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We explicitly show that minimal supersymmetric SO�10� Higgs-Higgsino mass matrices evaluated by
various groups are mutually consistent and correct. We comment on the corresponding results of other
authors. We construct one-to-one mappings of our approach to the approaches of other authors.
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I. INTRODUCTION

There is a large interest in the minimal supersymmetric
SO�10� grand unified theory (GUT) [1–4] concerning
neutrino masses [2–4], lepton-flavor violation processes
[5], and proton decay [6,7]. To study the proton decay
lifetime it is important to know Higgs-Higgsino masses
which were analyzed in Refs. [6–11]. However, there are
apparently different results for corresponding mass matri-
ces [6–11] for SO�10� ! G321 symmetry breaking with
unbroken supersymmetry [G321 � SU�3�c � SU�2�L �
U�1�Y is the standard model gauge group].

In order to prove that the mass matrices in Ref. [6] are
correct, we present a set of universal consistency checks
that the mass matrices must satisfy in our approach. These
are the trace of the total Higgs mass matrix, the hermiticity
condition of the matrix of Clebsch-Gordan coefficients in
each mass matrix and the higher symmetry group checks
containing the standard model gauge group G321. Further,
finding explicit one-to-one correspondences between the
results of Refs. [6–12], we prove the consistencies between
the approaches considered.

II. SHORT SUMMARY OF THE MINIMAL SUSY
SO�10� GUT

The Yukawa sector of the minimal SUSY SO�10� GUT
has couplings of each generation of the matter multiplet
with only the 10 and 126 Higgs multiplets. The Higgs
sector contains 10 � H, 126 � �, 126 � �, and 210 �
� multiplets. The last two multiplets are necessary to
achieve the correct SO�10� ! G321 breaking. The Higgs
superpotential reads [6]

W � m1�2 �m2���m3H2 � �1�3 � �2���

� �3��H � �4��H: (1)

We are interested in symmetry breaking SO�10� ! G321.
The G321 invariant vacuum expectation values (VEVs) are

h�i �
X3

i�1

�i�̂i; h�i � vRcvR; h�i � vR cvR;�

(2)
05=72(5)=051701(4)$23.00 051701
where �i; i � 1; 2; 3, vR, and vR are complex VEV varia-
bles and �̂i; i � 1; 2; 3, cvR, and cvR are unit G321 invariant
vectors, satisfying �̂i�̂j � �ij, cvR cvR � 1, cvR2 � cvR2

�

0, described in Y diagonal basis [6,8] as

cvR � 1��������
120
p �24 680�; cvR � 1��������

120
p �13 579�;

�̂1 � �
1������
24
p �1234�;

�̂2 � �
1������
72
p �5678� 5690� 7890�;

�̂3 � �
1

12
��12� 34	�56� 78� 90	�:

(3)

Inserting the VEVs (2) into the superpotential (1), one
obtains

hWi � m1��
2
1 ��

2
2 ��

2
3	 �m2vRvR

� �1

�
�3

2

1

9
���
2
p � 3�1�2
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6
���
6
p � 3�2�2

3

1

9
���
2
p

�

� �2

�
�1

1

10
���
6
p ��2

1

10
���
2
p ��3

1

10

�
vRvR; (4)

which determines the VEV equations,

0 � 2m1�1 �
�1�2

3

2
���
6
p �

�2vRvR
10

���
6
p ;

0 � 2m1�2 �
�1�2

2

3
���
2
p �

�1�2
3

3
���
2
p �

�2vRvR
10

���
2
p ;

0 � 2m1�3 �
�1�1�3���

6
p �

���
2
p
�1�2�3

3
�
�2vRvR

10
;

0 � vRvR

�
m2 �

�2�1

10
���
6
p �

�2�2

10
���
2
p �

�2�3

10

�
:

(5)

In the following we will assume that jvRj � jvRj [6,9].
For vR � 0 the solutions of the VEV Eqs. (5) are vac-

uum minima with SU�5� �U�1�, SU�5� �U�1�flipped,
G3221 and G3211 symmetry.

For vR � 0 the VEV Eqs. (5) lead to the fourth-order
equation in �1 (or �2 or �3). One of the solutions of that
-1 © 2005 The American Physical Society
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equation corresponds to the SU�5� symmetry, while the
remaining three have G321 symmetry [6].

