approximation with empirical pairing
gaps (five-point formula).

In Ref. [10] the RHB model with the density-dependent
interaction DD-ME1 in the ph channel, and with the finite-
range Gogny interaction D1S [20] in the pp channel, was
tested in the analysis of ground-state properties of the Sn
and Pb isotopic chains. It has been shown that, compared
to standard nonlinear relativistic mean-field effective forces,
the interaction DD-ME1 has better isovector properties and
therefore provides an improved description of asymmet-
ric nuclear matter, neutron matter, and nuclei far from
stability. The DD-ME1 interaction has also recently been
tested in the calculation of deformed nuclei [21]. Ground-
state properties of six isotopic chains (60 � Z � 70) in the
region of rare-earth nuclei were calculated by using the

TABLE I. The parameters of the effective interactions DD-ME2
and DD-ME1. See text for description.

DD-ME2 DD-ME1

mσ 550.1238 549.5255
mω 783.0000 783.0000
mρ 763.0000 763.0000
gσ (ρsat) 10.5396 10.4434
gω(ρsat) 13.0189 12.8939
gρ(ρsat) 3.6836 3.8053
aσ 1.3881 1.3854
bσ 1.0943 0.9781
cσ 1.7057 1.5342
dσ 0.4421 0.4661
aω 1.3892 1.3879
bω 0.9240 0.8525
cω 1.4620 1.3566
dω 0.4775 0.4957
aρ 0.5647 0.5008

RHB model, and a very good agreement was obtained in
comparison with experimental data on total binding energies,
charge isotope shifts, and quadrupole deformation para-
meters.

In Refs. [11,12] we derived the relativistic (quasiparticle)
random phase approximation based on effective interactions
with density-dependent meson-nucleon couplings. The ex-
plicit density dependence of the vertex functions introduces
rearrangement terms in the residual two-body interaction.
Illustrative calculations were performed for the isoscalar
monopole, isovector dipole, and isoscalar quadrupole response
of spherical nuclei. Starting from DD-ME1, and by construct-
ing families of interactions with some given characteristic
(compressibility, symmetry energy, and effective mass), it has
been shown how the comparison of the R(Q)RPA results on
multipole giant resonances with experimental data can be used
to constrain the parameters that characterize the isoscalar
and isovector channel of the density-dependent effective
interactions. In particular, in Ref. [12] we have shown that the
comparison of the calculated excitation energies with the ex-
perimental data on the giant monopole resonances restricts the
nuclear matter compression modulus to Knm ≈ 250–270 MeV.
To reproduce the isovector giant dipole resonance in 208Pb
and the available data on differences between neutron and
proton radii, the range of the nuclear matter symmetry energy
at saturation (volume asymmetry) is 32 MeV � a4 � 36 MeV.
Very recently [22] DD-ME1 has also been employed in the
proton-neutron R(Q)RPA analysis of charge-exchange modes,
specifically isobaric analog resonances and Gamow-Teller
resonances in spherical nuclei.

Taking into account all these results, in this work we
adjust a new phenomenological density-dependent interaction
to be used in RMF+BCS, RHB, and R(Q)RPA calculations
of ground states and excitations of spherical and deformed
nuclei. Similar to the procedure used in Ref. [10] to adjust
the interaction DD-ME1, the seven independent coupling
parameters and the mass of the σ -meson are adjusted si-
multaneously to properties of nuclear matter and to binding
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TABLE II. The total binding energies BE, charge radii rc, and the differences between the radii of neutron
and proton density distributions rnp = (rn − rp), used to adjust the interaction DD-ME2. The calculated values
are compared with experimental data (values in parentheses). In the last three columns the corresponding
deviations dE, drc, and drnp (all in %) are included.

Nucleus BE (MeV) rc (fm) rn − rp (fm) dE drc drnp

16O 127.801 (127.619) 2.727 (2.730) −0.03 0.1 −0.1
40Ca 342.741 (342.052) 3.464 (3.485) −0.05 0.2 −0.6
48Ca 414.770 (415.991) 3.481 (3.484) 0.18 −0.3 −0.1
72Ni 612.655 (613.173) 3.914 0.28 −0.1
90Zr 783.155 (783.893) 4.275 (4.272) 0.07 −0.1 0.1
116Sn 986.928 (988.681) 4.615 (4.626) 0.12 (0.12) −0.2 −0.2 3.8
124Sn 1048.859 (1049.962) 4.671 (4.674) 0.21 (0.19) −0.1 −0.1 10.7
132Sn 1103.469 (1102.860) 4.718 0.26 0.1
204Pb 1608.506 (1607.520) 5.500 (5.486) 0.17 0.1 0.3
208Pb 1638.426 (1636.446) 5.518 (5.505) 0.19 (0.20) 0.1 0.2 −4.7
214Pb 1661.182 (1663.298) 5.568 (5.562) 0.24 −0.1 0.1
210Po 1649.695 (1645.228) 5.552 0.17 0.3

energies, charge radii, and differences between neutron and
proton radii of spherical nuclei (see Table II). For nuclear
matter the “empirical” input is as follows: E/A = −16 MeV
(5%), ρ0 = 0.153 fm−3 (10%), K0 = 250 MeV (10%), and
J = 33 MeV (10%). The values in parentheses correspond
to the error bars used in the fitting procedure. The binding
energies of finite nuclei and the charge radii are taken within an
accuracy of 0.1% and 0.2%, respectively. Because of the larger
experimental uncertainties, the error bar used for the neutron
skin is 5%. For the open-shell nuclei pairing correlations are
treated in the BCS approximation with empirical pairing gaps
(five-point formula). After the solution of the self-consistent
equations, the microscopic estimate for the center-of-mass
correction is subtracted from the total binding energy,

Ecm = −
〈
P 2

cm

〉

2Am
, (8)

where Pcm is the total momentum of a nucleus with A nucleons.
As in the case of DD-ME1, a set of twelve spherical nuclei
is used to adjust the effective interaction. The only difference
is that 112Sn has been replaced by 72Ni. In this way a more
balanced mass distribution is used in the fit. Much more
important, however, is the fact that for the new interaction
we have also used data on excitation energies of isoscalar
monopole (ISGMR) and isovector dipole giant resonances
(IVGDR) in spherical nuclei. The interaction has been adjusted
to the excitation energies of the ISGMR and IVGDR in 208Pb,
which practically do not display any fragmentation, and it
also reproduces in detail the evolution of the IVGDR in the
sequence of Sn isotopes. These results will be discussed in the
next section.

The parameters of the new interaction, denoted DD-ME2,
are listed in Table I, together with the older parameterization
DD-ME1. The DD-ME2 results for the binding energies,
charge radii, and differences between radii of neutron and
proton density distributions for the set of 12 spherical nuclei are
compared with experimental data in Table II. The agreement

between the calculated values and data is indeed very good.
Even though the two parameter sets are rather similar, the χ2

for the data set of Table II has been considerably improved
with the new interaction: χ2 = 55 for DD-ME2, whereas
χ2 = 77 for DD-ME1. The two interactions display very
similar equations of state for symmetric nuclear matter, the
symmetry energies as function of the nucleon density, and
the neutron matter equations of state (see the corresponding
figures in Ref. [10]). The differences are small and thus
in Table III we only compare the nuclear matter properties
at saturation density, that is, binding energy per nucleon,
saturation density, nuclear matter compression modulus, Dirac
effective mass, and symmetry energy at saturation. We notice
that for DD-ME2 the nuclear matter incompressibility and the
symmetry energy at saturation correspond to the lower limits
of the allowed values determined by the R(Q)RPA analysis of
the isoscalar monopole and isovector dipole giant resonances
in heavy spherical nuclei.

III. APPLICATIONS

We have performed several tests of the new interaction in a
series of RHB and R(Q)RPA calculations of binding energies,
separation energies, charge isotope shifts, deformations, and

TABLE III. Nuclear matter properties at saturation calculated
with the density-dependent effective interactions DD-ME2 and
DD-ME1.

DD-ME2 DD-ME1

ρsat (fm−3) 0.152 0.152
E/A (MeV) −16.14 −16.20
K0 (MeV) 250.89 244.5
m∗ 0.572 0.578
a4 (MeV) 32.3 33.1
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FIG. 1. Differences between the calculated and experimental
binding energies for the O and Pb isotopic chains. The theoret-
ical values are calculated in the RHB model with the DD-ME1
and DD-ME2 mean-field effective interactions, and with Gogny
pairing.

isoscalar and isovector giant resonances. Ground-state proper-
ties have been calculated in the RHB model with the DD-ME2
effective interaction in the particle-hole channel, and with the
Gogny interaction [23] in the pairing channel

V pp(1, 2) =
∑

i=1,2

e−((r1−r2)/µi)2
(Wi + BiP

σ

−HiP
τ − MiP

σP τ ), (9)

with the set D1S [20] for the parameters µi,Wi , Bi,Hi , and
Mi (i = 1, 2).