The SU�5� solution is given by

�1 � �

���
6
p
m2

�2
; �2 � �

3
���
2
p
m2

�2
;

�3 � �
6m2

�2
; vRvR �

60m2
2

�2
2

�
2
�
m1

m2

�
� 3

�
�1

�2

��
: (6)
III. HIGGS MASS MATRICES

The mass matrices are defined as

M ij �
@2W
@’i@’j

��������VEV
; (7)

where ’i represents any G321 multiplet. We point out that
the physical masses squared are eigenvalues of MyM and
MMy matrices.

The G321 mass matrices [6,8] that we use here are given
in Ref. [6] [see formulas (4.1)–(4.5), (5.3), (6.4) and
Tables I and II]. Phenomenologically the most interesting
doublet and triplet mass matrices are given by equations
(5.3) and (6.4) in Ref. [6], respectively.
IV. CONSISTENCY CHECKS

In Ref. [8] a detailed explanation of a method for cal-
culation of the above matrices is given, and all possible
consistency checks are briefly explained.

There are three main consistency checks.
The first is that the trace of the total Higgs mass matrix

does not depend on the coupling constants �i, i � 1; 2; 3; 4.
It depends only on mass parameters mi, i � 1; 2; 3 and the
dimensions of the corresponding SO�10� representations.
The sum rule for the Higgs-Higgsino mass matrices is

TrM � 2m1 � 210�m2 � 252� 2m3 � 10: (8)
TABLE I. SU�5� mass-matrix eigenvalu

G321 SU�5� mass-matrix eigenvalues

�3; 2;� 5
6� m��24�,m��75�

�3; 2; 1
6� mG

1 �10�,m2�10�,m��40�,m��15�
�3; 1; 2

3� mG
1 �10�,m2�10�,m��40�

�1; 1; 1� mG
1 �10�,m2�10�

�1; 1; 0� mG
1 �1�,m2�1�,m3�1�,m��24�,m��75�

�1; 2; 1
2�D m��45�,m1�5�,m2�5�,m3�5�

�3; 1;� 1
3�T m��50�,m��45�,m1�5�,m2�5�,m3�5�

�8; 2; 1
2� m��45�,m��50�

�6; 3; 1
3� m��50�

�6; 1; 4
3� m��50�

�6; 1; 2
3� m��15�

�6; 1; 1
3� m��45�

�3; 3; 1
3� m��45�

051701
The second is that the Clebsch-Gordan coefficients in all
mass matrices satisfy hermiticity property.

The mass sum rule and the hermiticity property for the
mass matrices are easily verified for the results for the mass
matrices given in Ref. [6].

The third and main check is the SU�5� check briefly
described in the paper [8]. Here we explicitly prove that
mass matrices in Ref. [6] satisfy this highly nontrivial test.

Let us insert the SU(5) solution (6) into mass matrices in
Ref. [6] for general mass parameters mi, i � 1; 2; 3 and
coupling constants �i, i � 1; 2; 3; 4. Note that 10, 126, 126,
and 210 decompose under the SU�5� symmetry as
10 � 5� 5; 126 � 1� 5� 10� 15� 45� 50;

126 � 1� 5� 10� 15� 45� 50;

210 � 1� 5� 5� 10� 10� 24� 40� 40� 75:

(9)
In total, there are three singlets, three (5� 5), two (10�
10), one (15� 15), one 24, one (40� 40), one (45� 45),
one (50� 50), and one 75. All together there are 14 SU�5�
representations which can form mass terms.

The corresponding mass-matrix eigenvalues are
mG

1 �1� � mG
1 �10� � 0, corresponding to 21 would-be

Goldstone modes, m2;3�1�, m1;2;3�5�, m2�10�, m��15�,
m��24�, m��40�, m��45�, m��50�, and m��75�.
Therefore, the SU�5� decomposition of 10, 126, 126, and
210 implies there are at most 13 different mass-matrix
eigenvalues.

We found the SU�5� mass-matrix eigenvalues analyti-
cally. These eigenvalues are obtained diagonalizing the 26
mass matrices corresponding to the 26 G321 multiplets
contained in 10, 126, 126, and 210. The results are given
in Table I. In Table I the mass-matrix eigenvalues read
es obtained from G321 mass matrices.

G321 SU�5� mass-matrix eigenvalues

�3; 2; 7
6� m��45�,m��50�

�3; 1; 4
3� m��45�

�1; 3; 1� m��15�
�1; 1; 2� m��50�
�8; 3; 0� m��75�
�8; 1; 1� m��40�
�8; 1; 0� m��24�,m��75�
�6; 2; 5

6� m��75�
�6; 2; 1

6� m��40�
�3; 3; 2

3� m��40�
�3; 1; 5

3� m��75�
�1; 3; 0� m��24�
�1; 2; 3

2� m��40�
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m��50� �
6

5
m2; m��45� � m2; m��15� �

4

5
m2; m2�10� � 2m1 � 3m2

�1

�2
�

3

5
m2;

m��75� � 2m1 � 2m2
�1

�2
; m��40� � 2m1; m��24� � 2m1 �m2

�1

�2
;

m2;3�1� � m1 � 3m2
�1

�2



��
m1 � 3m2

�1

�2

�
2
� 4m1m2 � 6m2

2

�1

�2

�
1=2
:

(10)

The remaining three mass-matrix eigenvalues m1;2;3�5� are solutions of the following cubic equation

0 � x3 � x2

�
2m1 � 2m3 �

3m2

5
�

6�1m2

�2

�
� x

�
36�3�4m2

2

5�2
2

�
36�1�3�4m2

2

�3
2

�
9�1m2

2

5�2
�

24�3�4m1m2

�2
2

�
12�1m3m2

�2

�
6m3m2

5
� 4m1m3

�
�

�
108�1�3�4m

3
2

�3
2

�
288�3�4m1m

2
2

5�2
2

�
18�1m3m

2
2

5�2

�
: (11)
We point out that when the SU�5� solution for VEVs (6)
is inserted in 26 matrices in Ref. [6]G321 mass matrices we
obtain 13 different mass-matrix eigenvalues, as predicted
counting the SU�5� multiplets in 10, 126, 126, and 210,
with different mass-matrix eigenvalues. That is a nontrivial
test of the G321 mass matrices.

Moreover, the sum rule for the SU�5� mass-matrix ei-
genvalues also holds

TrM � �m2�1� �m3�1�	 � �m1�5� �m2�5� �m3�5�	

� 10�m2�10� � 20�m��15� � 30�m��45�

� 90�m��50� � 100�m��24� � 24

�m��40� � 80�m��75� � 75

� 2m1 � 210�m2 � 252� 2m3 � 10: (12)

Substitution of the SU�5� solution into G321 Higgs mass
matrices leads, for example, to the following mass matrices
for Higgs doublets �1; 2; 1

2�

Mdoublet �

2m3 0 6�3m2��
5
p
�2

2
��
3
p
�4m2

�2
A

0 m2 0 0
6�3m2��

5
p
�2

0 3m2

5 �
��
3
p
m2��
5
p A

2
��
3
p
�3m2

�2
A 0 �

��
3
p
m2��
5
p A 2m1 �

6�1m2

�2

0BBBBBB@

1CCCCCCA;

(13)

where A � �2m1

m2
� 3�1

�2
�1=2, and color triplets �3; 1;� 1

3�

Mtriplet �

2m3 M12 0 M14 M51

M21 m2 0 � m2��
5
p A �

��
2
p
m2

5
0 0 m2 0 0

M41 � m2��
5
p A 0 M44 �

��
2
p
m2A��
5
p

M51 �
��
2
p
m2

5 0 �
��
2
p
m2A��
5
p 4m2

5

0BBBBBBBB@

1CCCCCCCCA
;

(14)

where
051701
M12 �
2
���
3
p
�4m2���
5
p
�2

; M21 �
2
���
3
p
�3m2���
5
p
�2

;

M14 � 2
���
3
p
�4m2A; M41 � 2

���
3
p
�3m2A;

M44 � 2m1 �
6�1m2

�2
; M15 �

2
���
6
p
�4m2���
5
p
�2

;

M51 �
2
���
6
p
�3m2���
5
p
�2

:

(15)

Note that

TrMtriplet � m��50� � TrMdoublet;

detMtriplet � m��50� detMdoublet:
(16)

V. EQUIVALENCE TO OTHER APPROACHES

We show that the results of the Refs. [6–12] are con-
sistent with each other, by giving the unique correspond-
ences between the results of different authors. In Ref. [12]
it was suggested that the issue may be connected to the
different definitions of the fields. We show explicitly that
with the correct field identifications the apparently differ-
ent results are in accord with each other.