The fully self-consistent RRPA [11] and R(Q)RPA [24]
have been used to calculate excitation energies of giant reso-
nances in doubly closed and open-shell nuclei, respectively.
The R(Q)RPA is formulated in the canonical basis of the
RHB model and, in both the ph and pp channels, the same
interactions are used in the RHB equations that determine the
canonical quasiparticle basis and in the matrix equations of
the R(Q)RPA.

In general, when compared with the results obtained
with the DD-ME1 interaction [10,11,21], the new inter-
action improves the agreement with experimental data on
ground-state properties of spherical and deformed nuclei and
excitation energies of giant resonances in spherical nuclei.
For instance, in Fig. 1 we display the absolute deviations
of the theoretical masses from the experimental values [17]

0 50 100 150 200 250

A

-6

-4

-2

0

2

4

6

B
ex

p
-B

th  
(M

eV
)

RHB/DD-ME2

FIG. 2. Absolute deviations of the binding energies calculated
with the DD-ME2 interaction from the experimental values [17].

for the isotopic chains of O and Pb. For the O isotopes the
absolute deviations calculated with DD-ME1 and DD-ME2
are comparable, generally within ≈1 MeV of the experimental
data. For the Pb chain, in contrast, the binding energies
calculated with the DD-ME2 interaction are in much better
agreement with data. However, we are not going to present
here a comparison with all the results that were extensively
discussed in Refs. [10,11,21] for the DD-ME1 interaction.
Rather, selected features of the DD-ME2 interaction will be
illustrated.

The theoretical binding energies of approximately
200 nuclei calculated in the RHB model, with the DD-ME2
plus Gogny D1S interactions, are compared with experimental
values in Fig. 2. Except for a few Ni isotopes with N ≈ Z

that are notoriously difficult to describe in a pure mean-
field approach, and several transitional medium-heavy nuclei,
the calculated binding energies are generally in very good
agreement with experimental data. Although this illustrative
calculation cannot be compared with microscopic mass tables
that include more than 9000 nuclei [3–6], we emphasize that
the rms error including all the masses shown in Fig. 2 is less
than 900 keV. Moreover, since a finite-range pairing interaction
is used, the results are insensitive to unphysical parameters
like, for instance, the momentum cutoff in the pairing channel.
When compared with data on absolute charge radii and charge
isotope shifts from Ref. [19], the calculated charge radii exhibit
an rms error of only 0.017 fm. The predictive power of the
RHB model with the DD-ME2 effective interaction is also
illustrated in Table IV, where we include the calculated binding
energies, radii of charge and neutron density distributions,
and quadrupole and hexadecupole moments of heavy and
superheavy nuclei, in comparison with available experimental
data [17–19,25]. The calculated masses and moments are in
excellent agreement with experimental values. The results
shown in Fig. 2 and Table IV indicate that DD-ME2 could
be used as a basis for a microscopic mass table based on a
relativistic universal energy density functional. Work along
these lines is in progress.
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TABLE IV. RHB model (DD-ME2 plus Gogny D1S pairing) results for the binding energies, radii of charge
and neutron density distributions, and quadrupole and hexadecupole moments of heavy and superheavy nuclei,
in comparison with experimental data [17–19,25].

Nucleus BE (MeV) rc (fm) rn (fm) Qp (b) Hp (b2)

224Ra 1720.47 (1720.31) 5.71 5.85 4.93 (6.33) 0.45
226Ra 1731.13 (1731.61) 5.74 5.88 6.22 (7.19) 0.65
228Ra 1741.67 (1742.49) 5.76 5.92 7.44 (7.76) 0.79
230Ra 1751.94 (1753.05) 5.79 5.95 8.39 0.86
228Th 1743.04 (1742.49) 5.78 5.90 7.64 (8.42) 0.88
230Th 1751.94 (1753.05) 5.80 5.93 8.57 (8.99) 0.97 (1.09)
232Th 1766.10 (1766.92) 5.82 5.96 9.28 (9.66) 1.00 (1.22)
234Th 1776.80 (1777.68) 5.84 5.99 9.78 (8.96) 0.96
232U 1766.39 (1765.97) 5.83 5.94 9.57 (10.00) 1.10
234U 1778.66 (1778.57) 5.85 5.97 10.10 (10.35) 1.10 (1.40)
236U 1790.29 (1790.42) 5.87 6.00 10.46 (10.80) 1.03 (1.30)
238U 1801.38 (1801.69) 5.88 6.02 10.74 (11.02) 0.94 (0.83)
240U 1811.82 (1812.44) 5.90 6.05 11.03 0.86
238Pu 1801.85 (1801.27) 5.89 6.01 11.09 (11.26) 1.00 (1.38)
240Pu 1813.84 (1813.46) 5.91 6.03 11.32 (11.44) 1.00 (1.15)
242Pu 1825.26 (1825.01) 5.92 6.05 11.55 (11.61) 0.90
244Pu 1836.00 (1836.06) 5.94 6.08 11.61 (11.73) 0.79
246Pu 1845.97 (1846.66) 5.95 6.10 11.52 (11.52) 0.66
244Cm 1836.67 (1835.85) 5.95 6.06 12.03 (12.14) 0.91
246Cm 1848.17 (1847.83) 5.96 6.08 12.08 (12.26) 0.80
248Cm 1858.94 (1859.20) 5.97 6.11 12.01 (12.28) 0.67
250Cm 1869.20 (1869.75) 5.98 6.13 11.81 0.54
250Cf 1870.20 (1870.00) 6.00 6.11 12.41 (12.70) 0.62
252Cf 1881.31 (1881.28) 6.01 6.13 12.22 (12.95) 0.49
254Cf 1892.02 (1892.12) 6.02 6.15 11.97 0.36
252Fm 1879.55 (1878.93) 6.02 6.12 12.86 0.57
254Fm 1891.85 (1890.99) 6.03 6.14 12.58 0.41
256Fm 1903.21 (1902.55) 6.04 6.16 12.45 0.31
252No 1872.83 (1871.31) 6.03 6.10 13.23 0.56
254No 1886.39 (1885.61) 6.04 6.12 13.22 0.45
256No 1899.21 (1898.65) 6.05 6.15 13.05 0.34
256Rf 1892.38 (1890.67) 6.07 6.13 13.57 0.34
260Sg 1910.95 (1909.05) 6.10 6.16 13.70 0.15
264Hs 1929.96 (1926.75) 6.13 6.18 13.42 −0.05

In adjusting the parameters of DD-ME2 we took into
account the results of Refs. [11,12], where it has been shown
that, to reproduce the excitation energies of the ISGMR and
IVGDR in spherical nuclei, the values of the nuclear matter
compression modulus Knm should be restricted to the interval
≈250–270 MeV, and the range of the nuclear matter symmetry
energy at saturation should be 32 MeV � a4 � 36 MeV. For
208Pb the RRPA results for the monopole and isovector
dipole response are displayed in Fig. 3. For the multi-
pole operator Q̂λµ the response function R(E) is defined
as

R(E) =
∑

i

B(λi → 0f )
�/2π

(E − Ei)2 + �2/4
, (10)

where � is the width of the Lorentzian distribution, and

B(λi → 0f ) = 1

2J + 1
|〈0f ||Q̂λ||λi〉|2. (11)

In the examples considered here, the continuous strength
distributions are obtained by folding the discrete spectrum
of R(Q)RPA states with the Lorentzian [see Eq. (10)]
with constant width � = 1 MeV. The calculated peak en-
ergies of the ISGMR and IVGDR, 13.9 and 13.5 MeV,
respectively, should be compared with the experimental ex-
citation energies, E = 14.1 ± 0.3 MeV [26] for the monopole
resonance and E = 13.3 ± 0.1 MeV [27] for the dipole reso-
nance, respectively.

In Fig. 4 we compare the R(Q)RPA results for the
Sn isotopes with experimental data on IVGDR excitation
energies [28]. In contrast to the case of 208Pb, the strength
distributions in the region of giant resonances exhibit fragmen-
tation and the energy of the resonance EGDR is defined as the
centroid energy Ē = m1/m0, calculated in the same energy
window as the one used in the experimental analysis (13–
18 MeV). The RHB+R(Q)RPA calculation with the DD-ME2
interaction reproduces in detail the experimental excitation
energies and the isotopic dependence of the IVGDR.
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FIG. 3. The isoscalar monopole (a), and the
isovector dipole (b) strength distributions in
208Pb calculated with the effective interaction
DD-ME2. The experimental excitation energies
are 14.1 ± 0.3 MeV [26] for the monopole res-
onance and 13.3 ± 0.1 MeV [27] for the dipole
resonance, respectively.