In order to make a contact with the results for the G321

mass matrices found in Ref. [9], we compare the VEV
equations (6)–(9) of Ref. [9] and mass matrices given in
Table XI and in Eqs. (B12)–(B19) of Ref. [9] with our
VEVs Eqs. (5) (see also (3.10)–(3.13) in Ref. [6]) and mass
matrices given in Ref. [6] by Eqs. (4.1)–(4.5), (5.3), (6.4)
and in Tables I and II. From a comparison of these results
in the two papers one finds the unique correspondence
between parameters of the two papers,

m1 � m�; m2 � m�; m3 � mH;

�1 �
������
24
p

�; �2 � 10
���
6
p
�; �3 �

���
5
p
�;

�4 �
���
5
p
�; �1 � p; �2 �

���
3
p
a;

�3 � �
���
6
p
!; vR � �B vR � �B:

(17)
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(Label B is introduced to distinguish the quantities of
Ref. [9] from the equally named quantities in Ref. [11]
which will be denoted by label A). Namely, if one performs
the above substitution in our VEV equations and mass
matrices, one gets the VEV equations as in Ref. [9].
Also, up to the phase redefinitions and simultaneous per-
mutations of rows and columns, the same mass matrices as
in Ref. [9] are obtained, except for the doublet �1; 2; 1

2�mass
matrix. There is the reverse sign in all matrix elements in
the fourth row of �1; 2; 1

2� mass matrix. This difference
comes from an arbitrary choice of phases for states con-
jugated to each other. In our approach the phases of con-
jugate states are chosen to be related by complex
conjugation.

Namely, if we multiply our results for the total mass
matrix by a diagonal matrix of arbitrary phases D preserv-
ingG321 symmetry, we obtain matrix M0, (M0 �DM or
M0 �MD) which then spoils all our consistency checks
for M0 but preserves validity of all our higher symmetry
checks, except the trace check (16), for �M0�yM0 and
M0�M0�y matrices. The maximal number of arbitrary
phases is equal to the number of G321 multiplets. The
matrices M0 and M are physically equivalent. Hence we
agree with [12] that there should be an equivalence i.e. one-
to-one correspondence between all results of all groups.

From the substitution (17) we see that there is one-to-
one correspondence between VEV equations and mass
matrices (up to phases), but the superpotential can be
identified only after the following rescaling of the 210�
� and 126� 126 � �� � fields

� �
�B������

24
p ; � �

�B��������
120
p ; � �

�B��������
120
p : (18)
051701
Only after substitutions (17) and the above rescalings of
the fields (18) there is one-to-one correspondence of all our
results and results of Ref. [9].

The similar equivalence holds between our results and
the results of Ref. [11]. But this is not the correspondence
given in Ref. [11] which does not map our G321 mass
matrices to those of Ref. [11]. The correspondence be-
tween our results and those of Refs. [11,12] is

m1 � m; m2 � 2M; m3 �
1

2
MH;

�1 �
������
24
p

�; �2 � 20
���
6
p
�; �3 �

������
10
p

�;

�4 �
������
10
p

�; �1 � p; �2 �
���
3
p
a;

�3 � �
���
6
p
!; vR �

�A���
2
p ; vR �

�A���
2
p ;

� �
�A������

24
p ; � �

�A��������
240
p ; � �

�A��������
240
p :

(19)

Finally, we have shown that our results are internally
consistent and correct. By constructing unique mappings
from our results to the results of the Refs. [9] and [11,12]
we have also shown that the results of Refs. [6–12] are
mutually consistent. The advantages of our method are that
it is very simple and necessarily incorporates a set of strong
consistency checks, proposed in Ref. [8] that apply to the
total mass matrix M. As a consequence, MyM and
MMy automatically satisfy all the higher symmetry tests,
except the trace test. Furthermore, our method can easily
be programmed for tensor representations and can easily
be extended to spinor representations. Therefore, it is
suitable for a broad use in the model building.
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