An important field of applications of self-consistent mean-
field models includes the structure and decay properties of
superheavy nuclei [1]. The relativistic mean-field framework
has recently been very successfully employed in calculations
of chains of superheavy isotopes [29–38]. Because generally

relativistic density-dependent effective interactions provide
a very realistic description of asymmetric nuclear matter,
neutron matter, and nuclei far from stability, one can also
expect a good description of the structure of superheavy nuclei.
In Table IV we have shown that the interaction DD-ME2
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FIG. 4. The RHB+RQRPA isovector dipole strength distributions in 116,118,120,124Sn. The experimental IVGDR excitation energies for the
Sn isotopes are compared with the RHB+RQRPA results calculated with the DD-ME2 effective interaction.
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FIG. 5. Theoretical and experimental Qα values for two α-decay chains starting from the odd-odd nucleus 288115 and the odd-even nucleus
287115. The experimental data are from Ref. [39], and the calculated values correspond to transitions between the ground states calculated in
the RHB model with the DD-ME2 interaction plus Gogny D1S pairing.

reproduces ground-state properties of superheavies with high
accuracy. Of course it is also interesting to analyze predictions
for decay chains. In a very recent work [39], evidence
has been reported for the synthesis of element Z = 115.
In Fig. 5 we compare the calculated and experimental Qα

values for two α-decay chains starting from the odd-odd

nucleus 288115 and the odd-even nucleus 287115. The two
superheavy nuclides with N = 173 and 172 were produced
in the 3n- and 4n-evaporation channels following the reaction
243Am + 48Ca [39]. The theoretical Qα values correspond to
transitions between the ground states calculated in the RHB
model with the DD-ME2 effective interaction and with the

268 272 276 280 284 288

Mass Number

0.0

0.1

0.2

0.3

β 2

267 271 275 279 283 287

RHB/DD-ME2

105 107 109 111 111115 105 109 115107113 113

FIG. 6. Calculated ground-
state quadrupole deformation
parameters β2 of the superheavy
nuclei that belong to the two
α-decay chains shown in Fig. 5.
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Gogny interaction D1S in the pairing channel. The Dirac-
Hartree-Bogoliubov equations and the equations for the meson
fields are solved by expanding the nucleon spinors and the
meson fields in terms of the eigenfunctions of a deformed
axially symmetric oscillator potential. A simple blocking
procedure is used in the calculation of odd-proton and/or
odd-neutron systems. The blocking calculations are performed
without breaking the time-reversal symmetry. We notice that
for both α-decay chains the trend of experimental transition
energies is accurately reproduced by our calculations. For
the odd-odd nucleus 288115, in particular, the theoretical Qα

values are in excellent agreement with the experimental data.
For completeness, in Fig. 6 we also include the ground-state
quadrupole deformation parameters β2 of the superheavy
nuclei that belong to the two α-decay chains.

IV. SUMMARY AND CONCLUSIONS

Effective nuclear interactions with density-dependent
meson-nucleon vertex functions represent a significant im-
provement in the relativistic self-consistent mean-field de-
scription of the nuclear many-body problem. In a number
of recent studies it has been shown that, in comparison
with standard nonlinear meson-exchange models, this class
of effective interactions provides a more realistic description
of asymmetric nuclear matter, neutron matter, and finite nuclei.
In particular, these interactions allow for a softer equation of
state of nuclear matter (i.e., lower incompressibility) and a
lower value of the symmetry energy at saturation.

In this work we have adjusted a new, improved rela-
tivistic mean-field effective interaction with explicit density

dependence of the meson-nucleon couplings. In comparison
with the previous version DD-ME1 that was derived in
Ref. [10], the new interaction, denoted DD-ME2, takes into
account the results of relativistic RPA analyses [11,12],
which provide additional constraints on the parameters that
characterize the isoscalar and isovector channels. To illustrate
the principal features of the new interaction, we have analyzed
ground-state properties and excitation energies of giant reso-
nances. Ground states of spherical and deformed nuclei have
been calculated in the RHB model with the DD-ME2 effective
interaction in the particle-hole channel, and with the Gogny in-
teraction D1S in the pairing channel. The fully self-consistent
RRPA and R(Q)RPA have been used to calculate excitation en-
ergies of giant resonances in spherical nuclei. When compared
with the results obtained with DD-ME1, the new interaction
considerably improves the agreement with experimental data.
We particularly emphasize the very good results for the
masses of approximately 200 nuclei and for the isoscalar
monopole and isovector dipole resonances and the excellent
agreement with the recently reported α-decay chains of the new
element 115. DD-ME2 represents a valuable addition to the
set of relativistic mean-field interactions. Future applications
will include the calculation of a microscopic mass table,
mapping the drip lines, and a more extensive study of giant
resonances.
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Phys. Rev. C 69, 044315 (2004).

[38] T. Bürvenich, M. Bender, J. A. Maruhn, and P.-G. Reinhard,
Phys. Rev. C 69, 014307 (2004).

[39] Yu. Ts. Oganessian, V. K. Utyonkoy, Yu. V. Lobanov,
F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky,
Yu. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov,
A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov,
A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev,
M. G. Itkis, J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer,
N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, and
R. W. Lougheed, Phys. Rev. C 69, 021601(R) (2004).

024312-10


